实验室小鼠和大鼠
王秀英 (mary at labome dot com)
美国新泽西州普林斯顿合原研究有限责任公司 (Synatom Research)
译者
王秀英 (mary at labome dot com)
美国新泽西州普林斯顿合原研究有限责任公司 (Synatom Research)
DOI
//dx.doi.org/10.13070/mm.cn.2.113
日期
更新 : 2018-11-09; 原始版 : 2012-10-05
引用
实验材料和方法 2012;2:113
摘要

本文是基于目前使用小鼠和大鼠的文献总结和概述。

  • C57BL/6和BALB/c是主要的小鼠品系
  • Sprague-Dawley和Wistar是主要的大鼠品系
  • Jackson Laboratories,Charles River Laboratories,Taconic Laboratory和Harlan是主要的供应商
  • 主要应用的研究领域有免疫学,肿瘤学,生理学,病理学和神经科学
  • 具体的品系或胚胎干细胞系可搜索 IMSR数据库。

英文摘要

A summary and overview about the mice and rats used in biomedical research, based on a survey of formal publications.

  • C57BL/6 and BALB/c are the main mouse strains.
  • Sprague-Dawley and Wistar are the main rat strains.
  • The Jackson Laboratory, Charles River Laboratories, Taconic Farms, and Harlan Laboratories are the main suppliers.
  • Major research applications are in immunology, oncology, physiology, pathology, and neuroscience.
  • Specific strains or ES cell lines can be searched at IMSR database.

前言

动物模型是生物医学研究中不可或缺的工具。在科学探索的早期阶段就开始使用动物模型,而且现在它仍然对我们研究单个基因的功能,各种疾病的机制和许多药物以及化学药品的功效和毒性有着巨大贡献。现在已经对许多模型动物的基因组进行了测序,而且发现在模型动物和人类之间有许多保守基因。来邦网总结了通过特定医学主题词(Medical subject headings, MeSH)注释的或者在PubMed数据库通过小鼠相关参数搜索的文献数目(表一和表二)。结果显示,利用小鼠进行的研究在目前研究中占据重要地位,虽然目前仍在进行利用细胞培养模型和计算预测来替代动物测试,尤其在毒理学研究方面 [1] 。

种类2017201620102000
小鼠,近交品系23394285002440311739
小鼠,转基因型1119314333143805739
小鼠,基因敲除7100899391823400
小鼠,同基因型222811144
小鼠,其它类型*27710341173008016308
表一:小鼠种类和PubMed数据库2018年8月27日为止的引用次数。引用次数会随PubMed数据库更新而变化,尤其是近几年。PubMed搜索参数:mice [ mesh] NOT mice, inbred strains [ mesh] NOT mice, transgenic [ mesh] NOT mice, knockout [ mesh] NOT mice, congenic [ mesh]。

来邦网通过检索目前引用动物模型的文献给出了文献中动物模型的概述(表三)。结果显示,小鼠是实验室使用最多的动物。最常使用的小鼠和大鼠品系是C57BL/6 小鼠,BALB/c小鼠,Sprague-Dawley大鼠,和Wistar大鼠。这些动物大部分由四大供应商提供,即Jackson Laboratory,Charles River Laboratories,Taconic Farms and Harlan Laboratories。上述动物模型被用在免疫学、肿瘤学、生理学、病理学和日益发展的神经科学等研究领域。本文随后将介绍一些小鼠模型。

品系2017201620102000
C57BL1535718398149615437
BALB/c6111764270524230
ICR116114001258709
NOD8081071651247
C3H224322642862
DBA217312457496
CBA132197349566
Hairless8711512787
MRL lpr636570115
NZB23265655
AKR1494679
A71465103
CFTR510215
SENCAR22618
表二:近交品系小鼠及其在PubMed数据库2018年8月27日为止选定年份的引用情况。

实验室啮齿动物白化病:实验室大部分的啮齿类都是白化的动物,因为实验室所有白化的大鼠品系 [2] 和至少部分小鼠品系 [3] 都有常见的酪氨酸酶基因突变。酪氨酸酶是黑色素合成中的限速酶。实验室啮齿类动物白化病的盛行,因为许多最早建立的品系就有白化病,并且白化病是早期一个简单的选择标记物。

小鼠

来邦网的总结显示,小鼠是文献中使用最多的动物模型。绝大部分的文献都使用了各种品系的小鼠(部分使用了大鼠,偶尔也有使用兔子、白鼬、豚鼠和恒河猕猴的)。这并不奇怪,因为小鼠和人的基因相似度有99%。而且小鼠和大鼠繁殖和饲养均相对廉价。它们繁殖迅速,因此使研究者可以在一段适当的时间内同时研究其几代后代的特定基因的功能。对它们的生理学和遗传学已经有了广泛的研究,而且能轻易地和人类比较。用于研究遗传学和特定基因功能的技术,例如转基因方法,已经发展了几十年。为了促进发病机制的研究和评估各种候选药物的效果和毒性,也建立了许多人类疾病的小鼠模型。

然而,实验室小鼠饲养在一个绝对洁净并且隔绝特定病原的设施里,跟自由生活在野生种群中的野生小鼠或甚至宠物小鼠是不一样的,尽管后者在免疫特性上跟人类更相近 [4] 。

动物品系供应商数目
小鼠 C57BL/6135
The Jackson Laboratory80
Charles River21
Taconic Farms12
Harlan Laboratories10
BALB/C31
The Jackson Laboratory10
Charles River9
Taconic Farms5
Harlan Laboratories3
CD-19
SCID8
A/J4
大鼠Sprague-Dawley10
Wistar7
表三: 引用主要小鼠和大鼠的文献数目。每个品系包括亚品系、杂交品系和背景品系。同时还统计了引用主要供应商的文献数目。由于动物品系和文献中名称的复杂性。每个品系都统计了数目的下限。

近交品系,同基因型和近交转基因小鼠被广泛使用。一个近交品系是指通过超过20代的近亲交配(或它的同胞)得到的品系,因此从同一近交品系得到的动物被认为是遗传上完全一致的。通过与一个近交背景品系进行重复回交,在不小于10代的后代中筛选出具有独特标志的品系被称为同基因型品系。使用最多的品系包括C57BL/6,BALB/c,CD-1,SCID和A/J。只有CD-1是远交品系。

C57BL/6小鼠

C57BL/6小鼠,也被称为C57 black 6或者简称Black 6,其有着品系稳定和易于繁殖的优点。它还是紧随人类基因组测序完成后,第一个在2005年完成基因组测序的小鼠品系。国际小鼠表型协会(IMPC) [5] 。成立于2011年9月29日,旨在通过敲除技术将这个品系的每个小鼠基因的功能分类。C57BL/6小鼠的用途包括三个主要方面。最普遍的是作为生理学和病理学模型以进行在体实验。例如2015年研究人员使用C57BL/6小鼠发现中枢神经系统淋巴管 [6] ,其次,它们常被应用于建立转基因小鼠模型,例如具有光活化绿色荧光蛋白(PA-GFP)的小鼠 [7] 。最后,C57BL/6小鼠被用作产生同时具有自发和诱发突变的同基因型的背景品系。然而特定的亚系可能有基因交替,这使任何基因相关研究变得复杂,正如C57BL/6NHsd的研究所报道的 [8] 。

实验室小鼠和大鼠 图 1
图 1. 雌性C57BL/6,年龄22个月。

常见的C57BL/6亚品系包括Jackson Laboratory的C57BL/6J和国立卫生研究院(National Institute of Health)的C57BL/6N。IMPC选择了源于C57BL/6N的胚胎干细胞 [9, 10] ,而小鼠基因组测序协会 [11] 和Allen Brain Atlas [12] 使用了C57BL/6J。这些亚品系存在表型差异 [13, 14] ,还发现了部分潜在的基因交替 [13, 15] 。一个存在于C57BL/6N亚品系胞浆FMRP相互作用蛋白2(cytoplasmic FMRP interacting protein 2,Cyfip2)中的丝氨酸到苯丙氨酸的非同义突变,是产生亚品系中对可卡因和甲基安非他明更低急性和敏感性反应的原因 [15] 。

大部分C57BL/6亚品系都存在“编码最重要的线粒体抗氧化酶转氢酶基因(gene NNT)的基因消融”,原因是这个能够完全阻止蛋白表达的基因外显子的自然删除 [13, 16] 。这个基因影响了葡萄糖清除和剩余葡萄糖值(比野生型NNT小鼠高,如C57BL/6NJ) [17] 。Jackson Laboratories发现,NNT突变的C57BL/6J小鼠寿命正常,没有糖尿病,有正常的饮食诱导肥胖反应。

