这是一篇来自已证抗体库的有关牛 MAPT的综述,是根据206篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MAPT 抗体。
MAPT 同义词: tau

赛默飞世尔
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 小鼠; 1:500; 图 1a
  • 免疫细胞化学; 人类; 1:200; 图 3e
  • 免疫印迹; 人类; 1:1000; 图 s2
赛默飞世尔 MAPT抗体(Thermo Scientific, AHB0042)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1a), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 3e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Mol Ther Nucleic Acids (2022) ncbi
小鼠 单克隆(HT7)
  • 其他; 人类; 图 3c
  • 免疫印迹; 人类; 1:20,000; 图 s9
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000B)被用于被用于其他在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:20,000 (图 s9). ACS Chem Neurosci (2022) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 图 1i, s2c
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫印迹在人类样本上 (图 1i, s2c). EBioMedicine (2022) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:500; 图 2
  • 免疫印迹基因敲除验证; 小鼠; 1:500; 图 2
赛默飞世尔 MAPT抗体(Thermo Scientific, MA5-12808)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2) 和 被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:500 (图 2). Int J Mol Sci (2022) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 s5f
赛默飞世尔 MAPT抗体(Thermo Fisher, MA5-12808)被用于被用于免疫印迹在人类样本上 (图 s5f). Nat Commun (2021) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 图 1a
赛默飞世尔 MAPT抗体(Thermo, MN1000)被用于被用于免疫印迹在小鼠样本上 (图 1a). Clin Transl Med (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:500; 图 2f
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2f). Life Sci Alliance (2021) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; fruit fly ; 1:1000; 图 3g
赛默飞世尔 MAPT抗体(Invitrogen, 13-6400)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 3g). Nat Commun (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛默飞世尔 MAPT抗体(Thermo, MA5-12805)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). elife (2021) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 小鼠; 图 4a
赛默飞世尔 MAPT抗体(Thermo Fisher Scientific, 13-6400)被用于被用于免疫印迹在小鼠样本上 (图 4a). Cell (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 人类; 0.5 ug/ml; 图 6d
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫细胞化学在人类样本上浓度为0.5 ug/ml (图 6d). Acta Neuropathol (2021) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-自由浮动切片; 人类; 图 1
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000B)被用于被用于免疫组化-自由浮动切片在人类样本上 (图 1). Sci Rep (2021) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-自由浮动切片; 人类; 图 3e
赛默飞世尔 MAPT抗体(Thermo Fischer, MN1000)被用于被用于免疫组化-自由浮动切片在人类样本上 (图 3e). iScience (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 小鼠; 1:200; 图 1a
赛默飞世尔 MAPT抗体(Thermo Fisher, AHB0042)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1a). Nat Commun (2021) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 图 3f
赛默飞世尔 MAPT抗体(Invitrogen, MN1000)被用于被用于免疫印迹在人类样本上 (图 3f). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 小鼠; 1:500; 图 2g
赛默飞世尔 MAPT抗体(Invitrogen, MN1000)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2g). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Nat Commun (2020) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 小鼠; 图 3a
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫组化在小鼠样本上 (图 3a). iScience (2020) ncbi
小鼠 单克隆(HT7)
  • 免疫沉淀; 人类; 1 ug/ml; 图 1a
赛默飞世尔 MAPT抗体(Invitrogen, MN1000)被用于被用于免疫沉淀在人类样本上浓度为1 ug/ml (图 1a). Commun Biol (2020) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:2000; 图 4j
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4j). J Neuroinflammation (2020) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4m
  • 免疫印迹; 小鼠; 1:1000; 图 4k
赛默飞世尔 MAPT抗体(Thermo Fisher Scientific, MN1000)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4m) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4k). Aging Cell (2020) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 人类; 1:500; 图 3a
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3a). Biosci Rep (2020) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 图 4a
赛默飞世尔 MAPT抗体(Thermo, MN1000)被用于被用于免疫印迹在小鼠样本上 (图 4a). Mol Neurodegener (2020) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 人类; 1:50; 图 5
  • 免疫印迹; 人类; 1:200-1:2000; 图 5, 6
赛默飞世尔 MAPT抗体(ThermoFisher Scientific, MN1000)被用于被用于免疫组化在人类样本上浓度为1:50 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:200-1:2000 (图 5, 6). Nat Commun (2020) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 小鼠; 1:500; 图 1, 2, 4, 5, 6, 7, 8
赛默飞世尔 MAPT抗体(Thermo Scientific,, MN1000)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1, 2, 4, 5, 6, 7, 8). Nat Commun (2020) ncbi
小鼠 单克隆(BT2)
  • 酶联免疫吸附测定; 人类; 图 5a
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1010)被用于被用于酶联免疫吸附测定在人类样本上 (图 5a). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(HT7)
  • 酶联免疫吸附测定; 人类; 图 5a
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于酶联免疫吸附测定在人类样本上 (图 5a). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:500; 图 s6e
赛默飞世尔 MAPT抗体(Thermo Fisher, MA5-12808)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s6e). Nature (2019) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:1000; 图 1m, 2f
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1m, 2f). Aging Cell (2020) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 大鼠; 1:500; 图 1d1
赛默飞世尔 MAPT抗体(Invitrogen, MN1000)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1d1). Alzheimers Res Ther (2019) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 猕猴; 1:1000; 图 4b
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫印迹在猕猴样本上浓度为1:1000 (图 4b). Aging Cell (2019) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:1000. elife (2019) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 小鼠; 图 1c
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫组化在小鼠样本上 (图 1c). Cell Rep (2018) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
赛默飞世尔 MAPT抗体(Thermo Fisher Scientific, HT7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). Neurobiol Aging (2018) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 1a
  • 免疫印迹; 小鼠; 1:1000; 图 5g
赛默飞世尔 MAPT抗体(Thermo Fisher Scientific, HT7)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5g). Aging Cell (2018) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 8b
赛默飞世尔 MAPT抗体(Thermo Fisher, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8b). Cancer Res (2018) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 表 1
  • 免疫细胞化学; 人类; 1:100; 表 2
  • 免疫印迹; 小鼠
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (表 1), 被用于免疫细胞化学在人类样本上浓度为1:100 (表 2) 和 被用于免疫印迹在小鼠样本上. Mol Neurodegener (2017) ncbi
小鼠 单克隆(BT2)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 表 1
  • 免疫细胞化学; 人类; 1:100; 表 2
  • 免疫印迹; 小鼠
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1010)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (表 1), 被用于免疫细胞化学在人类样本上浓度为1:100 (表 2) 和 被用于免疫印迹在小鼠样本上. Mol Neurodegener (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 人类; 1:500; 图 1a
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1a). Cell Rep (2017) ncbi
小鼠 单克隆(HT7)
  • 酶联免疫吸附测定; 小鼠; 图 2a
赛默飞世尔 MAPT抗体(Thermo Fisher, HT7)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2a). Am J Pathol (2017) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 小鼠; 图 4c
  • 免疫印迹; 小鼠; 图 4a
赛默飞世尔 MAPT抗体(Thermo, MN1000)被用于被用于免疫组化在小鼠样本上 (图 4c) 和 被用于免疫印迹在小鼠样本上 (图 4a). Sci Rep (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 2A
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2A). Neurochem Res (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 5a
赛默飞世尔 MAPT抗体(Thermo Fisher Scientific, AHB0042)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Mol Neurosci (2017) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:1000; 图 3i
赛默飞世尔 MAPT抗体(Thermo, MN1000)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3i). Nat Commun (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛默飞世尔 MAPT抗体(Thermo, MA5-12805)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Nat Commun (2017) ncbi
小鼠 单克隆(BT2)
  • 酶联免疫吸附测定; 小鼠; 图 4a
赛默飞世尔 MAPT抗体(Fisher Scientific, MN1010)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 4a). Cell Death Dis (2017) ncbi
小鼠 单克隆(T46)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 1:1000; 图 1b
赛默飞世尔 MAPT抗体(Thermo Fisher, 13-6400)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Sci Rep (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2e
赛默飞世尔 MAPT抗体(生活技术, AHB0042)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2e). J Alzheimers Dis (2017) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 0.2 ug/ml; 图 1b
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫印迹在人类样本上浓度为0.2 ug/ml (图 1b). Aging Cell (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:5000; 图 4b
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4b). Exp Mol Med (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:2000; 图 7a
赛默飞世尔 MAPT抗体(Thermo Fisher, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a). Acta Neuropathol (2017) ncbi
小鼠 单克隆(HT7)
  • 免疫细胞化学; 人类; 图 s2a
  • 免疫印迹; 人类; 图 s1
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫细胞化学在人类样本上 (图 s2a) 和 被用于免疫印迹在人类样本上 (图 s1). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(T46)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 1b
赛默飞世尔 MAPT抗体(Thermofisher, T46)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 1b). PLoS ONE (2016) ncbi
小鼠 单克隆(HT7)
  • 酶联免疫吸附测定; 人类
