产品简要
公司名称 :
Developmental Studies Hybridoma Bank
产品类型 :
抗体
产品名称 :
skeletal muscle marker, 102 kDa
目录 :
12/101
克隆性 :
单克隆
宿主 :
小鼠
共轭标签 :
未共轭
克隆名称 :
12/101
应用 :
免疫印迹, 免疫组化, 免疫细胞化学
文章摘录数: 164
参考文献
Taniguchi Y, Watanabe K, Mochii M. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole. BMC Dev Biol. 2014;14:27 pubmed 出版商
Ziermann J, Diogo R. Cranial muscle development in frogs with different developmental modes: direct development versus biphasic development. J Morphol. 2014;275:398-413 pubmed
Romaker D, Kumar V, Cerqueira D, Cox R, Wessely O. MicroRNAs are critical regulators of tuberous sclerosis complex and mTORC1 activity in the size control of the Xenopus kidney. Proc Natl Acad Sci U S A. 2014;111:6335-40 pubmed 出版商
Roberts N, Woolf A, Stuart H, Thuret R, McKenzie E, Newman W, et al. Heparanase 2, mutated in urofacial syndrome, mediates peripheral neural development in Xenopus. Hum Mol Genet. 2014;23:4302-14 pubmed 出版商
Leal M, Fickel S, Sabillo A, Ramirez J, Vergara H, Nave C, et al. The Role of Sdf-1? signaling in Xenopus laevis somite morphogenesis. Dev Dyn. 2014;243:509-26 pubmed 出版商
Marracci S, Giannini M, Vitiello M, Andreazzoli M, Dente L. Kidins220/ARMS is dynamically expressed during Xenopus laevis development. Int J Dev Biol. 2013;57:787-92 pubmed 出版商
Grumolato L, Liu G, Haremaki T, Mungamuri S, Mong P, Akiri G, et al. ?-Catenin-independent activation of TCF1/LEF1 in human hematopoietic tumor cells through interaction with ATF2 transcription factors. PLoS Genet. 2013;9:e1003603 pubmed 出版商
Mathieu M, Faucheux C, Saucourt C, Soulet F, Gauthereau X, Fedou S, et al. MRAS GTPase is a novel stemness marker that impacts mouse embryonic stem cell plasticity and Xenopus embryonic cell fate. Development. 2013;140:3311-22 pubmed 出版商
Boisvert C, Joss J, Ahlberg P. Comparative pelvic development of the axolotl (Ambystoma mexicanum) and the Australian lungfish (Neoceratodus forsteri): conservation and innovation across the fish-tetrapod transition. Evodevo. 2013;4:3 pubmed 出版商
Della Gaspera B, Armand A, Lecolle S, Charbonnier F, Chanoine C. Mef2d acts upstream of muscle identity genes and couples lateral myogenesis to dermomyotome formation in Xenopus laevis. PLoS ONE. 2012;7:e52359 pubmed 出版商
Caine S, McLaughlin K. Regeneration of functional pronephric proximal tubules after partial nephrectomy in Xenopus laevis. Dev Dyn. 2013;242:219-29 pubmed 出版商
Maguire R, Isaacs H, Pownall M. Early transcriptional targets of MyoD link myogenesis and somitogenesis. Dev Biol. 2012;371:256-68 pubmed 出版商
Cha H, Byrom M, Mead P, Ellington A, Wallingford J, Marcotte E. Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent. PLoS Biol. 2012;10:e1001379 pubmed 出版商
Hidalgo M, Le Bouffant R, Bello V, Buisson N, Cormier P, Beaudry M, et al. The translational repressor 4E-BP mediates hypoxia-induced defects in myotome cells. J Cell Sci. 2012;125:3989-4000 pubmed 出版商
Monaghan J, Maden M. Visualization of retinoic acid signaling in transgenic axolotls during limb development and regeneration. Dev Biol. 2012;368:63-75 pubmed 出版商
Sridharan J, Haremaki T, Jin Y, Teegala S, Weinstein D. Xmab21l3 mediates dorsoventral patterning in Xenopus laevis. Mech Dev. 2012;129:136-46 pubmed 出版商
Le Bouffant R, Wang J, Futel M, Buisson I, Umbhauer M, Riou J. Retinoic acid-dependent control of MAP kinase phosphatase-3 is necessary for early kidney development in Xenopus. Biol Cell. 2012;104:516-32 pubmed 出版商
Munoz W, Kloc M, Cho K, Lee M, Hofmann I, Sater A, et al. Plakophilin-3 is required for late embryonic amphibian development, exhibiting roles in ectodermal and neural tissues. PLoS ONE. 2012;7:e34342 pubmed 出版商
Green Y, Vetter M. EBF proteins participate in transcriptional regulation of Xenopus muscle development. Dev Biol. 2011;358:240-50 pubmed 出版商
Yu L, Zhang X, Yuan J, Cao Q, Liu J, Zhu P, et al. Teratogenic effects of triphenyltin on embryos of amphibian (Xenopus tropicalis): a phenotypic comparison with the retinoid X and retinoic acid receptor ligands. J Hazard Mater. 2011;192:1860-8 pubmed 出版商