在来邦网总结的文献中,很大一部分(至少133篇)使用了C57BL/6小鼠品系。 由于C57BL/6品系基因组的测序已经完成和IMPC对其基因功能分析的持续努力,它被认为会持续作为首选品系。虽然研究中使用“标准”品系的优点是很明显的,但是也出现了关于这种方式的缺点的有趣案例。

Jackson Laboratories的C57BL/6小鼠

Jackson Laboratories的野生型,同基因型和转基因/灭活C57BL/6小鼠被用于研究T细胞发育 [18, 19], 炎症 [20-24], 丁酸盐对肠肽转运蛋白的调节 [25], 抗Stx2抗体的保护作用 [26], 生长因子TGF-b3在颚架粘附中的影响 [27], 纤维化和心肌病 [28], 心衰 [29], 血小板功能 [30], 移植物抗宿主病 [31, 32], 早期肺炎 [33], 肥胖型糖尿病 [34, 35], 激肽B1受体的心脏保护作用 [36], IL-17和IL-22的产生 [37], 吸烟危害 [38], 慢性神经痛 [39], 适应性免疫 [40], 静脉曲张中的神经元氮氧化物合酶 [41], 微血管内皮屏障功能障碍 [42]. 许多文献中使用C57BL/6小鼠进行感染性疾病和抵抗病原体的研究:脑型疟疾病理学 [43], 嗜肺军团病杆菌 [44], 柠檬酸杆菌属 [45], 疟疾 [46], 鼠伤寒肠道沙门氏菌型感染 [47], 侵袭性鼠伤寒沙门氏菌感染 [48]. 最近,Narita M等人使用C57BL/6J来研究分泌型蛋白的合成 [49] 。 B6.129(Cg)-Tg(CAG-Bgeo/GFP)21Lbe/J 小鼠 [50] 和B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos/J小鼠 [50] 被用于实验。有C57BL/6背景的ROSA26R(EYFP)小鼠也常被用来证明Cre的表达 [51] 。

品系主要特征优点主要应用
C57BL/6近交品系, 黑色品系稳定, 易繁殖生理或病理模型,活体实验, 转基因或同基因型的背景品系
BALB/c近交品系, 白化的, 免疫缺失易繁殖, 肿瘤倾向杂交瘤和单克隆抗体生产, 癌症治疗和免疫学研究模型
CD-1远交品系, 白化的基因变异定位克隆,基因型筛选, 毒理学测试(存疑)
CB17 SCID近交品系,白化的无T细胞和B细胞肿瘤移植测试新肿瘤治疗的免疫缺失动物模型 和人免疫系统组织的寄主
表四: 主要小鼠的品系、特征和应用。
Charles Rivers Laboratories的C57BL/6小鼠

Charles Rivers Laboratories是另一个主要的C57BL/6小鼠供应商。Charles Rivers的C57BL/6小鼠被用于研究啮齿类动物疟疾型寄生虫伯氏疟原虫 [52], 胎球蛋白-A [53], 内分泌胰岛细胞分化 [54], 胆汁郁积性肝病 [55], 异源性转运蛋白 [56], Bmi1的功能 [57], 对SD和神经性缺乏的敏感性 [58], 印迹基因中的种系甲基化标记 [59], 生殖器2-型单纯疱疹病毒感染 [60], 和ATM基因表达 [50] 。最近,Li XY等人使用成年雄性C57BL/6小鼠来考察PKM-zeta在皮质神经性疼痛过敏症中的作用 [61] ,Oh JS等人从C57BL/6小鼠中收集卵母细胞 [62] 。

Taconic Farms的C57BL/6小鼠

Taconic的C57BL/6小鼠被用于研究急慢性精神性运动兴奋反应 [63], DPP-IV在免疫系统中的作用 [64], 小鼠淋巴细胞增生性疾病 [65], 效应溶细胞性T淋巴细胞 [66], 肥大细胞的功能 [67] 和NKT淋巴细胞谱系的发育 [68] 。Round JL等人使用Taconic Farms的C57BL/6小鼠来考察脆弱拟杆菌属在确立宿主微生物共生中的作用 [69] 。 Taconic Farms的B6.129S1-Tlr3 tm1Flv/J(Tlr3-/-) and B6.129S7-Rag1 tm1Mom (Rag1-/-) 小鼠用来研究皮肤微生物2 [70] ,B6.SJL-Ptprca(CD45.1) 小鼠用来研究寄生虫感染 [71] 。

Harlan Laboratories的C57BL/6小鼠

Harlan Laboratories的C57BL/6小鼠被用于研究缺血再灌注 [72], 结核分枝杆菌疫苗接种 [73], 神经营养因子表达 [74], IL-1分泌 [75], 蓝舌病毒感染 [76] 和病毒持续感染以及慢性炎症 [77] 。

其他供应商的C57BL/6小鼠

其他供应商的C57BL/6小鼠被用于研究ECE-1 [78], 癌细胞中CSE1L/CAS的作用 [79], 长时程抑制诱导和光动反应适应中delphilin消除的作用 [80], 葡萄糖和脂类代谢 [81] 。Sankyo Laboratory Service Corp的实验性自身免疫性葡萄膜视网膜炎的C57BL/6小鼠被用来研究各种视网膜蛋白自身抗原的扩散 [71] 并考察在内源性葡萄膜炎中脂酶D和脑型肌酸激酶作为视网膜自身抗原的作用 [82] 。

研究院和国家动物中心也是供应商。Fogg DK等人使用了Rene Descartes大学动物中心的在CX3CR1基因座上表达eGFP(Cx3cr1gfp/+)的CD45.2 C57BL/6小鼠来鉴定无性系的骨髓前体 [83] 。National Cancer Institute的年龄、性别配对的C57BL/6小鼠被用作野生型对照组 [84] 。伯明翰Alabama大学的C57BL/6.Myd88-/-小鼠被用来考察在调节性T细胞发育中所有反式维甲酸的作用 [23] 。Yi ZF等人使用了National Rodent Laboratory Animal Resources的C57BL/6小鼠进行角膜微囊袋试验和组织学检查,以鉴定人载脂蛋白中的一种新肽,并研究其在血管生长和肿瘤发育中的作用 [85] 。

BALB/c小鼠

BALB/c小鼠是一种白化、免疫缺陷的杂交品系。BALB/c小鼠有着易于繁殖和雌雄体重差异小的特点。值得注意的是BALB/c小鼠的乳腺癌发生率低,但对致癌物非常敏感,可以培育肺癌、网状肿瘤、肾癌以及其他癌症。另外,对BALB/c品系注射矿物油可迅速引发浆细胞瘤,该品系被广泛应用于杂交瘤和单克隆抗体的生产。BALB/c小鼠在癌症治疗和免疫学研究中有着广泛应用。

实验室小鼠和大鼠 图 2
图 2. BALB/c小鼠。来自The Jackson Laboratory,著作权人许可。

在来邦网总结的文献中,31篇使用了BALB/c小鼠进行杂交瘤培育,单克隆抗体制备,传染性疾病研究以及其他用途。BALB/c小鼠是一种通用动物模型。

例如,Oakley MS等人使用了Jackson Laboratory的野生型BALB/c小鼠来鉴定脑型疟疾中脑部的变化 [43] 。akeda K等人使用了BALB/c小鼠和Charles River Japan的(B6 x BALB/c)F1小鼠来研究死亡受体5介导的凋亡在胆汁阻塞型肝病中的作用 [55] ,Oliveira Gde A 等利用Charles River Laboratories的小鼠证明蚊子的抗增殖免疫是由过氧化物酶/ NOX5系统依赖的上皮细胞硝化作用介导的 [86] ,Jagger BW等用JAX Mice and Services 的雌性BALB/c小鼠进行小鼠感染以表明宿主对A型流感病毒的反应受新型蛋白PA-X的调节 [87] ,Ekiert DC等人使用了Charles River Laboratories的BALB/c小鼠来研究抗2群流感病毒抗体CR8020的效果 [88] 。Li Y等人使用了Charles River Laboratories的雌性BALB/c小鼠来证明sopB的功能 [70] 。Capraro GA等人使用了Fredrick Cancer Research and Development Center的BALB/c小鼠来考察SV5-P/V基因突变型在病毒生长和适应性免疫反应中的影响 [89] 。Kendirgi F等人使用了Harlan的BALB/c小鼠来研究原型线状DNA疫苗抗A/H5N1流感病毒的效果 [90] 。Charles River的BALB/c小鼠进行寄生虫感染来研究蚊子抗疟原虫免疫力 [86] 。

