这是一篇来自已证抗体库的有关牛 GFAP的综述,是根据149篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GFAP 抗体。
赛默飞世尔
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:300; 图 5f
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5f). Ann Neurol (2021) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化基因敲除验证; 小鼠; 1:100; 图 2c
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:100 (图 2c). Int J Mol Sci (2021) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2c
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2c). Transl Psychiatry (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6, s8
赛默飞世尔 GFAP抗体(Thermo Fisher, PA1-10019)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6, s8). Brain Pathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2a
赛默飞世尔 GFAP抗体(Invitrogen, PA5-16291)被用于被用于免疫组化在小鼠样本上 (图 2a). Aging Cell (2021) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1s1i
赛默飞世尔 GFAP抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1s1i). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3f
赛默飞世尔 GFAP抗体(Thermo Fisher, PA5-16291)被用于被用于免疫细胞化学在小鼠样本上 (图 3f). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 6h
赛默飞世尔 GFAP抗体(ThermoFisher, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 6h). Theranostics (2020) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 大鼠; 1:500-1:1000; 图 4i, 4j, s4b
赛默飞世尔 GFAP抗体(Thermo Fisher, 13-0300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500-1:1000 (图 4i, 4j, s4b). Cell Rep (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 s4b
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 s4b). Nature (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 图 1a
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). elife (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 e5b
赛默飞世尔 GFAP抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 e5b). Nature (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 2a
赛默飞世尔 GFAP抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 2a). Cell (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 图 2d
赛默飞世尔 GFAP抗体(Thermo Fisher, 13-0300)被用于被用于免疫细胞化学在小鼠样本上 (图 2d). Int J Mol Sci (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 1c
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 GFAP抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 1c) 和 被用于免疫印迹在小鼠样本上 (图 1d). J Neurochem (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 1d
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 1d). Dev Cell (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:250; 图 1a
  • 免疫组化; 小鼠; 1:1000; 图 1c
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化在人类样本上浓度为1:250 (图 1a) 和 被用于免疫组化在小鼠样本上浓度为1:1000 (图 1c). J Exp Med (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a, 5c
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a, 5c). J Neurovirol (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:500; 图 s1b
赛默飞世尔 GFAP抗体(ThermoFischer, 13-0300)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s1b). Invest Ophthalmol Vis Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 S2G
赛默飞世尔 GFAP抗体(invitrogen, PA1-10019)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 S2G). PLoS ONE (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 12a
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 12a). J Neurosci (2017) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 图 7a
赛默飞世尔 GFAP抗体(ThermoFisher, PA1-10004)被用于被用于免疫组化在小鼠样本上 (图 7a). Cell Stem Cell (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1f
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1f). Nature (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:500; 图 s1a
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s1a). J Cell Sci (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3). J Vis Exp (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 8m
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于被用于免疫组化在小鼠样本上 (图 8m). J Neurosci (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6d
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6d). PLoS ONE (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Glia (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4a
赛默飞世尔 GFAP抗体(生活技术, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 4a). Glia (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 表 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 1). J Neurovirol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:5000; 图 5a
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 5a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 6b
赛默飞世尔 GFAP抗体(ThermoFisher Scientific, PA3-16727)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6b). Dev Growth Differ (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 人类; 图 1g
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在人类样本上 (图 1g). Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5a). J Neuroinflammation (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 2
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 2). J Neuroinflammation (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 7b
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 7b). Neuroimage (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3). Acta Neuropathol Commun (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 图 1f
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1f). Science (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Biol Cell (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:2000; 表 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (表 1). J Comp Neurol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s2). Nature (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 图 1
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Proteomics (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:2000; 图 4
赛默飞世尔 GFAP抗体(Thermo Scientific, PA1-10004)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:2000 (图 4). J Neurochem (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 GFAP抗体(Pierce, PA3-16727)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 4). J Neurochem (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3). Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1c