Doherty J, Lenhart K, Cameron M, Mack C, Conlon F, Taylor J. Skeletal muscle differentiation and fusion are regulated by the BAR-containing Rho-GTPase-activating protein (Rho-GAP), GRAF1. J Biol Chem. 2011;286:25903-21 pubmed 出版商
Cirio M, Hui Z, Haldin C, Cosentino C, Stuckenholz C, Chen X, et al. Lhx1 is required for specification of the renal progenitor cell field. PLoS ONE. 2011;6:e18858 pubmed 出版商
Panagiotaki N, Dajas Bailador F, Amaya E, Papalopulu N, Dorey K. Characterisation of a new regulator of BDNF signalling, Sprouty3, involved in axonal morphogenesis in vivo. Development. 2010;137:4005-15 pubmed 出版商
Lenkowski J, McLaughlin K. Acute atrazine exposure disrupts matrix metalloproteinases and retinoid signaling during organ morphogenesis in Xenopus laevis. J Appl Toxicol. 2010;30:582-9 pubmed 出版商
Tazumi S, Yabe S, Uchiyama H. Paraxial T-box genes, Tbx6 and Tbx1, are required for cranial chondrogenesis and myogenesis. Dev Biol. 2010;346:170-80 pubmed 出版商
Reisoli E, De Lucchini S, Nardi I, Ori M. Serotonin 2B receptor signaling is required for craniofacial morphogenesis and jaw joint formation in Xenopus. Development. 2010;137:2927-37 pubmed 出版商
Haremaki T, Sridharan J, Dvora S, Weinstein D. Regulation of vertebrate embryogenesis by the exon junction complex core component Eif4a3. Dev Dyn. 2010;239:1977-87 pubmed 出版商
Wuebbles R, Long S, Hanel M, Jones P. Testing the effects of FSHD candidate gene expression in vertebrate muscle development. Int J Clin Exp Pathol. 2010;3:386-400 pubmed
Krneta Stankic V, Sabillo A, Domingo C. Temporal and spatial patterning of axial myotome fibers in Xenopus laevis. Dev Dyn. 2010;239:1162-77 pubmed 出版商
Yamada A, Martindale M, Fukui A, Tochinai S. Highly conserved functions of the Brachyury gene on morphogenetic movements: insight from the early-diverging phylum Ctenophora. Dev Biol. 2010;339:212-22 pubmed 出版商
Goda T, Takagi C, Ueno N. Xenopus Rnd1 and Rnd3 GTP-binding proteins are expressed under the control of segmentation clock and required for somite formation. Dev Dyn. 2009;238:2867-76 pubmed 出版商
De Marco N, Iannone L, Carotenuto R, Biffo S, Vitale A, Campanella C. p27(BBP)/eIF6 acts as an anti-apoptotic factor upstream of Bcl-2 during Xenopus laevis development. Cell Death Differ. 2010;17:360-72 pubmed 出版商
Bosnakovski D, Daughters R, Xu Z, Slack J, Kyba M. Biphasic myopathic phenotype of mouse DUX, an ORF within conserved FSHD-related repeats. PLoS ONE. 2009;4:e7003 pubmed 出版商
Cuykendall T, Houston D. Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation. Development. 2009;136:3057-65 pubmed 出版商
Eivers E, Fuentealba L, Sander V, Clemens J, Hartnett L, De Robertis E. Mad is required for wingless signaling in wing development and segment patterning in Drosophila. PLoS ONE. 2009;4:e6543 pubmed 出版商
Gray R, Bayly R, Green S, Agarwala S, Lowe C, Wallingford J. Diversification of the expression patterns and developmental functions of the dishevelled gene family during chordate evolution. Dev Dyn. 2009;238:2044-57 pubmed 出版商
Waldner C, Roose M, Ryffel G. Red fluorescent Xenopus laevis: a new tool for grafting analysis. BMC Dev Biol. 2009;9:37 pubmed 出版商
Dutton J, Daughters R, Chen Y, O Neill K, Slack J. Use of adenovirus for ectopic gene expression in Xenopus. Dev Dyn. 2009;238:1412-21 pubmed 出版商
Barton C, Tahinci E, Barbieri C, Johnson K, Hanson A, Jernigan K, et al. DeltaNp63 antagonizes p53 to regulate mesoderm induction in Xenopus laevis. Dev Biol. 2009;329:130-9 pubmed 出版商
Hanel M, Wuebbles R, Jones P. Muscular dystrophy candidate gene FRG1 is critical for muscle development. Dev Dyn. 2009;238:1502-12 pubmed 出版商
Hidalgo M, Sirour C, Bello V, Moreau N, Beaudry M, Darribère T. In vivo analyzes of dystroglycan function during somitogenesis in Xenopus laevis. Dev Dyn. 2009;238:1332-45 pubmed 出版商
Walters Z, Haworth K, Latinkic B. NKCC1 (SLC12a2) induces a secondary axis in Xenopus laevis embryos independently of its co-transporter function. J Physiol. 2009;587:521-9 pubmed 出版商
Tazumi S, Yabe S, Yokoyama J, Aihara Y, Uchiyama H. PMesogenin1 and 2 function directly downstream of Xtbx6 in Xenopus somitogenesis and myogenesis. Dev Dyn. 2008;237:3749-61 pubmed 出版商