与C57BL/6一样,BALB/c的一个常见用途是作为各种基因缺乏/灭活研究的背景品系。Nurieva RI等人使用了Jackson Laboratories的STAT-6缺陷和STAT-4缺陷的BALB/c小鼠来研究IL-21,TH1,TH2或TH17谱系在滤泡辅助T细胞产生中的作用 [18] 。TTawara I等人使用了Jackson Laboratories的雌性STAT6缺陷的BALB/c小鼠(H-2d)来考察Th2细胞因子分泌在急性移植物抗宿主病中的作用 [31] 。Ramaprakash H等人使用了BALB/c (TLR9+/+)小鼠来考察对肿胀分生孢子烟曲霉菌的抗真菌免疫反应 [91] 而Castilow EM等人使用了IFN-gamma C.129S7 Ifngtm1Ts/J-缺陷的BALB/c小鼠和BALB/cAnNCr小鼠来研究gamma干扰素在继发性RSV感染中的影响 [92] 。Chung YW等人使用了The Jackson Laboratory的BALB/cJ和BALB/c 同基因型C.C3雌性TLR-4lps-/lps-小鼠和野生型BALB/c小鼠来研究有益菌种对Toll样受体4(TLR-4)变异(lps-/lps-)小鼠中实验性大肠炎发展的影响 [93] 。

BALB/c小鼠在肿瘤学研究中扮演了重要的角色。Arscott WT等人使用了BALB/c(nu/nu)裸鼠来研究二肽酶IV对神经细胞瘤生长的抑制作用 [94] 。Yi W等使用来自Charles River Laboratories的无胸腺裸鼠(Nu/Nu)进行皮下异体移植来证明 FGFR-TACC融合存在于特定的GBM病人中 [95] ,以及研究PFK1糖基化对癌细胞在Charles River Laboratories 裸鼠体内生长的作用 [72] 。Kessler JD等在Harlan Labs雌性无胸腺裸鼠Foxn1-nu进行乳腺癌细胞系异体移植时证明Myc依赖的癌细胞需要SUMO化才能形成肿瘤 [96] 。 Beauvais DM等人使用了Taconic的无胸腺BALB/c裸鼠来进行角膜血管生成研究 [97] 。

CD-1小鼠

C57BL/6和BALB/c小鼠是确立了遗传纯合率的近交品系,而CD-1小鼠则与大多数常用的实验小鼠不同,是远亲杂交群(近交小鼠被称为品系,而杂交小鼠被称为群)。远亲杂交实验动物模型的遗传变异性,可以为数量性状遗传位点或特定性状的遗传型淘汰的定位克隆提供方便。但是,对CD-1小鼠(一般指远亲杂交群)在试验研究中的用途诸如毒理学(安全性与有效性测试),衰老研究,肿瘤学研究已有的精密地评估指出该动物模型可能并不适用于所有方面 [98] 。CD-1小鼠的外观和BALB/c品系一样,是白化的。

来邦网统计的文献中,许多文献使用的CD-1小鼠主要来自于Charles River Laboratories。Ray S等人使用了成年雌性CD-1小鼠来证明beta连环蛋白/Lef-1/Tcf-3信号肽与ERα的整合在子宫生物学的雌素依赖性内源基因调节中是必需的 [99] 。Tang N等人考察了CD-1小鼠中肺管的形态发生 [100] 。Ye H等人评估了人造光遗传学转录装置 [101] 。CD-1小鼠还作为小鼠胚胎的来源 [54], 被用于研究CstF-64剪接变体 [102], 考察脊椎动物的器官发生 [103] 。Ko HS等人使用了Jackson Laboratory的CD-1小鼠来考察LRRK2的降解 [104] 。

CB17 SCID小鼠

CB17 SCID小鼠(SCID指的是重症联合免疫缺陷)是有自发重症联合免疫缺陷突变的白化品系。该突变妨碍了T和B细胞的发育和成熟。但是SCID小鼠有正常的NK细胞,巨噬细胞和粒细胞。它们的外观和正常小鼠一样。由于重症联合免疫缺陷变异,对其移植人的肿瘤有着非常高的成功率(甚至比裸鼠还高),这使它们成为了一种测试新的癌症疗法和作为人免疫系统组织的宿主的有价值的免疫缺陷动物模型。

实验室小鼠和大鼠 图 3
图 3. SCID小鼠。 来自Patricia Brown博士, NCI, NIH.

Li ZG等人使用了Charles River Laboratories的CB17 SCID小鼠进行收集和植入组织样本以研究在前列腺癌骨转移治疗中雄激素受体的作用 [105] 。Takeda K等人使用了Charles River Japan的CB17 SCID小鼠来研究胆汁郁积型肝病中死亡受体5介导的凋亡的作用 [55] 。Dubrovska A等人使用了Jackson Laboratories的CB17-Prkdc (SCID)小鼠来研究PTEN/Akt/PI3K信号肽在前列腺癌干状细胞群的生存和发育中的作用 [106] ,Miyagawa Y等人使用了Clea Japan的CB17 SCID小鼠进行皮下致肿瘤试验来研究在Ewing族肿瘤细胞中dickkopf族的表达 [86] 。Gonzalez ME等人使用了SCID小鼠来验证EZH2失调导致了ER阴性乳腺癌演进的假说 [87] 。

A/J小鼠

A/J小鼠是另一种常见的白化模型,其独特的特征有迟发的进行性肌营养不良和肾上腺皮质激素诱导的先天性腭裂。而且,它还高发自发性肺腺瘤,该肿瘤很容易在致癌物的刺激下发生。

来邦网统计到有4篇文献使用了A/J小鼠作为动物模型。Takeda K等人使用了Japan SLC的A/J小鼠来研究胆汁郁积型肝病中死亡受体5介导的凋亡的作用 [55] 。Jackson Laboratory 的A/J小鼠被Losick VP等人用来考察在免疫中半主导Naip5等位基因的作用 [44], Sanders CJ等人说明了在适应性免疫中鞭毛蛋白的作用 [40], Neunuebel MR等人考察了在肺亲和性菌感染过程中Rab1去AMP化中的SidD调节 [107] 。

ICR小鼠

ICR品系小鼠也是白化的,来源于瑞士,由Dr. Hauschka选择并建立的可繁殖小鼠系。这个远交品系以美国癌症研究所的名字命名 [108, 109] 。ICR小鼠具有天性温顺、繁殖率高、生长速度快、自发肿瘤发生率低等特征 [110] 。Taconic和Japan SLC是ICR小鼠的主要供应商。ICR小鼠是一个通用模型,尤其是在毒理学、神经生物学、肿瘤学、感染、药学以及产品安全测试方面。Takahiro等用ICR小鼠模型阐明了Hantaan病毒引起的肾综合症出血热的发病机制 [111] 。通过连续ICR小鼠的静脉注射研究S-thanatin的亚急性毒性以便评价其安全性 [112] 。品系和亚品系间的行为差异是常见的。地佐西平马来酸盐(Dizocilpine maleate)对C57BL/6J、NSA和ICR小鼠脑皮层神经元损伤表现出不同的影响 [113] 。两种相关的近交白化小鼠品系在认知方面表现出显著的行为差异。ICR小鼠经历了严重的视觉损伤,让这个小鼠品系在需要良好视觉感知的Morris水迷宫中难以使用。CD1小鼠没有经历严重视力损伤,跟ICR品系相似,CD1小鼠在情景依赖的恐惧条件反射的所有阶段都表现出降低的僵化行为 [114] 。此外,不同来源的ICR小鼠可能产生不同甚至相互矛盾的结果 [115] 。

其它小鼠品系和转基因的小鼠

其它小鼠品系诸如ICR小鼠 [116], 129X1/Sv小鼠 [117], T细胞缺陷裸鼠 [118], F344/DuCrl2Swe小鼠 [119] 和OF1小鼠 [101] 均有使用。

确定基因以及转基因的小鼠和大鼠被广泛应用于研究中以考察特定基因的功能,并作为针对不同人类疾病的实验模型。上千种这样的品系,有极多的基因变型,品系选择和许多用途。

Jackson Laboratories的P2X7灭活小鼠被用于研究P2X7受体在体内角膜上皮清创术伤口愈合中的作用 [120], Jackson Labs的瘦素灭活(ob/ob)小鼠被用于测定O-GlcN酰化作用对血小板功能的影响 [30] 。其它基因变型的小鼠也有广泛应用,诸如Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NOD/SCID-IL2R-/-)小鼠 [121] ,B10.BR (H2k) [66] ,B6.129(Cg)-Tg(CAG-Bgeo/GFP)21Lbe/J [50] ,B6.129S1-Tlr3 tm1Flv/J(Tlr3-/-) [44] ,B6.129S2-Il6tm1Kopf/J (Il-6-/-) [44] , B6.129S7-Rag1 tm1Mom (Rag1-/-) [44] , B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos/J [50] , B6.SJL-Ptprca(CD45.1) [71] , Bmal 1+/- [28] , Icam1-/- [20] ,Il-1r1-/- [44] ,OT-II TCR [71] ,Rag1-/- [20] ,Rosa26LSL-YFP [122] ,Ubiquitin C-CreERT2 [81] , IL-6-/-小鼠 [77] , db/db和db/m小鼠 [94] ,TLR2-/-小鼠 [40] , R6/2 Huntington小鼠 [95] , OT-2 TCR 转基因的,B6 Ly5.2和129/SvEv IFNAR1-缺陷小鼠 [96] 。

