GFP抗体
Shilpa Vashist (shilpa dot vashist at gmail dot com)
University of Pennsylvania, USA.
译者
朱婷婷 (ttzhu14 at fudan dot edu dot cn)
中国复旦大学生物医学研究院
DOI
http://dx.doi.org/10.13070/mm.cn.3.176
日期
更新 : 2016-05-10; 原始版 : 2013-03-11
引用
实验材料和方法 2013;3:176
摘要

本文是关于GFP抗体的全面综述,数据来源于来邦网调查的159篇正式出版文献和GFP抗体使用的常见问题。

英文摘要

A comprehensive review of anti-GFP antibodies including results from Labome survey of 159 formal publications and anti-GFP antibody FAQ.

GFP抗体
供应商数目
Invitrogen / Life Technologies49
Abcam35
Roche22
Santa Cruz Biotechnology17
Clontech16
Aves Labs7
MBL6
EMD Millipore / Chemicon / Merck5
Sigma5
BD BioSciences3
Torrey Pines3
Rockland2
Biolegend2
Miltenyi Biotech2
ChromoTek2
Nacalai Tesque2
表一. GFP抗体的供应商(包括抗EGFP抗体)以及它们在159篇文献中被引用的次数 randomly selected(截止2015年8月29日)。 ProteinTech Group, AbDSerotec / Biogenesis, Bethyl Labaoratories, Cell Signaling, Wako, Promega, Abmart, Stratagene和Vector Laboratories这些供应商被引用过一次。

GFP非常适合用于蛋白质标记,这是它取得空前成功的最大原因之一。虽然它非常适合实时成像,但是在使用方法中如果导致GFP荧光淬灭,那么就有必要使用抗GFP抗体。组织样品,组织学制剂和使用固定剂的冷冻保存,通常导致GFP荧光完全或部分损失,则需要使用GFP抗体来获得可靠的实验结果。通过免疫印迹检测GFP标签蛋白,免疫沉淀检测蛋白质-蛋白质相互作用,这些实验也必须使用GFP抗体。GFP抗体有多克隆或单克隆抗体,适用于蛋白质印迹,免疫沉淀,免疫组化,免疫细胞化学定位和免疫吸附测定(ELISA),以检测GFP,GFP变体和GFP融合蛋白。

使用方法供应商参考文献
免疫印迹
Roche 11814460001(7.1/13.1) [3-7] ; [3-18]
Thermo Fisher / Invitrogen A11122 [19, 20] ; [8, 19-31]
Clontech JL-8(632380, 632380) [32-36] ; [32-35, 35-42]
Santa Cruz Biotechnology sc-8334 [43], sc-9996 [44] ; [43-53]
免疫细胞化学
Abcam ab13970 [54-56] ; [10, 54-60]
Roche 11814460001(7.1/13.1) [3] ; [3, 9, 18, 61, 62]
Thermo Fisher / Invitrogen [63-66]
免疫组化
Invitrogen A11122 [55, 67-69] ; A11120 [70] ; A6455 [71] ; A11039 [72] ; [2, 72-87]
Abcam ab290 [88, 89] ; ab1218 [90] ; ab13970 [91, 92] ; ab6556 [93] ; [58, 85, 88-106]
Aves Labs 绿色荧光蛋白-1020 [107-109] ; [76, 107-111]
免疫沉淀
Invitrogen A11120 [41] ; G10362 [112] ; A11122 [20] ; [8, 20, 22, 29, 41, 112-114]
Santa Cruz Biotechnology sc-8334 [115] ; [115-118]
ChIP
Abcam ab290 [119]
Thermo Fisher / Invitrogen [114]
Chromtek [120]
Cell Signaling [121]
免疫-电镜
Thermo Fisher / Invitrogen [6]
Abcam ab6556 [9]
Clontech [9]
表二. 不同使用方法的GFP抗体的主要供应商和相关参考文献(参考文献中提及克隆名或目录编号),统计结果来源于截止2015年8月29日已发表的159篇文献。

GFP抗体使用量在增长,相应供应商的数量也在增加。来邦网调查了159篇文献,汇编了直至2015年8月28日,在已经正式发表的文章中, 提供GFP抗体的供应商列表和相对应的被引用的次数(表1)。基于这项调查,这些抗体的主要供应商的名单和简短评论将在下文呈现。表2列出了抗的不同使用方法。

有些供应商还提供GFP单结构域抗体或纳米抗体。这些抗体包括一个单一可变抗体结构域,这是一种骆驼来源的单结构域抗体。这些抗体比常规抗体小得多,而且有重要的用途。 Caussinus E等人已经率先发明deGradFP方法(图2),该方法利用遗传编码方式,具体为在任何真核系统中,快速消耗GFP标签蛋白 [122] 。此系统依赖于GFP单结构域抗体片段(vhhGFP4)融合到F-box结构域。此融合蛋白结合GFP并直接介导蛋白酶体降解。当GFP标记的蛋白是功能蛋白的唯一来源,那么基因功能的分析就不受残留蛋白的干扰。Ries等人使用GFP标签蛋白和分子量小、亲和力高的单结构域GFP抗体,在微管,神经元和酵母细胞研究中获得纳米级的分辨率 [123] 。