Sugiura T, Tazaki A, Ueno N, Watanabe K, Mochii M. Xenopus Wnt-5a induces an ectopic larval tail at injured site, suggesting a crucial role for noncanonical Wnt signal in tail regeneration. Mech Dev. 2009;126:56-67 pubmed 出版商
Casini P, Ori M, Avenoso A, D Ascola A, Traina P, Mattina W, et al. Identification and gene expression of versican during early development of Xenopus. Int J Dev Biol. 2008;52:993-8 pubmed 出版商
Alarcon P, Rodríguez Seguel E, Fernández González A, Rubio R, Gomez Skarmeta J. A dual requirement for Iroquois genes during Xenopus kidney development. Development. 2008;135:3197-207 pubmed 出版商
Li S, Lou X, Wang J, Liu B, Ma L, Su Z, et al. Retinoid signaling can repress blastula Wnt signaling and impair dorsal development in Xenopus embryo. Differentiation. 2008;76:897-907 pubmed 出版商
Lin G, Slack J. Requirement for Wnt and FGF signaling in Xenopus tadpole tail regeneration. Dev Biol. 2008;316:323-35 pubmed 出版商
Fujii H, Sakai M, Nishimatsu S, Nohno T, Mochii M, Orii H, et al. VegT, eFGF and Xbra cause overall posteriorization while Xwnt8 causes eye-level restricted posteriorization in synergy with chordin in early Xenopus development. Dev Growth Differ. 2008;50:169-80 pubmed 出版商
Iglesias M, Gomez Skarmeta J, Salo E, Adell T. Silencing of Smed-betacatenin1 generates radial-like hypercephalized planarians. Development. 2008;135:1215-21 pubmed 出版商
Taniguchi Y, Sugiura T, Tazaki A, Watanabe K, Mochii M. Spinal cord is required for proper regeneration of the tail in Xenopus tadpoles. Dev Growth Differ. 2008;50:109-20 pubmed 出版商
Gillin J. Methodological problems in the anthropological study of modern cultures. Am Anthropol. 1949;51:392-9 pubmed
Bracken C, Mizeracka K, McLaughlin K. Patterning the embryonic kidney: BMP signaling mediates the differentiation of the pronephric tubules and duct in Xenopus laevis. Dev Dyn. 2008;237:132-44 pubmed
Jean S, Moss T. A ubiquitin-conjugating enzyme, ube2d3.2, regulates xMLK2 and pronephros formation in Xenopus. Differentiation. 2008;76:431-41 pubmed
Malikova M, Van Stry M, Symes K. Apoptosis regulates notochord development in Xenopus. Dev Biol. 2007;311:434-48 pubmed
Chu F, Afonin B, Gustin J, Bost A, Sanchez M, Domingo C. Embryonic cells depleted of beta-catenin remain competent to differentiate into dorsal mesodermal derivatives. Dev Dyn. 2007;236:3007-19 pubmed
Gerhart J, Neely C, Elder J, Pfautz J, Perlman J, Narciso L, et al. Cells that express MyoD mRNA in the epiblast are stably committed to the skeletal muscle lineage. J Cell Biol. 2007;178:649-60 pubmed
Hess K, Steinbeisser H, Kurth T, Epperlein H. Bone morphogenetic protein-4 and Noggin signaling regulates pigment cell distribution in the axolotl trunk. Differentiation. 2008;76:206-18 pubmed
Epperlein H, Vichev K, Heidrich F, Kurth T. BMP-4 and Noggin signaling modulate dorsal fin and somite development in the axolotl trunk. Dev Dyn. 2007;236:2464-74 pubmed
Haremaki T, Fraser S, Kuo Y, Baron M, Weinstein D. Vertebrate Ctr1 coordinates morphogenesis and progenitor cell fate and regulates embryonic stem cell differentiation. Proc Natl Acad Sci U S A. 2007;104:12029-34 pubmed
Zhao H, Rebbert M, Dawid I. Myoskeletin, a factor related to Myocardin, is expressed in somites and required for hypaxial muscle formation in Xenopus. Int J Dev Biol. 2007;51:315-20 pubmed
Chan A, Kloc M, Larabell C, LeGros M, Etkin L. The maternally localized RNA fatvg is required for cortical rotation and germ cell formation. Mech Dev. 2007;124:350-63 pubmed
Matsui H, Sakabe M, Sakata H, Nakatani K, Ikeda K, Fukui M, et al. Heart myofibrillogenesis occurs in isolated chick posterior blastoderm: a culture model. Acta Histochem Cytochem. 2006;39:139-44 pubmed
Sakata H, Sakabe M, Matsui H, Kawada N, Nakatani K, Ikeda K, et al. Rho kinase inhibitor Y27632 affects initial heart myofibrillogenesis in cultured chick blastoderm. Dev Dyn. 2007;236:461-72 pubmed
Yabe S, Tazumi S, Yokoyama J, Uchiyama H. Xtbx6r, a novel T-box gene expressed in the paraxial mesoderm, has anterior neural-inducing activity. Int J Dev Biol. 2006;50:681-9 pubmed