实验室小鼠和大鼠 图 4
图 4. LEPR(DB-3J)和正常小鼠。 LEPR(DB-3J)小鼠是”肥胖,好餮,不耐寒冷,对胰岛素抵抗,且不育“。来自The Jackson Laboratory,著作权人许可。
大鼠

其它啮齿类动物,大鼠,是文献中第二常用的动物模型。和小鼠相比,大鼠更大,更凶猛,对各种疾病抵抗力更强。Sprague-Dawley大鼠和Wistar大鼠是两种最常用的大鼠品系。与常用小鼠品系相似,这两种大鼠品系是白化种。另一方面,这两种大鼠品系是远亲杂交品系(大多数常用的小鼠品系是近交品系)。实验室大鼠来源于一种褐家鼠,而实验室小鼠品系来源于许多不同的品种。

Sprague-Dawley大鼠

Sprague-Dawley大鼠是一种头部长窄的杂交白化品系。它繁殖率高,自发肿瘤率低。它因为温和的性格和易于操作而广受繁忙的科学家以及动物实验员的欢迎。来邦网总结了8篇使用Sprague-Dawley大鼠作为动物模型的文献,大多数来自Charles River。

在神经生物学的研究中,Ewert TJ等人使用了成年Sprague-Dawley大鼠来研究梗塞后心脏交感神经过度兴奋对加兰肽表达的影响 [97], Surgucheva I等人使用Sprague-Dawley大鼠来制备大鼠视网膜细胞以评价视网膜神经节细胞标记物gamma-突触核蛋白 [109], Zhou HL等人考察了在成年Sprague-Dawley大鼠横断脊髓的嘴侧和尾侧残余部分神经胶质细胞系衍生的神经营养因子表达 [123], Schafe GE等人考察了在体成年雄性Sprague-Dawley大鼠的长程增强效应 [124], Dinieri JA等人使用雄性Sprague-Dawley大鼠进行病毒基因转移试验来研究伏核内可诱导破坏的CREB功能的小鼠对有益和有害药物改变的敏感性 [122], Chen J等人使用了单向背内侧下丘脑插管的雄性Sprague-Dawley大鼠来研究DMH CCK在食物摄取中的作用 [125] 。

病理学研究是Sprague-Dawley大鼠的另一个应用领域。Reungjui S等人将雄性Sprague-Dawley大鼠置于不同的K+饮食环境中以考察低钾血症性肾病是否影响受损的肾血管发生 [126] 。Buchholz K等人使用了伯氏疟原虫感染的Sprague-Dawley大鼠来研究Plrx在其生命周期中的细胞学作用 [52] 。Ben-Ami Bartal I等使用Charles River Sprague-Dawley大鼠进行行为实验并发现大鼠有同情心和亲社会行为 [127] 。

实验室小鼠和大鼠 图 5
图 5. Sprague-Dawley大鼠。来自Harlan Laboratories,著作权人许可。
Wistar大鼠

Wistar大鼠是另一种属于褐家鼠种类的杂交白化品系。它享有第一个作为动物模型的大鼠品系的殊荣。Sprague-Dawley大鼠品系是由它衍生而来的。

实验室小鼠和大鼠 图 6
图 6. Lobund-Wistar大鼠。 来自NCI, NIH.

来邦网总结了7篇使用Wistar大鼠的文献。Woo S等人使用了雄性Wistar大鼠来为化疗导致的贫血建立机械学模型 [128] 。Siniscalco D等人使用雄性Wistar大鼠来研究半胱天冬酶-7在疼痛导致的凋亡过程中的作用 [129] 。Aprigliano I等人从Wistar大鼠上获取肝星形细胞以考察阿托伐他汀对凋亡的影响 [130] 。Maddahi A等人诱导Mollegaard Breeding Centre的雄性Wistar-Hanover大鼠产生缺血性脑损伤以研究MEK/ERK旁路在缺血性脑损伤之后的受体表达中的作用 [131] 。Unkrüer B等人诱发Wistar Unilever大鼠产生癫痫持续状态以阐明YB-1蛋白在成年大鼠、猕猴和人类脑部的细胞分布 [132] 。Matrone C等人从妊娠Wistar大鼠上获取胚胎以研究NGF或BDNF信号肽在神经元凋亡性死亡中的作用 [133] 。Higashida K等为了研究白芦藜醇对肌肉线粒体生物合成的影响,使用Charles Rivers的雄性Wistar大鼠进行动物研究 [29] 。

动物供应商
Jackson Laboratory

由生产近交小鼠品系C57BL的Clarence Cook Little 创立的Jackson Laboratory是文献中提及最多的试验鼠类动物供应商。Jackson Laboratory有超过5000种小鼠品系。它还拥有一个整合的小鼠信息资源库。在2011年,它出售了3百万只小鼠给“至少50个国家的超过900所研究机构的将近2万位研究者(或者实验室)”。

实验室小鼠和大鼠 图 7
图 7. The Jackson Laboratory。来自The Jackson Laboratory,著作权人许可。

来邦网统计有超过157篇文献将Jackson Laboratory作为小鼠来源。它主要的常见品系有C57BL,BALB/c小鼠品系和大鼠品系,相对少见的品系例如DBA/2J [24], C3H.SW (H-2b) [32], NOD/ShiLtJ [134], AKR/J (AKR) [39], FvB/NJ [44], C3H/HeJ (C3H)小鼠, C58/J (C58)小鼠,CBA/J [39], 129 X1/SvJ小鼠 [88] 以及MRL/MpJ [135] 。

另外,许多同基因型和转基因小鼠品系也来自Jackson Laboratories,例如CD8-KO and PFP-KO [43], ASKO [136], beta-cateninf/f, CMV-Cre, Rosa26R, Flk1LacZ/+和TOPGAL [137], RAG-/-小鼠 [46, 69], IFN-/-小鼠 [46], B6.129P2-Tcrdtm1Mom/J [47], p53 heterozygous [57], C3H/HeJ-Hmx1mpe/J [138], GM-CSF/IL-3/IL-5受体缺陷小鼠 [139], TLR3KO [134], OVA323-339 TCR转基因小鼠 [140], N-Tg (Thy1-cre) 1Vln/J和Gt (ROSA) 26Sortm1 (eYFP-Cos) [141], DO11.10 TCR转基因小鼠 [142], Tlr2-/- [69], albumin-CRE [143], SIRT6-/+杂合子小鼠 [144], 肌营养不良蛋白缺陷小鼠 [145] 和Npc1杂合子小鼠 [145] 。

实验室小鼠和大鼠 图 8
图 8. DBA/2J小鼠。来自The Jackson Laboratory,著作权人许可。
Charles River

Charles River在提供研究用动物领域有60多年的历史。在来邦网统计的文献中,62篇使用了Charles River的动物模型。它是常见品系诸如C57BL,BALB/c和其他品系像B6C3F1 [146], DBA/2 [55], TNF-alphaR1KO [147], 裸鼠 [148] and NMRI [52] 的主要供应商。另外,它提供了大部分被统计文献中使用的CD-1小鼠和大鼠品系。

Taconic

Taconic Laboratory在供应确定基因的大鼠和小鼠领域有50多年的历史。在来邦网统计的文献中,28篇使用了Taconic的动物模型。除了常见的品系例如C57BL外,Taconic提供DPP-IV-/- 小鼠 [64], RAG-2-/-小鼠 [37], [142], RAG1-/-小鼠 [60], Egr1-/-小鼠 [67], [68], NCR裸鼠 [149] 和TNFalpha转基因小鼠 [150] 。

Harlan

24篇文献使用了Harlan Laboratories的动物模型。这座第一个培育出Sprague Dawley大鼠并以之命名为在威斯康星州麦迪逊的叫作Sprague-Dawley农场的著名繁育机构现在已经成为了Harlan的一部分。Harlan提供Hsd裸鼠 [149], WKT大鼠,LEW大鼠 [151] 和SJL/J小鼠 [77] 。

其他供应商

Japan SLC提供ICR小鼠 [116], B6小鼠 [152], 和B10.D2小鼠 [139] 。

其他供应商包括政府机构例如National Cancer Institute [85], 组织机构例如Texas Institute of Genomic Medicine [127] 以及商务供应商 geneOway [153], Lexicon Pharmaceuticals Inc和MSD Pharmaceutical [154] 。

