这是一篇来自已证抗体库的有关牛 MAPK3的综述,是根据73篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MAPK3 抗体。
MAPK3 同义词: ERK1

赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔 MAPK3抗体(Thermo Fisher Scientific, 44-6544)被用于被用于免疫印迹在人类样本上 (图 6). Eur J Histochem (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4b
赛默飞世尔 MAPK3抗体(Thermo Fisher Scientific, 44-654G)被用于被用于免疫印迹在大鼠样本上 (图 4b). Biosci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛默飞世尔 MAPK3抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛默飞世尔 MAPK3抗体(Invitrogen, 44-654G)被用于被用于免疫印迹在人类样本上 (图 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛默飞世尔 MAPK3抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1b). Int J Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5e
  • 免疫印迹; 人类; 图 s3b
赛默飞世尔 MAPK3抗体(生活技术, 44-654G)被用于被用于免疫印迹在小鼠样本上 (图 5e) 和 被用于免疫印迹在人类样本上 (图 s3b). Nat Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3b
  • 免疫印迹; 小鼠; 图 5e
赛默飞世尔 MAPK3抗体(生活技术, 44-680G)被用于被用于免疫印迹在人类样本上 (图 s3b) 和 被用于免疫印迹在小鼠样本上 (图 5e). Nat Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛默飞世尔 MAPK3抗体(生活技术, 44-654-G)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛默飞世尔 MAPK3抗体(Invitrogen, 44680G)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛默飞世尔 MAPK3抗体(Invitrogen, 44680G)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔 MAPK3抗体(Invitrogen Biosource, 44-654G)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 MAPK3抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在大鼠样本上 (图 5). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAPK3抗体(Invitrogen, 44680G)被用于. Int J Mol Sci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAPK3抗体(Thermo Fisher Scientific, 44-680G)被用于. Biomed Res Int (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAPK3抗体(生活技术, 44-654-G)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛默飞世尔 MAPK3抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAPK3抗体(Invitrogen, 44680G)被用于. Biochem Pharmacol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAPK3抗体(生活技术, 44680G)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAPK3抗体(Biosource, 44-680G)被用于. Nat Cell Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAPK3抗体(Invitrogen Life Technologies, 44680G)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAPK3抗体(Invitrogen Life Technologies, 44-654G)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(K.913.4)
  • 免疫组化-石蜡切片; 斑马鱼
  • 免疫印迹; 斑马鱼
赛默飞世尔 MAPK3抗体(Pierce, MA5-15134)被用于被用于免疫组化-石蜡切片在斑马鱼样本上 和 被用于免疫印迹在斑马鱼样本上. Cell Res (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:4000; 图 3a
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 3a). EMBO Mol Med (2022) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 6d
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 6d). Cell Rep (2022) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:3000; 图 4b
西格玛奥德里奇 MAPK3抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4b). Life Sci Alliance (2022) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1500; 图 2c
西格玛奥德里奇 MAPK3抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 2c). Nat Commun (2021) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 4b
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上 (图 4b). Int J Mol Sci (2021) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; Ciona; 1:500; 图 2d
西格玛奥德里奇 MAPK3抗体(Sigma, M9692)被用于被用于免疫组化在Ciona样本上浓度为1:500 (图 2d). Front Cell Dev Biol (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 2e
西格玛奥德里奇 MAPK3抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 2e). Theranostics (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 6i
西格玛奥德里奇 MAPK3抗体(Sigma Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 6i). elife (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:10,000; 图 s1c
西格玛奥德里奇 MAPK3抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s1c). Nat Commun (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇 MAPK3抗体(Sigma, M9692)被用于被用于免疫印迹在人类样本上 (图 3b). Cancer Cell (2019) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