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1c). Neurobiol Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 7
赛默飞世尔 GFAP抗体(Pierce, PA1-10019)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 7). Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:6000; 图 1
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:6000 (图 1). J Neurochem (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). Mol Neurobiol (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫细胞化学在小鼠样本上. Biochem J (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 GFAP抗体(Thermo Scientific, RB-087-A)被用于. Neural Dev (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:200
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Ann Clin Transl Neurol (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:2000
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样本上浓度为1:2000. J Neurosci (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:300
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300. Glia (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Nat Neurosci (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Neuroscience (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; ready-to-use
赛默飞世尔 GFAP抗体(LabVision, RB-087-R7)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为ready-to-use. Nutr Neurosci (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Genes Cancer (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Neurosci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 GFAP抗体(Lab Vision, RB-087-R7)被用于. Korean J Parasitol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 GFAP抗体(thermo, pa3-16727)被用于. Biochim Biophys Acta (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000; 图 2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Stroke (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200. Acta Neuropathol (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 s1c
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1c). EMBO Mol Med (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5). PLoS ONE (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 s1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1). Stem Cells Dev (2014) ncbi
大鼠 单克隆(2.2B10)
赛默飞世尔 GFAP抗体(Invitrogen, 12-0300)被用于. J Immunol (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Genes Cells (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(生活技术, 13-0300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Exp Neurol (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1). Neurobiol Dis (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). J Virol (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). PLoS ONE (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:250; 图 2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 2). Endocrinology (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 s1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 s1). Neurosci Lett (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Neuropathol Appl Neurobiol (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
赛默飞世尔 GFAP抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2). J Neuroimmunol (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在大鼠样本上 (图 5). Adv Funct Mater (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Am J Pathol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Biomaterials (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:400
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在人类样本上浓度为1:400. Am J Pathol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 1:200; 图 7
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 7). Acta Biomater (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔 GFAP抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). J Virol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 图 s1
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于被用于免疫印迹在小鼠样本上 (图 s1). Biol Psychiatry (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔 GFAP抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Glia (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 1:1000; 图 2
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 2). J Comp Neurol (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 s4
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s4). Pigment Cell Melanoma Res (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫细胞化学; 小鼠
赛默飞世尔 GFAP抗体(Zymed/Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. J Neurosci (2008) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 豚鼠; 1:100-1:200
  • 免疫组化; 人类; 1:100-1:200
赛默飞世尔 GFAP抗体(Zytomed, 13-0300)被用于被用于免疫组化在豚鼠样本上浓度为1:100-1:200 和 被用于免疫组化在人类样本上浓度为1:100-1:200. J Comp Neurol (2008) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 8
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 8). J Virol (2007) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:3000; 表 2
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:3000 (表 2). Glia (2006) ncbi
大鼠 单克隆(2.2B10)
  • 免疫沉淀; 小鼠
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫沉淀在小鼠样本上. J Comp Neurol (2005) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:3000; 表 1
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:3000 (表 1). Exp Neurol (2004) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:10,000; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Glia (2003) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:10000
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10000 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Oncogene (2002) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:2; 图 3
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2 (图 3). J Neurosci Res (2002) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔 GFAP抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Neurosci (1999) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 图 3
赛默飞世尔 GFAP抗体(Zymed, 2.2B10)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Neuroreport (1998) ncbi