网络资源-哪里可以查到特定的小鼠品系?
国际小鼠品系资源(International Mouse Strain Resource, IMSR)

IMSR是一个十几个国际小鼠库组成的合作信息库,到2018年11月为止包括51503个品系和217063EC细胞系。例如,有123个小鼠p53基因品系。该网站由NIH的资助支持。

参考文献
  1. Luechtefeld T, Marsh D, Rowlands C, Hartung T. Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility. Toxicol Sci. 2018;: pubmed 出版商
  2. Kuramoto T, Nakanishi S, Ochiai M, Nakagama H, Voigt B, Serikawa T. Origins of albino and hooded rats: implications from molecular genetic analysis across modern laboratory rat strains. PLoS ONE. 2012;7:e43059 pubmed 出版商
  3. Beermann F, Orlow S, Lamoreux M. The Tyr (albino) locus of the laboratory mouse. Mamm Genome. 2004;15:749-58 pubmed
  4. Beura L, Hamilton S, Bi K, Schenkel J, Odumade O, Casey K, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature. 2016;532:512-6 pubmed 出版商
  5. International Mouse Phenotyping Consortium. 来自: www.mousephenotype.org/
  6. Louveau A, Smirnov I, Keyes T, Eccles J, Rouhani S, Peske J, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337-41 pubmed 出版商
  7. Victora G, Schwickert T, Fooksman D, Kamphorst A, Meyer Hermann M, Dustin M, et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell. 2010;143:592-605 pubmed 出版商
  8. Mahajan V, Demissie E, Mattoo H, Viswanadham V, Varki A, Morris R, et al. Striking Immune Phenotypes in Gene-Targeted Mice Are Driven by a Copy-Number Variant Originating from a Commercially Available C57BL/6 Strain. Cell Rep. 2016;15:1901-9 pubmed 出版商
  9. Pettitt S, Liang Q, Rairdan X, Moran J, Prosser H, Beier D, et al. Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat Methods. 2009;6:493-5 pubmed 出版商
  10. Skarnes W, Rosen B, West A, Koutsourakis M, Bushell W, Iyer V, et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474:337-42 pubmed 出版商
  11. Waterston R, Lindblad Toh K, Birney E, Rogers J, Abril J, Agarwal P, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420:520-62 pubmed
  12. Lein E, Hawrylycz M, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445:168-76 pubmed
  13. Mekada K, Abe K, Murakami A, Nakamura S, Nakata H, Moriwaki K, et al. Genetic differences among C57BL/6 substrains. Exp Anim. 2009;58:141-9 pubmed
  14. Bryant C, Zhang N, Sokoloff G, Fanselow M, Ennes H, Palmer A, et al. Behavioral differences among C57BL/6 substrains: implications for transgenic and knockout studies. J Neurogenet. 2008;22:315-31 pubmed 出版商
  15. Kumar V, Kim K, Joseph C, Kourrich S, Yoo S, Huang H, et al. C57BL/6N mutation in cytoplasmic FMRP interacting protein 2 regulates cocaine response. Science. 2013;342:1508-12 pubmed 出版商
  16. Freeman H, Hugill A, Dear N, Ashcroft F, Cox R. Deletion of nicotinamide nucleotide transhydrogenase: a new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes. 2006;55:2153-6 pubmed
  17. Toye A, Lippiat J, Proks P, Shimomura K, Bentley L, Hugill A, et al. A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia. 2005;48:675-86 pubmed
  18. Nurieva R, Chung Y, Hwang D, Yang X, Kang H, Ma L, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity. 2008;29:138-49 pubmed 出版商
  19. Chaudhry A, Rudra D, Treuting P, Samstein R, Liang Y, Kas A, et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science. 2009;326:986-91 pubmed 出版商
  20. Barnett B, Ciocca M, Goenka R, Barnett L, Wu J, Laufer T, et al. Asymmetric B cell division in the germinal center reaction. Science. 2012;335:342-4 pubmed 出版商
  21. Lightfield K, Persson J, Brubaker S, Witte C, von Moltke J, Dunipace E, et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol. 2008;9:1171-8 pubmed 出版商
  22. Lin M, Jackson P, Tester A, Diaconu E, Overall C, Blalock J, et al. Matrix metalloproteinase-8 facilitates neutrophil migration through the corneal stromal matrix by collagen degradation and production of the chemotactic peptide Pro-Gly-Pro. Am J Pathol. 2008;173:144-53 pubmed 出版商
  23. Bassetti M, White J, Kappler J, Marrack P. Transgenic Bcl-3 slows T cell proliferation. Int Immunol. 2009;21:339-48 pubmed 出版商
  24. Maynard C, Hatton R, Helms W, Oliver J, Stephensen C, Weaver C. Contrasting roles for all-trans retinoic acid in TGF-beta-mediated induction of Foxp3 and Il10 genes in developing regulatory T cells. J Exp Med. 2009;206:343-57 pubmed 出版商
  25. Zhou X, Li F, Kong L, Chodosh J, Cao W. Anti-inflammatory effect of pigment epithelium-derived factor in DBA/2J mice. Mol Vis. 2009;15:438-50 pubmed
  26. Dalmasso G, Nguyen H, Yan Y, Charrier Hisamuddin L, Sitaraman S, Merlin D. Butyrate transcriptionally enhances peptide transporter PepT1 expression and activity. PLoS ONE. 2008;3:e2476 pubmed 出版商
  27. Sauter K, Melton Celsa A, Larkin K, Troxell M, O Brien A, Magun B. Mouse model of hemolytic-uremic syndrome caused by endotoxin-free Shiga toxin 2 (Stx2) and protection from lethal outcome by anti-Stx2 antibody. Infect Immun. 2008;76:4469-78 pubmed 出版商
  28. Wang T, Yu Y, Govindaiah G, Ye X, Artinian L, Coleman T, et al. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science. 2012;337:839-42 pubmed 出版商
  29. Higashida K, Kim S, Jung S, Asaka M, Holloszy J, Han D. Effects of resveratrol and SIRT1 on PGC-1? activity and mitochondrial biogenesis: a reevaluation. PLoS Biol. 2013;11:e1001603 pubmed 出版商
  30. Lee B, Moon J, Shu J, Yuan L, Newman Z, Schekman R, et al. UNC93B1 mediates differential trafficking of endosomal TLRs. elife. 2013;2:e00291 pubmed 出版商
  31. Olszak T, An D, Zeissig S, Vera M, Richter J, Franke A, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336:489-93 pubmed 出版商
  32. Martínez Sanz E, Del Río A, Barrio C, Murillo J, Maldonado E, Garcillán B, et al. Alteration of medial-edge epithelium cell adhesion in two Tgf-beta3 null mouse strains. Differentiation. 2008;76:417-30 pubmed
  33. Spurney C, Knoblach S, Pistilli E, Nagaraju K, Martin G, Hoffman E. Dystrophin-deficient cardiomyopathy in mouse: expression of Nox4 and Lox are associated with fibrosis and altered functional parameters in the heart. Neuromuscul Disord. 2008;18:371-81 pubmed 出版商
  34. Hughes W, Rodriguez W, Rosenberger D, Chen J, Sen U, Tyagi N, et al. Role of copper and homocysteine in pressure overload heart failure. Cardiovasc Toxicol. 2008;8:137-44 pubmed 出版商
  35. Korin N, Kanapathipillai M, Matthews B, Crescente M, Brill A, Mammoto T, et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science. 2012;337:738-42 pubmed 出版商
  36. Walser R, Burke J, Gogvadze E, Bohnacker T, Zhang X, Hess D, et al. PKC? phosphorylates PI3K? to activate it and release it from GPCR control. PLoS Biol. 2013;11:e1001587 pubmed 出版商
  37. Crawford G, Hart G, Whiteheart S. Murine platelets are not regulated by O-linked beta-N-acetylglucosamine. Arch Biochem Biophys. 2008;474:220-4 pubmed 出版商
  38. Tawara I, Maeda Y, Sun Y, Lowler K, Liu C, Toubai T, et al. Combined Th2 cytokine deficiency in donor T cells aggravates experimental acute graft-vs-host disease. Exp Hematol. 2008;36:988-96 pubmed 出版商
  39. Capitini C, Herby S, Milliron M, Anver M, Mackall C, Fry T. Bone marrow deficient in IFN-{gamma} signaling selectively reverses GVHD-associated immunosuppression and enhances a tumor-specific GVT effect. Blood. 2009;113:5002-9 pubmed 出版商
  40. Ventura C, Higdon R, Kolker E, Skerrett S, Rubens C. Host airway proteins interact with Staphylococcus aureus during early pneumonia. Infect Immun. 2008;76:888-98 pubmed 出版商
  41. Weisberg S, Leibel R, Tortoriello D. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology. 2008;149:3549-58 pubmed 出版商