Thermo Fisher / Life Technologies / Invitrogen

Life Technologies公司最受欢迎的一种GFP抗体是兔多克隆抗体 A11122。它被用于免疫印迹 [19] ,免疫组化 [67-69] ,和免疫沉淀 [41] 。Invitrogen公司的鸡抗GFP抗体以1:500稀释度进行免疫组化实验 [72] 。兔抗GFP抗体以1:1000稀释度来进行免疫细胞化学实验来研究管腔形成期间中Rab11a介导的Cdc42依赖的根尖胞吐网络 [66] ,或以1:500稀释度在db / db小鼠中显示下丘脑神经元移植的效果 [65] ;免疫组化(1:1000)实验表明睡眠可诱导增强果蝇的记忆巩固 [75] ;或者以1:800稀释度来研究正常脑发育 [76] ;1:2000稀释度的实验表明同一祖细胞来源的中间神经元可以在大脑新皮质组装在一起 [79] ;以1:2000稀释度来检测平面细胞极性 [81] ;也可使用在共焦显微镜 [74] ,其它免疫组化实验 [2, 55, 63, 64, 70, 71, 71, 78, 80, 82-85, 124-128], to perform western blot [8, 20-22, 24-29, 31] 或免疫沉淀 [8, 20, 22, 29, 112, 113] 实验。Invitrogen公司的鼠抗GFP抗体以1:200稀释度进行免疫组化实验,结果显示果蝇幼虫视觉系统的结构和功能可被光刺激改变 [77] 。Invitrogen公司的GFP抗体也用来进行ChIP实验,结果表明振子基因表达可被TOC1抑制 [114].

Abcam

Abcam公司的几个GFP抗体使用广泛: ab290 用于免疫组化 [88, 89] ,免疫印迹 [129] 和 cChIP [119] ; ab13970 用于免疫细胞化学 [54-56] 和免疫组化 [91, 92] ; ab1218 用于免疫组化 [90] 和免疫印迹 [130] ;和 ab6556 兔抗GFP抗体以1:1000稀释度用于免疫组化 [93] 。 Abcam公司的鸡多克隆GFP抗体用于免疫组化来研究刺鼠表达(Agouti expression) [105] ,研究小鼠β-连环蛋白(β-catenin)调控Kras依赖的葡萄状腺发展成PDA癌前体的重编程过程; [131] 采用免疫细胞化学实验研究RAS / Epac2信号通路在维持平层神经元基底树突复杂性中的作用, [96] 和cPLA2a在池内管(intercisternal tubular)的连续性和高尔基复合体运输中的作用 [59] 。FITC标记的羊抗GFP抗体用来进行免疫荧光实验,以研究胞质多聚腺苷酸化和CPE介导的转录调控在视网膜轴突发育中的作用 [10] ;生物素偶联的羊抗GFP抗体用来进行免疫组化实验,结果表明迷走神经通路在脾T细胞合成乙酰胆碱来抑制细胞因子的产生 [102] 。

GFP抗体 图 1
图 1. 左侧:(a-c)共注射 DNb-catenin-gfp RNA 和 MO1-ccr7ccr7 RNA ,表明Ccr7可以下调β-连环蛋白表达,更高放大倍数在(d-f)显示。来自引文的图3D [1] 。 右测:共注射 DNb-catenin-gfp RNA 和 ccr7 RNA 或 MO1-ccr7的免疫印迹分析结果。来自引文中图3E [1] 。
Santa Cruz Biotechnology

Santa Cruz公司的GFP抗体 sc-8334 用于免疫共沉淀实验,以研究CCA1和LHY在拟南芥生物节律调控中的作用 [115] ;用于免疫印迹分析,以探讨类鼻疽杆菌(Burkholderia pseudomallei)来源的CHBP蛋白作为蛋白抑制剂,在真核细胞泛素化途径中的作用 [43] 。Santa Cruz公司的GFP抗体 sc-9996 用于免疫印迹实验,验证了肿瘤细胞的异倍体性与STAG2失活相关 [44] 。Santa Cruz公司的GFP单克隆抗体用于免疫印迹,来研究在非典型法布瑞氏症中,DGJ在增强GLA酶活性和蛋白表达中的作用 [50] ;并研究Rho GDP解离抑制子2(RhoGDI 2)的抗肿瘤作用 [46] 。Santa Cruz Biotechnology公司的兔多克隆绿色荧光蛋白抗体用于免疫沉淀实验,来研究一种新的蛋白抑制剂FIP200对黏着斑激酶的调控作用 [116] ;用于免疫印迹实验研究线粒体凋亡中Bcl-2的作用 [53] 。

Roche

Roche(罗氏)公司的鼠单克隆GFP抗体(克隆7.1 / 13.1,产品目录号11814460001)用来进行免疫印迹分析,以阐释SIRT6促进DNA末端切除的机制 [4] ;验证极光激酶B介导的细胞脱落由ESCRT-III进行调节 [5] ;以及其他免疫印迹应用 [3, 6, 7] 。罗氏应用科学的鼠单克隆GFP抗体可用来进行免疫细胞化学实验,来研究在不同类型细胞中网格蛋白在受体介导内吞作用中的作用 [132] ,证实生化信号网络可以在嘈杂的分子环境中传输信息 [62] 。用于免疫印迹实验,来研究在细胞周期中细胞核输出Fus2p的调节作用 [11] ;细胞质多聚腺苷酸化和CPE介导的转录调控在视网膜轴突发育中的作用 [10] ;一些65kD的鸟苷酸结合蛋白在保护宿主免受细菌感染中的作用 [16] ;并证实拟南芥细胞区室特异性的免疫应答由EDS1作为连接子进行诱导的 [17] 。罗氏公司的GFP抗体(1:500)被用于ELISA实验,研究证实DNA复制和修复过程中的损伤是由于PCNA伴侣蛋白之间相互作用的细微改变而导致 [133] 。

Clontech

Clontech公司的鼠单克隆GFP抗体(克隆JL-8,产品目录号:632380,632459)被用来进行免疫组化实验,以研究Nup153在有丝分裂中的作用 [88] ;以1:1000稀释度进行免疫印迹实验,以证实酵母年龄相关的损伤可以在配子形成时消除 [32] ,以及研究线虫中piRNA的特征 [34] ,等等 [33, 35, 36] 。

关于GFP抗体的常见问题
我应该购买哪些供应商的GFP抗体?