西格玛奥德里奇 MAPK3抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). EMBO J (2019) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 大鼠; 图 5a
西格玛奥德里奇 MAPK3抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在大鼠样本上 (图 5a). Cell Death Dis (2018) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 2c
西格玛奥德里奇 MAPK3抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 2c). Breast Cancer Res Treat (2018) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 小鼠; 图 s5d
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫组化在小鼠样本上 (图 s5d). Science (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:500; 图 4b
西格玛奥德里奇 MAPK3抗体(Sigma Aldrich, M8159)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Nat Commun (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000; 图 4d
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Mol Cell Biochem (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 斑马鱼; 1:500; 图 5I''
西格玛奥德里奇 MAPK3抗体(Sigma-Aldrich, M8159)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 5I''). elife (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 图 1c
西格玛奥德里奇 MAPK3抗体(sigma, M9692)被用于被用于免疫细胞化学在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 表 4
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (表 4). Transl Psychiatry (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; fruit fly ; 1:2000; 图 s8a
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000 (图 s8a). Nat Commun (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇 MAPK3抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 3c). J Biol Chem (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; pigs ; 图 1b
西格玛奥德里奇 MAPK3抗体(Sigma, M9692)被用于被用于免疫印迹在pigs 样本上 (图 1b). Arthritis Rheumatol (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 非洲爪蛙; 1:5000; 图 2f
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:5000 (图 2f). Open Biol (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 7e
西格玛奥德里奇 MAPK3抗体(Sigma, MAPK-YT)被用于被用于免疫印迹在人类样本上 (图 7e). J Biol Chem (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:10,000; 图 2a
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2a). Dig Dis Sci (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 7
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上 (图 7). elife (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000; 图 5
西格玛奥德里奇 MAPK3抗体(Sigma, M 8159)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 犬; 图 1d
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在犬样本上 (图 1d). BMC Genomics (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 2
西格玛奥德里奇 MAPK3抗体(Sigma, M9692)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; fruit fly ; 1:500
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在fruit fly 样本上浓度为1:500. Development (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-石蜡切片; fruit fly ; 1:200; 图 2
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫组化-石蜡切片在fruit fly 样本上浓度为1:200 (图 2). Nat Cell Biol (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-冰冻切片; 斑马鱼; 1:50; 图 s5
西格玛奥德里奇 MAPK3抗体(Sigma, M9692)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:50 (图 s5). PLoS ONE (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 s5
西格玛奥德里奇 MAPK3抗体(Sigma, M9692)被用于被用于免疫印迹在人类样本上 (图 s5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 8
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 MAPK3抗体(Sigma, 8159)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Cell (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 MAPK3抗体(Sigma, M-9692)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 s4
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 s4). J Cell Sci (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; fruit fly ; 1:200
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫组化在fruit fly 样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上 (图 2). EMBO J (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 大鼠; 1:5000