  42. WU D, Molofsky A, Liang H, Ricardo Gonzalez R, Jouihan H, Bando J, et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 2011;332:243-7 pubmed 出版商
  43. Xu J, Carretero O, Shesely E, Rhaleb N, Yang J, Bader M, et al. The kinin B1 receptor contributes to the cardioprotective effect of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in mice. Exp Physiol. 2009;94:322-9 pubmed 出版商
  44. Naik S, Bouladoux N, Wilhelm C, Molloy M, Salcedo R, Kastenmuller W, et al. Compartmentalized control of skin immunity by resident commensals. Science. 2012;337:1115-9 pubmed 出版商
  45. Takatori H, Kanno Y, Watford W, Tato C, Weiss G, Ivanov I, et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med. 2009;206:35-41 pubmed 出版商
  46. Halappanavar S, Stampfli M, Berndt Weis L, Williams A, Douglas G, Yauk C. Toxicogenomic analysis of mainstream tobacco smoke-exposed mice reveals repression of plasminogen activator inhibitor-1 gene in heart. Inhal Toxicol. 2009;21:78-85 pubmed
  47. Persson A, Gebauer M, Jordan S, Metz Weidmann C, Schulte A, Schneider H, et al. Correlational analysis for identifying genes whose regulation contributes to chronic neuropathic pain. Mol Pain. 2009;5:7 pubmed 出版商
  48. Sanders C, Franchi L, Yarovinsky F, Uematsu S, Akira S, Nunez G, et al. Induction of adaptive immunity by flagellin does not require robust activation of innate immunity. Eur J Immunol. 2009;39:359-71 pubmed 出版商
  49. Rao Y, Chaudhury A, Goyal R. Active and inactive pools of nNOS in the nerve terminals in mouse gut: implications for nitrergic neurotransmission. Am J Physiol Gastrointest Liver Physiol. 2008;294:G627-34 pubmed
  50. Saab A, Neumeyer A, Jahn H, Cupido A, Simek A, Boele H, et al. Bergmann glial AMPA receptors are required for fine motor coordination. Science. 2012;337:749-53 pubmed 出版商
  51. Segarra M, Aburto M, Cop F, Llaó Cid C, Härtl R, Damm M, et al. Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science. 2018;361: pubmed 出版商
  52. Wu F, Wilson J. Peroxynitrite-dependent activation of protein phosphatase type 2A mediates microvascular endothelial barrier dysfunction. Cardiovasc Res. 2009;81:38-45 pubmed 出版商
  53. Sonnenberg G, Monticelli L, Alenghat T, Fung T, Hutnick N, Kunisawa J, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science. 2012;336:1321-5 pubmed 出版商
  54. Oakley M, McCutchan T, Anantharaman V, Ward J, Faucette L, Erexson C, et al. Host biomarkers and biological pathways that are associated with the expression of experimental cerebral malaria in mice. Infect Immun. 2008;76:4518-29 pubmed 出版商
  55. Losick V, Stephan K, Smirnova I, Isberg R, Poltorak A. A hemidominant Naip5 allele in mouse strain MOLF/Ei-derived macrophages restricts Legionella pneumophila intracellular growth. Infect Immun. 2009;77:196-204 pubmed 出版商
  56. Lebeis S, Powell K, Merlin D, Sherman M, Kalman D. Interleukin-1 receptor signaling protects mice from lethal intestinal damage caused by the attaching and effacing pathogen Citrobacter rodentium. Infect Immun. 2009;77:604-14 pubmed 出版商
  57. Franklin B, Parroche P, Ataíde M, Lauw F, Ropert C, de Oliveira R, et al. Malaria primes the innate immune response due to interferon-gamma induced enhancement of toll-like receptor expression and function. Proc Natl Acad Sci U S A. 2009;106:5789-94 pubmed 出版商
  58. Godinez I, Raffatellu M, Chu H, Paixao T, Haneda T, Santos R, et al. Interleukin-23 orchestrates mucosal responses to Salmonella enterica serotype Typhimurium in the intestine. Infect Immun. 2009;77:387-98 pubmed 出版商
  59. Netea M, Joosten L, Keuter M, Wagener F, Stalenhoef A, Van der Meer J, et al. Circulating lipoproteins are a crucial component of host defense against invasive Salmonella typhimurium infection. PLoS ONE. 2009;4:e4237 pubmed 出版商
  60. Narita M, Young A, Arakawa S, Samarajiwa S, Nakashima T, Yoshida S, et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science. 2011;332:966-70 pubmed 出版商
  61. Buchholz K, Rahlfs S, Schirmer R, Becker K, Matuschewski K. Depletion of Plasmodium berghei plasmoredoxin reveals a non-essential role for life cycle progression of the malaria parasite. PLoS ONE. 2008;3:e2474 pubmed 出版商
  62. Hennige A, Staiger H, Wicke C, Machicao F, Fritsche A, Haring H, et al. Fetuin-A induces cytokine expression and suppresses adiponectin production. PLoS ONE. 2008;3:e1765 pubmed 出版商
  63. Wang S, Hecksher Sorensen J, Xu Y, Zhao A, Dor Y, Rosenberg L, et al. Myt1 and Ngn3 form a feed-forward expression loop to promote endocrine islet cell differentiation. Dev Biol. 2008;317:531-40 pubmed 出版商
  64. Takeda K, Kojima Y, Ikejima K, Harada K, Yamashina S, Okumura K, et al. Death receptor 5 mediated-apoptosis contributes to cholestatic liver disease. Proc Natl Acad Sci U S A. 2008;105:10895-900 pubmed 出版商
  65. Aleksunes L, Cui Y, Klaassen C. Prominent expression of xenobiotic efflux transporters in mouse extraembryonic fetal membranes compared with placenta. Drug Metab Dispos. 2008;36:1960-70 pubmed 出版商
  66. Thaunat O, Granja A, Barral P, Filby A, Montaner B, Collinson L, et al. Asymmetric segregation of polarized antigen on B cell division shapes presentation capacity. Science. 2012;335:475-9 pubmed 出版商
  67. Peron S, Laffleur B, Denis Lagache N, Cook Moreau J, Tinguely A, Delpy L, et al. AID-driven deletion causes immunoglobulin heavy chain locus suicide recombination in B cells. Science. 2012;336:931-4 pubmed 出版商
  68. Chatoo W, Abdouh M, David J, Champagne M, Ferreira J, Rodier F, et al. The polycomb group gene Bmi1 regulates antioxidant defenses in neurons by repressing p53 pro-oxidant activity. J Neurosci. 2009;29:529-42 pubmed 出版商
  69. Eikermann Haerter K, Dilekoz E, Kudo C, Savitz S, Waeber C, Baum M, et al. Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J Clin Invest. 2009;119:99-109 pubmed 出版商
  70. Chawla G, Viswanathan P, Devi S. Phycotoxicity of linear alkylbenzene sulfonate. Ecotoxicol Environ Saf. 1988;15:119-24 pubmed
  71. Hand T, Dos Santos L, Bouladoux N, Molloy M, Pagán A, Pepper M, et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science. 2012;337:1553-6 pubmed
  72. Yi W, Clark P, Mason D, Keenan M, Hill C, Goddard W, et al. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science. 2012;337:975-80 pubmed 出版商
  73. Chotalia M, Smallwood S, Ruf N, Dawson C, Lucifero D, Frontera M, et al. Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev. 2009;23:105-17 pubmed 出版商
  74. Gill N, Ashkar A. Overexpression of interleukin-15 compromises CD4-dependent adaptive immune responses against herpes simplex virus 2. J Virol. 2009;83:918-26 pubmed 出版商
  75. Leemput J, Masson C, Bigot K, Errachid A, Dansault A, Provost A, et al. ATM localization and gene expression in the adult mouse eye. Mol Vis. 2009;15:393-416 pubmed
  76. Li X, Ko H, Chen T, Descalzi G, Koga K, Wang H, et al. Alleviating neuropathic pain hypersensitivity by inhibiting PKMzeta in the anterior cingulate cortex. Science. 2010;330:1400-4 pubmed 出版商
  77. Oh J, Susor A, Conti M. Protein tyrosine kinase Wee1B is essential for metaphase II exit in mouse oocytes. Science. 2011;332:462-5 pubmed 出版商
  78. Mackler S, Pacchioni A, Degnan R, Homan Y, Conti A, Kalivas P, et al. Requirement for the POZ/BTB protein NAC1 in acute but not chronic psychomotor stimulant response. Behav Brain Res. 2008;187:48-55 pubmed