GFP抗体的使用方法是决定供应商的一个重要因素。供应商列出抗体最合适的使用方法,并且给出建议的稀释度。然而,抗体性能可能与系统和实验条件有关。许多供应商提供客户支持服务,这可以就他们公司抗体是否适合您的实验来给出建议。

GFP抗体也是别GFP变体吗?

GFP抗体识别维多利亚多管发光水母(Aequorea victoria)GFP蛋白的其它变体。

为什么免疫印迹实验中GFP抗体无信号?

免疫印迹实验中的信号缺失可能存在多种问题。转膜失败和转膜效率极差都导致无信号。转膜效率可以通过丽春-S染色进行检测。气泡的存在也会导致转膜效率差。GFP标记蛋白的表达水平可能太低,提高上样体积,并包含阳性对照。抗体浓度非常稀也可能是个问题,多试几个不同浓度的抗体来检测免疫印迹。此外,一个极小的可能性是,GFP标签没有同步表达和不表达也可导致信号缺失。

GFP信号太弱无法成像,是否可以增强信号?

在某些实验条件下,GFP荧光会部分或完全丢失。因此,表达GFP标记蛋白的一些细胞结构可能难以显现或成像。GFP-Booster是骆驼来源的VHH结构域结合蛋白耦合了强信号荧光染料,能稳定并增强荧光信号。

历史回望

绿色荧光蛋白(GFP)是来自维多利亚多管发光水母 Aequorea victoria的一个小分子量蛋白质。它是由Osamu Shimomura发现的,当被蓝色到紫外区的光刺激时发出绿色荧光。相关荧光蛋白在许多其它海洋生物中发现,例如珊瑚,海葵和海紫罗兰。当Martin Chalfie证明了GFP基因可以克隆和表达并可作为发光标记,GFP成为一个非常流行的工具。从那时起,GFP在细菌,酵母,slime mods,蠕虫,果蝇,斑马鱼,哺乳动物细胞系和植物中都表达过。GFP可以进行N-和C-端蛋白融合,并且不需要任何辅助因子来发出荧光,这使得它是使用最广泛的蛋白标签之一。这一开创性工作为研究细胞和发育生物学的重要问题开辟了新的途径。通过众多科学家的努力,尤其是Roger Tsien小组,GFP的颜色已延伸到绿色以外。这使得可以使用多个变体同时跟踪多种生命过程。在2008年,Osamu Shimomura, Martin Chalfie和 Roger Tsien共同获得诺贝尔化学奖以表彰他们对于GFP研究的贡献。

GFP抗体 图 2
图 2. deGradFP系统 (改编于Using mutants, knockouts, and trangenesis to investigate gene function in Drosophila. WIRES Developmental biology, 2012, dx.doi.org/10.1002/wdev.101)
GFP分子结构和显著特征

GFP形成非常稳定桶状结构,由11个β折叠片层环绕着一个中心α螺旋。β折叠通过脯氨酸富集的柔性区域连接。每个β折叠片层的侧链交替进入蛋白结构中心或表面。GFP发色团由Ser65,Tyr66和Gly67的分子内环化形成的,几乎位于桶状的中心 [134] 。虽然这三个氨基酸基序在自然界中是常见的,但是不会产生荧光。GFP的β-桶的独特内部环境形成发色团,并保护它免受淬火 [135] 。发色团的形成是自动催化 [135] 。GFP主要存在395 nm激发光下的质粒化状态中,少量存在于475 nm激发光下的非质子状态中 [136] 。这两种形式的荧光辐射峰都在510 nm。

由于GFP在生物科学领域流行,很多努力一直致力于荧光的微调。水母绿色GFP是非常明亮,耐光,但其最大激发光(395 nm)位于紫外区的边界。在成像时,紫外线会损伤细胞结构。突变体筛选获得了一个点突变S65T,其最大激发光波长转移到488 nm [137] 。该变体被称为“EGFP”,避免了使用紫外光激发的问题,并且可以使用异硫氰酸荧光素(FITC)滤波器很容易地进行成像。它也是最亮和最耐光GFP。然而,使用GFP的一个重要缺陷在于它的光谱性质受pH值影响。当它被定位到酸性区室,如内含体或溶酶体,GFP荧光就被淬灭。

GFP抗体 图 3
图 3. 表达Cid-EGFP或表达Cenp-C-PEGFP的果蝇睾丸区。来自引文 [2] 的图1。

利用突变策略,GFP的颜色已经不单单只有绿色。蓝色,青色和黄色荧光蛋白(分别为BFP,CFP和YFP),都是从GFP衍生而来,已被证明是非常有价值的研究工具。研究探讨了其他颜色的珊瑚和海葵中天然存在的荧光蛋白,除了黄色,红移GFP一直没有成功 [138, 139] 。接下来的努力是获得具有令人满意的光谱特性的其它荧光蛋白质,使其可以在多色标记中使用。

使用GFP变体以及其他来源的荧光蛋白使研究人员能够通过荧光共振能量转移(FRET)和荧光漂白恢复(FRAP)同时跟踪各种生命现象。一个有关荧光蛋白的最有趣的和令人印象深刻的实验,是利用大脑彩虹(brainbow)技术来研究神经回路是如何组织的 [140] 。通过随机表达不同比例的红色,绿色和蓝色的变体,大脑神经元被不同颜色点亮。对比只能使用少数变体的多标签技术,大脑彩虹技术非常灵活,并且可以在单个神经元中形成高达100种的不同色调。