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 MAPK3抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 和 被用于免疫印迹在小鼠样本上浓度为1:5000. J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Neurol (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇 MAPK3抗体(Sigma Aldrich, M9692)被用于被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 人类; 图 5
西格玛奥德里奇 MAPK3抗体(Sigma, # M 8159)被用于被用于免疫细胞化学在人类样本上 (图 5). Toxicol In Vitro (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 大鼠; 1:250; 图 3
西格玛奥德里奇 MAPK3抗体(Sigma-Aldrich, M9692)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250 (图 3). J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 MAPK3抗体(Sigma-Aldrich, M9692)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 MAPK3抗体(SIGMA, M8159)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • reverse phase protein lysate microarray; 人类; 1:500
西格玛奥德里奇 MAPK3抗体(Sigma, M-9692)被用于被用于reverse phase protein lysate microarray在人类样本上浓度为1:500. Pulm Pharmacol Ther (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 牛; 图 5, 6
西格玛奥德里奇 MAPK3抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在牛样本上 (图 5, 6). Endocrinology (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 MAPK3抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
文章列表
  1. Paldor M, Levkovitch Siany O, Eidelshtein D, Adar R, Enk C, Marmary Y, et al. Single-cell transcriptomics reveals a senescence-associated IL-6/CCR6 axis driving radiodermatitis. EMBO Mol Med. 2022;14:e15653 pubmed 出版商
  2. Nataraj N, Noronha A, Lee J, Ghosh S, Mohan Raju H, Sekar A, et al. Nucleoporin-93 reveals a common feature of aggressive breast cancers: robust nucleocytoplasmic transport of transcription factors. Cell Rep. 2022;38:110418 pubmed 出版商
  3. Grinat J, Kosel F, Goveas N, Kranz A, Alexopoulou D, Rajewsky K, et al. Epigenetic modifier balances Mapk and Wnt signalling in differentiation of goblet and Paneth cells. Life Sci Alliance. 2022;5: pubmed 出版商
  4. Gualtieri A, Kyprianou N, Gregory L, Vignola M, Nicholson J, Tan R, et al. Activating mutations in BRAF disrupt the hypothalamo-pituitary axis leading to hypopituitarism in mice and humans. Nat Commun. 2021;12:2028 pubmed 出版商
  5. Bakker W, Dingenouts C, Lodder K, Wiesmeijer K, de Jong A, Kurakula K, et al. BMP Receptor Inhibition Enhances Tissue Repair in Endoglin Heterozygous Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  6. Kim K, Gibboney S, Razy Krajka F, Lowe E, Wang W, Stolfi A. Regulation of Neurogenesis by FGF Signaling and Neurogenin in the Invertebrate Chordate Ciona. Front Cell Dev Biol. 2020;8:477 pubmed 出版商
  7. Gao Q, Ouyang W, Kang B, Han X, Xiong Y, Ding R, et al. Selective targeting of the oncogenic KRAS G12S mutant allele by CRISPR/Cas9 induces efficient tumor regression. Theranostics. 2020;10:5137-5153 pubmed 出版商
  8. Haag A, Walser M, Henggeler A, Hajnal A. The CHORD protein CHP-1 regulates EGF receptor trafficking and signaling in C. elegans and in human cells. elife. 2020;9: pubmed 出版商
  9. Vetuschi A, Pompili S, Di Marco G, Calvaruso F, Iacomino E, Angelosante L, et al. Can the AGE/RAGE/ERK signalling pathway and the epithelial-to-mesenchymal transition interact in the pathogenesis of chronic rhinosinusitis with nasal polyps?. Eur J Histochem. 2020;64: pubmed 出版商
  10. Kennedy S, Jarboui M, Srihari S, Raso C, Bryan K, Dernayka L, et al. Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D. Nat Commun. 2020;11:499 pubmed 出版商
  11. Gomes A, Ilter D, Low V, Rosenzweig A, Shen Z, Schild T, et al. Dynamic Incorporation of Histone H3 Variants into Chromatin Is Essential for Acquisition of Aggressive Traits and Metastatic Colonization. Cancer Cell. 2019;36:402-417.e13 pubmed 出版商
  12. Fossati G, Pozzi D, Canzi A, Mirabella F, Valentino S, Morini R, et al. Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and β1-integrin. EMBO J. 2019;38: pubmed 出版商