大鼠 单克隆(2.2B10)
赛默飞世尔 GFAP抗体(Zymed, clone 2.2B10(1))被用于. J Neuropathol Exp Neurol (1996) ncbi
艾博抗(上海)贸易有限公司
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4a). Mol Brain (2021) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 4674)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5a). Proc Natl Acad Sci U S A (2021) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 6b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6b). Front Cell Dev Biol (2021) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 4f
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 4f). Brain Behav Immun (2021) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 4a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4a). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s2c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab16997)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2c). Aging (Albany NY) (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 图 4e
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫细胞化学在大鼠样本上 (图 4e). Commun Biol (2020) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 s8c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 s8c). Nat Commun (2020) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). Neuron (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:2000; 图 1b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1b). Epilepsy Behav (2019) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 4h
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 4h). Cell (2019) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:400; 图 2d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 4674)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2d). Nat Commun (2019) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1f
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1f). J Neurosci (2019) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2). Epilepsia (2018) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 1:3000; 图 1b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在大鼠样本上浓度为1:3000 (图 1b). J Histochem Cytochem (2018) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:8000; 图 3a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:8000 (图 3a). Neuropharmacology (2018) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1a). Am J Physiol Gastrointest Liver Physiol (2018) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3d). J Neurosci (2017) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5g
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5g). Proc Natl Acad Sci U S A (2017) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:1600; 图 2a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1600 (图 2a). Invest Ophthalmol Vis Sci (2017) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 1:200; 图 6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 6). Glia (2017) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:500; 图 2d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-自由浮动切片; 大鼠; 1:2000; 图 6
  • 免疫印迹; 大鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:2000 (图 6) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-自由浮动切片; 小鼠; 图 2f
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab4648)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2f). Neuroimage (2017) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 2). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 1:100; 图 2
  • 免疫印迹; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab16997)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:100 (图 2). Dis Model Mech (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 大鼠; 1:50; 图 4
  • 免疫组化; 小鼠; 1:50; 图 3
艾博抗(上海)贸易有限公司 GFAP抗体(AbCam, Ab4648)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 4) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 3). Neuroscience (2016) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 6). PLoS ONE (2016) ncbi
鸡 多克隆
  • 免疫组化; black ferret; 1:500; 图 9d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在black ferret样本上浓度为1:500 (图 9d). Shock (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6). Front Cell Neurosci (2016) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 1g
  • 免疫细胞化学; 小鼠; 1:2000; 图 1l
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 1g) 和 被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 1l). Nat Commun (2016) ncbi
鸡 多克隆
  • 流式细胞仪; 大鼠; 图 6
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于流式细胞仪在大鼠样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 5f
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 5f). Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab16997)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 1). Mol Med Rep (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 表 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). Cell Mol Gastroenterol Hepatol (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). Mol Ther (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 人类; 1:100; 图 2c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 2A5)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2c). Oncotarget (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-冰冻切片; 大鼠; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4). Mol Pain (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫细胞化学; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab4648)被用于被用于免疫组化在大鼠样本上浓度为1:200. BMC Neurosci (2013) ncbi
EnCor Biotechnology
鸡 多克隆
  • 免疫组化; 小鼠; 1:1500; 图 s3a
EnCor Biotechnology GFAP抗体(EnCor, CPCA-GFAP)被用于被用于免疫组化在小鼠样本上浓度为1:1500 (图 s3a). PLoS ONE (2021) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6a
EnCor Biotechnology GFAP抗体(EnCor Biotechnology, CPCA-GFAP)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 表 2
EnCor Biotechnology GFAP抗体(Encore, RPCA-GFAP)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (表 2). Glia (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5a
EnCor Biotechnology GFAP抗体(Encor, RPCA-GFAP)被用于被用于免疫细胞化学在小鼠样本上 (图 5a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 国内马; 图 3