参考文献
  1. Wu S, Shin J, Sepich D, Solnica-Krezel L. Chemokine GPCR signaling inhibits β-catenin during zebrafish axis formation. PLoS Biol. 2012;10:e1001403 pubmed publisher
  2. Raychaudhuri N, Dubruille R, Orsi G, Bagheri H, Loppin B, Lehner C. Transgenerational propagation and quantitative maintenance of paternal centromeres depends on Cid/Cenp-A presence in Drosophila sperm. PLoS Biol. 2012;10:e1001434 pubmed publisher
  3. Keller L, Geimer S, Romijn E, Yates J, Zamora I, Marshall W. Molecular architecture of the centriole proteome: the conserved WD40 domain protein POC1 is required for centriole duplication and length control. Mol Biol Cell. 2009;20:1150-66 pubmed publisher
  4. Kaidi A, Weinert B, Choudhary C, Jackson S. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science. 2010;329:1348-53 pubmed publisher
  5. Carlton J, Caballe A, Agromayor M, Kloc M, Martin-Serrano J. ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science. 2012;336:220-5 pubmed publisher
  6. Ludwig A, Howard G, Mendoza-Topaz C, Deerinck T, Mackey M, Sandin S, et al. Molecular composition and ultrastructure of the caveolar coat complex. PLoS Biol. 2013;11:e1001640 pubmed publisher
  7. Lahiri S, Chao J, Tavassoli S, Wong A, Choudhary V, Young B, et al. A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria. PLoS Biol. 2014;12:e1001969 pubmed publisher
  8. Tao L, Xie Q, Ding Y, Li S, Peng S, Zhang Y, et al. CAMKII and calcineurin regulate the lifespan of Caenorhabditis elegans through the FOXO transcription factor DAF-16. elife. 2013;2:e00518 pubmed publisher
  9. Lavieu G, Zheng H, Rothman J. Stapled Golgi cisternae remain in place as cargo passes through the stack. elife. 2013;2:e00558 pubmed publisher
  10. Lin A, Tan C, Lin C, Strochlic L, Huang Y, Richter J, et al. Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development. Neural Dev. 2009;4:8 pubmed publisher
  11. Ydenberg C, Rose M. Antagonistic regulation of Fus2p nuclear localization by pheromone signaling and the cell cycle. J Cell Biol. 2009;184:409-22 pubmed publisher
  12. Chamousset D, De Wever V, Moorhead G, Chen Y, Boisvert F, Lamond A, et al. RRP1B targets PP1 to mammalian cell nucleoli and is associated with Pre-60S ribosomal subunits. Mol Biol Cell. 2010;21:4212-26 pubmed publisher
  13. Herzig Y, Sharpe H, Elbaz Y, Munro S, Schuldiner M. A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by Erv14. PLoS Biol. 2012;10:e1001329 pubmed publisher
  14. Caillaud M, Asai S, Rallapalli G, Piquerez S, Fabro G, Jones J. A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biol. 2013;11:e1001732 pubmed publisher
  15. McElroy S, Nomura T, Torrie L, Warbrick E, Gartner U, Wood G, et al. A lack of premature termination codon read-through efficacy of PTC124 (Ataluren) in a diverse array of reporter assays. PLoS Biol. 2013;11:e1001593 pubmed publisher
  16. Kim B, Shenoy A, Kumar P, Das R, Tiwari S, MacMicking J. A family of IFN-γ-inducible 65-kD GTPases protects against bacterial infection. Science. 2011;332:717-21 pubmed publisher
  17. Heidrich K, Wirthmueller L, Tasset C, Pouzet C, Deslandes L, Parker J. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science. 2011;334:1401-4 pubmed publisher
  18. Feltrin D, Fusco L, Witte H, Moretti F, Martin K, Letzelter M, et al. Growth cone MKK7 mRNA targeting regulates MAP1b-dependent microtubule bundling to control neurite elongation. PLoS Biol. 2012;10:e1001439 pubmed publisher
  19. Moissiard G, Cokus S, Cary J, Feng S, Billi A, Stroud H, et al. MORC family ATPases required for heterochromatin condensation and gene silencing. Science. 2012;336:1448-51 pubmed publisher
  20. Pietrobon V, Fréon K, Hardy J, Costes A, Iraqui I, Ochsenbein F, et al. The chromatin assembly factor 1 promotes Rad51-dependent template switches at replication forks by counteracting D-loop disassembly by the RecQ-type helicase Rqh1. PLoS Biol. 2014;12:e1001968 pubmed publisher
  21. Muller P, Rogers K, Jordan B, Lee J, Robson D, Ramanathan S, et al. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science. 2012;336:721-4 pubmed publisher
  22. Rohani N, Parmeggiani A, Winklbauer R, Fagotto F. Variable combinations of specific ephrin ligand/Eph receptor pairs control embryonic tissue separation. PLoS Biol. 2014;12:e1001955 pubmed publisher
  23. Cui X, Zhang H, Palazzo A. p180 promotes the ribosome-independent localization of a subset of mRNA to the endoplasmic reticulum. PLoS Biol. 2012;10:e1001336 pubmed publisher
  24. Shenoy A, Wellington D, Kumar P, Kassa H, Booth C, Cresswell P, et al. GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science. 2012;336:481-5 pubmed publisher
  25. Schroeder C, Ostrem J, Hertz N, Vale R. A Ras-like domain in the light intermediate chain bridges the dynein motor to a cargo-binding region. elife. 2014;3:e03351 pubmed publisher
  26. Modell J, Kambara T, Perchuk B, Laub M. A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus. PLoS Biol. 2014;12:e1001977 pubmed publisher
  27. Moretti J, Chastagner P, Gastaldello S, Heuss S, Dirac A, Bernards R, et al. The translation initiation factor 3f (eIF3f) exhibits a deubiquitinase activity regulating Notch activation. PLoS Biol. 2010;8:e1000545 pubmed publisher