  13. Ahmad F, Salahuddin M, Alsamman K, Herzallah H, Al Otaibi S. Neonatal maternal deprivation impairs localized de novo activity-induced protein translation at the synapse in the rat hippocampus. Biosci Rep. 2018;38: pubmed 出版商
  14. De Pasquale V, Pezone A, Sarogni P, Tramontano A, Schiattarella G, Avvedimento V, et al. EGFR activation triggers cellular hypertrophy and lysosomal disease in NAGLU-depleted cardiomyoblasts, mimicking the hallmarks of mucopolysaccharidosis IIIB. Cell Death Dis. 2018;9:40 pubmed 出版商
  15. Bostner J, Alayev A, Berman A, Fornander T, Nordenskjold B, Holz M, et al. Raptor localization predicts prognosis and tamoxifen response in estrogen receptor-positive breast cancer. Breast Cancer Res Treat. 2018;168:17-27 pubmed 出版商
  16. Zhao F, Franco H, Rodriguez K, Brown P, Tsai M, Tsai S, et al. Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science. 2017;357:717-720 pubmed 出版商
  17. Olivares O, Mayers J, Gouirand V, Torrence M, Gicquel T, Borge L, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun. 2017;8:16031 pubmed 出版商
  18. Szoka L, Karna E, Hlebowicz Sarat K, Karaszewski J, Palka J. Exogenous proline stimulates type I collagen and HIF-1? expression and the process is attenuated by glutamine in human skin fibroblasts. Mol Cell Biochem. 2017;435:197-206 pubmed 出版商
  19. Kozlovskaja GumbrienÄ— A, Yi R, Alexander R, Aman A, Jiskra R, Nagelberg D, et al. Proliferation-independent regulation of organ size by Fgf/Notch signaling. elife. 2017;6: pubmed 出版商
  20. Kidger A, Rushworth L, Stellzig J, Davidson J, Bryant C, Bayley C, et al. Dual-specificity phosphatase 5 controls the localized inhibition, propagation, and transforming potential of ERK signaling. Proc Natl Acad Sci U S A. 2017;114:E317-E326 pubmed 出版商
  21. Lopes M, Leal R, Guarnieri R, Schwarzbold M, Hoeller A, Diaz A, et al. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Transl Psychiatry. 2016;6:e986 pubmed 出版商
  22. Bangi E, Murgia C, Teague A, Sansom O, Cagan R. Functional exploration of colorectal cancer genomes using Drosophila. Nat Commun. 2016;7:13615 pubmed 出版商
  23. Roversi F, Pericole F, Machado Neto J, da Silva Santos Duarte A, Longhini A, Corrocher F, et al. Hematopoietic cell kinase (HCK) is a potential therapeutic target for dysplastic and leukemic cells due to integration of erythropoietin/PI3K pathway and regulation of erythropoiesis: HCK in erythropoietin/PI3K pathway. Biochim Biophys Acta Mol Basis Dis. 2017;1863:450-461 pubmed 出版商
  24. Alekhina O, Marchese A. ?-Arrestin1 and Signal-transducing Adaptor Molecule 1 (STAM1) Cooperate to Promote Focal Adhesion Kinase Autophosphorylation and Chemotaxis via the Chemokine Receptor CXCR4. J Biol Chem. 2016;291:26083-26097 pubmed
  25. Ismail H, Didangelos A, Vincent T, Saklatvala J. Rapid Activation of Transforming Growth Factor ?-Activated Kinase 1 in Chondrocytes by Phosphorylation and K63 -Linked Polyubiquitination Upon Injury to Animal Articular Cartilage. Arthritis Rheumatol. 2017;69:565-575 pubmed 出版商
  26. Caporali S, Alvino E, Lacal P, Levati L, Giurato G, Memoli D, et al. Targeting the PI3K/AKT/mTOR pathway overcomes the stimulating effect of dabrafenib on the invasive behavior of melanoma cells with acquired resistance to the BRAF inhibitor. Int J Oncol. 2016;49:1164-74 pubmed 出版商
  27. Greenwood E, Maisel S, Ebertz D, Russ A, Pandey R, SCHROEDER J. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration. Oncotarget. 2016;7:60776-60792 pubmed 出版商
  28. Tadjuidje E, Kofron M, Mir A, Wylie C, Heasman J, Cha S. Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development. Open Biol. 2016;6: pubmed 出版商
  29. Köchl R, Thelen F, Vanes L, Brazão T, Fountain K, Xie J, et al. WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol. 2016;17:1075-83 pubmed 出版商
  30. Schütz I, López Hernández T, Gao Q, Puchkov D, Jabs S, Nordmeyer D, et al. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles. J Biol Chem. 2016;291:14170-84 pubmed 出版商