EnCor Biotechnology GFAP抗体(EnCor-Biotechnology, 5C10)被用于被用于免疫组化-石蜡切片在国内马样本上 (图 3). Peerj (2016) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 2
EnCor Biotechnology GFAP抗体(EnCor Biotechnology, MCA-5C10)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 1:5000
EnCor Biotechnology GFAP抗体(EnCor Biotechnology Inc, MCA5C10)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. J Neurochem (2014) ncbi
Synaptic Systems
小鼠 单克隆(134B1)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 7f
Synaptic Systems GFAP抗体(Synaptic Systems, 173 011)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 7f). Nat Commun (2021) ncbi
小鼠 单克隆(134B1)
  • 免疫细胞化学; 小鼠; 1:2000; 图 7
Synaptic Systems GFAP抗体(Synaptic Systems, 173011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 7). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(134B1)
  • 免疫组化; 小鼠; 图 6
  • 免疫组化; 人类; 图 6
Synaptic Systems GFAP抗体(Synaptic Systems, 173011)被用于被用于免疫组化在小鼠样本上 (图 6) 和 被用于免疫组化在人类样本上 (图 6). Stem Cell Res Ther (2015) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2a
Novus Biologicals GFAP抗体(Novus, NB300-141)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). Cells (2021) ncbi
domestic rabbit 多克隆
Novus Biologicals GFAP抗体(Novus Biologic, NB300-141)被用于. Sci Rep (2015) ncbi
文章列表
  1. Kettwig M, Ternka K, Wendland K, Krüger D, Zampar S, Schob C, et al. Interferon-driven brain phenotype in a mouse model of RNaseT2 deficient leukoencephalopathy. Nat Commun. 2021;12:6530 pubmed 出版商
  2. Mayweather B, Buchanan S, Rubin L. GDF11 expressed in the adult brain negatively regulates hippocampal neurogenesis. Mol Brain. 2021;14:134 pubmed 出版商
  3. Blot F, Krijnen W, den Hoedt S, Osório C, White J, Mulder M, et al. Sphingolipid metabolism governs Purkinje cell patterned degeneration in Atxn1[82Q]/+ mice. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  4. Villanueva E, Tresse E, Liu Y, Duarte J, Jimenez Duran G, Ejlerskov P, et al. Neuronal TNFα, Not α-Syn, Underlies PDD-Like Disease Progression in IFNβ-KO Mice. Ann Neurol. 2021;90:789-807 pubmed 出版商
  5. Serpe C, Monaco L, Relucenti M, Iovino L, Familiari P, Scavizzi F, et al. Microglia-Derived Small Extracellular Vesicles Reduce Glioma Growth by Modifying Tumor Cell Metabolism and Enhancing Glutamate Clearance through miR-124. Cells. 2021;10: pubmed 出版商
  6. Umans R, Pollock C, Mills W, Clark K, Pan Y, Sontheimer H. Using Zebrafish to Elucidate Glial-Vascular Interactions During CNS Development. Front Cell Dev Biol. 2021;9:654338 pubmed 出版商
  7. Gaja Capdevila N, Hernández N, Zamanillo D, Vela J, Merlos M, Navarro X, et al. Neuroprotective Effects of Sigma 1 Receptor Ligands on Motoneuron Death after Spinal Root Injury in Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  8. Polinski N, Martinez T, Gorodinsky A, Gareus R, Sasner M, Herberth M, et al. Decreased glucocerebrosidase activity and substrate accumulation of glycosphingolipids in a novel GBA1 D409V knock-in mouse model. PLoS ONE. 2021;16:e0252325 pubmed 出版商
  9. Vicente Rodríguez M, Singh N, Turkheimer F, Peris Yague A, Randall K, Veronese M, et al. Resolving the cellular specificity of TSPO imaging in a rat model of peripherally-induced neuroinflammation. Brain Behav Immun. 2021;96:154-167 pubmed 出版商
  10. Haan N, Westacott L, Carter J, Owen M, Gray W, Hall J, et al. Haploinsufficiency of the schizophrenia and autism risk gene Cyfip1 causes abnormal postnatal hippocampal neurogenesis through microglial and Arp2/3 mediated actin dependent mechanisms. Transl Psychiatry. 2021;11:313 pubmed 出版商
  11. Higgins N, Greenslade J, Wu J, Miranda E, Galliciotti G, Monteiro M. Serpin neuropathology in the P497S UBQLN2 mouse model of ALS/FTD. Brain Pathol. 2021;:e12948 pubmed 出版商
  12. Niu M, Zhao F, Bondelid K, Siedlak S, Torres S, Fujioka H, et al. VPS35 D620N knockin mice recapitulate cardinal features of Parkinson's disease. Aging Cell. 2021;20:e13347 pubmed 出版商
  13. Li Y, Ritchie E, Steinke C, Qi C, Chen L, Zheng B, et al. Activation of MAP3K DLK and LZK in Purkinje cells causes rapid and slow degeneration depending on signaling strength. elife. 2021;10: pubmed 出版商
  14. Chen Y, Li J, Ma B, Li N, Wang S, Sun Z, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging (Albany NY). 2020;12:18274-18296 pubmed 出版商
  15. Gao J, Wu Y, He D, Zhu X, Li H, Liu H, et al. Anti-aging effects of Ribes meyeri anthocyanins on neural stem cells and aging mice. Aging (Albany NY). 2020;12:17738-17753 pubmed 出版商
  16. Morse S, Boltersdorf T, Harriss B, Chan T, Baxan N, Jung H, et al. Neuron labeling with rhodamine-conjugated Gd-based MRI contrast agents delivered to the brain via focused ultrasound. Theranostics. 2020;10:2659-2674 pubmed 出版商
  17. Hughes C, Choi M, Yi J, Kim S, Drews A, George Hyslop P, et al. Beta amyloid aggregates induce sensitised TLR4 signalling causing long-term potentiation deficit and rat neuronal cell death. Commun Biol. 2020;3:79 pubmed 出版商
  18. Linker K, Elabd M, Tawadrous P, Cano M, Green K, Wood M, et al. Microglial activation increases cocaine self-administration following adolescent nicotine exposure. Nat Commun. 2020;11:306 pubmed 出版商
  19. Smith H, Freeman O, Butcher A, Holmqvist S, Humoud I, Schätzl T, et al. Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration. Neuron. 2020;: pubmed 出版商
  20. Streeter K, Sunshine M, Brant J, Sandoval A, Maden M, Fuller D. Molecular and histologic outcomes following spinal cord injury in spiny mice, Acomys cahirinus. J Comp Neurol. 2020;528:1535-1547 pubmed 出版商
  21. Wall C, Rose C, Adrian M, Zeng Y, Kirkpatrick D, Bingol B. PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Rep. 2019;29:3280-3292.e7 pubmed 出版商
  22. Rocktäschel P, Sen A, Cader M. High glucose concentrations mask cellular phenotypes in a stem cell model of tuberous sclerosis complex. Epilepsy Behav. 2019;101:106581 pubmed 出版商
  23. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt S, Vieira Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;: pubmed 出版商