  28. Qiao H, Shen Z, Huang S, Schmitz R, Urich M, Briggs S, et al. Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science. 2012;338:390-3 pubmed publisher
  29. Chen Y, Honeychurch K, Yang G, Byrd C, Harver C, Hruby D, et al. Vaccinia virus p37 interacts with host proteins associated with LE-derived transport vesicle biogenesis. Virol J. 2009;6:44 pubmed publisher
  30. Dawson T, Lazarus M, Hetzer M, Wente S. ER membrane-bending proteins are necessary for de novo nuclear pore formation. J Cell Biol. 2009;184:659-75 pubmed publisher
  31. Lian S, Li S, Abadal G, Pauley B, Fritzler M, Chan E. The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA. 2009;15:804-13 pubmed publisher
  32. Unal E, Kinde B, Amon A. Gametogenesis eliminates age-induced cellular damage and resets life span in yeast. Science. 2011;332:1554-7 pubmed publisher
  33. Jagger B, Wise H, Kash J, Walters K, Wills N, Xiao Y, et al. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science. 2012;337:199-204 pubmed publisher
  34. Bagijn M, Goldstein L, Sapetschnig A, Weick E, Bouasker S, Lehrbach N, et al. Function, targets, and evolution of Caenorhabditis elegans piRNAs. Science. 2012;337:574-8 pubmed publisher
  35. Lee B, Moon J, Shu J, Yuan L, Newman Z, Schekman R, et al. UNC93B1 mediates differential trafficking of endosomal TLRs. elife. 2013;2:e00291 pubmed publisher
  36. Diepold A, Kudryashev M, Delalez N, Berry R, Armitage J. Composition, formation, and regulation of the cytosolic c-ring, a dynamic component of the type III secretion injectisome. PLoS Biol. 2015;13:e1002039 pubmed publisher
  37. Wild P, Farhan H, McEwan D, Wagner S, Rogov V, Brady N, et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science. 2011;333:228-33 pubmed publisher
  38. Schueren F, Lingner T, George R, Hofhuis J, Dickel C, Gartner J, et al. Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. elife. 2014;3:e03640 pubmed publisher
  39. Bhattacharya R, SenBanerjee S, Lin Z, Mir S, Hamik A, Wang P, et al. Inhibition of vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis by the Kruppel-like factor KLF2. J Biol Chem. 2005;280:28848-51 pubmed
  40. Verma R, Oania R, Kolawa N, Deshaies R. Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. elife. 2013;2:e00308 pubmed publisher
  41. Rizzini L, Favory J, Cloix C, Faggionato D, O'Hara A, Kaiserli E, et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science. 2011;332:103-6 pubmed publisher
  42. Seo J, Yaneva R, Hinson E, Cresswell P. Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity. Science. 2011;332:1093-7 pubmed publisher
  43. Cui J, Yao Q, Li S, Ding X, Lu Q, Mao H, et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science. 2010;329:1215-8 pubmed publisher
  44. Solomon D, Kim T, Diaz-Martinez L, Fair J, Elkahloun A, Harris B, et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science. 2011;333:1039-43 pubmed publisher
  45. Bhattacharjee S, Halane M, Kim S, Gassmann W. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science. 2011;334:1405-8 pubmed publisher
  46. Moissoglu K, McRoberts K, Meier J, Theodorescu D, Schwartz M. Rho GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of RhoGTPases. Cancer Res. 2009;69:2838-44 pubmed publisher
  47. Toth A, Devaux P, Cattaneo R, Samuel C. Protein kinase PKR mediates the apoptosis induction and growth restriction phenotypes of C protein-deficient measles virus. J Virol. 2009;83:961-8 pubmed publisher
  48. Rajarajacholan U, Thalappilly S, Riabowol K. The ING1a tumor suppressor regulates endocytosis to induce cellular senescence via the Rb-E2F pathway. PLoS Biol. 2013;11:e1001502 pubmed publisher
  49. Chung S, Kim M, Youn B, Lee N, Park J, Lee I, et al. Glutathione peroxidase 3 mediates the antioxidant effect of peroxisome proliferator-activated receptor gamma in human skeletal muscle cells. Mol Cell Biol. 2009;29:20-30 pubmed publisher
  50. Park J, Kim G, Kim S, Ko J, Lee J, Yoo H. Effects of a chemical chaperone on genetic mutations in alpha-galactosidase A in Korean patients with Fabry disease. Exp Mol Med. 2009;41:1-7 pubmed
  51. Qu J, Liu G, Wu K, Han P, Wang P, Li J, et al. Nitric oxide destabilizes Pias3 and regulates sumoylation. PLoS ONE. 2007;2:e1085 pubmed
  52. Guo Y, Zanetti G, Schekman R. A novel GTP-binding protein-adaptor protein complex responsible for export of Vangl2 from the trans Golgi network. elife. 2013;2:e00160 pubmed publisher
  53. Lin C, Chen C, Chang W, Jan M, Hsu L, Wu R, et al. Bcl-2 rescues ceramide- and etoposide-induced mitochondrial apoptosis through blockage of caspase-2 activation. J Biol Chem. 2005;280:23758-65 pubmed
  54. Cotta-Ramusino C, McDonald E, Hurov K, Sowa M, Harper J, Elledge S. A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling. Science. 2011;332:1313-7 pubmed publisher
  55. Yip P, Wong L, Sears T, Yáñez-Muñoz R, McMahon S. Cortical overexpression of neuronal calcium sensor-1 induces functional plasticity in spinal cord following unilateral pyramidal tract injury in rat. PLoS Biol. 2010;8:e1000399 pubmed publisher
  56. Gouti M, Tsakiridis A, Wymeersch F, Huang Y, Kleinjung J, Wilson V, et al. In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol. 2014;12:e1001937 pubmed publisher
  57. Dejanovic B, Semtner M, Ebert S, Lamkemeyer T, Neuser F, Luscher B, et al. Palmitoylation of gephyrin controls receptor clustering and plasticity of GABAergic synapses. PLoS Biol. 2014;12:e1001908 pubmed publisher