Tena J, Neto A, de la Calle Mustienes E, Bras Pereira C, Casares F, Gomez Skarmeta J. Odd-skipped genes encode repressors that control kidney development. Dev Biol. 2007;301:518-31 pubmed
Lou X, Fang P, Li S, Hu R, Kuerner K, Steinbeisser H, et al. Xenopus Tbx6 mediates posterior patterning via activation of Wnt and FGF signalling. Cell Res. 2006;16:771-9 pubmed
Atkinson D, Stevenson T, Park E, Riedy M, Milash B, Odelberg S. Cellular electroporation induces dedifferentiation in intact newt limbs. Dev Biol. 2006;299:257-71 pubmed
Chang C, Brivanlou A, Harland R. Function of the two Xenopus smad4s in early frog development. J Biol Chem. 2006;281:30794-803 pubmed
Suga A, Hikasa H, Taira M. Xenopus ADAMTS1 negatively modulates FGF signaling independent of its metalloprotease activity. Dev Biol. 2006;295:26-39 pubmed
Chen Y, Lin G, Slack J. Control of muscle regeneration in the Xenopus tadpole tail by Pax7. Development. 2006;133:2303-13 pubmed
Holowacz T, Zeng L, Lassar A. Asymmetric localization of numb in the chick somite and the influence of myogenic signals. Dev Dyn. 2006;235:633-45 pubmed
Ori M, Nardini M, Casini P, Perris R, Nardi I. XHas2 activity is required during somitogenesis and precursor cell migration in Xenopus development. Development. 2006;133:631-40 pubmed
Kragtorp K, Miller J. Regulation of somitogenesis by Ena/VASP proteins and FAK during Xenopus development. Development. 2006;133:685-95 pubmed
Contakos S, Gaydos C, Pfeil E, McLaughlin K. Subdividing the embryo: a role for Notch signaling during germ layer patterning in Xenopus laevis. Dev Biol. 2005;288:294-307 pubmed
Nie S, Chang C. Regulation of early Xenopus development by ErbB signaling. Dev Dyn. 2006;235:301-14 pubmed
Groppelli S, Pennati R, De Bernardi F, Menegola E, Giavini E, Sotgia C. Teratogenic effects of two antifungal triazoles, triadimefon and triadimenol, on Xenopus laevis development: craniofacial defects. Aquat Toxicol. 2005;73:370-81 pubmed
Matsui H, Ikeda K, Nakatani K, Sakabe M, Yamagishi T, Nakanishi T, et al. Induction of initial cardiomyocyte alpha-actin--smooth muscle alpha-actin--in cultured avian pregastrula epiblast: a role for nodal and BMP antagonist. Dev Dyn. 2005;233:1419-29 pubmed
Acton A, Harvey T, Grow M. An examination of non-formalin-based fixation methods for Xenopus embryos. Dev Dyn. 2005;233:1464-9 pubmed
Suri C, Haremaki T, Weinstein D. Xema, a foxi-class gene expressed in the gastrula stage Xenopus ectoderm, is required for the suppression of mesendoderm. Development. 2005;132:2733-42 pubmed
Strony R, Gerhart J, Tornambe D, Perlman J, Neely C, Dare J, et al. NeuroM and MyoD are expressed in separate subpopulations of cells in the pregastrulating epiblast. Gene Expr Patterns. 2005;5:387-95 pubmed
Gautier Courteille C, Le Clainche C, Barreau C, Audic Y, Graindorge A, Maniey D, et al. EDEN-BP-dependent post-transcriptional regulation of gene expression in Xenopus somitic segmentation. Development. 2004;131:6107-17 pubmed
Cerny R, Lwigale P, Ericsson R, Meulemans D, Epperlein H, Bronner Fraser M. Developmental origins and evolution of jaws: new interpretation of "maxillary" and "mandibular". Dev Biol. 2004;276:225-36 pubmed
Carpio R, Honoré S, Araya C, Mayor R. Xenopus paraxis homologue shows novel domains of expression. Dev Dyn. 2004;231:609-13 pubmed
Ericsson R, Cerny R, Falck P, Olsson L. Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl, Ambystoma mexicanum. Dev Dyn. 2004;231:237-47 pubmed
Chung H, Hyodo Miura J, Kitayama A, Terasaka C, Nagamune T, Ueno N. Screening of FGF target genes in Xenopus by microarray: temporal dissection of the signalling pathway using a chemical inhibitor. Genes Cells. 2004;9:749-61 pubmed
Unterseher F, Hefele J, Giehl K, De Robertis E, Wedlich D, Schambony A. Paraxial protocadherin coordinates cell polarity during convergent extension via Rho A and JNK. EMBO J. 2004;23:3259-69 pubmed
Tseng H, Shah R, Jamrich M. Function and regulation of FoxF1 during Xenopus gut development. Development. 2004;131:3637-47 pubmed
Ericsson R, Olsson L. Patterns of spatial and temporal visceral arch muscle development in the Mexican axolotl (Ambystoma mexicanum). J Morphol. 2004;261:131-40 pubmed