  79. Vora K, Porter G, Peng R, Cui Y, Pryor K, Eiermann G, et al. Genetic ablation or pharmacological blockade of dipeptidyl peptidase IV does not impact T cell-dependent immune responses. BMC Immunol. 2009;10:19 pubmed 出版商
  80. Hsu C, Lin W, Seshasayee D, Chen Y, Ding X, Lin Z, et al. Equilibrative nucleoside transporter 3 deficiency perturbs lysosome function and macrophage homeostasis. Science. 2012;335:89-92 pubmed 出版商
  81. Lamming D, Ye L, Katajisto P, Goncalves M, Saitoh M, Stevens D, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012;335:1638-43 pubmed 出版商
  82. Cornejo M, Kharas M, Werneck M, Le Bras S, Moore S, Ball B, et al. Constitutive JAK3 activation induces lymphoproliferative syndromes in murine bone marrow transplantation models. Blood. 2009;113:2746-54 pubmed 出版商
  83. Cruz Guilloty F, Pipkin M, Djuretic I, Levanon D, Lotem J, Lichtenheld M, et al. Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J Exp Med. 2009;206:51-9 pubmed 出版商
  84. Yang Y, Chen W, Edgar A, Li B, Molkentin J, Berman J, et al. Rcan1 negatively regulates Fc epsilonRI-mediated signaling and mast cell function. J Exp Med. 2009;206:195-207 pubmed 出版商
  85. Lazarevic V, Zullo A, Schweitzer M, Staton T, Gallo E, Crabtree G, et al. The gene encoding early growth response 2, a target of the transcription factor NFAT, is required for the development and maturation of natural killer T cells. Nat Immunol. 2009;10:306-13 pubmed 出版商
  86. Oliveira G, Lieberman J, Barillas Mury C. Epithelial nitration by a peroxidase/NOX5 system mediates mosquito antiplasmodial immunity. Science. 2012;335:856-9 pubmed 出版商
  87. Jagger B, Wise H, Kash J, Walters K, Wills N, Xiao Y, et al. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science. 2012;337:199-204 pubmed 出版商
  88. Round J, Lee S, Li J, Tran G, Jabri B, Chatila T, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332:974-7 pubmed 出版商
  89. Chen S, Kim M, Kim M, Song J, Park S, Wells D, et al. Mice that overexpress human heat shock protein 27 have increased renal injury following ischemia reperfusion. Kidney Int. 2009;75:499-510 pubmed 出版商
  90. Werninghaus K, Babiak A, Gross O, Hölscher C, Dietrich H, Agger E, et al. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation. J Exp Med. 2009;206:89-97 pubmed 出版商
  91. Zermeño V, Espindola S, Mendoza E, Hernandez Echeagaray E. Differential expression of neurotrophins in postnatal C57BL/6 mice striatum. Int J Biol Sci. 2009;5:118-27 pubmed
  92. Brough D, Pelegrin P, Rothwell N. Pannexin-1-dependent caspase-1 activation and secretion of IL-1beta is regulated by zinc. Eur J Immunol. 2009;39:352-8 pubmed 出版商
  93. Calvo Pinilla E, Rodríguez Calvo T, Anguita J, Sevilla N, Ortego J. Establishment of a bluetongue virus infection model in mice that are deficient in the alpha/beta interferon receptor. PLoS ONE. 2009;4:e5171 pubmed 出版商
  94. Arscott W, LaBauve A, May V, Wesley U. Suppression of neuroblastoma growth by dipeptidyl peptidase IV: relevance of chemokine regulation and caspase activation. Oncogene. 2009;28:479-91 pubmed 出版商
  95. Singh D, Chan J, Zoppoli P, Niola F, Sullivan R, Castaño A, et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science. 2012;337:1231-5 pubmed 出版商
  96. Kessler J, Kahle K, Sun T, Meerbrey K, Schlabach M, Schmitt E, et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science. 2012;335:348-53 pubmed 出版商
  97. Beauvais D, Ell B, McWhorter A, Rapraeger A. Syndecan-1 regulates alphavbeta3 and alphavbeta5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J Exp Med. 2009;206:691-705 pubmed 出版商
  98. Wang W, Yen H, Yen H, Chen C, Soni R, Jasani N, et al. The endothelin-converting enzyme-1/endothelin-1 pathway plays a critical role in inflammation-associated premature delivery in a mouse model. Am J Pathol. 2008;173:1077-84 pubmed 出版商
  99. Liao C, Luo S, Li L, Lin C, Chen Y, Jiang M. CSE1L/CAS, the cellular apoptosis susceptibility protein, enhances invasion and metastasis but not proliferation of cancer cells. J Exp Clin Cancer Res. 2008;27:15 pubmed 出版商
  100. Takeuchi T, Ohtsuki G, Yoshida T, Fukaya M, Wainai T, Yamashita M, et al. Enhancement of both long-term depression induction and optokinetic response adaptation in mice lacking delphilin. PLoS ONE. 2008;3:e2297 pubmed 出版商
  101. Berger K, Lindh R, Wierup N, Zmuda Trzebiatowska E, Lindqvist A, Manganiello V, et al. Phosphodiesterase 3B is localized in caveolae and smooth ER in mouse hepatocytes and is important in the regulation of glucose and lipid metabolism. PLoS ONE. 2009;4:e4671 pubmed 出版商
  102. Burdon K, Sharma S, Hewitt A, McMellon A, Wang J, Mackey D, et al. Genetic analysis of the clusterin gene in pseudoexfoliation syndrome. Mol Vis. 2008;14:1727-36 pubmed
  103. Okunuki Y, Usui Y, Kezuka T, Hattori T, Masuko K, Nakamura H, et al. Proteomic surveillance of retinal autoantigens in endogenous uveitis: implication of esterase D and brain-type creatine kinase as novel autoantigens. Mol Vis. 2008;14:1094-104 pubmed
  104. Fogg D, Sibon C, Miled C, Jung S, Aucouturier P, Littman D, et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science. 2006;311:83-7 pubmed
  105. Ichinohe T, Lee H, Ogura Y, Flavell R, Iwasaki A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med. 2009;206:79-87 pubmed 出版商
  106. Yi Z, Cho S, Zhao H, Wu Y, Luo J, Li D, et al. A novel peptide from human apolipoprotein(a) inhibits angiogenesis and tumor growth by targeting c-Src phosphorylation in VEGF-induced human umbilical endothelial cells. Int J Cancer. 2009;124:843-52 pubmed 出版商
  107. Ekiert D, Friesen R, Bhabha G, Kwaks T, Jongeneelen M, Yu W, et al. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science. 2011;333:843-50 pubmed 出版商
  108. Rice M, O Brien S. Genetic variance of laboratory outbred Swiss mice. Nature. 1980;283:157-61 pubmed
  109. Chia R, Achilli F, Festing M, Fisher E. The origins and uses of mouse outbred stocks. Nat Genet. 2005;37:1181-6 pubmed
  110. Eaton G, Johnson F, Custer R, Crane A. The Icr:Ha(ICR) mouse: a current account of breeding, mutations, diseases and mortality. Lab Anim. 1980;14:17-24 pubmed
  111. Seto T, Nagata N, Yoshikawa K, Ichii O, Sanada T, Saasa N, et al. Infection of Hantaan virus strain AA57 leading to pulmonary disease in laboratory mice. Virus Res. 2012;163:284-90 pubmed 出版商
  112. Wu G, Deng X, Wu P, Shen Z, Xu H. Subacute toxicity of antimicrobial peptide S-thanatin in ICR mice. Peptides. 2012;36:109-13 pubmed 出版商
  113. Brosnan Watters G, Ogimi T, Ford D, Tatekawa L, Gilliam D, Bilsky E, et al. Differential effects of MK-801 on cerebrocortical neuronal injury in C57BL/6J, NSA, and ICR mice. Prog Neuropsychopharmacol Biol Psychiatry. 2000;24:925-38 pubmed
  114. Adams B, Fitch T, Chaney S, Gerlai R. Altered performance characteristics in cognitive tasks: comparison of the albino ICR and CD1 mouse strains. Behav Brain Res. 2002;133:351-61 pubmed
  115. Sher S. Tumors in control mice: literature tabulation. Toxicol Appl Pharmacol. 1974;30:337-59 pubmed
  116. Li Y, Wang S, Xin W, Scarpellini G, Shi Z, Gunn B, et al. A sopB deletion mutation enhances the immunogenicity and protective efficacy of a heterologous antigen delivered by live attenuated Salmonella enterica vaccines. Infect Immun. 2008;76:5238-46 pubmed 出版商
  117. Capraro G, Johnson J, Kock N, Parks G. Virus growth and antibody responses following respiratory tract infection of ferrets and mice with WT and P/V mutants of the paramyxovirus Simian Virus 5. Virology. 2008;376:416-28 pubmed 出版商