  58. Goritz C, Dias D, Tomilin N, Barbacid M, Shupliakov O, Frisen J. A pericyte origin of spinal cord scar tissue. Science. 2011;333:238-42 pubmed publisher
  59. San Pietro E, Capestrano M, Polishchuk E, DiPentima A, Trucco A, Zizza P, et al. Group IV phospholipase A(2)alpha controls the formation of inter-cisternal continuities involved in intra-Golgi transport. PLoS Biol. 2009;7:e1000194 pubmed publisher
  60. Hilgers V, Bushati N, Cohen S. Drosophila microRNAs 263a/b confer robustness during development by protecting nascent sense organs from apoptosis. PLoS Biol. 2010;8:e1000396 pubmed publisher
  61. Chaudhary N, Gomez G, Howes M, Lo H, McMahon K, Rae J, et al. Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis. PLoS Biol. 2014;12:e1001832 pubmed publisher
  62. Cheong R, Rhee A, Wang C, Nemenman I, Levchenko A. Information transduction capacity of noisy biochemical signaling networks. Science. 2011;334:354-8 pubmed publisher
  63. Lebon L, Lee T, Sprinzak D, Jafar-Nejad H, Elowitz M. Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states. elife. 2014;3:e02950 pubmed publisher
  64. Papanayotou C, Benhaddou A, Camus A, Perea-Gomez A, Jouneau A, Mezger V, et al. A novel nodal enhancer dependent on pluripotency factors and smad2/3 signaling conditions a regulatory switch during epiblast maturation. PLoS Biol. 2014;12:e1001890 pubmed publisher
  65. Czupryn A, Zhou Y, Chen X, McNay D, Anderson M, Flier J, et al. Transplanted hypothalamic neurons restore leptin signaling and ameliorate obesity in db/db mice. Science. 2011;334:1133-7 pubmed publisher
  66. Bryant D, Datta A, Rodríguez-Fraticelli A, Peranen J, Martin-Belmonte F, Mostov K. A molecular network for de novo generation of the apical surface and lumen. Nat Cell Biol. 2010;12:1035-45 pubmed publisher
  67. Hudry B, Remacle S, Delfini M, Rezsohazy R, Graba Y, Merabet S. Hox proteins display a common and ancestral ability to diversify their interaction mode with the PBC class cofactors. PLoS Biol. 2012;10:e1001351 pubmed publisher
  68. Hashiyama K, Hayashi Y, Kobayashi S. Drosophila Sex lethal gene initiates female development in germline progenitors. Science. 2011;333:885-8 pubmed publisher
  69. Wyatt C, Ebert A, Reimer M, Rasband K, Hardy M, Chien C, et al. Analysis of the astray/robo2 zebrafish mutant reveals that degenerating tracts do not provide strong guidance cues for regenerating optic axons. J Neurosci. 2010;30:13838-49 pubmed publisher
  70. Sasai N, Kutejova E, Briscoe J. Integration of signals along orthogonal axes of the vertebrate neural tube controls progenitor competence and increases cell diversity. PLoS Biol. 2014;12:e1001907 pubmed publisher
  71. Veldman M, Zhao C, Gomez G, Lindgren A, Huang H, Yang H, et al. Transdifferentiation of fast skeletal muscle into functional endothelium in vivo by transcription factor Etv2. PLoS Biol. 2013;11:e1001590 pubmed publisher
  72. Doupé D, Alcolea M, Roshan A, Zhang G, Klein A, Simons B, et al. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science. 2012;337:1091-3 pubmed publisher
  73. Cachero S, Simpson T, zur Lage P, Ma L, Newton F, Holohan E, et al. The gene regulatory cascade linking proneural specification with differentiation in Drosophila sensory neurons. PLoS Biol. 2011;9:e1000568 pubmed publisher
  74. Sone M, Uchida A, Komatsu A, Suzuki E, Ibuki I, Asada M, et al. Loss of yata, a novel gene regulating the subcellular localization of APPL, induces deterioration of neural tissues and lifespan shortening. PLoS ONE. 2009;4:e4466 pubmed publisher
  75. Donlea J, Thimgan M, Suzuki Y, Gottschalk L, Shaw P. Inducing sleep by remote control facilitates memory consolidation in Drosophila. Science. 2011;332:1571-6 pubmed publisher
  76. Paolicelli R, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456-8 pubmed publisher
  77. Yuan Q, Xiang Y, Yan Z, Han C, Jan L, Jan Y. Light-induced structural and functional plasticity in Drosophila larval visual system. Science. 2011;333:1458-62 pubmed publisher
  78. Magnus C, Lee P, Atasoy D, Su H, Looger L, Sternson S. Chemical and genetic engineering of selective ion channel-ligand interactions. Science. 2011;333:1292-6 pubmed publisher
  79. Brown K, Chen S, Han Z, Lu C, Tan X, Zhang X, et al. Clonal production and organization of inhibitory interneurons in the neocortex. Science. 2011;334:480-6 pubmed publisher
  80. Garelli A, Gontijo A, Miguela V, Caparros E, Dominguez M. Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. Science. 2012;336:579-82 pubmed publisher
  81. Bosveld F, Bonnet I, Guirao B, Tlili S, Wang Z, Petitalot A, et al. Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed planar cell polarity pathway. Science. 2012;336:724-7 pubmed publisher
  82. O'Farrell F, Wang S, Katheder N, Rusten T, Samakovlis C. Two-tiered control of epithelial growth and autophagy by the insulin receptor and the ret-like receptor, stitcher. PLoS Biol. 2013;11:e1001612 pubmed publisher
  83. Wang X, Kim J, Bazzi M, Robinson S, Collins C, Ye B. Bimodal control of dendritic and axonal growth by the dual leucine zipper kinase pathway. PLoS Biol. 2013;11:e1001572 pubmed publisher