赛默飞世尔 MAPT抗体(生活技术, MN 1000B)被用于被用于酶联免疫吸附测定在人类样本上. J Neurosci (2016) ncbi
小鼠 单克隆(T46)
  • 免疫细胞化学; 大鼠; 1:100; 图 4b
赛默飞世尔 MAPT抗体(Thermofisher, 13-6400)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4b). J Chem Neuroanat (2017) ncbi
小鼠 单克隆(T46)
  • 免疫细胞化学; 人类; 1:200; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 2e
赛默飞世尔 MAPT抗体(Invitrogen, 136400)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). J Neuroinflammation (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫印迹在小鼠样本上. Brain (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 4b
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 4b). PLoS ONE (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1a
赛默飞世尔 MAPT抗体(Invitrogen, Tau-5)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1a). PLoS ONE (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫细胞化学; 人类; 1:1000; 图 3d
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3d). Exp Neurol (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学基因敲除验证; 小鼠; 图 3
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫细胞化学基因敲除验证在小鼠样本上 (图 3) 和 被用于免疫细胞化学在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 3d
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上 (图 3d). J Biol Chem (2016) ncbi
小鼠 单克隆(S.125.0)
  • 免疫细胞化学; 人类; 1:300; 图 5b
赛默飞世尔 MAPT抗体(Pierce, MA5-15108)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 5b). Neurotoxicology (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 大鼠; 1:1000; 图 7
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(S.125.0)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 2d
赛默飞世尔 MAPT抗体(Thermo Fisher, MA5-15108)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 2d). Sci Rep (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 小鼠; 1:300; 图 3c
  • 免疫印迹; 小鼠; 1:200; 图 3a
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3c) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 3a). Biol Psychiatry (2017) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Dis Model Mech (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1a
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1a), 被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 1c). Cell Rep (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-自由浮动切片; 小鼠; 1:250; 图 5a
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 5a
  • 免疫印迹; 小鼠; 1:2000; 图 5b
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000B)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250 (图 5a), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5b). Autophagy (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:3000; 图 6
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 6). Mol Neurodegener (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫印迹在人类样本上 (图 2). Mol Neurodegener (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 s3
赛默飞世尔 MAPT抗体(生活技术, AHB0042)被用于被用于免疫印迹在人类样本上 (图 s3). Mol Neurodegener (2016) ncbi
小鼠 单克隆(HT7)
  • 抑制或激活实验; 人类; 图 3
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于抑制或激活实验在人类样本上 (图 3). Ann Neurol (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫组化基因敲除验证; 人类; 图 2
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫组化基因敲除验证在人类样本上 (图 2) 和 被用于免疫组化-石蜡切片在人类样本上 (图 2). Brain Pathol (2017) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5). Brain Pathol (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 人类; 1:600; 图 4
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫细胞化学在人类样本上浓度为1:600 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Cell Sci (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 表 1
  • 免疫印迹; 小鼠; 1:500; 表 1
赛默飞世尔 MAPT抗体(Biosource International, AHB0042)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (表 1). J Neuropathol Exp Neurol (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上 (图 2). F1000Res (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:10,000; 图 3f
赛默飞世尔 MAPT抗体(Invitrogen, Tau-5)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3f). Nat Commun (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:2000; 图 4
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:2000; 图 1
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Dev Dyn (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上 (图 1). Life Sci (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1
赛默飞世尔 MAPT抗体(Thermo Scientifi, HT7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1). Neurobiol Learn Mem (2016) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛默飞世尔 MAPT抗体(Invitrogen, T46)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Brain (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000; 表 1
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛默飞世尔 MAPT抗体(Thermo Fisher, TAU-5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 图 s2
赛默飞世尔 MAPT抗体(ThermoFisher, HT7)被用于被用于免疫印迹在人类样本上 (图 s2). Mol Neurobiol (2017) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔 MAPT抗体(Pierce, HT7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Neuroscience (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上 (图 3). Pharmacol Res (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Brain (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 猫; 1:1000; 图 4
赛默飞世尔 MAPT抗体(生活技术, TAU-5)被用于被用于免疫印迹在猫样本上浓度为1:1000 (图 4). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:5000; 图 5
赛默飞世尔 MAPT抗体(Invitrogen, ahb0042)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). J Neuroinflammation (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1,000 ug/ml; 图 10
赛默飞世尔 MAPT抗体(生活技术, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1,000 ug/ml (图 10). Brain Res (2016) ncbi
小鼠 单克隆(T46)
  • 免疫组化; 人类; 1:500; 图 6
  • 免疫印迹; 人类; 图 2
赛默飞世尔 MAPT抗体(Thermo Scientific, T46)被用于被用于免疫组化在人类样本上浓度为1:500 (图 6) 和 被用于免疫印迹在人类样本上 (图 2). Acta Neuropathol (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:3000; 图 5
赛默飞世尔 MAPT抗体(Thermo Fisher Scientific, MN1000)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5). J Neurosci (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:5000; 图 3
赛默飞世尔 MAPT抗体(ThermoScientific, HT7)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Acta Neuropathol (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 小鼠; 1:500; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 5
赛默飞世尔 MAPT抗体(Thermo Fisher Scientific, MN1000)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Nat Neurosci (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫沉淀; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔 MAPT抗体(生活技术, AHB0042)被用于被用于免疫沉淀在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Nat Med (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-自由浮动切片; 小鼠; 图 2
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2). Nat Med (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类
赛默飞世尔 MAPT抗体(生活技术, AHB0042)被用于被用于免疫印迹在人类样本上. Cell Mol Neurobiol (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurochem (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:200; 图 3
赛默飞世尔 MAPT抗体(Thermo, HT-7)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3). Mol Psychiatry (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫细胞化学; 小鼠; 1:500; 图 1,2,3
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1,2,3). Front Neurosci (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:5000; 图 1
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:3000
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于免疫印迹在人类样本上浓度为1:3000. Mol Neurobiol (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫印迹在小鼠样本上 (图 4). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类
赛默飞世尔 MAPT抗体(生活技术, AHB0042)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(HT7)
  • 酶联免疫吸附测定; 人类
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于酶联免疫吸附测定在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(BT2)
  • 酶联免疫吸附测定; 人类
赛默飞世尔 MAPT抗体(Thermo Scientific, BT2)被用于被用于酶联免疫吸附测定在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Neurodegener (2015) ncbi
小鼠 单克隆(BT2)
  • 酶联免疫吸附测定; 人类; 图 7
赛默飞世尔 MAPT抗体(Thermo Scientific, BT2)被用于被用于酶联免疫吸附测定在人类样本上 (图 7). Mol Neurodegener (2015) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 人类
赛默飞世尔 MAPT抗体(Invitrogen, 13-6400)被用于被用于免疫印迹在人类样本上. Chem Biol (2015) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 MAPT抗体(Zymed, T46)被用于被用于免疫印迹在人类样本上浓度为1:1000. Brain Pathol (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 MAPT抗体(Thermo, MN1000)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Curr Gene Ther (2014) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 MAPT抗体(Invitrogen, 13-6400)被用于被用于免疫印迹在人类样本上 (图 1). Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-石蜡切片; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:200
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:200. Neurobiol Aging (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 MAPT抗体(Thermo Scientific Pierce, MN1000)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔 MAPT抗体(Invitrogen, TAU5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Neurodegener (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠
赛默飞世尔 MAPT抗体(Pierce, MN1000)被用于被用于免疫印迹在小鼠样本上. Mol Neurodegener (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫细胞化学; 人类; 1:500; 图 6
  • 免疫印迹; 人类; 1:2500; 图 4
赛默飞世尔 MAPT抗体(Thermo (Pierce), HT7)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:2500 (图 4). J Biol Chem (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:5000