Grimaldi A, Tettamanti G, Martin B, Gaffield W, Pownall M, Hughes S. Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis. Development. 2004;131:3249-62 pubmed
Gargioli C, Slack J. Cell lineage tracing during Xenopus tail regeneration. Development. 2004;131:2669-79 pubmed
Kofron M, Wylie C, Heasman J. The role of Mixer in patterning the early Xenopus embryo. Development. 2004;131:2431-41 pubmed
Gross J, Hanken J. Use of fluorescent dextran conjugates as a long-term marker of osteogenic neural crest in frogs. Dev Dyn. 2004;230:100-6 pubmed
Sugiura T, Taniguchi Y, Tazaki A, Ueno N, Watanabe K, Mochii M. Differential gene expression between the embryonic tail bud and regenerating larval tail in Xenopus laevis. Dev Growth Differ. 2004;46:97-105 pubmed
Miyakoshi A, Ueno N, Kinoshita N. Rho guanine nucleotide exchange factor xNET1 implicated in gastrulation movements during Xenopus development. Differentiation. 2004;72:48-55 pubmed
Smith J. A mesoderm-inducing factor is produced by Xenopus cell line. Development. 1987;99:3-14 pubmed
Gerhart J, Neely C, Stewart B, Perlman J, Beckmann D, Wallon M, et al. Epiblast cells that express MyoD recruit pluripotent cells to the skeletal muscle lineage. J Cell Biol. 2004;164:739-46 pubmed
Hamaguchi T, Yabe S, Uchiyama H, Murakami R. Drosophila Tbx6-related gene, Dorsocross, mediates high levels of Dpp and Scw signal required for the development of amnioserosa and wing disc primordium. Dev Biol. 2004;265:355-68 pubmed
Iioka H, Ueno N, Kinoshita N. Essential role of MARCKS in cortical actin dynamics during gastrulation movements. J Cell Biol. 2004;164:169-74 pubmed
Suri C, Haremaki T, Weinstein D. Inhibition of mesodermal fate by Xenopus HNF3beta/FoxA2. Dev Biol. 2004;265:90-104 pubmed
Sater A, El Hodiri H, Goswami M, Alexander T, Al Sheikh O, Etkin L, et al. Evidence for antagonism of BMP-4 signals by MAP kinase during Xenopus axis determination and neural specification. Differentiation. 2003;71:434-44 pubmed
Lake B, Kao K. Pygopus is required for embryonic brain patterning in Xenopus. Dev Biol. 2003;261:132-48 pubmed
Teplitsky Y, Paterno G, Gillespie L. Proline365 is a critical residue for the activity of XMI-ER1 in Xenopus embryonic development. Biochem Biophys Res Commun. 2003;308:679-83 pubmed
Marcellini S, Technau U, Smith J, Lemaire P. Evolution of Brachyury proteins: identification of a novel regulatory domain conserved within Bilateria. Dev Biol. 2003;260:352-61 pubmed
Kinoshita N, Iioka H, Miyakoshi A, Ueno N. PKC delta is essential for Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent extension movements. Genes Dev. 2003;17:1663-76 pubmed
Houston D, Wylie C. The Xenopus LIM-homeodomain protein Xlim5 regulates the differential adhesion properties of early ectoderm cells. Development. 2003;130:2695-704 pubmed
Wu C, Chan A, Etkin L. Difference in the maternal and zygotic contributions of tumorhead on embryogenesis. Dev Biol. 2003;255:290-302 pubmed
Osada S, Ohmori S, Taira M. XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. Development. 2003;130:1783-94 pubmed
Wu C, Muslin A. Role of 14-3-3 proteins in early Xenopus development. Mech Dev. 2002;119:45-54 pubmed
Park E, Warner N, Mood K, Pawson T, Daar I. Low-molecular-weight protein tyrosine phosphatase is a positive component of the fibroblast growth factor receptor signaling pathway. Mol Cell Biol. 2002;22:3404-14 pubmed
Cossins J, Vernon A, Zhang Y, Philpott A, Jones P. Hes6 regulates myogenic differentiation. Development. 2002;129:2195-207 pubmed
Akagi K, Kyun Park E, Mood K, Daar I. Docking protein SNT1 is a critical mediator of fibroblast growth factor signaling during Xenopus embryonic development. Dev Dyn. 2002;223:216-28 pubmed
Gerhart J, Bast B, Neely C, Iem S, Amegbe P, Niewenhuis R, et al. MyoD-positive myoblasts are present in mature fetal organs lacking skeletal muscle. J Cell Biol. 2001;155:381-92 pubmed
Barresi M, D Angelo J, Hernández L, Devoto S. Distinct mechanisms regulate slow-muscle development. Curr Biol. 2001;11:1432-8 pubmed