  84. Da Ros V, Gutierrez-Perez I, Ferres-Marco D, Dominguez M. Dampening the signals transduced through hedgehog via microRNA miR-7 facilitates notch-induced tumourigenesis. PLoS Biol. 2013;11:e1001554 pubmed publisher
  85. Charng W, Yamamoto S, Jaiswal M, Bayat V, Xiong B, Zhang K, et al. Drosophila Tempura, a novel protein prenyltransferase α subunit, regulates notch signaling via Rab1 and Rab11. PLoS Biol. 2014;12:e1001777 pubmed publisher
  86. Fasano C, Phoenix T, Kokovay E, Lowry N, Elkabetz Y, Dimos J, et al. Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes Dev. 2009;23:561-74 pubmed publisher
  87. Melzer S, Michael M, Caputi A, Eliava M, Fuchs E, Whittington M, et al. Long-range-projecting GABAergic neurons modulate inhibition in hippocampus and entorhinal cortex. Science. 2012;335:1506-10 pubmed publisher
  88. Mackay D, Elgort S, Ullman K. The nucleoporin Nup153 has separable roles in both early mitotic progression and the resolution of mitosis. Mol Biol Cell. 2009;20:1652-60 pubmed publisher
  89. Strukov Y, Sural T, Kuroda M, Sedat J. Evidence of activity-specific, radial organization of mitotic chromosomes in Drosophila. PLoS Biol. 2011;9:e1000574 pubmed publisher
  90. Dunleavy E, Beier N, Gorgescu W, Tang J, Costes S, Karpen G. The cell cycle timing of centromeric chromatin assembly in Drosophila meiosis is distinct from mitosis yet requires CAL1 and CENP-C. PLoS Biol. 2012;10:e1001460 pubmed publisher
  91. Bujalka H, Koenning M, Jackson S, Perreau V, Pope B, Hay C, et al. MYRF is a membrane-associated transcription factor that autoproteolytically cleaves to directly activate myelin genes. PLoS Biol. 2013;11:e1001625 pubmed publisher
  92. Kim Y, Larsen H, Rué P, Lemaire L, Ferrer J, Grapin-Botton A. Cell cycle-dependent differentiation dynamics balances growth and endocrine differentiation in the pancreas. PLoS Biol. 2015;13:e1002111 pubmed publisher
  93. Nancy P, Tagliani E, Tay C, Asp P, Levy D, Erlebacher A. Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal-fetal interface. Science. 2012;336:1317-21 pubmed publisher
  94. Tsubota T, Okubo-Suzuki R, Ohashi Y, Tamura K, Ogata K, Yaguchi M, et al. Cofilin1 controls transcolumnar plasticity in dendritic spines in adult barrel cortex. PLoS Biol. 2015;13:e1002070 pubmed publisher
  95. Wang S, Tan K, Agosto M, Xiong B, Yamamoto S, Sandoval H, et al. The retromer complex is required for rhodopsin recycling and its loss leads to photoreceptor degeneration. PLoS Biol. 2014;12:e1001847 pubmed publisher
  96. Srivastava D, Woolfrey K, Jones K, Anderson C, Smith K, Russell T, et al. An autism-associated variant of Epac2 reveals a role for Ras/Epac2 signaling in controlling basal dendrite maintenance in mice. PLoS Biol. 2012;10:e1001350 pubmed publisher
  97. Lee D, Yeh T, Emnett R, White C, Gutmann D. Neurofibromatosis-1 regulates neuroglial progenitor proliferation and glial differentiation in a brain region-specific manner. Genes Dev. 2010;24:2317-29 pubmed publisher
  98. Tuttle A, Hoffman T, Schilling T. Rabconnectin-3a regulates vesicle endocytosis and canonical Wnt signaling in zebrafish neural crest migration. PLoS Biol. 2014;12:e1001852 pubmed publisher
  99. Lu W, Casanueva M, Mahowald A, Kato M, Lauterbach D, Ferguson E. Niche-associated activation of rac promotes the asymmetric division of Drosophila female germline stem cells. PLoS Biol. 2012;10:e1001357 pubmed publisher
  100. Chai P, Liu Z, Chia W, Cai Y. Hedgehog signaling acts with the temporal cascade to promote neuroblast cell cycle exit. PLoS Biol. 2013;11:e1001494 pubmed publisher
  101. Kätzel D, Miesenbock G. Experience-dependent rewiring of specific inhibitory connections in adult neocortex. PLoS Biol. 2014;12:e1001798 pubmed publisher
  102. Rosas-Ballina M, Olofsson P, Ochani M, Valdes-Ferrer S, Levine Y, Reardon C, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334:98-101 pubmed publisher
  103. Isern J, García-García A, Martín A, Arranz L, Martin-Perez D, Torroja C, et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. elife. 2014;3:e03696 pubmed publisher
  104. Schoofs A, Hückesfeld S, Schlegel P, Miroschnikow A, Peters M, Zeymer M, et al. Selection of motor programs for suppressing food intake and inducing locomotion in the Drosophila brain. PLoS Biol. 2014;12:e1001893 pubmed publisher
  105. Manceau M, Domingues V, Mallarino R, Hoekstra H. The developmental role of Agouti in color pattern evolution. Science. 2011;331:1062-5 pubmed publisher
  106. Saxena A, Denholm B, Bunt S, Bischoff M, Vijayraghavan K, Skaer H. Epidermal growth factor signalling controls myosin II planar polarity to orchestrate convergent extension movements during Drosophila tubulogenesis. PLoS Biol. 2014;12:e1002013 pubmed publisher
  107. Ramamoorthi K, Fropf R, Belfort G, Fitzmaurice H, McKinney R, Neve R, et al. Npas4 regulates a transcriptional program in CA3 required for contextual memory formation. Science. 2011;334:1669-75 pubmed publisher
  108. Song B, Faumont S, Lockery S, Avery L. Recognition of familiar food activates feeding via an endocrine serotonin signal in Caenorhabditis elegans. elife. 2013;2:e00329 pubmed publisher
  109. Mosca T, Luo L. Synaptic organization of the Drosophila antennal lobe and its regulation by the Teneurins. elife. 2014;3:e03726 pubmed publisher
