这是一篇来自已证抗体库的有关牛 TP53的综述,是根据54篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TP53 抗体。
赛默飞世尔
小鼠 单克隆(DO-1)
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 TP53抗体(Labvision, MS-187P)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Rep (2018) ncbi
小鼠 单克隆(DO-1)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 TP53抗体(Thermo Fisher, DO-1)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2018) ncbi
小鼠 单克隆(DO-1)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 1a
赛默飞世尔 TP53抗体(Invitrogen, DO1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 1a). Science (2018) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化-石蜡切片; 人类; 1:500; 表 2
赛默飞世尔 TP53抗体(Thermo Fisher Scientific, D07)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (表 2). J Korean Med Sci (2017) ncbi
小鼠 单克隆(DO-1)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 TP53抗体(Thermo Scientific, DO-1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Mol Cancer Res (2017) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 TP53抗体(NeoMarkers, DO7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). BMC Cancer (2016) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化; 人类; 图 3c
赛默飞世尔 TP53抗体(Thermo Fisher, A00021-IFU)被用于被用于免疫组化在人类样本上 (图 3c). Sci Rep (2016) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化; 人类; 1:600; 图 1
赛默飞世尔 TP53抗体(Thermo, DO-7)被用于被用于免疫组化在人类样本上浓度为1:600 (图 1). Diagn Pathol (2016) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1b
赛默飞世尔 TP53抗体(Thermo Scientific, DO-7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1b). J Clin Pathol (2016) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化; 人类; 1:1000; 表 2
赛默飞世尔 TP53抗体(Thermo Fisher, DO-7)被用于被用于免疫组化在人类样本上浓度为1:1000 (表 2). Virchows Arch (2016) ncbi
小鼠 单克隆(DO-7)
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔 TP53抗体(Thermo Scientific, MS-186)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(DO-1)
  • 免疫印迹; 人类; 图 2a
赛默飞世尔 TP53抗体(NeoMarkers, DO-1)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(DO-7)
  • 免疫印迹; 人类; 图 1b
赛默飞世尔 TP53抗体(Thermo Fisher, DO-7)被用于被用于免疫印迹在人类样本上 (图 1b). Anal Bioanal Chem (2016) ncbi
小鼠 单克隆(DO-1)
  • 免疫印迹; 人类; 图 s2a
赛默飞世尔 TP53抗体(Thermoscientific, MS-187-PO)被用于被用于免疫印迹在人类样本上 (图 s2a). Nat Commun (2015) ncbi
小鼠 单克隆(DO-1)
  • 免疫组化; 人类; 1:200; 图 3
赛默飞世尔 TP53抗体(Thermo Scientific, p53 Ab-6 (Clone DO-1))被用于被用于免疫组化在人类样本上浓度为1:200 (图 3). Gastroenterology (2015) ncbi
小鼠 单克隆(DO-7)
  • 免疫印迹; 人类; 1:1000; 图 8
赛默飞世尔 TP53抗体(Thermo Scientific, MS-186)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 TP53抗体(Neomarkers, DO-7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Pathol Res Pract (2015) ncbi
小鼠 单克隆(DO-1)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛默飞世尔 TP53抗体(Labvision, DO-1)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化; 人类; 1:400
赛默飞世尔 TP53抗体(Thermo Scientific, DO-7)被用于被用于免疫组化在人类样本上浓度为1:400. Gynecol Oncol (2015) ncbi
小鼠 单克隆(DO-7)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TP53抗体(Thermo Scientific, DO-7)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer Res (2015) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化-石蜡切片; 人类; 1:400
赛默飞世尔 TP53抗体(Thermo Fisher Scientific, DO-7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Int J Gynecol Pathol (2015) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 TP53抗体(LabVisio, DO-7)被用于被用于免疫组化-石蜡切片在人类样本上. APMIS (2015) ncbi
小鼠 单克隆(DO-1)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 TP53抗体(Thermo Scientific, MS187)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Comp Med (2014) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化; 人类; 1:50