Wetts R, Vaughn J. Development of cholinergic terminals around rat spinal motor neurons and their potential relationship to developmental cell death. J Comp Neurol. 2001;435:171-83 pubmed
Krishnan P, King M, Neff A, Sandusky G, Bierman K, Grinnell B, et al. Human truncated Smad 6 (Smad 6s) inhibits the BMP pathway in Xenopus laevis. Dev Growth Differ. 2001;43:115-32 pubmed
Borchers A, Epperlein H, Wedlich D. An assay system to study migratory behavior of cranial neural crest cells in Xenopus. Dev Genes Evol. 2000;210:217-22 pubmed
Pasqualetti M, Ori M, Nardi I, Rijli F. Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus. Development. 2000;127:5367-78 pubmed
Wu C, Zeng Q, Blumer K, Muslin A. RGS proteins inhibit Xwnt-8 signaling in Xenopus embryonic development. Development. 2000;127:2773-84 pubmed
Epperlein H, Meulemans D, Bronner Fraser M, Steinbeisser H, Selleck M. Analysis of cranial neural crest migratory pathways in axolotl using cell markers and transplantation. Development. 2000;127:2751-61 pubmed
Callery E, Elinson R. Thyroid hormone-dependent metamorphosis in a direct developing frog. Proc Natl Acad Sci U S A. 2000;97:2615-20 pubmed
Kenyon K, Moody S, Jamrich M. A novel fork head gene mediates early steps during Xenopus lens formation. Development. 1999;126:5107-16 pubmed
Parisi A, Kimlin M. Comparison of the spectral biologically effective solar ultraviolet in adjacent tree shade and sun. Phys Med Biol. 1999;44:2071-80 pubmed
Tian Q, Nakayama T, Dixon M, Christian J. Post-transcriptional regulation of Xwnt-8 expression is required for normal myogenesis during vertebrate embryonic development. Development. 1999;126:3371-80 pubmed
Unguez G, Zakon H. Reexpression of myogenic proteins in mature electric organ after removal of neural input. J Neurosci. 1998;18:9924-35 pubmed
Elinson R, Fang H. Secondary coverage of the yolk by the body wall in the direct developing frog, Eleutherodactylus coqui: an unusual process for amphibian embryos. Dev Genes Evol. 1998;208:457-66 pubmed
Souchelnytskyi S, Nakayama T, Nakao A, Moren A, Heldin C, Christian J, et al. Physical and functional interaction of murine and Xenopus Smad7 with bone morphogenetic protein receptors and transforming growth factor-beta receptors. J Biol Chem. 1998;273:25364-70 pubmed
Nakayama T, Gardner H, Berg L, Christian J. Smad6 functions as an intracellular antagonist of some TGF-beta family members during Xenopus embryogenesis. Genes Cells. 1998;3:387-94 pubmed
Goldstone K, Sharpe C. The expression of XIF3 in undifferentiated anterior neuroectoderm, but not in primary neurons, is induced by the neuralizing agent noggin. Int J Dev Biol. 1998;42:757-62 pubmed
Unguez G, Zakon H. Phenotypic conversion of distinct muscle fiber populations to electrocytes in a weakly electric fish. J Comp Neurol. 1998;399:20-34 pubmed
Cui Y, Jean F, Thomas G, Christian J. BMP-4 is proteolytically activated by furin and/or PC6 during vertebrate embryonic development. EMBO J. 1998;17:4735-43 pubmed
Nakayama T, Snyder M, Grewal S, Tsuneizumi K, Tabata T, Christian J. Xenopus Smad8 acts downstream of BMP-4 to modulate its activity during vertebrate embryonic patterning. Development. 1998;125:857-67 pubmed
Nakao A, Afrakhte M, Moren A, Nakayama T, Christian J, Heuchel R, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 1997;389:631-5 pubmed
Tsuneizumi K, Nakayama T, Kamoshida Y, Kornberg T, Christian J, Tabata T. Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature. 1997;389:627-31 pubmed
Hanken J, Klymkowsky M, Alley K, Jennings D. Jaw muscle development as evidence for embryonic repatterning in direct-developing frogs. Proc Biol Sci. 1997;264:1349-54 pubmed
Redfield A, Nieman M, Knudsen K. Cadherins promote skeletal muscle differentiation in three-dimensional cultures. J Cell Biol. 1997;138:1323-31 pubmed
Green J, Cook T, Smith J, Grainger R. Anteroposterior neural tissue specification by activin-induced mesoderm. Proc Natl Acad Sci U S A. 1997;94:8596-601 pubmed
Lane M, Keller R. Microtubule disruption reveals that Spemann's organizer is subdivided into two domains by the vegetal alignment zone. Development. 1997;124:895-906 pubmed