  24. Blomfield I, Rocamonde B, Masdeu M, Mulugeta E, Vaga S, van den Berg D, et al. Id4 promotes the elimination of the pro-activation factor Ascl1 to maintain quiescence of adult hippocampal stem cells. elife. 2019;8: pubmed 出版商
  25. Schirmer L, Velmeshev D, Holmqvist S, Kaufmann M, Werneburg S, Jung D, et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature. 2019;573:75-82 pubmed 出版商
  26. Martorell A, Paulson A, Suk H, Abdurrob F, Drummond G, Guan W, et al. Multi-sensory Gamma Stimulation Ameliorates Alzheimer's-Associated Pathology and Improves Cognition. Cell. 2019;177:256-271.e22 pubmed 出版商
  27. Joy M, Ben Assayag E, Shabashov Stone D, Liraz Zaltsman S, Mazzitelli J, Arenas M, et al. CCR5 Is a Therapeutic Target for Recovery after Stroke and Traumatic Brain Injury. Cell. 2019;176:1143-1157.e13 pubmed 出版商
  28. Rosenzweig N, Dvir Szternfeld R, Tsitsou Kampeli A, Keren Shaul H, Ben Yehuda H, Weill Raynal P, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun. 2019;10:465 pubmed 出版商
  29. Salazar S, Cox T, Lee S, Brody A, Chyung A, Haas L, et al. Alzheimer's Disease Risk Factor Pyk2 Mediates Amyloid-β-Induced Synaptic Dysfunction and Loss. J Neurosci. 2019;39:758-772 pubmed 出版商
  30. Betlazar C, Harrison Brown M, Middleton R, Banati R, Liu G. Cellular Sources and Regional Variations in the Expression of the Neuroinflammatory Marker Translocator Protein (TSPO) in the Normal Brain. Int J Mol Sci. 2018;19: pubmed 出版商
  31. Weidner L, Kannan P, Mitsios N, Kang S, Hall M, Theodore W, et al. The expression of inflammatory markers and their potential influence on efflux transporters in drug-resistant mesial temporal lobe epilepsy tissue. Epilepsia. 2018;59:1507-1517 pubmed 出版商
  32. Sato J, Horibe S, Kawauchi S, Sasaki N, Hirata K, Rikitake Y. Involvement of aquaporin-4 in laminin-enhanced process formation of mouse astrocytes in 2D culture: Roles of dystroglycan and α-syntrophin in aquaporin-4 expression. J Neurochem. 2018;147:495-513 pubmed 出版商
  33. Zhao C, Dong C, Frah M, Deng Y, Marie C, Zhang F, et al. Dual Requirement of CHD8 for Chromatin Landscape Establishment and Histone Methyltransferase Recruitment to Promote CNS Myelination and Repair. Dev Cell. 2018;45:753-768.e8 pubmed 出版商
  34. Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T, et al. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer's disease model. J Exp Med. 2018;215:1649-1663 pubmed 出版商
  35. Liu J, Modo M. Quantification of the Extracellular Matrix Molecule Thrombospondin 1 and Its Pericellular Association in the Brain Using a Semiautomated Computerized Approach. J Histochem Cytochem. 2018;66:643-662 pubmed 出版商
  36. Zukor K, Wang H, Siddharthan V, Julander J, Morrey J. Zika virus-induced acute myelitis and motor deficits in adult interferon ??/? receptor knockout mice. J Neurovirol. 2018;24:273-290 pubmed 出版商
  37. Curry D, Young M, Tran A, Daoud G, Howell L. Separating the agony from ecstasy: R(-)-3,4-methylenedioxymethamphetamine has prosocial and therapeutic-like effects without signs of neurotoxicity in mice. Neuropharmacology. 2018;128:196-206 pubmed 出版商
  38. Brown I, Gulbransen B. The antioxidant glutathione protects against enteric neuron death in situ, but its depletion is protective during colitis. Am J Physiol Gastrointest Liver Physiol. 2018;314:G39-G52 pubmed 出版商
  39. Salazar S, Gallardo C, Kaufman A, Herber C, Haas L, Robinson S, et al. Conditional Deletion of Prnp Rescues Behavioral and Synaptic Deficits after Disease Onset in Transgenic Alzheimer's Disease. J Neurosci. 2017;37:9207-9221 pubmed 出版商
  40. Harder J, Braine C, Williams P, Zhu X, MacNicoll K, Sousa G, et al. Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective. Proc Natl Acad Sci U S A. 2017;114:E3839-E3848 pubmed 出版商
  41. Yungher B, Ribeiro M, Park K. Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice. Invest Ophthalmol Vis Sci. 2017;58:1743-1750 pubmed 出版商
  42. Huang H, Liu Y, Wang L, Li W. Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice. PLoS ONE. 2017;12:e0173716 pubmed 出版商
  43. Benford H, Bolborea M, Pollatzek E, Lossow K, Hermans Borgmeyer I, Liu B, et al. A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia. 2017;65:773-789 pubmed 出版商
  44. Zhu Y, Lyapichev K, Lee D, Motti D, Ferraro N, Zhang Y, et al. Macrophage Transcriptional Profile Identifies Lipid Catabolic Pathways That Can Be Therapeutically Targeted after Spinal Cord Injury. J Neurosci. 2017;37:2362-2376 pubmed 出版商
  45. Guimarães Camboa N, Cattaneo P, Sun Y, Moore Morris T, Gu Y, Dalton N, et al. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. Cell Stem Cell. 2017;20:345-359.e5 pubmed 出版商
  46. Liddelow S, Guttenplan K, Clarke L, Bennett F, Bohlen C, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481-487 pubmed 出版商
  47. Behm M, Wahlstedt H, Widmark A, Eriksson M, Ohman M. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J Cell Sci. 2017;130:745-753 pubmed 出版商
  48. Kim J, Lee J, Sun W. Isolation and Culture of Adult Neural Stem Cells from the Mouse Subcallosal Zone. J Vis Exp. 2016;: pubmed 出版商
  49. Retallack H, Di Lullo E, Arias C, Knopp K, Laurie M, Sandoval Espinosa C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci U S A. 2016;113:14408-14413 pubmed
  50. Ji B, Kaneko H, Minamimoto T, Inoue H, Takeuchi H, Kumata K, et al. Multimodal Imaging for DREADD-Expressing Neurons in Living Brain and Their Application to Implantation of iPSC-Derived Neural Progenitors. J Neurosci. 2016;36:11544-11558 pubmed
  51. Hurtado Alvarado G, Dominguez Salazar E, Velazquez Moctezuma J, Gómez González B. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS ONE. 2016;11:e0167236 pubmed 出版商
  52. Song D, Wilson B, Zhao L, Bhuyan R, Bandyopadhyay M, Lyubarsky A, et al. Retinal Pre-Conditioning by CD59a Knockout Protects against Light-Induced Photoreceptor Degeneration. PLoS ONE. 2016;11:e0166348 pubmed 出版商
  53. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65:375-387 pubmed 出版商