赛默飞世尔 MAPT抗体(Thermo, HT7)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:5000. J Alzheimers Dis (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 MAPT抗体(Invitrogen, Tau5)被用于被用于免疫印迹在小鼠样本上 (图 2). Front Aging Neurosci (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:20,000
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000. J Neurosci (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于免疫印迹在人类样本上 (图 4). J Alzheimers Dis (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类
赛默飞世尔 MAPT抗体(Thermo Scientific Pierce, MN1000)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 小鼠; 1:3000
赛默飞世尔 MAPT抗体(生活技术, tau-5)被用于被用于免疫组化在小鼠样本上浓度为1:3000. Ann Neurol (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Nat Med (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Neurosci (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫印迹在人类样本上. Eur J Neurosci (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 MAPT抗体(NeoMarkers, tau-5)被用于被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(HT7)
  • 免疫沉淀; 小鼠
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于免疫沉淀在小鼠样本上, 被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:4000
赛默飞世尔 MAPT抗体(Thermo Fisher Scientific, Tau-5)被用于被用于免疫印迹在小鼠样本上浓度为1:4000. Eur J Neurosci (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-自由浮动切片; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 MAPT抗体(Thermo Fisher Scientific, HT7)被用于被用于免疫组化-自由浮动切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Am J Pathol (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫组化-冰冻切片在小鼠样本上. Age (Dordr) (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 MAPT抗体(Invitrogen, #AHB0042)被用于被用于免疫印迹在小鼠样本上 (图 6). Neurobiol Aging (2013) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-冰冻切片; 小鼠; 1:300
  • 免疫细胞化学; 小鼠; 1:300
  • 免疫组化; 小鼠; 1:300
赛默飞世尔 MAPT抗体(Thermo-Fisher Pierce, MN-100)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300, 被用于免疫细胞化学在小鼠样本上浓度为1:300 和 被用于免疫组化在小鼠样本上浓度为1:300. Neurobiol Aging (2013) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 小鼠
赛默飞世尔 MAPT抗体(Thermo, MN1000)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:200; 图 2
赛默飞世尔 MAPT抗体(Lab Vision, MS-247-P0)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2). Neurochem Res (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000
  • 免疫组化; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 MAPT抗体(Thermo Scientific, Tau-5)被用于被用于免疫印迹在大鼠样本上浓度为1:1000, 被用于免疫组化在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Exp Neurol (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:40,000; 表 1
  • 免疫印迹; 人类; 1:40,000
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于免疫印迹在小鼠样本上浓度为1:40,000 (表 1) 和 被用于免疫印迹在人类样本上浓度为1:40,000. Neurobiol Aging (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛默飞世尔 MAPT抗体(BioSource, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Age (Dordr) (2013) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 MAPT抗体(ThermoScientific, MN1000)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 MAPT抗体(Invitrogen, Tau-5)被用于被用于免疫印迹在小鼠样本上 (图 3). FEBS Lett (2012) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 大鼠; 1:2000
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫组化在大鼠样本上浓度为1:2000. Toxicol Sci (2012) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 MAPT抗体(BIOSOURCE, Tau-5)被用于被用于免疫印迹在小鼠样本上 (图 1). J Biol Chem (2012) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类
赛默飞世尔 MAPT抗体(Pierce, MN1000)被用于被用于免疫印迹在人类样本上. PLoS ONE (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫组化在小鼠样本上 (图 3). BMC Neurosci (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 MAPT抗体(BioSource, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Neurosci Res (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:500; 图 2
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Eur J Neurosci (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:500; 图 3
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). PLoS ONE (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 5
  • 免疫印迹; 大鼠; 1:2000; 图 4
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 5) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 4). Neurol Sci (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Neurosci Res (2010) ncbi
小鼠 单克隆(Tau-5)
  • 酶联免疫吸附测定; 人类; 图 1a
赛默飞世尔 MAPT抗体(Biosource International, Tau-5)被用于被用于酶联免疫吸附测定在人类样本上 (图 1a). Neurobiol Aging (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛默飞世尔 MAPT抗体(Biosource, tau-5)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Biosci Biotechnol Biochem (2009) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 MAPT抗体(Biosource, tau-5)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Life Sci (2009) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 MAPT抗体(Biosource, tau-5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Toxicology (2009) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 大鼠; 1:200
赛默飞世尔 MAPT抗体(NeoMarkers, MS247P)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. J Neural Eng (2008) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛默飞世尔 MAPT抗体(Biosource, tau-5)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Food Chem Toxicol (2008) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 MAPT抗体(Invitrogen, TAU- 5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Neurosci Lett (2008) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛默飞世尔 MAPT抗体(Biosource, Tau-5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Cell Mol Med (2008) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:5000
赛默飞世尔 MAPT抗体(BioSource/Invitrogen, tau-5)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Br J Pharmacol (2007) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-冰冻切片; 人类; 1:500
  • 免疫印迹; 人类; 1:500
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 和 被用于免疫印迹在人类样本上浓度为1:500. Nucleic Acids Res (2007) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Cell Biol (2007) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛默飞世尔 MAPT抗体(Biosource, tau-5)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Neuroscience (2007) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-石蜡切片; 人类; 1:10,000; 表 1
  • 免疫印迹; 人类; 1:10,000; 表 1
赛默飞世尔 MAPT抗体(Biosource, Tau-5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10,000 (表 1) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (表 1). Am J Pathol (2006) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠
赛默飞世尔 MAPT抗体(Biosource, TAU-5)被用于被用于免疫印迹在小鼠样本上. J Neural Transm (Vienna) (2006) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 MAPT抗体(BioSource, Tau-5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Proc Natl Acad Sci U S A (2005) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠
赛默飞世尔 MAPT抗体(BioSource, tau-5)被用于被用于免疫印迹在大鼠样本上. Biochem Biophys Res Commun (2002) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 1c, 1e, 1l, 2c
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在人类样本上 (图 1c, 1e, 1l, 2c) 和 被用于免疫印迹在小鼠样本上 (图 5a). EBioMedicine (2022) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 1:2000; 图 1a
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, Ab80579)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). Ann Neurol (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2a). Signal Transduct Target Ther (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上 (图 1a). Clin Transl Med (2021) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠; 1:500; 图 2n
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab203179)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2n). Int J Mol Sci (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Commun Biol (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上 (图 4a). Cell (2021) ncbi
小鼠 单克隆(Tau-5)
  • proximity ligation assay; 小鼠; 1:250; 图 s3
  • proximity ligation assay; 人类; 1:2000; 图 1d
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于proximity ligation assay在小鼠样本上浓度为1:250 (图 s3) 和 被用于proximity ligation assay在人类样本上浓度为1:2000 (图 1d). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 1a, 1b
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上 (图 1a, 1b). Neuropsychiatr Dis Treat (2020) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 5e
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上 (图 5e). J Neuroinflammation (2020) ncbi
小鼠 单克隆(Tau-5)
  • 酶联免疫吸附测定; 人类; 图 5a
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于酶联免疫吸附测定在人类样本上 (图 5a). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000; 图 1f
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). PLoS ONE (2019) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000; 图 1b, 2a
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b, 2a). Aging Cell (2020) ncbi
小鼠 单克隆(Tau-5)
  • 免疫沉淀; 人类; 图 4b
艾博抗(上海)贸易有限公司 MAPT抗体(AbCam, ab80579)被用于被用于免疫沉淀在人类样本上 (图 4b). elife (2019) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠
  • 免疫印迹基因敲除验证; 人类; 1:1000; 表 1
  • 免疫细胞化学; 人类; 1:50; 表 2
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, Tau5)被用于被用于免疫印迹在小鼠样本上, 被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (表 1) 和 被用于免疫细胞化学在人类样本上浓度为1:50 (表 2). Mol Neurodegener (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 小鼠; 1:250; 图 2a
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 2a). J Immunol Methods (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 大鼠; 图 1f