Devoto S, Melancon E, Eisen J, Westerfield M. Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development. 1996;122:3371-80 pubmed
Cui Y, Tian Q, Christian J. Synergistic effects of Vg1 and Wnt signals in the specification of dorsal mesoderm and endoderm. Dev Biol. 1996;180:22-34 pubmed
Darland T, Leblanc G. Immortalized Hensen's node cells secrete a factor that regulates avian neural crest cell fates in vitro. Dev Biol. 1996;176:62-75 pubmed
Broders F, Thiery J. Contribution of cadherins to directional cell migration and histogenesis in Xenopus embryos. Cell Adhes Commun. 1995;3:419-40 pubmed
Gont L, Fainsod A, Kim S, De Robertis E. Overexpression of the homeobox gene Xnot-2 leads to notochord formation in Xenopus. Dev Biol. 1996;174:174-8 pubmed
Sater A, Steinhardt R, Keller R. Induction of neuronal differentiation by planar signals in Xenopus embryos. Dev Dyn. 1993;197:268-80 pubmed
Amaya E, Stein P, Musci T, Kirschner M. FGF signalling in the early specification of mesoderm in Xenopus. Development. 1993;118:477-87 pubmed
Muslin A, Peters K, Williams L. Direct activation of phospholipase C-gamma by fibroblast growth factor receptor is not required for mesoderm induction in Xenopus animal caps. Mol Cell Biol. 1994;14:3006-12 pubmed
Saint Jeannet J, Dawid I. Vertical versus planar neural induction in Rana pipiens embryos. Proc Natl Acad Sci U S A. 1994;91:3049-53 pubmed
England J, Panella M, Kopen G, Wisner T, Halpern M. Tumor cells induced by the v-src oncogene are heterogeneous for expression of markers of mesenchyme differentiation. Virchows Arch. 1994;424:83-8 pubmed
Witta S, Agarwal V, Sato S. XIPOU 2, a noggin-inducible gene, has direct neuralizing activity. Development. 1995;121:721-30 pubmed
Guger K, Gumbiner B. beta-Catenin has Wnt-like activity and mimics the Nieuwkoop signaling center in Xenopus dorsal-ventral patterning. Dev Biol. 1995;172:115-25 pubmed
Domingo C, Keller R. Induction of notochord cell intercalation behavior and differentiation by progressive signals in the gastrula of Xenopus laevis. Development. 1995;121:3311-21 pubmed
Ludolph D, Neff A, Mescher A, Malacinski G, Parker M, Smith R. Overexpression of XMyoD or XMyf5 in Xenopus embryos induces the formation of enlarged myotomes through recruitment of cells of nonsomitic lineage. Dev Biol. 1994;166:18-33 pubmed
Schlosser G, Roth G. Distribution of cranial and rostral spinal nerves in tadpoles of the frog Discoglossus pictus (Discoglossidae). J Morphol. 1995;226:189-212 pubmed
Kintner C, Brockes J. Monoclonal antibodies identify blastemal cells derived from dedifferentiating limb regeneration. Nature. 1984;308:67-9 pubmed
Gurdon J, Fairman S, Mohun T, Brennan S. Activation of muscle-specific actin genes in Xenopus development by an induction between animal and vegetal cells of a blastula. Cell. 1985;41:913-22 pubmed
Kintner C, Brockes J. Monoclonal antibodies to the cells of a regenerating limb. J Embryol Exp Morphol. 1985;89:37-55 pubmed
Griffin K, Fekete D, Carlson B. A monoclonal antibody stains myogenic cells in regenerating newt muscle. Development. 1987;101:267-77 pubmed
Gurdon J. A community effect in animal development. Nature. 1988;336:772-4 pubmed
Neff A, Malacinski G, Chung H. Amphibian (urodele) myotomes display transitory anterior/posterior and medial/lateral differentiation patterns. Dev Biol. 1989;132:529-43 pubmed
Doniach T, Phillips C, Gerhart J. Planar induction of anteroposterior pattern in the developing central nervous system of Xenopus laevis. Science. 1992;257:542-5 pubmed
Keller R, Shih J, Sater A, Moreno C. Planar induction of convergence and extension of the neural plate by the organizer of Xenopus. Dev Dyn. 1992;193:218-34 pubmed
Doniach T. Induction of anteroposterior neural pattern in Xenopus by planar signals. Dev Suppl. 1992;:183-93 pubmed
Shih J, Keller R. Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development. 1992;116:901-14 pubmed
Ritzau M. [Letter: Hospital dentists and oral surgery]. Ugeskr Laeger. 1976;138:1735-6 pubmed
产品信息
内部号码 :
1340
名称 :
12/101
Depositor Name :
Brockes, J.P.