  54. Hübner N, Mechling A, Lee H, Reisert M, Bienert T, Hennig J, et al. The connectomics of brain demyelination: Functional and structural patterns in the cuprizone mouse model. Neuroimage. 2017;146:1-18 pubmed 出版商
  55. Menzel L, Kleber L, Friedrich C, Hummel R, Dangel L, Winter J, et al. Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia. 2017;65:278-292 pubmed 出版商
  56. Zukor K, Wang H, Hurst B, Siddharthan V, van Wettere A, Pilowsky P, et al. Phrenic nerve deficits and neurological immunopathology associated with acute West Nile virus infection in mice and hamsters. J Neurovirol. 2017;23:186-204 pubmed 出版商
  57. Koyanagi S, Kusunose N, Taniguchi M, Akamine T, Kanado Y, Ozono Y, et al. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia. Nat Commun. 2016;7:13102 pubmed 出版商
  58. Alvarez Saavedra M, De Repentigny Y, Yang D, O Meara R, Yan K, Hashem L, et al. Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. Cell Rep. 2016;17:862-875 pubmed 出版商
  59. Abolpour Mofrad S, Kuenzel K, Friedrich O, Gilbert D. Optimizing neuronal differentiation of human pluripotent NT2 stem cells in monolayer cultures. Dev Growth Differ. 2016;58:664-676 pubmed 出版商
  60. Draheim T, Liessem A, Scheld M, Wilms F, Weißflog M, Denecke B, et al. Activation of the astrocytic Nrf2/ARE system ameliorates the formation of demyelinating lesions in a multiple sclerosis animal model. Glia. 2016;64:2219-2230 pubmed 出版商
  61. Zhang L, Hua Q, Tang K, Shi C, Xie X, Zhang R. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. Neuroscience. 2016;337:88-97 pubmed 出版商
  62. Barron A, Tokunaga M, Zhang M, Ji B, Suhara T, Higuchi M. Assessment of neuroinflammation in a mouse model of obesity and β-amyloidosis using PET. J Neuroinflammation. 2016;13:221 pubmed 出版商
  63. Hillis J, Davies J, Mundim M, Al Dalahmah O, Szele F. Cuprizone demyelination induces a unique inflammatory response in the subventricular zone. J Neuroinflammation. 2016;13:190 pubmed 出版商
  64. Badea A, Kane L, Anderson R, Qi Y, Foster M, Cofer G, et al. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage. 2016;142:498-511 pubmed 出版商
  65. Saggu R, Schumacher T, Gerich F, Rakers C, Tai K, Delekate A, et al. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia. Acta Neuropathol Commun. 2016;4:76 pubmed 出版商
  66. Westbroek W, Nguyen M, Siebert M, Lindstrom T, Burnett R, Aflaki E, et al. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease. Dis Model Mech. 2016;9:769-78 pubmed 出版商
  67. Urbán N, van den Berg D, Forget A, Andersen J, Demmers J, Hunt C, et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science. 2016;353:292-5 pubmed 出版商
  68. Walker W, Oehler A, Edinger A, Wagner K, Gunn T. Oligodendroglial deletion of ESCRT-I component TSG101 causes spongiform encephalopathy. Biol Cell. 2016;108:324-337 pubmed 出版商
  69. Park K, Luo X, Mooney S, Yungher B, Belin S, Wang C, et al. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats. J Comp Neurol. 2017;525:380-388 pubmed 出版商
  70. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  71. Mavlyutov T, Duellman T, Kim H, Epstein M, Leese C, Davletov B, et al. Sigma-1 receptor expression in the dorsal root ganglion: Reexamination using a highly specific antibody. Neuroscience. 2016;331:148-57 pubmed 出版商
  72. Vasek M, Garber C, Dorsey D, Durrant D, Bollman B, Soung A, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538-43 pubmed 出版商
  73. Cerman E, Akkoç T, Eraslan M, Sahin O, Ozkara S, Vardar Aker F, et al. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats. PLoS ONE. 2016;11:e0156495 pubmed 出版商
  74. Hutchinson E, Schwerin S, Radomski K, Irfanoglu M, Juliano S, Pierpaoli C. Quantitative MRI and DTI Abnormalities During the Acute Period Following CCI in the Ferret. Shock. 2016;46:167-76 pubmed 出版商
  75. Kizuka Y, Nakano M, Miura Y, Taniguchi N. Epigenetic regulation of neural N-glycomics. Proteomics. 2016;16:2854-2863 pubmed 出版商
  76. Morales I, Sánchez A, Rodriguez Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016;139:81-95 pubmed 出版商
  77. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  78. Funk L, Hackett A, Bunge M, Lee J. Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury. J Neuroinflammation. 2016;13:87 pubmed 出版商
  79. Bubenheimer R, Brown I, Fried D, McClain J, Gulbransen B. Sirtuin-3 Is Expressed by Enteric Neurons but It Does not Play a Major Role in Their Regulation of Oxidative Stress. Front Cell Neurosci. 2016;10:73 pubmed 出版商
  80. Nagao M, Ogata T, Sawada Y, Gotoh Y. Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun. 2016;7:11102 pubmed 出版商
  81. Yousuf M, Tan C, Torres Altoro M, Lu F, Plautz E, Zhang S, et al. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury. J Neurochem. 2016;138:317-27 pubmed 出版商
  82. Cui Y, Han J, Xiao Z, Chen T, Wang B, Chen B, et al. The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation. Sci Rep. 2016;6:23300 pubmed 出版商
  83. Smeester B, O Brien E, Michlitsch K, Lee J, Beitz A. The relationship of bone-tumor-induced spinal cord astrocyte activation and aromatase expression to mechanical hyperalgesia and cold hypersensitivity in intact female and ovariectomized mice. Neuroscience. 2016;324:344-54 pubmed 出版商
  84. Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M. Glucocorticoids Suppress the Protective Effect of Cyclooxygenase-2-Related Signaling on Hippocampal Neurogenesis Under Acute Immune Stress. Mol Neurobiol. 2017;54:1953-1966 pubmed 出版商
  85. Delcambre G, Liu J, Herrington J, Vallario K, Long M. Immunohistochemistry for the detection of neural and inflammatory cells in equine brain tissue. Peerj. 2016;4:e1601 pubmed 出版商
  86. Li Y, Liu J, Gao D, Wei J, Yuan H, Niu X, et al. Age-related changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats. Mol Med Rep. 2016;13:2552-60 pubmed 出版商
  87. Hackett A, Lee D, Dawood A, Rodriguez M, Funk L, Tsoulfas P, et al. STAT3 and SOCS3 regulate NG2 cell proliferation and differentiation after contusive spinal cord injury. Neurobiol Dis. 2016;89:10-22 pubmed 出版商
  88. Brown I, McClain J, Watson R, Patel B, Gulbransen B. Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide. Cell Mol Gastroenterol Hepatol. 2016;2:77-91 pubmed