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫细胞化学在大鼠样本上 (图 1f). Mol Cell Neurosci (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 大鼠; 1:100; 图 4d
  • 免疫印迹; 大鼠; 1:500; 图 4e
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4d) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 4e). Sci Rep (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 人类; 图 3
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫组化在人类样本上 (图 3). Aging Cell (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 人类; 1:100; 图 4
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000; 图 8
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). PLoS ONE (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-石蜡切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 MAPT抗体(abcam, ab80579)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). PLoS ONE (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:800; 图 3
  • 免疫印迹; 人类; 1:800; 图 3
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:800 (图 3). Neuropharmacology (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:5000; 图 7
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(Tau-5)
  • 酶联免疫吸附测定; 人类; 图 2a,b
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于酶联免疫吸附测定在人类样本上 (图 2a,b). Int J Mol Epidemiol Genet (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:800; 图 1
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 1). J Alzheimers Dis (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:2000
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Biol Chem (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, Tau5)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上 (图 2a). Mol Psychiatry (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 5b
圣克鲁斯生物技术 MAPT抗体(SantaCruz, SC-58860)被用于被用于免疫印迹在小鼠样本上 (图 5b). Neurobiol Aging (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 MAPT抗体(Santa Cruz, sc-58860)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Mol Neurodegener (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:100
圣克鲁斯生物技术 MAPT抗体(Santa Cruz Biotechnology, Tau-5)被用于被用于免疫组化在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:100. J Neurosci (2015) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell Signaling, 4019)被用于被用于免疫印迹在小鼠样本上 (图 1a). Nature (2019) ncbi
小鼠 单克隆(Tau46)
  • 免疫组化; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell Signaling, 4019)被用于被用于免疫组化在小鼠样本上 (图 2a). J Clin Invest (2018) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 大鼠; 图 3b
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell Signaling, 4019)被用于被用于免疫印迹在大鼠样本上 (图 3b). J Biol Chem (2018) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell Signaling, 4019P)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Neural Regen Res (2016) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell Signaling Technology, 4019)被用于被用于免疫印迹在小鼠样本上 (图 6). Eneuro (2016) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell Signal, 4019)被用于被用于免疫印迹在人类样本上. Stem Cell Reports (2015) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell Signaling Technology, 4019)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Neurodegener (2015) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell signaling, 4019)被用于被用于免疫印迹在小鼠样本上 (图 1). Aging Cell (2015) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell Signaling, 4019)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). BMC Genomics (2015) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell Signaling Technology, 4019S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(Tau-2)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 MAPT抗体(Sigma-Aldrich, T5530)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Front Aging Neurosci (2022) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 大鼠; 1:500; 图 4a
西格玛奥德里奇 MAPT抗体(Sigma-Aldrich, T9450)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4a). Cell Rep (2022) ncbi
小鼠 单克隆(Tau-2)
  • 免疫印迹; 小鼠; 1:1000; 图 s2d
西格玛奥德里奇 MAPT抗体(Sigma-Aldrich, T5530)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2d). J Neurochem (2022) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 大鼠; 1:1000; 图 2f
西格玛奥德里奇 MAPT抗体(Sigma, T9450)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2f). Signal Transduct Target Ther (2021) ncbi
小鼠 单克隆(Tau46)
  • 免疫细胞化学; 大鼠; 1:500; 图 8e
西格玛奥德里奇 MAPT抗体(Sigma, T9450)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 8e). Nat Commun (2019) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠; 1:4000; 图 5b
西格玛奥德里奇 MAPT抗体(Sigma, T9450)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 5b). Autophagy (2016) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹基因敲除验证; 小鼠; 1:500; 图 1b
西格玛奥德里奇 MAPT抗体(Sigma Aldrich, T9450)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:500 (图 1b). Neuroscience (2016) ncbi
小鼠 单克隆(Tau-2)
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇 MAPT抗体(Sigma-Aldrich, T5530)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Neurodegener (2015) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠
西格玛奥德里奇 MAPT抗体(Sigma, T9450)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
文章列表
  1. Kasica N, Zhou X, Jester H, Holland C, Ryazanov A, Forshaw T, et al. Homozygous knockout of eEF2K alleviates cognitive deficits in APP/PS1 Alzheimer's disease model mice independent of brain amyloid β pathology. Front Aging Neurosci. 2022;14:959326 pubmed 出版商
  2. Easton A, Jensen M, Wang C, Hagedorn P, Li Y, WEED M, et al. Identification and characterization of a MAPT-targeting locked nucleic acid antisense oligonucleotide therapeutic for tauopathies. Mol Ther Nucleic Acids. 2022;29:625-642 pubmed 出版商
  3. Permanne B, Sand A, Ousson S, N xe9 ny M, Hantson J, Schubert R, et al. O-GlcNAcase Inhibitor ASN90 is a Multimodal Drug Candidate for Tau and α-Synuclein Proteinopathies. ACS Chem Neurosci. 2022;13:1296-1314 pubmed 出版商
  4. Zhou Q, Li S, Li M, Ke D, Wang Q, Yang Y, et al. Human tau accumulation promotes glycogen synthase kinase-3β acetylation and thus upregulates the kinase: A vicious cycle in Alzheimer neurodegeneration. EBioMedicine. 2022;78:103970 pubmed 出版商
  5. Schiapparelli L, Sharma P, He H, Li J, Shah S, McClatchy D, et al. Proteomic screen reveals diverse protein transport between connected neurons in the visual system. Cell Rep. 2022;38:110287 pubmed 出版商
  6. Andr xe9 s Benito P, Carmona M, Jord xe1 n M, Fern xe1 ndez Irigoyen J, Santamar xed a E, Del Rio J, et al. Host Tau Genotype Specifically Designs and Regulates Tau Seeding and Spreading and Host Tau Transformation Following Intrahippocampal Injection of Identical Tau AD Inoculum. Int J Mol Sci. 2022;23: pubmed 出版商
  7. Kasica N, Zhou X, Yang Q, Wang X, Yang W, Zimmermann H, et al. Antagonists targeting eEF2 kinase rescue multiple aspects of pathophysiology in Alzheimer's disease model mice. J Neurochem. 2022;160:524-539 pubmed 出版商
  8. Mroczek K, Fernando S, Fisher P, Annesley S. Interactions and Cytotoxicity of Human Neurodegeneration- Associated Proteins Tau and α-Synuclein in the Simple Model Dictyostelium discoideum. Front Cell Dev Biol. 2021;9:741662 pubmed 出版商
  9. Villanueva E, Tresse E, Liu Y, Duarte J, Jimenez Duran G, Ejlerskov P, et al. Neuronal TNFα, Not α-Syn, Underlies PDD-Like Disease Progression in IFNβ-KO Mice. Ann Neurol. 2021;90:789-807 pubmed 出版商
  10. Yuste Checa P, Trinkaus V, Riera Tur I, Imamoglu R, Schaller T, Wang H, et al. The extracellular chaperone Clusterin enhances Tau aggregate seeding in a cellular model. Nat Commun. 2021;12:4863 pubmed 出版商
  11. Zheng J, Tian N, Liu F, Zhang Y, Su J, Gao Y, et al. A novel dephosphorylation targeting chimera selectively promoting tau removal in tauopathies. Signal Transduct Target Ther. 2021;6:269 pubmed 出版商
  12. Wu D, Gao D, Yu H, Pi G, Xiong R, Lei H, et al. Medial septum tau accumulation induces spatial memory deficit via disrupting medial septum-hippocampus cholinergic pathway. Clin Transl Med. 2021;11:e428 pubmed 出版商
  13. Guix F, Capitán A, Casadomé Perales Á, Palomares Perez I, López Del Castillo I, Miguel V, et al. Increased exosome secretion in neurons aging in vitro by NPC1-mediated endosomal cholesterol buildup. Life Sci Alliance. 2021;4: pubmed 出版商
  14. Subramanian M, Hyeon S, Das T, Suh Y, Kim Y, Lee J, et al. UBE4B, a microRNA-9 target gene, promotes autophagy-mediated Tau degradation. Nat Commun. 2021;12:3291 pubmed 出版商
  15. López Gambero A, Rosell Valle C, Medina Vera D, Navarro J, Vargas A, Rivera P, et al. A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci. 2021;22: pubmed 出版商
  16. Zhang X, Zou L, Meng L, Xiong M, Pan L, Chen G, et al. Amphiphysin I cleavage by asparagine endopeptidase leads to tau hyperphosphorylation and synaptic dysfunction. elife. 2021;10: pubmed 出版商
  17. Dong Y, Liang F, Huang L, Fang F, Yang G, Tanzi R, et al. The anesthetic sevoflurane induces tau trafficking from neurons to microglia. Commun Biol. 2021;4:560 pubmed 出版商
  18. Shin M, Vázquez Rosa E, Koh Y, Dhar M, Chaubey K, Cintrón Pérez C, et al. Reducing acetylated tau is neuroprotective in brain injury. Cell. 2021;184:2715-2732.e23 pubmed 出版商
  19. Sokratian A, Ziaee J, Kelly K, Chang A, Bryant N, Wang S, et al. Heterogeneity in α-synuclein fibril activity correlates to disease phenotypes in Lewy body dementia. Acta Neuropathol. 2021;141:547-564 pubmed 出版商