  118. Kendirgi F, Yun N, Linde N, Zacks M, Smith J, Smith J, et al. Novel linear DNA vaccines induce protective immune responses against lethal infection with influenza virus type A/H5N1. Hum Vaccin. 2008;4:410-9 pubmed
  119. Ramaprakash H, Ito T, Standiford T, Kunkel S, Hogaboam C. Toll-like receptor 9 modulates immune responses to Aspergillus fumigatus conidia in immunodeficient and allergic mice. Infect Immun. 2009;77:108-19 pubmed 出版商
  120. Castilow E, Olson M, Meyerholz D, Varga S. Differential role of gamma interferon in inhibiting pulmonary eosinophilia and exacerbating systemic disease in fusion protein-immunized mice undergoing challenge infection with respiratory syncytial virus. J Virol. 2008;82:2196-207 pubmed
  121. Chung Y, Choi J, Oh T, Eun C, Han D. Lactobacillus casei prevents the development of dextran sulphate sodium-induced colitis in Toll-like receptor 4 mutant mice. Clin Exp Immunol. 2008;151:182-9 pubmed
  122. Schulz C, Gomez Perdiguero E, Chorro L, Szabo Rogers H, Cagnard N, Kierdorf K, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336:86-90 pubmed 出版商
  123. Ray S, Xu F, Wang H, Das S. Cooperative control via lymphoid enhancer factor 1/T cell factor 3 and estrogen receptor-alpha for uterine gene regulation by estrogen. Mol Endocrinol. 2008;22:1125-40 pubmed 出版商
  124. Tang N, Marshall W, McMahon M, Metzger R, Martin G. Control of mitotic spindle angle by the RAS-regulated ERK1/2 pathway determines lung tube shape. Science. 2011;333:342-345 pubmed 出版商
  125. Ye H, Daoud El Baba M, Peng R, Fussenegger M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science. 2011;332:1565-8 pubmed 出版商
  126. Shankarling G, Coates P, Dass B, MacDonald C. A family of splice variants of CstF-64 expressed in vertebrate nervous systems. BMC Mol Biol. 2009;10:22 pubmed 出版商
  127. Ben Ami Bartal I, Decety J, Mason P. Empathy and pro-social behavior in rats. Science. 2011;334:1427-30 pubmed 出版商
  128. Lachke S, Alkuraya F, Kneeland S, Ohn T, Aboukhalil A, Howell G, et al. Mutations in the RNA granule component TDRD7 cause cataract and glaucoma. Science. 2011;331:1571-6 pubmed 出版商
  129. Ko H, Bailey R, Smith W, Liu Z, Shin J, Lee Y, et al. CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. Proc Natl Acad Sci U S A. 2009;106:2897-902 pubmed 出版商
  130. Li Z, Mathew P, Yang J, Starbuck M, Zurita A, Liu J, et al. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. J Clin Invest. 2008;118:2697-710 pubmed 出版商
  131. Dubrovska A, Kim S, Salamone R, Walker J, Maira S, Garcia Echeverria C, et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A. 2009;106:268-73 pubmed 出版商
  132. Miyagawa Y, Okita H, Itagaki M, Toyoda M, Katagiri Y, Fujimoto J, et al. EWS/ETS regulates the expression of the Dickkopf family in Ewing family tumor cells. PLoS ONE. 2009;4:e4634 pubmed 出版商
  133. Gonzalez M, Li X, Toy K, DuPrie M, Ventura A, Banerjee M, et al. Downregulation of EZH2 decreases growth of estrogen receptor-negative invasive breast carcinoma and requires BRCA1. Oncogene. 2009;28:843-53 pubmed 出版商
  134. Neunuebel M, Chen Y, Gaspar A, Backlund P, Yergey A, Machner M. De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science. 2011;333:453-6 pubmed 出版商
  135. Sato Y, Iketani M, Kurihara Y, Yamaguchi M, Yamashita N, Nakamura F, et al. Cartilage acidic protein-1B (LOTUS), an endogenous Nogo receptor antagonist for axon tract formation. Science. 2011;333:769-73 pubmed 出版商
  136. Kwon H, Koo J, Zufall F, Leinders Zufall T, Margolis F. Ca extrusion by NCX is compromised in olfactory sensory neurons of OMP mice. PLoS ONE. 2009;4:e4260 pubmed 出版商
  137. Bao L, Haas M, Pippin J, Wang Y, Miwa T, Chang A, et al. Focal and segmental glomerulosclerosis induced in mice lacking decay-accelerating factor in T cells. J Clin Invest. 2009;119:1264-74 pubmed 出版商
  138. Rosengren A, Jokubka R, Tojjar D, Granhall C, Hansson O, Li D, et al. Overexpression of alpha2A-adrenergic receptors contributes to type 2 diabetes. Science. 2010;327:217-20 pubmed 出版商
  139. Klohn P, Farmer M, Linehan J, O Malley C, Fernández de Marco M, Taylor W, et al. PrP antibodies do not trigger mouse hippocampal neuron apoptosis. Science. 2012;335:52 pubmed 出版商
  140. Modi B, Neustadter J, Binda E, Lewis J, Filler R, Roberts S, et al. Langerhans cells facilitate epithelial DNA damage and squamous cell carcinoma. Science. 2012;335:104-8 pubmed 出版商
  141. Mayo C, Ren R, Rich C, Stepp M, Trinkaus Randall V. Regulation by P2X7: epithelial migration and stromal organization in the cornea. Invest Ophthalmol Vis Sci. 2008;49:4384-91 pubmed 出版商
  142. Rodriguez R, Rubio R, Masip M, Catalina P, Nieto A, de la Cueva T, et al. Loss of p53 induces tumorigenesis in p21-deficient mesenchymal stem cells. Neoplasia. 2009;11:397-407 pubmed
  143. Chen J, Li H, Addabbo F, Zhang F, Pelger E, Patschan D, et al. Adoptive transfer of syngeneic bone marrow-derived cells in mice with obesity-induced diabetes: selenoorganic antioxidant ebselen restores stem cell competence. Am J Pathol. 2009;174:701-11 pubmed 出版商
  144. Peng Q, Masuda N, Jiang M, Li Q, Zhao M, Ross C, et al. The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington's disease mouse model. Exp Neurol. 2008;210:154-63 pubmed
  145. Shinohara M, Kim J, Garcia V, Cantor H. Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin. Immunity. 2008;29:68-78 pubmed 出版商
  146. Ewert T, Gritman K, Bader M, Habecker B. Post-infarct cardiac sympathetic hyperactivity regulates galanin expression. Neurosci Lett. 2008;436:163-6 pubmed 出版商
  147. Surgucheva I, Weisman A, Goldberg J, SHNYRA A, Surguchov A. Gamma-synuclein as a marker of retinal ganglion cells. Mol Vis. 2008;14:1540-8 pubmed
  148. Zhou H, Yang H, Li Y, Wang Y, Yan L, Guo X, et al. Changes in Glial cell line-derived neurotrophic factor expression in the rostral and caudal stumps of the transected adult rat spinal cord. Neurochem Res. 2008;33:927-37 pubmed
  149. Schafe G, Swank M, Rodrigues S, Debiec J, Doyère V. Phosphorylation of ERK/MAP kinase is required for long-term potentiation in anatomically restricted regions of the lateral amygdala in vivo. Learn Mem. 2008;15:55-62 pubmed 出版商
  150. DiNieri J, Nemeth C, Parsegian A, Carle T, Gurevich V, Gurevich E, et al. Altered sensitivity to rewarding and aversive drugs in mice with inducible disruption of cAMP response element-binding protein function within the nucleus accumbens. J Neurosci. 2009;29:1855-9 pubmed 出版商
  151. Chen J, Scott K, Zhao Z, Moran T, Bi S. Characterization of the feeding inhibition and neural activation produced by dorsomedial hypothalamic cholecystokinin administration. Neuroscience. 2008;152:178-88 pubmed 出版商
  152. Reungjui S, Roncal C, Sato W, Glushakova O, Croker B, Suga S, et al. Hypokalemic nephropathy is associated with impaired angiogenesis. J Am Soc Nephrol. 2008;19:125-34 pubmed 出版商
  153. Woo S, Krzyzanski W, Jusko W. Pharmacodynamic model for chemotherapy-induced anemia in rats. Cancer Chemother Pharmacol. 2008;62:123-33 pubmed
  154. Siniscalco D, Giordano C, Fuccio C, Luongo L, Ferraraccio F, Rossi F, et al. Involvement of subtype 1 metabotropic glutamate receptors in apoptosis and caspase-7 over-expression in spinal cord of neuropathic rats. Pharmacol Res. 2008;57:223-33 pubmed 出版商
ISSN : 2329-5147