  31. Mendel I, Yacov N, Shoham A, Ishai E, Breitbart E. Treatment with Oxidized Phospholipids Directly Inhibits Nonalcoholic Steatohepatitis and Liver Fibrosis Without Affecting Steatosis. Dig Dis Sci. 2016;61:2545-53 pubmed 出版商
  32. Margaryan N, Gilgur A, Seftor E, Purnell C, Arva N, Gosain A, et al. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi. Int J Mol Sci. 2016;17:418 pubmed 出版商
  33. Sakakini N, Turchi L, Bergon A, Holota H, Rekima S, Lopez F, et al. A Positive Feed-forward Loop Associating EGR1 and PDGFA Promotes Proliferation and Self-renewal in Glioblastoma Stem Cells. J Biol Chem. 2016;291:10684-99 pubmed 出版商
  34. Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun. 2016;7:11030 pubmed 出版商
  35. Morena D, Maestro N, Bersani F, Forni P, Lingua M, Foglizzo V, et al. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. elife. 2016;5: pubmed 出版商
  36. Wang J, Goetsch L, Tucker L, Zhang Q, Gonzalez A, Vaidya K, et al. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer. 2016;16:105 pubmed 出版商
  37. Coke C, Scarlett K, Chetram M, Jones K, Sandifer B, Davis A, et al. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression. J Biol Chem. 2016;291:9991-10005 pubmed 出版商
  38. Stefanovic M, Tutusaus A, Martinez Nieto G, Bárcena C, de Gregorio E, Moutinho C, et al. Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget. 2016;7:8253-67 pubmed 出版商
  39. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed 出版商
  40. Shih M, Pan K, Cherng J. Possible Mechanisms of Di(2-ethylhexyl) Phthalate-Induced MMP-2 and MMP-9 Expression in A7r5 Rat Vascular Smooth Muscle Cells. Int J Mol Sci. 2015;16:28800-11 pubmed 出版商
  41. Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho Maschler S. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics. 2015;16:944 pubmed 出版商
  42. Quintero Barceinas R, García Regalado A, Aréchaga Ocampo E, Villegas Sepúlveda N, González De la Rosa C. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism. Biomed Res Int. 2015;2015:404368 pubmed 出版商
  43. Sipieter F, Cappe B, Gonzalez Pisfil M, Spriet C, Bodart J, Cailliau Maggio K, et al. Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms. PLoS ONE. 2015;10:e0140924 pubmed 出版商
  44. Strizzi L, Sandomenico A, Margaryan N, Focà A, Sanguigno L, Bodenstine T, et al. Effects of a novel Nodal-targeting monoclonal antibody in melanoma. Oncotarget. 2015;6:34071-86 pubmed 出版商
  45. Salas E, Roy S, Marsh T, Rubin B, Debnath J. Oxidative pentose phosphate pathway inhibition is a key determinant of antimalarial induced cancer cell death. Oncogene. 2016;35:2913-22 pubmed 出版商
  46. Sun D, Buttitta L. Protein phosphatase 2A promotes the transition to G0 during terminal differentiation in Drosophila. Development. 2015;142:3033-45 pubmed 出版商
  47. Patel P, Dutta D, Edgar B. Niche appropriation by Drosophila intestinal stem cell tumours. Nat Cell Biol. 2015;17:1182-92 pubmed 出版商
  48. Westcot S, Hatzold J, Urban M, Richetti S, Skuster K, Harm R, et al. Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis. PLoS ONE. 2015;10:e0130688 pubmed 出版商
  49. Nan X, Tamgüney T, Collisson E, Lin L, Pitt C, Galeas J, et al. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc Natl Acad Sci U S A. 2015;112:7996-8001 pubmed 出版商
  50. Brohée L, Demine S, Willems J, Arnould T, Colige A, Deroanne C. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget. 2015;6:11264-80 pubmed
  51. Graziani G, Artuso S, De Luca A, Muzi A, Rotili D, Scimeca M, et al. A new water soluble MAPK activator exerts antitumor activity in melanoma cells resistant to the BRAF inhibitor vemurafenib. Biochem Pharmacol. 2015;95:16-27 pubmed 出版商
  52. Wilson F, Johannessen C, Piccioni F, Tamayo P, Kim J, Van Allen E, et al. A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell. 2015;27:397-408 pubmed 出版商