  20. Kashyap R, Balzano M, Lechat B, Lambaerts K, Egea Jimenez A, Lembo F, et al. Syntenin-knock out reduces exosome turnover and viral transduction. Sci Rep. 2021;11:4083 pubmed 出版商
  21. Amaral A, Perez Nievas B, Siao Tick Chong M, González Martínez A, Argente Escrig H, Rubio Guerra S, et al. Isoform-selective decrease of glycogen synthase kinase-3-beta (GSK-3β) reduces synaptic tau phosphorylation, transcellular spreading, and aggregation. iScience. 2021;24:102058 pubmed 出版商
  22. Bengoa Vergniory N, Velentza Almpani E, Silva A, Scott C, Vargas Caballero M, Sastre M, et al. Tau-proximity ligation assay reveals extensive previously undetected pathology prior to neurofibrillary tangles in preclinical Alzheimer's disease. Acta Neuropathol Commun. 2021;9:18 pubmed 出版商
  23. Choi G, Lee H, Chae C, Cho J, Jung Y, Kim J, et al. BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nat Commun. 2021;12:487 pubmed 出版商
  24. Bennett R, Hu M, Fernandes A, Pérez Rando M, Robbins A, Kamath T, et al. Tau reduction in aged mice does not impact Microangiopathy. Acta Neuropathol Commun. 2020;8:137 pubmed 出版商
  25. Tang S, Fesharaki Zadeh A, Takahashi H, Nies S, Smith L, Luo A, et al. Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic Tauopathy. Acta Neuropathol Commun. 2020;8:96 pubmed 出版商
  26. Silva M, Nandi G, Tentarelli S, Gurrell I, Jamier T, Lucente D, et al. Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun. 2020;11:3258 pubmed 出版商
  27. Wander C, Tseng J, Song S, Al Housseiny H, Tart D, Ajit A, et al. The Accumulation of Tau-Immunoreactive Hippocampal Granules and Corpora Amylacea Implicates Reactive Glia in Tau Pathogenesis during Aging. iScience. 2020;23:101255 pubmed 出版商
  28. Sola M, Magrin C, Pedrioli G, Pinton S, Salvade A, Papin S, et al. Tau affects P53 function and cell fate during the DNA damage response. Commun Biol. 2020;3:245 pubmed 出版商
  29. Hu S, Hu M, Liu J, Zhang B, Zhang Z, Zhou F, et al. Phosphorylation of Tau and α-Synuclein Induced Neurodegeneration in MPTP Mouse Model of Parkinson's Disease. Neuropsychiatr Dis Treat. 2020;16:651-663 pubmed 出版商
  30. Shi H, Wang Q, Zheng M, Hao S, Lum J, Chen X, et al. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J Neuroinflammation. 2020;17:77 pubmed 出版商
  31. Sun Y, Guo Y, Feng X, Jia M, Ai N, Dong Y, et al. The behavioural and neuropathologic sexual dimorphism and absence of MIP-3α in tau P301S mouse model of Alzheimer's disease. J Neuroinflammation. 2020;17:72 pubmed 出版商
  32. Rodriguez Ortiz C, Prieto G, Martini A, Forner S, Trujillo Estrada L, LaFerla F, et al. miR-181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer's disease. Aging Cell. 2020;19:e13118 pubmed 出版商
  33. Liu Y, Zhang S, Li X, Liu E, Wang X, Zhou Q, et al. Peripheral inflammation promotes brain tau transmission via disrupting blood-brain barrier. Biosci Rep. 2020;40: pubmed 出版商
  34. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  35. Inda M, Joshi S, Wang T, Bolaender A, Gandu S, Koren Iii J, et al. The epichaperome is a mediator of toxic hippocampal stress and leads to protein connectivity-based dysfunction. Nat Commun. 2020;11:319 pubmed 出版商
  36. He Z, McBride J, Xu H, Changolkar L, Kim S, Zhang B, et al. Transmission of tauopathy strains is independent of their isoform composition. Nat Commun. 2020;11:7 pubmed 出版商
  37. Casci I, Krishnamurthy K, Kour S, Tripathy V, Ramesh N, Anderson E, et al. Muscleblind acts as a modifier of FUS toxicity by modulating stress granule dynamics and SMN localization. Nat Commun. 2019;10:5583 pubmed 出版商
  38. Ercan Herbst E, Ehrig J, Schöndorf D, Behrendt A, Klaus B, Gomez Ramos B, et al. A post-translational modification signature defines changes in soluble tau correlating with oligomerization in early stage Alzheimer's disease brain. Acta Neuropathol Commun. 2019;7:192 pubmed 出版商
  39. Sonntag T, Moresco J, Yates J, Montminy M. The KLDpT activation loop motif is critical for MARK kinase activity. PLoS ONE. 2019;14:e0225727 pubmed 出版商
  40. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt S, Vieira Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;: pubmed 出版商
  41. Ye J, Yin Y, Liu H, Fang L, Tao X, Wei L, et al. Tau inhibits PKA by nuclear proteasome-dependent PKAR2α elevation with suppressed CREB/GluA1 phosphorylation. Aging Cell. 2020;19:e13055 pubmed 出版商
  42. Faraco G, Hochrainer K, Segarra S, Schaeffer S, Santisteban M, Menon A, et al. Dietary salt promotes cognitive impairment through tau phosphorylation. Nature. 2019;: pubmed 出版商
  43. Ghosh A, Torraville S, Mukherjee B, Walling S, Martin G, Harley C, et al. An experimental model of Braak's pretangle proposal for the origin of Alzheimer's disease: the role of locus coeruleus in early symptom development. Alzheimers Res Ther. 2019;11:59 pubmed 出版商
  44. Zhang J, Chen B, Lu J, Wu Y, Wang S, Yao Z, et al. Brains of rhesus monkeys display Aβ deposits and glial pathology while lacking Aβ dimers and other Alzheimer's pathologies. Aging Cell. 2019;18:e12978 pubmed 出版商
  45. Silva M, Ferguson F, Cai Q, Donovan K, Nandi G, Patnaik D, et al. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. elife. 2019;8: pubmed 出版商
  46. Merezhko M, Brunello C, Yan X, Vihinen H, Jokitalo E, Uronen R, et al. Secretion of Tau via an Unconventional Non-vesicular Mechanism. Cell Rep. 2018;25:2027-2035.e4 pubmed 出版商
  47. Liu D, Lu H, Stein E, Zhou Z, Yang Y, Mattson M. Brain regional synchronous activity predicts tauopathy in 3×TgAD mice. Neurobiol Aging. 2018;70:160-169 pubmed 出版商
  48. Baglietto Vargas D, Prieto G, Limon A, Forner S, Rodriguez Ortiz C, Ikemura K, et al. Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer's disease. Aging Cell. 2018;17:e12791 pubmed 出版商
  49. Quaranta V, Rainer C, Nielsen S, Raymant M, Ahmed M, Engle D, et al. Macrophage-Derived Granulin Drives Resistance to Immune Checkpoint Inhibition in Metastatic Pancreatic Cancer. Cancer Res. 2018;78:4253-4269 pubmed 出版商
  50. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  51. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau D, Zavala E, et al. NAD+ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018;115:E1876-E1885 pubmed 出版商
  52. Ercan E, Eid S, Weber C, Kowalski A, Bichmann M, Behrendt A, et al. A validated antibody panel for the characterization of tau post-translational modifications. Mol Neurodegener. 2017;12:87 pubmed 出版商
  53. Gasparotto J, Girardi C, Somensi N, Ribeiro C, Moreira J, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226-244 pubmed 出版商
  54. Yadirgi G, Stickings P, Rajagopal S, Liu Y, Sesardic D. Immuno-detection of cleaved SNAP-25 from differentiated mouse embryonic stem cells provides a sensitive assay for determination of botulinum A toxin and antitoxin potency. J Immunol Methods. 2017;451:90-99 pubmed 出版商
  55. Tseng J, Xie L, Song S, Xie Y, Allen L, Ajit D, et al. The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology. Cell Rep. 2017;20:2169-2183 pubmed 出版商
  56. Wang H, Lee K, Pei Z, Khan A, Bakshi K, Burns L. PTI-125 binds and reverses an altered conformation of filamin A to reduce Alzheimer's disease pathogenesis. Neurobiol Aging. 2017;55:99-114 pubmed 出版商
  57. Nobuhara C, DeVos S, Commins C, Wegmann S, Moore B, Roe A, et al. Tau Antibody Targeting Pathological Species Blocks Neuronal Uptake and Interneuron Propagation of Tau in Vitro. Am J Pathol. 2017;187:1399-1412 pubmed 出版商
  58. Li J, Barrero C, Merali S, Pratico D. Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer's phenotype. Sci Rep. 2017;7:46002 pubmed 出版商
  59. Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R, et al. Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice. Neurochem Res. 2017;42:2326-2335 pubmed 出版商
  60. Maphis N, Jiang S, Binder J, Wright C, Gopalan B, Lamb B, et al. Whole Genome Expression Analysis in a Mouse Model of Tauopathy Identifies MECP2 as a Possible Regulator of Tau Pathology. Front Mol Neurosci. 2017;10:69 pubmed 出版商
  61. Zhang Z, Obianyo O, Dall E, Du Y, Fu H, Liu X, et al. Inhibition of delta-secretase improves cognitive functions in mouse models of Alzheimer's disease. Nat Commun. 2017;8:14740 pubmed 出版商
  62. Croft C, Wade M, Kurbatskaya K, Mastrandreas P, Hughes M, Phillips E, et al. Membrane association and release of wild-type and pathological tau from organotypic brain slice cultures. Cell Death Dis. 2017;8:e2671 pubmed 出版商
  63. Loss O, Stephenson F. Developmental changes in trak-mediated mitochondrial transport in neurons. Mol Cell Neurosci. 2017;80:134-147 pubmed 出版商
  64. Trzeciakiewicz H, Tseng J, Wander C, Madden V, Tripathy A, Yuan C, et al. A Dual Pathogenic Mechanism Links Tau Acetylation to Sporadic Tauopathy. Sci Rep. 2017;7:44102 pubmed 出版商
  65. Li Y, Li Z, Jin T, Wang Z, Zhao P. Tau Pathology Promotes the Reorganization of the Extracellular Matrix and Inhibits the Formation of Perineuronal Nets by Regulating the Expression and the Distribution of Hyaluronic Acid Synthases. J Alzheimers Dis. 2017;57:395-409 pubmed 出版商
  66. Bodea L, Evans H, Van der Jeugd A, Ittner L, Delerue F, Kril J, et al. Accelerated aging exacerbates a pre-existing pathology in a tau transgenic mouse model. Aging Cell. 2017;16:377-386 pubmed 出版商
  67. Shin S, Kim J, Lee J, Son Y, Lee M, Kim H, et al. Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitro. Exp Mol Med. 2017;49:e287 pubmed 出版商