  110. Roland A, Ricobaraza A, Carrel D, Jordan B, Rico F, Simon A, et al. Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth. elife. 2014;3:e03159 pubmed publisher
  111. Tsai H, Li H, Fuentealba L, Molofsky A, Taveira-Marques R, Zhuang H, et al. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science. 2012;337:358-62 pubmed publisher
  112. Dho S, Deverman B, Lapid C, Manson S, Gan L, Riehm J, et al. Control of cellular Bcl-xL levels by deamidation-regulated degradation. PLoS Biol. 2013;11:e1001588 pubmed publisher
  113. Mahadevan K, Zhang H, Akef A, Cui X, Gueroussov S, Cenik C, et al. RanBP2/Nup358 potentiates the translation of a subset of mRNAs encoding secretory proteins. PLoS Biol. 2013;11:e1001545 pubmed publisher
  114. Huang W, Pérez-García P, Pokhilko A, Millar A, Antoshechkin I, Riechmann J, et al. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science. 2012;336:75-9 pubmed publisher
  115. Lu S, Knowles S, Andronis C, Ong M, Tobin E. CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL function synergistically in the circadian clock of Arabidopsis. Plant Physiol. 2009;150:834-43 pubmed publisher
  116. Abbi S, Ueda H, Zheng C, Cooper L, Zhao J, Christopher R, et al. Regulation of focal adhesion kinase by a novel protein inhibitor FIP200. Mol Biol Cell. 2002;13:3178-91 pubmed
  117. Yim H, Erikson R. Cell division cycle 6, a mitotic substrate of polo-like kinase 1, regulates chromosomal segregation mediated by cyclin-dependent kinase 1 and separase. Proc Natl Acad Sci U S A. 2010;107:19742-7 pubmed publisher
  118. Amato S, Liu X, Zheng B, Cantley L, Rakic P, Man H. AMP-activated protein kinase regulates neuronal polarization by interfering with PI 3-kinase localization. Science. 2011;332:247-51 pubmed publisher
  119. Presman D, Ogara M, Stortz M, Alvarez L, Pooley J, Schiltz R, et al. Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor. PLoS Biol. 2014;12:e1001813 pubmed publisher
  120. Wachter E, Quante T, Merusi C, Arczewska A, Stewart F, Webb S, et al. Synthetic CpG islands reveal DNA sequence determinants of chromatin structure. elife. 2014;3:e03397 pubmed publisher
  121. Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011;332:1443-6 pubmed publisher
  122. Caussinus E, Kanca O, Affolter M. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat Struct Mol Biol. 2012;19:117-21 pubmed publisher
  123. Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods. 2012;9:582-4 pubmed publisher
  124. Schinaman J, Giesey R, Mizutani C, Lukacsovich T, Sousa-Neves R. The KRÜPPEL-like transcription factor DATILÓGRAFO is required in specific cholinergic neurons for sexual receptivity in Drosophila females. PLoS Biol. 2014;12:e1001964 pubmed publisher
  125. Doherty J, Sheehan A, Bradshaw R, Fox A, Lu T, Freeman M. PI3K signaling and Stat92E converge to modulate glial responsiveness to axonal injury. PLoS Biol. 2014;12:e1001985 pubmed publisher
  126. Rebello M, McTavish T, Willhite D, Short S, Shepherd G, Verhagen J. Perception of odors linked to precise timing in the olfactory system. PLoS Biol. 2014;12:e1002021 pubmed publisher
  127. Huang S, Zhang Z, Zhang C, Lv X, Zheng X, Chen Z, et al. Activation of Smurf E3 ligase promoted by smoothened regulates hedgehog signaling through targeting patched turnover. PLoS Biol. 2013;11:e1001721 pubmed publisher
  128. Ridder K, Keller S, Dams M, Rupp A, Schlaudraff J, Del Turco D, et al. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol. 2014;12:e1001874 pubmed publisher
  129. Li X, Jia Z, Shen Y, Ichikawa H, Jarvik J, Nagele R, et al. Coordinate suppression of Sdpr and Fhl1 expression in tumors of the breast, kidney, and prostate. Cancer Sci. 2008;99:1326-33 pubmed publisher
  130. ZIRIN J, Nieuwenhuis J, Perrimon N. Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biol. 2013;11:e1001708 pubmed publisher
  131. Morris J, Cano D, Sekine S, Wang S, Hebrok M. Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J Clin Invest. 2010;120:508-20 pubmed publisher
  132. Sato K, Ernstrom G, Watanabe S, Weimer R, Chen C, Sato M, et al. Differential requirements for clathrin in receptor-mediated endocytosis and maintenance of synaptic vesicle pools. Proc Natl Acad Sci U S A. 2009;106:1139-44 pubmed publisher
  133. Fridman Y, Palgi N, Dovrat D, Ben-Aroya S, Hieter P, Aharoni A. Subtle alterations in PCNA-partner interactions severely impair DNA replication and repair. PLoS Biol. 2010;8:e1000507 pubmed publisher
  134. Yang F, Moss L, Phillips G. The molecular structure of green fluorescent protein. Nat Biotechnol. 1996;14:1246-51 pubmed
  135. Zimmer M. Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem Rev. 2002;102:759-81 pubmed
  136. Tsien R. The green fluorescent protein. Annu Rev Biochem. 1998;67:509-44 pubmed
  137. Heim R, Cubitt A, Tsien R. Improved green fluorescence. Nature. 1995;373:663-4 pubmed
  138. Matz M, Fradkov A, Labas Y, Savitsky A, Zaraisky A, Markelov M, et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol. 1999;17:969-73 pubmed
  139. Merzlyak E, Goedhart J, Shcherbo D, Bulina M, Shcheglov A, Fradkov A, et al. Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods. 2007;4:555-7 pubmed
  140. Livet J, Weissman T, Kang H, Draft R, Lu J, Bennis R, et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature. 2007;450:56-62 pubmed
ISSN : 2329-5147