  89. Choudhury S, Harris A, Cabral D, Keeler A, Sapp E, Ferreira J, et al. Widespread Central Nervous System Gene Transfer and Silencing After Systemic Delivery of Novel AAV-AS Vector. Mol Ther. 2016;24:726-35 pubmed 出版商
  90. Platt T, Beckett T, Kohler K, Niedowicz D, Murphy M. Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease. Neuroscience. 2016;315:162-74 pubmed 出版商
  91. Sharpe M, Baskin D. Monoamine oxidase B levels are highly expressed in human gliomas and are correlated with the expression of HiF-1α and with transcription factors Sp1 and Sp3. Oncotarget. 2016;7:3379-93 pubmed 出版商
  92. Hristova M, Rocha Ferreira E, Fontana X, Thei L, Buckle R, Christou M, et al. Inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) reduces neonatal hypoxic-ischaemic brain damage. J Neurochem. 2016;136:981-94 pubmed 出版商
  93. Frankowski J, Demars K, Ahmad A, Hawkins K, Yang C, Leclerc J, et al. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep. 2015;5:17956 pubmed 出版商
  94. Wang S, Hsu J, Ko C, Chiu N, Kan W, Lai M, et al. Astrocytic CCAAT/Enhancer-Binding Protein Delta Contributes to Glial Scar Formation and Impairs Functional Recovery After Spinal Cord Injury. Mol Neurobiol. 2016;53:5912-5927 pubmed 出版商
  95. Kizuka Y, Nakano M, Kitazume S, Saito T, Saido T, Taniguchi N. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J. 2016;473:21-30 pubmed 出版商
  96. Hua Z, Emiliani F, Nathans J. Rac1 plays an essential role in axon growth and guidance and in neuronal survival in the central and peripheral nervous systems. Neural Dev. 2015;10:21 pubmed 出版商
  97. Fredriksson L, Stevenson T, Su E, Ragsdale M, Moore S, Craciun S, et al. Identification of a neurovascular signaling pathway regulating seizures in mice. Ann Clin Transl Neurol. 2015;2:722-38 pubmed 出版商
  98. Qiu H, Xu Y, Jin G, Yang J, Liu M, Li S, et al. Koumine enhances spinal cord 3α-hydroxysteroid oxidoreductase expression and activity in a rat model of neuropathic pain. Mol Pain. 2015;11:46 pubmed 出版商
  99. Chen Y, Huang W, Séjourné J, Clipperton Allen A, Page D. Pten Mutations Alter Brain Growth Trajectory and Allocation of Cell Types through Elevated β-Catenin Signaling. J Neurosci. 2015;35:10252-67 pubmed 出版商
  100. Song C, Wang J, Mo C, Mu S, Jiang X, Li X, et al. Use of Ferritin Expression, Regulated by Neural Cell-Specific Promoters in Human Adipose Tissue-Derived Mesenchymal Stem Cells, to Monitor Differentiation with Magnetic Resonance Imaging In Vitro. PLoS ONE. 2015;10:e0132480 pubmed 出版商
  101. Puntambekar S, Hinton D, Yin X, Savarin C, Bergmann C, Trapp B, et al. Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination. Glia. 2015;63:2106-2120 pubmed 出版商
  102. Schachtrup C, Ryu J, Mammadzada K, Khan A, Carlton P, Perez A, et al. Nuclear pore complex remodeling by p75(NTR) cleavage controls TGF-β signaling and astrocyte functions. Nat Neurosci. 2015;18:1077-80 pubmed 出版商
  103. Kwon J, NABINGER S, Vega Z, Sahu S, Alluri R, Abdul Sater Z, et al. Pathophysiological role of microRNA-29 in pancreatic cancer stroma. Sci Rep. 2015;5:11450 pubmed 出版商
  104. O Brien E, Smeester B, Michlitsch K, Lee J, Beitz A. Colocalization of aromatase in spinal cord astrocytes: differences in expression and relationship to mechanical and thermal hyperalgesia in murine models of a painful and a non-painful bone tumor. Neuroscience. 2015;301:235-45 pubmed 出版商
  105. Ozacmak V, Sayan Ozacmak H, Barut F. Chronic treatment with resveratrol, a natural polyphenol found in grapes, alleviates oxidative stress and apoptotic cell death in ovariectomized female rats subjected to chronic cerebral hypoperfusion. Nutr Neurosci. 2016;19:176-86 pubmed 出版商
  106. Zhou F, Gao S, Wang L, Sun C, Chen L, Yuan P, et al. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Res Ther. 2015;6:92 pubmed 出版商
  107. Shin C, Grossmann A, Holmen S, Robinson J. The BRAF kinase domain promotes the development of gliomas in vivo. Genes Cancer. 2015;6:9-18 pubmed
  108. Crouch E, Liu C, Silva Vargas V, Doetsch F. Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. J Neurosci. 2015;35:4528-39 pubmed 出版商
  109. Eid M, El Kowrany S, Othman A, El Gendy D, Saied E. Immunopathological changes in the brain of immunosuppressed mice experimentally infected with Toxocara canis. Korean J Parasitol. 2015;53:51-8 pubmed 出版商
  110. Romero J, Hanschmann E, Gellert M, Eitner S, Holubiec M, Blanco Calvo E, et al. Thioredoxin 1 and glutaredoxin 2 contribute to maintain the phenotype and integrity of neurons following perinatal asphyxia. Biochim Biophys Acta. 2015;1850:1274-85 pubmed 出版商
  111. Chen Roetling J, Song W, Schipper H, Regan C, Regan R. Astrocyte overexpression of heme oxygenase-1 improves outcome after intracerebral hemorrhage. Stroke. 2015;46:1093-8 pubmed 出版商
  112. Cantoni C, Bollman B, Licastro D, Xie M, Mikesell R, Schmidt R, et al. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol. 2015;129:429-47 pubmed 出版商
  113. Kizuka Y, Kitazume S, Fujinawa R, Saito T, Iwata N, Saido T, et al. An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease. EMBO Mol Med. 2015;7:175-89 pubmed 出版商
  114. Wu C, Hung T, Chen C, Ke C, Lee C, Wang P, et al. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS ONE. 2014;9:e113397 pubmed 出版商
  115. Kawase S, Kuwako K, Imai T, Renault Mihara F, Yaguchi K, Itohara S, et al. Regulatory factor X transcription factors control Musashi1 transcription in mouse neural stem/progenitor cells. Stem Cells Dev. 2014;23:2250-61 pubmed 出版商
  116. Cekanaviciute E, Dietrich H, Axtell R, Williams A, Egusquiza R, Wai K, et al. Astrocytic TGF-? signaling limits inflammation and reduces neuronal damage during central nervous system Toxoplasma infection. J Immunol. 2014;193:139-49 pubmed 出版商
  117. Wakatsuki S, Araki T, Sehara Fujisawa A. Neuregulin-1/glial growth factor stimulates Schwann cell migration by inducing ?5 ?1 integrin-ErbB2-focal adhesion kinase complex formation. Genes Cells. 2014;19:66-77 pubmed 出版商