  68. Takahashi H, Klein Z, Bhagat S, Kaufman A, Kostylev M, Ikezu T, et al. Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol. 2017;133:785-807 pubmed 出版商
  69. McEwan W, Falcon B, Vaysburd M, Clift D, Oblak A, Ghetti B, et al. Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation. Proc Natl Acad Sci U S A. 2017;114:574-579 pubmed 出版商
  70. Hwang A, Trzeciakiewicz H, Friedmann D, Yuan C, Marmorstein R, Lee V, et al. Conserved Lysine Acetylation within the Microtubule-Binding Domain Regulates MAP2/Tau Family Members. PLoS ONE. 2016;11:e0168913 pubmed 出版商
  71. Liu W, Zhao L, Blackman B, Parmar M, Wong M, Woo T, et al. Vectored Intracerebral Immunization with the Anti-Tau Monoclonal Antibody PHF1 Markedly Reduces Tau Pathology in Mutant Tau Transgenic Mice. J Neurosci. 2016;36:12425-12435 pubmed
  72. Atasoy İ, Dursun E, Gezen Ak D, Metin Armağan D, Ozturk M, Yilmazer S. Both secreted and the cellular levels of BDNF attenuated due to tau hyperphosphorylation in primary cultures of cortical neurons. J Chem Neuroanat. 2017;80:19-26 pubmed 出版商
  73. López de Maturana R, Lang V, Zubiarrain A, Sousa A, Vázquez N, Gorostidi A, et al. Mutations in LRRK2 impair NF-κB pathway in iPSC-derived neurons. J Neuroinflammation. 2016;13:295 pubmed
  74. Laurent C, Dorothee G, Hunot S, Martin E, Monnet Y, Duchamp M, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain. 2017;140:184-200 pubmed 出版商
  75. Van Hummel A, Bi M, Ippati S, van der Hoven J, Volkerling A, Lee W, et al. No Overt Deficits in Aged Tau-Deficient C57Bl/6.Mapttm1(EGFP)Kit GFP Knockin Mice. PLoS ONE. 2016;11:e0163236 pubmed 出版商
  76. Sadick J, Boutin M, Hoffman Kim D, Darling E. Protein characterization of intracellular target-sorted, formalin-fixed cell subpopulations. Sci Rep. 2016;6:33999 pubmed 出版商
  77. Soo Hoo L, Banna C, Radeke C, Sharma N, Albertolle M, Low S, et al. The SNARE Protein Syntaxin 3 Confers Specificity for Polarized Axonal Trafficking in Neurons. PLoS ONE. 2016;11:e0163671 pubmed 出版商
  78. Kuan W, Bennett N, He X, Skepper J, Martynyuk N, Wijeyekoon R, et al. ?-Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function. Exp Neurol. 2016;285:72-81 pubmed 出版商
  79. Mansuroglu Z, Benhelli Mokrani H, Marcato V, Sultan A, Violet M, Chauderlier A, et al. Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin. Sci Rep. 2016;6:33047 pubmed 出版商
  80. Yoshitake J, Soeda Y, Ida T, Sumioka A, Yoshikawa M, Matsushita K, et al. Modification of Tau by 8-Nitroguanosine 3',5'-Cyclic Monophosphate (8-Nitro-cGMP): EFFECTS OF NITRIC OXIDE-LINKED CHEMICAL MODIFICATION ON TAU AGGREGATION. J Biol Chem. 2016;291:22714-22720 pubmed
  81. Begum A, Aguilar J, Elias L, Hong Y. Silver nanoparticles exhibit coating and dose-dependent neurotoxicity in glutamatergic neurons derived from human embryonic stem cells. Neurotoxicology. 2016;57:45-53 pubmed 出版商
  82. Steffen J, Krohn M, Paarmann K, Schwitlick C, Brüning T, Marreiros R, et al. Revisiting rodent models: Octodon degus as Alzheimer's disease model?. Acta Neuropathol Commun. 2016;4:91 pubmed 出版商
  83. Fujita K, Motoki K, Tagawa K, Chen X, Hama H, Nakajima K, et al. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer's disease. Sci Rep. 2016;6:31895 pubmed 出版商
  84. di Meco A, Li J, Blass B, Abou Gharbia M, Lauretti E, Praticò D. 12/15-Lipoxygenase Inhibition Reverses Cognitive Impairment, Brain Amyloidosis, and Tau Pathology by Stimulating Autophagy in Aged Triple Transgenic Mice. Biol Psychiatry. 2017;81:92-100 pubmed 出版商
  85. Kim H, Lee K, Kim A, Choi M, Choi K, Kang M, et al. A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition. Dis Model Mech. 2016;9:839-48 pubmed 出版商
  86. Zhao Y, Song J, Ma X, Zhang B, Li D, Pang H. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression. Neural Regen Res. 2016;11:944-50 pubmed 出版商
  87. Lee S, Le Pichon C, Adolfsson O, Gafner V, Pihlgren M, Lin H, et al. Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement. Cell Rep. 2016;16:1690-1700 pubmed 出版商
  88. Ayyadevara S, Balasubramaniam M, Parcon P, Barger S, Griffin W, Alla R, et al. Proteins that mediate protein aggregation and cytotoxicity distinguish Alzheimer's hippocampus from normal controls. Aging Cell. 2016;15:924-39 pubmed 出版商
  89. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed 出版商
  90. CARTAGENA C, Mountney A, Hwang H, Swiercz A, Rammelkamp Z, Boutte A, et al. Subacute Changes in Cleavage Processing of Amyloid Precursor Protein and Tau following Penetrating Traumatic Brain Injury. PLoS ONE. 2016;11:e0158576 pubmed 出版商
  91. Pajares M, Jiménez Moreno N, García Yagüe A, Escoll M, De Ceballos M, Van Leuven F, et al. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy. 2016;12:1902-1916 pubmed
  92. Velázquez R, Shaw D, Caccamo A, Oddo S. Pim1 inhibition as a novel therapeutic strategy for Alzheimer's disease. Mol Neurodegener. 2016;11:52 pubmed 出版商
  93. Sohn P, Tracy T, Son H, Zhou Y, Leite R, Miller B, et al. Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment. Mol Neurodegener. 2016;11:47 pubmed 出版商
  94. Takeda S, Commins C, DeVos S, Nobuhara C, Wegmann S, Roe A, et al. Seed-competent high-molecular-weight tau species accumulates in the cerebrospinal fluid of Alzheimer's disease mouse model and human patients. Ann Neurol. 2016;80:355-67 pubmed 出版商
  95. Fernández Nogales M, Santos Galindo M, Merchán Rubira J, Hoozemans J, Rábano A, Ferrer I, et al. Tau-positive nuclear indentations in P301S tauopathy mice. Brain Pathol. 2017;27:314-322 pubmed 出版商
  96. Yin Y, Gao D, Wang Y, Wang Z, Wang X, Ye J, et al. Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling. Proc Natl Acad Sci U S A. 2016;113:E3773-81 pubmed 出版商
  97. Yin Y, Wang Y, Gao D, Ye J, Wang X, Fang L, et al. Accumulation of human full-length tau induces degradation of nicotinic acetylcholine receptor α4 via activating calpain-2. Sci Rep. 2016;6:27283 pubmed 出版商
  98. Wang H, Wang R, Carrera I, Xu S, Lakshmana M. TFEB Overexpression in the P301S Model of Tauopathy Mitigates Increased PHF1 Levels and Lipofuscin Puncta and Rescues Memory Deficits. Eneuro. 2016;3: pubmed 出版商
  99. Geiszler P, Barron M, Pardon M. Impaired burrowing is the most prominent behavioral deficit of aging htau mice. Neuroscience. 2016;329:98-111 pubmed 出版商
  100. Cabrera J, Lucas J. MAP2 Splicing is Altered in Huntington's Disease. Brain Pathol. 2017;27:181-189 pubmed 出版商
  101. Yan X, Nykänen N, Brunello C, Haapasalo A, Hiltunen M, Uronen R, et al. FRMD4A-cytohesin signaling modulates the cellular release of tau. J Cell Sci. 2016;129:2003-15 pubmed 出版商
  102. Krishnan V, White Z, McMahon C, Hodgetts S, Fitzgerald M, Shavlakadze T, et al. A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice. J Neuropathol Exp Neurol. 2016;75:464-78 pubmed 出版商
  103. Connell J, Allison R, Reid E. Quantitative Gait Analysis Using a Motorized Treadmill System Sensitively Detects Motor Abnormalities in Mice Expressing ATPase Defective Spastin. PLoS ONE. 2016;11:e0152413 pubmed 出版商
  104. Ortuno D, Carlisle H, Miller S. Does inactivation of USP14 enhance degradation of proteasomal substrates that are associated with neurodegenerative diseases?. F1000Res. 2016;5:137 pubmed 出版商
  105. Choi W, de Poot S, Lee J, Kim J, Han D, Kim Y, et al. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat Commun. 2016;7:10963 pubmed 出版商
  106. Gorsky M, Burnouf S, Dols J, Mandelkow E, Partridge L. Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo. Sci Rep. 2016;6:22685 pubmed 出版商
  107. Gurdziel K, Vogt K, Walton K, Schneider G, Gumucio D. Transcriptome of the inner circular smooth muscle of the developing mouse intestine: Evidence for regulation of visceral smooth muscle genes by the hedgehog target gene, cJun. Dev Dyn. 2016;245:614-26 pubmed 出版商
  108. Urnukhsaikhan E, Cho H, Mishig Ochir T, Seo Y, Park J. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci. 2016;151:130-138 pubmed 出版商
  109. Van der Jeugd A, Vermaercke B, Halliday G, Staufenbiel M, Götz J. Impulsivity, decreased social exploration, and executive dysfunction in a mouse model of frontotemporal dementia. Neurobiol Learn Mem. 2016;130:34-43 pubmed 出版商
  110. Jiang T, Zhang Y, Chen Q, Gao Q, Zhu X, Zhou J, et al. TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology. 2016;105:196-206 pubmed 出版商
  111. Peng Y, Kim M, Hullinger R, O Riordan K, Burger C, Pehar M, et al. Improved proteostasis in the secretory pathway rescues Alzheimer's disease in the mouse. Brain. 2016;139:937-52 pubmed 出版商
  112. Piedrahita D, Castro Álvarez J, Boudreau R, Villegas Lanau A, Kosik K, Gallego Gómez J, et al. β-Secretase 1's Targeting Reduces Hyperphosphorilated Tau, Implying Autophagy Actors in 3xTg-AD Mice. Front Cell Neurosci. 2015;9:498 pubmed 出版商
  113. García Ayllón M, Botella López A, Cuchillo Ibañez I, Rábano A, Andreasen N, Blennow K, et al. HNK-1 Carrier Glycoproteins Are Decreased in the Alzheimer's Disease Brain. Mol Neurobiol. 2017;54:188-199 pubmed 出版商
  114. Platt T, Beckett T, Kohler K, Niedowicz D, Murphy M. Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease. Neuroscience. 2016;315:162-74 pubmed 出版商