  53. Cheng Z, Liu F, Zhu S, Tian H, Wang L, Wang Y. A rapid and convenient method for fluorescence analysis of in vitro cultivated metacestode vesicles from Echinococcus multilocularis. PLoS ONE. 2015;10:e0118215 pubmed 出版商
  54. Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol. 2015;17:300-10 pubmed 出版商
  55. Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci U S A. 2015;112:2473-8 pubmed 出版商
  56. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed 出版商
  57. Pastor Clerigues A, Martí Bonmatí E, Milara J, Almudever P, Cortijo J. Anti-inflammatory and anti-fibrotic profile of fish oil emulsions used in parenteral nutrition-associated liver disease. PLoS ONE. 2014;9:e115404 pubmed 出版商
  58. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  59. Matsuoka S, Gupta S, Suzuki E, Hiromi Y, Asaoka M. gone early, a novel germline factor, ensures the proper size of the stem cell precursor pool in the Drosophila ovary. PLoS ONE. 2014;9:e113423 pubmed 出版商
  60. Charlaftis N, Suddason T, Wu X, Anwar S, Karin M, Gallagher E. The MEKK1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines. EMBO J. 2014;33:2581-96 pubmed 出版商
  61. Han P, Zhou X, Chang N, Xiao C, Yan S, Ren H, et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res. 2014;24:1091-107 pubmed 出版商
  62. Zeldich E, Chen C, Colvin T, Bove Fenderson E, Liang J, Tucker Zhou T, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem. 2014;289:24700-15 pubmed 出版商
  63. Martínez Pinilla E, Reyes Resina I, Oñatibia Astibia A, Zamarbide M, Ricobaraza A, Navarro G, et al. CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum. Exp Neurol. 2014;261:44-52 pubmed 出版商
  64. Doughton G, Wei J, Tapon N, Welham M, Chalmers A. Formation of a polarised primitive endoderm layer in embryoid bodies requires fgfr/erk signalling. PLoS ONE. 2014;9:e95434 pubmed 出版商
  65. Chen P, Qin L, Zhuang Z, Tellides G, Lax I, Schlessinger J, et al. The docking protein FRS2? is a critical regulator of VEGF receptors signaling. Proc Natl Acad Sci U S A. 2014;111:5514-9 pubmed 出版商
  66. Guerra M, Wauson E, McGlynn K, Cobb M. Muscarinic control of MIN6 pancreatic ? cells is enhanced by impaired amino acid signaling. J Biol Chem. 2014;289:14370-9 pubmed 出版商
  67. Bölck B, Ibrahim M, Steinritz D, Morguet C, Dühr S, Suhr F, et al. Detection of key enzymes, free radical reaction products and activated signaling molecules as biomarkers of cell damage induced by benzo[a]pyrene in human keratinocytes. Toxicol In Vitro. 2014;28:875-84 pubmed 出版商
  68. Maier P, Zemoura K, Acu a M, Y venes G, Zeilhofer H, Benke D. Ischemia-like oxygen and glucose deprivation mediates down-regulation of cell surface ?-aminobutyric acidB receptors via the endoplasmic reticulum (ER) stress-induced transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CH. J Biol Chem. 2014;289:12896-907 pubmed 出版商
  69. Chapnick D, Liu X. Leader cell positioning drives wound-directed collective migration in TGF?-stimulated epithelial sheets. Mol Biol Cell. 2014;25:1586-93 pubmed 出版商
  70. Fernandez Estevez M, Casarejos M, Lopez Sendon J, Garcia Caldentey J, Ruiz C, Gomez A, et al. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington's disease patients caused by proteosome inhibition. PLoS ONE. 2014;9:e90202 pubmed 出版商
  71. Milara J, Peiró T, Serrano A, Guijarro R, Zaragozá C, Tenor H, et al. Roflumilast N-oxide inhibits bronchial epithelial to mesenchymal transition induced by cigarette smoke in smokers with COPD. Pulm Pharmacol Ther. 2014;28:138-48 pubmed 出版商
  72. Turner M, Cronin J, Healey G, Sheldon I. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology. 2014;155:1453-65 pubmed 出版商
  73. Zaganjor E, Osborne J, Weil L, Díaz Martínez L, Gonzales J, Singel S, et al. Ras regulates kinesin 13 family members to control cell migration pathways in transformed human bronchial epithelial cells. Oncogene. 2014;33:5457-66 pubmed 出版商