  118. Hawkins K, Demars K, Singh J, Yang C, Cho H, Frankowski J, et al. Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist, BML-111, in a rat model of ischemic stroke. J Neurochem. 2014;129:130-42 pubmed 出版商
  119. Cops E, Sashindranath M, Daglas M, Short K, da Fonseca Pereira C, Pang T, et al. Tissue-type plasminogen activator is an extracellular mediator of Purkinje cell damage and altered gait. Exp Neurol. 2013;249:8-19 pubmed 出版商
  120. Chio C, Chang C, Wang C, Cheong C, Chao C, Cheng B, et al. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-?. BMC Neurosci. 2013;14:33 pubmed 出版商
  121. Karasinska J, de Haan W, Franciosi S, Ruddle P, Fan J, Kruit J, et al. ABCA1 influences neuroinflammation and neuronal death. Neurobiol Dis. 2013;54:445-55 pubmed 出版商
  122. Phares T, Stohlman S, Hinton D, Bergmann C. Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis. J Virol. 2013;87:3382-92 pubmed 出版商
  123. Chen S, Tsai H, Hung T, Chen C, Lee C, Wu C, et al. Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PLoS ONE. 2012;7:e45763 pubmed 出版商
  124. Gerber A, Bale T. Antiinflammatory treatment ameliorates HPA stress axis dysfunction in a mouse model of stress sensitivity. Endocrinology. 2012;153:4830-7 pubmed
  125. Dixon K, Munro K, Boyd A, Bartlett P, Turnley A. Partial change in EphA4 knockout mouse phenotype: loss of diminished GFAP upregulation following spinal cord injury. Neurosci Lett. 2012;525:66-71 pubmed 出版商
  126. Skjolding A, Holst A, Broholm H, Laursen H, Juhler M. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain. Neuropathol Appl Neurobiol. 2013;39:179-91 pubmed 出版商
  127. Lutz S, Raine C, Brosnan C. Loss of astrocyte connexins 43 and 30 does not significantly alter susceptibility or severity of acute experimental autoimmune encephalomyelitis in mice. J Neuroimmunol. 2012;245:8-14 pubmed 出版商
  128. Lewitus D, Landers J, Branch J, Smith K, Callegari G, Kohn J, et al. Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering. Adv Funct Mater. 2011;21:2624-2632 pubmed
  129. Zhao L, Ma W, Fariss R, Wong W. Minocycline attenuates photoreceptor degeneration in a mouse model of subretinal hemorrhage microglial: inhibition as a potential therapeutic strategy. Am J Pathol. 2011;179:1265-77 pubmed 出版商
  130. Lewitus D, Smith K, Shain W, Bolikal D, Kohn J. The fate of ultrafast degrading polymeric implants in the brain. Biomaterials. 2011;32:5543-50 pubmed 出版商
  131. Chang C, Chen S, Lee T, Lee H, Chen S, Shyue S. Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage. Am J Pathol. 2011;178:1749-61 pubmed 出版商
  132. Lewitus D, Smith K, Shain W, Kohn J. Ultrafast resorbing polymers for use as carriers for cortical neural probes. Acta Biomater. 2011;7:2483-91 pubmed 出版商
  133. Phares T, Marques C, Stohlman S, Hinton D, Bergmann C. Factors supporting intrathecal humoral responses following viral encephalomyelitis. J Virol. 2011;85:2589-98 pubmed 出版商
  134. Yang H, Zhuo J, Chu J, Chinnici C, Pratico D. Amelioration of the Alzheimer's disease phenotype by absence of 12/15-lipoxygenase. Biol Psychiatry. 2010;68:922-9 pubmed 出版商
  135. DellaValle B, Hempel C, Kurtzhals J, Penkowa M. In vivo expression of neuroglobin in reactive astrocytes during neuropathology in murine models of traumatic brain injury, cerebral malaria, and autoimmune encephalitis. Glia. 2010;58:1220-7 pubmed 出版商
  136. Pang J, Gao F, Wu S. Light responses and morphology of bNOS-immunoreactive neurons in the mouse retina. J Comp Neurol. 2010;518:2456-74 pubmed 出版商
  137. VanBrocklin M, Robinson J, Lastwika K, Khoury J, Holmen S. Targeted delivery of NRASQ61R and Cre-recombinase to post-natal melanocytes induces melanoma in Ink4a/Arflox/lox mice. Pigment Cell Melanoma Res. 2010;23:531-41 pubmed 出版商
  138. Ji B, Maeda J, Sawada M, Ono M, Okauchi T, Inaji M, et al. Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer's and other CNS pathologies. J Neurosci. 2008;28:12255-67 pubmed 出版商
  139. Hoff S, Zeller F, Von Weyhern C, Wegner M, Schemann M, Michel K, et al. Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody. J Comp Neurol. 2008;509:356-71 pubmed 出版商
  140. Blakqori G, Delhaye S, Habjan M, Blair C, S nchez Vargas I, Olson K, et al. La Crosse bunyavirus nonstructural protein NSs serves to suppress the type I interferon system of mammalian hosts. J Virol. 2007;81:4991-9 pubmed 出版商
  141. Herber D, Maloney J, Roth L, Freeman M, Morgan D, Gordon M. Diverse microglial responses after intrahippocampal administration of lipopolysaccharide. Glia. 2006;53:382-91 pubmed
  142. Wicher G, Larsson M, Rask L, Aldskogius H. Low-density lipoprotein receptor-related protein (LRP)-2/megalin is transiently expressed in a subpopulation of neural progenitors in the embryonic mouse spinal cord. J Comp Neurol. 2005;492:123-31 pubmed
  143. Herber D, Roth L, Wilson D, Wilson N, Mason J, Morgan D, et al. Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice. Exp Neurol. 2004;190:245-53 pubmed
  144. Apicelli A, Uhlmann E, Baldwin R, Ding H, Nagy A, Guha A, et al. Role of the Rap1 GTPase in astrocyte growth regulation. Glia. 2003;42:225-34 pubmed
  145. Uhlmann E, Apicelli A, Baldwin R, Burke S, Bajenaru M, Onda H, et al. Heterozygosity for the tuberous sclerosis complex (TSC) gene products results in increased astrocyte numbers and decreased p27-Kip1 expression in TSC2+/- cells. Oncogene. 2002;21:4050-9 pubmed
  146. Seitz A, Aglow E, Heber Katz E. Recovery from spinal cord injury: a new transection model in the C57Bl/6 mouse. J Neurosci Res. 2002;67:337-45 pubmed
  147. Penkowa M, Carrasco J, Giralt M, Moos T, Hidalgo J. CNS wound healing is severely depressed in metallothionein I- and II-deficient mice. J Neurosci. 1999;19:2535-45 pubmed
  148. Satoh J, Yukitake M, Kuroda Y. Constitutive and heat-inducible expression of HSP105 in neurons and glial cells in culture. Neuroreport. 1998;9:2977-83 pubmed
  149. Haring H, Akamine B, Habermann R, Koziol J, del Zoppo G. Distribution of integrin-like immunoreactivity on primate brain microvasculature. J Neuropathol Exp Neurol. 1996;55:236-45 pubmed