  115. Kailainathan S, Piers T, Yi J, Choi S, Fahey M, Borger E, et al. Activation of a synapse weakening pathway by human Val66 but not Met66 pro-brain-derived neurotrophic factor (proBDNF). Pharmacol Res. 2016;104:97-107 pubmed 出版商
  116. Müller Schiffmann A, Herring A, Abdel Hafiz L, Chepkova A, Schäble S, Wedel D, et al. Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain. 2016;139:509-25 pubmed 出版商
  117. Chambers J, Tokuda T, Uchida K, Ishii R, Tatebe H, Takahashi E, et al. The domestic cat as a natural animal model of Alzheimer's disease. Acta Neuropathol Commun. 2015;3:78 pubmed 出版商
  118. Schwab A, Ebert A. Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinson's Disease-Related LRRK2 G2019S Mutation. Stem Cell Reports. 2015;5:1039-1052 pubmed 出版商
  119. Gyoneva S, Kim D, Katsumoto A, Kokiko Cochran O, Lamb B, Ransohoff R. Ccr2 deletion dissociates cavity size and tau pathology after mild traumatic brain injury. J Neuroinflammation. 2015;12:228 pubmed 出版商
  120. Puvenna V, Engeler M, Banjara M, Brennan C, Schreiber P, Dadas A, et al. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy. Brain Res. 2016;1630:225-40 pubmed 出版商
  121. Taniguchi Watanabe S, Arai T, Kametani F, Nonaka T, Masuda Suzukake M, Tarutani A, et al. Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau. Acta Neuropathol. 2016;131:267-280 pubmed 出版商
  122. Chauhan S, Ahmed Z, Bradfute S, Arko Mensah J, Mandell M, Won Choi S, et al. Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nat Commun. 2015;6:8620 pubmed 出版商
  123. Caccamo A, Branca C, Talboom J, Shaw D, Turner D, Ma L, et al. Reducing Ribosomal Protein S6 Kinase 1 Expression Improves Spatial Memory and Synaptic Plasticity in a Mouse Model of Alzheimer's Disease. J Neurosci. 2015;35:14042-56 pubmed 出版商
  124. Wagner J, Krauss S, Shi S, Ryazanov S, Steffen J, Miklitz C, et al. Reducing tau aggregates with anle138b delays disease progression in a mouse model of tauopathies. Acta Neuropathol. 2015;130:619-31 pubmed 出版商
  125. Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci. 2015;18:1584-93 pubmed 出版商
  126. Min S, Chen X, Tracy T, Li Y, Zhou Y, Wang C, et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med. 2015;21:1154-62 pubmed 出版商
  127. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  128. Lauretti E, Praticò D. Glucose deprivation increases tau phosphorylation via P38 mitogen-activated protein kinase. Aging Cell. 2015;14:1067-74 pubmed 出版商
  129. de Paula C, Santiago F, de Oliveira A, Oliveira F, Almeida M, Carrettiero D. The Co-chaperone BAG2 Mediates Cold-Induced Accumulation of Phosphorylated Tau in SH-SY5Y Cells. Cell Mol Neurobiol. 2016;36:593-602 pubmed 出版商
  130. Sun L, Ban T, Liu C, Chen Q, Wang X, Yan M, et al. Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA-195 down-regulation. J Neurochem. 2015;134:1139-51 pubmed 出版商
  131. Tan X, Xue Y, Ma T, Wang X, Li J, Lan L, et al. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol Neurodegener. 2015;10:24 pubmed 出版商
  132. Di Meco A, Joshi Y, Lauretti E, Praticò D. Maternal dexamethasone exposure ameliorates cognition and tau pathology in the offspring of triple transgenic AD mice. Mol Psychiatry. 2016;21:403-10 pubmed 出版商
  133. Brelstaff J, Ossola B, Neher J, Klingstedt T, Nilsson K, Goedert M, et al. The fluorescent pentameric oligothiophene pFTAA identifies filamentous tau in live neurons cultured from adult P301S tau mice. Front Neurosci. 2015;9:184 pubmed 出版商
  134. Sheik Mohideen S, Yamasaki Y, Omata Y, Tsuda L, Yoshiike Y. Nontoxic singlet oxygen generator as a therapeutic candidate for treating tauopathies. Sci Rep. 2015;5:10821 pubmed 出版商
  135. Guerreiro P, Gerhardt E, Lopes da Fonseca T, Bähr M, Outeiro T, Eckermann K. LRRK2 Promotes Tau Accumulation, Aggregation and Release. Mol Neurobiol. 2016;53:3124-3135 pubmed 出版商
  136. Petrov D, Pedrós I, Artiach G, Sureda F, Barroso E, Pallas M, et al. High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents. Biochim Biophys Acta. 2015;1852:1687-99 pubmed 出版商
  137. De Zio D, Molinari F, Rizza S, Gatta L, Ciotti M, Salvatore A, et al. Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth. Cell Mol Life Sci. 2015;72:4173-91 pubmed 出版商
  138. Sankaranarayanan S, Barten D, Vana L, Devidze N, Yang L, Cadelina G, et al. Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models. PLoS ONE. 2015;10:e0125614 pubmed 出版商
  139. Song L, Lu S, Ouyang X, Melchor J, Lee J, Terracina G, et al. Analysis of tau post-translational modifications in rTg4510 mice, a model of tau pathology. Mol Neurodegener. 2015;10:14 pubmed 出版商
  140. Miller N, Feng Z, Edens B, Yang B, Shi H, Sze C, et al. Non-aggregating tau phosphorylation by cyclin-dependent kinase 5 contributes to motor neuron degeneration in spinal muscular atrophy. J Neurosci. 2015;35:6038-50 pubmed 出版商
  141. Corbel C, Zhang B, Le Parc A, Baratte B, Colas P, Couturier C, et al. Tamoxifen inhibits CDK5 kinase activity by interacting with p35/p25 and modulates the pattern of tau phosphorylation. Chem Biol. 2015;22:472-482 pubmed 出版商
  142. Takeuchi R, Toyoshima Y, Tada M, Tanaka H, Shimizu H, Shiga A, et al. Globular Glial Mixed Four Repeat Tau and TDP-43 Proteinopathy with Motor Neuron Disease and Frontotemporal Dementia. Brain Pathol. 2016;26:82-94 pubmed 出版商
  143. Hossini A, Megges M, Prigione A, Lichtner B, Toliat M, Wruck W, et al. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics. 2015;16:84 pubmed 出版商
  144. Xu H, Rösler T, Carlsson T, de Andrade A, Fiala O, Höllerhage M, et al. Tau silencing by siRNA in the P301S mouse model of tauopathy. Curr Gene Ther. 2014;14:343-51 pubmed
  145. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  146. Melis V, Zabke C, Stamer K, Magbagbeolu M, Schwab K, Marschall P, et al. Different pathways of molecular pathophysiology underlie cognitive and motor tauopathy phenotypes in transgenic models for Alzheimer's disease and frontotemporal lobar degeneration. Cell Mol Life Sci. 2015;72:2199-222 pubmed 出版商
  147. Iliff J, Chen M, Plog B, Zeppenfeld D, Soltero M, Yang L, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34:16180-93 pubmed 出版商
  148. Lauretti E, di Meco A, Chu J, Praticò D. Modulation of AD neuropathology and memory impairments by the isoprostane F2α is mediated by the thromboxane receptor. Neurobiol Aging. 2015;36:812-20 pubmed 出版商
  149. Höllerhage M, Deck R, de Andrade A, Respondek G, Xu H, Rösler T, et al. Piericidin A aggravates Tau pathology in P301S transgenic mice. PLoS ONE. 2014;9:e113557 pubmed 出版商
  150. Ohia Nwoko O, Montazari S, Lau Y, Eriksen J. Long-term treadmill exercise attenuates tau pathology in P301S tau transgenic mice. Mol Neurodegener. 2014;9:54 pubmed 出版商
  151. Hu X, Li X, Zhao M, Gottesdiener A, Luo W, Paul S. Tau pathogenesis is promoted by Aβ1-42 but not Aβ1-40. Mol Neurodegener. 2014;9:52 pubmed 出版商
  152. Falcon B, Cavallini A, Angers R, Glover S, Murray T, Barnham L, et al. Conformation determines the seeding potencies of native and recombinant Tau aggregates. J Biol Chem. 2015;290:1049-65 pubmed 出版商
  153. Saidi L, Polydoro M, Kay K, Sanchez L, Mandelkow E, Hyman B, et al. Carboxy terminus heat shock protein 70 interacting protein reduces tau-associated degenerative changes. J Alzheimers Dis. 2015;44:937-47 pubmed 出版商
  154. Castro Alvarez J, Uribe Arias S, Kosik K, Cardona Gómez G. Long- and short-term CDK5 knockdown prevents spatial memory dysfunction and tau pathology of triple transgenic Alzheimer's mice. Front Aging Neurosci. 2014;6:243 pubmed 出版商
  155. Lee S, Xu G, Jay T, Bhatta S, Kim K, Jung S, et al. Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway. J Neurosci. 2014;34:12538-46 pubmed 出版商
  156. Dunn H, Ager R, Baglietto Vargas D, Cheng D, Kitazawa M, Cribbs D, et al. Restoration of lipoxin A4 signaling reduces Alzheimer's disease-like pathology in the 3xTg-AD mouse model. J Alzheimers Dis. 2015;43:893-903 pubmed 出版商
  157. Zhou Y, Hayashi I, Wong J, Tugusheva K, Renger J, Zerbinatti C. Intracellular clusterin interacts with brain isoforms of the bridging integrator 1 and with the microtubule-associated protein Tau in Alzheimer's disease. PLoS ONE. 2014;9:e103187 pubmed 出版商
  158. Gheyara A, Ponnusamy R, Djukic B, Craft R, Ho K, Guo W, et al. Tau reduction prevents disease in a mouse model of Dravet syndrome. Ann Neurol. 2014;76:443-56 pubmed 出版商
  159. Fernández Nogales M, Cabrera J, Santos Galindo M, Hoozemans J, Ferrer I, Rozemuller A, et al. Huntington's disease is a four-repeat tauopathy with tau nuclear rods. Nat Med. 2014;20:881-5 pubmed 出版商
  160. Richens J, Vere K, Light R, Soria D, Garibaldi J, Smith A, et al. Practical detection of a definitive biomarker panel for Alzheimer's disease; comparisons between matched plasma and cerebrospinal fluid. Int J Mol Epidemiol Genet. 2014;5:53-70 pubmed
  161. Pedr s I, Petrov D, Allgaier M, Sureda F, Barroso E, Beas Zarate C, et al. Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer's disease. Biochim Biophys Acta. 2014;1842:1556-66 pubmed 出版商
  162. Shilling D, Müller M, Takano H, Mak D, Abel T, Coulter D, et al. Suppression of InsP3 receptor-mediated Ca2+ signaling alleviates mutant presenilin-linked familial Alzheimer's disease pathogenesis. J Neurosci. 2014;34:6910-23 pubmed 出版商
  163. Maurin H, Lechat B, Borghgraef P, Devijver H, Jaworski T, Van Leuven F. Terminal hypothermic Tau.P301L mice have increased Tau phosphorylation independently of glycogen synthase kinase 3?/?. Eur J Neurosci. 2014;40:2442-53 pubmed 出版商