Depositor Institution :
University College London
Date Deposited :
1/1/87
Allow Hybridoma Distribution :
Yes
Cells Available (legacy) :
Yes
抗原 :
skeletal muscle marker, 102 kDa
抗原物种 :
Newt
宿主物种 :
小鼠
抗体亚型 :
MIgG1
Isotype for catalog (legacy) :
IgG1
Positive Tested Species Reactivity :
Adenovirus,Chicken,Fish,Mouse,Newt,Rabbit,Rat,Xenopus,Zebrafish
Species Tested (legacy) :
newt, Xenopus, rabbit, rat, chicken, mouse, zebrafish
Initial Publication Pubmed ID :
6366572
Collections :
果蝇抗原, 肌营养不良, 骨骼肌, 蛙
搜索关键词 :
Brockes, skeletal muscle marker, 102 kDa, monoclonal, AB_531892, IgG1, Adenovirus,Chicken,Fish,Mouse,Newt,Rabbit,Rat,Xenopus,Zebrafish, FFPE,Immunofluorescence,Immunohistochemistry,Western Blot
抗原分子量 :
Apparent: 102kDa
抗体登记处号码 :
AB_531892
免疫原 :
regenerating skeletal muscle homogenate from newt limb
克隆性 :
单克隆
Myeloma Strain :
NS1/SP2
表位定位 :
No
Recommended Applications :
FFPE, 免疫荧光, 免疫组化, 免疫印迹
免疫组化PubMed IDs :
9725698 9335506 11566102 17620605 18329638 16687446 15008826 15366001 11959828 9707432 15965982 18287199 9799426 16421194 15901660 8164656 10706622 12921737 18956330 15298682 16908518 14732398 7720579 7473767 9335507 19795516 21820800 19047208 1636091 17554683 14697355 12927772 12385753 8159704 15376281 16953215 10851124 10473215 9043070 17376659 936332 19035338 7588065 12842914 11971972 12648491 23300648 16908518 15008858 15201218 21526205 11836786 9734784 20549732 20692252 9727831 9738003 19272371 9332017 14718521 1363721 22609272 24877162 9449668 16258939 22954963 16289076 11076758 23966864 12941625 18452549 20809547 10393116 22548301 11284962 23863483 8626017 7981908 24941877 8223274 15148301 19657393 18069689 23233460 1295743 19097195 18211586 11391639 17051478 8948571 9822748 12969336 12642484 15229177 20036227 19779496 16690049 7525388 8654895 10529427 18318733 20667918 18715948 22496792 18977433 1600241 17011543 15548579 18146811 27090084
免疫荧光PubMed IDs :
3912459 6366572 8951054 11180825 19086027 9298987 10821772 15108313 15216519 17327900 19549299 19675128 19756142 9238022 17662068 16421193 15661645 22685324 19334276 8292824 23300648 15201218 11566102 18021256 16949563 24357195 15992940 22954963 4005952 15005106 3446476 3205305 2647546 24733901 24691552 22927795 15128672 15531376 17195179 24307304 21622574 22627291 15297873 23342976 16425215 12736213 17654602 21062861 17920580 7525388 19618470 21839736 17907203 20235228
免疫印迹PubMed IDs :
22685324 3912459 7589792
FFPE PubMed IDs :
9238022 12385753 10851124 23863483 19097195 20490329
PubMed IDs :
15977172 8640379
Depositor Growth Medium :
RPMI
其他信息 :
differentiated skeletal muscle marker (fast & intermediate fibers, somite-specific in embryos)
DSHB增长培养基 :
RPMI
References (legacy) :
Nature 308, 67-69.; Cell 41, 913-922.; J. Embrol. Exp. Morph. 89, 37-55.; Development 99, 3-14.; Development 101, 267-277.; Nature 336, 772-774.; Dev. Biol. 132, 529-543.; J. Tiss. Cult. Meth. 14, 31-36.; Development 122, 3371-3380.; Proc. R. Soc. Lond. B 264, 1349-1354.
公司信息
Developmental Studies Hybridoma Bank
University of Iowa
dshb@uiowa.edu
http://dshb.biology.uiowa.edu
公司总部: 美国
Developmental Studies Hybridoma Bank (DSHB) 是NIH于1996年创办的国家机构,为生命科学研究领域及诊断领域,提供高质量的抗体等产品。