  164. Liu X, Zhou J, Abid M, Yan H, Huang H, Wan L, et al. Berberine attenuates axonal transport impairment and axonopathy induced by Calyculin A in N2a cells. PLoS ONE. 2014;9:e93974 pubmed 出版商
  165. Liu C, Götz J. Profiling murine tau with 0N, 1N and 2N isoform-specific antibodies in brain and peripheral organs reveals distinct subcellular localization, with the 1N isoform being enriched in the nucleus. PLoS ONE. 2013;8:e84849 pubmed 出版商
  166. Borghgraef P, Menuet C, Theunis C, Louis J, Devijver H, Maurin H, et al. Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau.P301L mice. PLoS ONE. 2013;8:e84442 pubmed 出版商
  167. Notter T, Panzanelli P, PFISTER S, Mircsof D, Fritschy J. A protocol for concurrent high-quality immunohistochemical and biochemical analyses in adult mouse central nervous system. Eur J Neurosci. 2014;39:165-75 pubmed 出版商
  168. Medeiros R, Castello N, Cheng D, Kitazawa M, Baglietto Vargas D, Green K, et al. ?7 Nicotinic receptor agonist enhances cognition in aged 3xTg-AD mice with robust plaques and tangles. Am J Pathol. 2014;184:520-9 pubmed 出版商
  169. Tan M, Yu J, Jiang T, Zhu X, Guan H, Tan L. IL12/23 p40 inhibition ameliorates Alzheimer's disease-associated neuropathology and spatial memory in SAMP8 mice. J Alzheimers Dis. 2014;38:633-46 pubmed 出版商
  170. Manich G, del Valle J, Cabezón I, Camins A, Pallas M, Pelegri C, et al. Presence of a neo-epitope and absence of amyloid beta and tau protein in degenerative hippocampal granules of aged mice. Age (Dordr). 2014;36:151-65 pubmed 出版商
  171. Ordóñez Gutiérrez L, Torres J, Gavin R, Anton M, Arroba Espinosa A, Espinosa J, et al. Cellular prion protein modulates ?-amyloid deposition in aged APP/PS1 transgenic mice. Neurobiol Aging. 2013;34:2793-804 pubmed 出版商
  172. Pristerà A, Saraulli D, Farioli Vecchioli S, Strimpakos G, Costanzi M, Di Certo M, et al. Impact of N-tau on adult hippocampal neurogenesis, anxiety, and memory. Neurobiol Aging. 2013;34:2551-63 pubmed 出版商
  173. Zhang X, Hernandez I, Rei D, Mair W, Laha J, Cornwell M, et al. Diaminothiazoles modify Tau phosphorylation and improve the tauopathy in mouse models. J Biol Chem. 2013;288:22042-56 pubmed 出版商
  174. Maurin H, Seymour C, Lechat B, Borghgraef P, Devijver H, Jaworski T, et al. Tauopathy differentially affects cell adhesion molecules in mouse brain: early down-regulation of nectin-3 in stratum lacunosum moleculare. PLoS ONE. 2013;8:e63589 pubmed 出版商
  175. Park Y, Ko J, Jang Y, Kwon Y. Activation of AMP-activated protein kinase alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells. Neurochem Res. 2013;38:1561-71 pubmed 出版商
  176. Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolen K, et al. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry. 2013;18:1225-34 pubmed 出版商
  177. Hebron M, Algarzae N, Lonskaya I, Moussa C. Fractalkine signaling and Tau hyper-phosphorylation are associated with autophagic alterations in lentiviral Tau and A?1-42 gene transfer models. Exp Neurol. 2014;251:127-38 pubmed 出版商
  178. Kohler C, Dinekov M, Götz J. Active glycogen synthase kinase-3 and tau pathology-related tyrosine phosphorylation in pR5 human tau transgenic mice. Neurobiol Aging. 2013;34:1369-79 pubmed 出版商
  179. Porquet D, Casadesus G, Bayod S, Vicente A, Canudas A, Vilaplana J, et al. Dietary resveratrol prevents Alzheimer's markers and increases life span in SAMP8. Age (Dordr). 2013;35:1851-65 pubmed 出版商
  180. Kopeikina K, Polydoro M, Tai H, Yaeger E, Carlson G, Pitstick R, et al. Synaptic alterations in the rTg4510 mouse model of tauopathy. J Comp Neurol. 2013;521:1334-53 pubmed 出版商
  181. Tian M, Zhu D, Xie W, Shi J. Central angiotensin II-induced Alzheimer-like tau phosphorylation in normal rat brains. FEBS Lett. 2012;586:3737-45 pubmed 出版商
  182. Karlsson O, Berg A, Lindström A, Hanrieder J, Arnerup G, Roman E, et al. Neonatal exposure to the cyanobacterial toxin BMAA induces changes in protein expression and neurodegeneration in adult hippocampus. Toxicol Sci. 2012;130:391-404 pubmed 出版商
  183. Sontag J, Nunbhakdi Craig V, White C, Halpain S, Sontag E. The protein phosphatase PP2A/B? binds to the microtubule-associated proteins Tau and MAP2 at a motif also recognized by the kinase Fyn: implications for tauopathies. J Biol Chem. 2012;287:14984-93 pubmed 出版商
  184. Maarouf C, Daugs I, Kokjohn T, Walker D, Hunter J, Kruchowsky J, et al. Alzheimer's disease and non-demented high pathology control nonagenarians: comparing and contrasting the biochemistry of cognitively successful aging. PLoS ONE. 2011;6:e27291 pubmed 出版商
  185. Kaul T, Credle J, Haggerty T, Oaks A, Masliah E, Sidhu A. Region-specific tauopathy and synucleinopathy in brain of the alpha-synuclein overexpressing mouse model of Parkinson's disease. BMC Neurosci. 2011;12:79 pubmed 出版商
  186. Maldonado H, Ramírez E, Utreras E, Pando M, Kettlun A, Chiong M, et al. Inhibition of cyclin-dependent kinase 5 but not of glycogen synthase kinase 3-β prevents neurite retraction and tau hyperphosphorylation caused by secretable products of human T-cell leukemia virus type I-infected lymphocytes. J Neurosci Res. 2011;89:1489-98 pubmed 出版商
  187. Haggerty T, Credle J, Rodriguez O, Wills J, Oaks A, Masliah E, et al. Hyperphosphorylated Tau in an ?-synuclein-overexpressing transgenic model of Parkinson's disease. Eur J Neurosci. 2011;33:1598-610 pubmed 出版商
  188. Wills J, Credle J, Haggerty T, Lee J, Oaks A, Sidhu A. Tauopathic changes in the striatum of A53T ?-synuclein mutant mouse model of Parkinson's disease. PLoS ONE. 2011;6:e17953 pubmed 出版商
  189. Nakajima T, Ochi S, Oda C, Ishii M, Ogawa K. Ischemic preconditioning attenuates of ischemia-induced degradation of spectrin and tau: implications for ischemic tolerance. Neurol Sci. 2011;32:229-39 pubmed 出版商
  190. Spatara M, Robinson A. Transgenic mouse and cell culture models demonstrate a lack of mechanistic connection between endoplasmic reticulum stress and tau dysfunction. J Neurosci Res. 2010;88:1951-61 pubmed 出版商
  191. Hall E, Lee S, Mairuae N, Simmons Z, Connor J. Expression of the HFE allelic variant H63D in SH-SY5Y cells affects tau phosphorylation at serine residues. Neurobiol Aging. 2011;32:1409-19 pubmed 出版商
  192. Kim H, Sul D, Lim J, Lee D, Joo S, Hwang K, et al. Delphinidin ameliorates beta-amyloid-induced neurotoxicity by inhibiting calcium influx and tau hyperphosphorylation. Biosci Biotechnol Biochem. 2009;73:1685-9 pubmed
  193. Sul D, Kim H, Lee D, Joo S, Hwang K, Park S. Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sci. 2009;84:257-62 pubmed 出版商
  194. Sul D, Kim H, Cho E, Lee M, Kim H, Jung W, et al. 2,3,7,8-TCDD neurotoxicity in neuroblastoma cells is caused by increased oxidative stress, intracellular calcium levels, and tau phosphorylation. Toxicology. 2009;255:65-71 pubmed 出版商
  195. Irons H, Cullen D, Shapiro N, Lambert N, Lee R, LaPlaca M. Three-dimensional neural constructs: a novel platform for neurophysiological investigation. J Neural Eng. 2008;5:333-41 pubmed 出版商
  196. Park S, Kim H, Cho E, Kwon B, Phark S, Hwang K, et al. Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem Toxicol. 2008;46:2881-7 pubmed 出版商
  197. Fukuzaki E, Takuma K, Himeno Y, Yoshida S, Funatsu Y, Kitahara Y, et al. Enhanced activity of hippocampal BACE1 in a mouse model of postmenopausal memory deficits. Neurosci Lett. 2008;433:141-5 pubmed 出版商
  198. Liu R, Zhou X, Tanila H, Bjorkdahl C, Wang J, Guan Z, et al. Phosphorylated PP2A (tyrosine 307) is associated with Alzheimer neurofibrillary pathology. J Cell Mol Med. 2008;12:241-57 pubmed 出版商
  199. Selenica M, Jensen H, Larsen A, Pedersen M, Helboe L, Leist M, et al. Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation. Br J Pharmacol. 2007;152:959-79 pubmed
  200. Bai Q, Garver J, Hukriede N, Burton E. Generation of a transgenic zebrafish model of Tauopathy using a novel promoter element derived from the zebrafish eno2 gene. Nucleic Acids Res. 2007;35:6501-16 pubmed
  201. Jossin Y, Goffinet A. Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth. Mol Cell Biol. 2007;27:7113-24 pubmed
  202. Park S, Tournell C, Sinjoanu R, Ferreira A. Caspase-3- and calpain-mediated tau cleavage are differentially prevented by estrogen and testosterone in beta-amyloid-treated hippocampal neurons. Neuroscience. 2007;144:119-27 pubmed
  203. Schindowski K, Bretteville A, Leroy K, Bégard S, Brion J, Hamdane M, et al. Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol. 2006;169:599-616 pubmed
  204. Yoshida S, Maeda M, Kaku S, Ikeya H, Yamada K, Nakaike S. Lithium inhibits stress-induced changes in tau phosphorylation in the mouse hippocampus. J Neural Transm (Vienna). 2006;113:1803-14 pubmed
  205. Lobsiger C, Garcia M, Ward C, Cleveland D. Altered axonal architecture by removal of the heavily phosphorylated neurofilament tail domains strongly slows superoxide dismutase 1 mutant-mediated ALS. Proc Natl Acad Sci U S A. 2005;102:10351-6 pubmed
  206. Kerokoski P, Suuronen T, Salminen A, Soininen H, Pirttila T. Cleavage of the cyclin-dependent kinase 5 activator p35 to p25 does not induce tau hyperphosphorylation. Biochem Biophys Res Commun. 2002;298:693-8 pubmed