赛默飞世尔 TP53抗体(LabVision, DO-7)被用于被用于免疫组化在人类样本上浓度为1:50. Arch Dermatol Res (2015) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化-石蜡切片; 人类; 1:250
赛默飞世尔 TP53抗体(Neomarkers, DO-7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250. Am J Clin Pathol (2014) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化; brown rat; 1:100; 图 1, 2, 3
赛默飞世尔 TP53抗体(Thermo Scientific, DO-7)被用于被用于免疫组化在brown rat样本上浓度为1:100 (图 1, 2, 3). J Environ Pathol Toxicol Oncol (2014) ncbi
小鼠 单克隆(DO-1)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 TP53抗体(NeoMarkers, Do-1)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biomed Nanotechnol (2014) ncbi
小鼠 单克隆(DO-1)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫组化; 人类; 1:100
赛默飞世尔 TP53抗体(Lab Vision, DO-1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫组化在人类样本上浓度为1:100. Laryngoscope (2014) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化; 人类
赛默飞世尔 TP53抗体(Zymed, DO-7)被用于被用于免疫组化在人类样本上. Cancer Biol Med (2012) ncbi
小鼠 单克隆(DO-7)
  • 免疫细胞化学; 人类; 1:200; 图 1
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 TP53抗体(生活技术, DO-7)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化-石蜡切片; 人类; 表 3
赛默飞世尔 TP53抗体(Zymed, Do-7)被用于被用于免疫组化-石蜡切片在人类样本上 (表 3). Chin J Cancer (2012) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化-石蜡切片; 人类; 1:30
赛默飞世尔 TP53抗体(Lab Vision, MS-186)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30. Int J Oncol (2012) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 TP53抗体(Zymed, Do7)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oral Oncol (2012) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 8
赛默飞世尔 TP53抗体(ZYMED, DO7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 8). Diagn Cytopathol (2011) ncbi
小鼠 单克隆(DO-1)
  • 免疫印迹; 小鼠; 图 7
  • 免疫印迹; 人类; 图 7
赛默飞世尔 TP53抗体(Lab Vision, DO1)被用于被用于免疫印迹在小鼠样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 7). Cancer Cell (2008) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 TP53抗体(Zymed, D07)被用于被用于免疫组化-石蜡切片在人类样本上. Eur J Cancer Prev (2006) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化; 人类; 1:50
赛默飞世尔 TP53抗体(Zymed Laboratories, do-7)被用于被用于免疫组化在人类样本上浓度为1:50. Chin Med J (Engl) (2006) ncbi
小鼠 单克隆(DO-7)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
赛默飞世尔 TP53抗体(Zymed Laboratories, clone DO7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Am J Obstet Gynecol (2001) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(PAb 240)
  • 免疫沉淀; 人类; 图 4a
  • 免疫印迹; 人类; 图 1a, 1b
艾博抗(上海)贸易有限公司 TP53抗体(Abcam, ab26)被用于被用于免疫沉淀在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上 (图 1a, 1b). Redox Biol (2019) ncbi
小鼠 单克隆(PAb 240)
  • 免疫印迹; 人类; 1:1000; 图 s3b
艾博抗(上海)贸易有限公司 TP53抗体(Abcam, ab26)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). J Clin Invest (2019) ncbi
小鼠 单克隆(PAb 240)
  • 免疫印迹; brown rat; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 TP53抗体(Abcam, ab26)被用于被用于免疫印迹在brown rat样本上浓度为1:1000 (图 1c). BMC Biotechnol (2019) ncbi
小鼠 单克隆(PAb 240)
  • 免疫印迹; brown rat; 图 4b
艾博抗(上海)贸易有限公司 TP53抗体(Abcam, ab26)被用于被用于免疫印迹在brown rat样本上 (图 4b). Biosci Rep (2018) ncbi
小鼠 单克隆(PAb 240)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 TP53抗体(Abcam, ab26)被用于被用于免疫印迹在人类样本上 (图 5a). J Mol Neurosci (2018) ncbi
小鼠 单克隆(PAb 240)
  • 免疫印迹; 人类; 图 6a
  • 免疫印迹; brown rat; 图 6a
艾博抗(上海)贸易有限公司 TP53抗体(Abcam, ab26)被用于被用于免疫印迹在人类样本上 (图 6a) 和 被用于免疫印迹在brown rat样本上 (图 6a). Cancer Lett (2018) ncbi
小鼠 单克隆(PAb 240)
  • 免疫印迹; brown rat; 1:1000; 图 6c
艾博抗(上海)贸易有限公司 TP53抗体(Abcam, ab26)被用于被用于免疫印迹在brown rat样本上浓度为1:1000 (图 6c). Biosci Rep (2018) ncbi
小鼠 单克隆(PAb 240)
  • 免疫印迹; 小鼠; 1:500; 图 2d
艾博抗(上海)贸易有限公司 TP53抗体(Abcam, Ab26)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2d). Kidney Blood Press Res (2018) ncbi
小鼠 单克隆(PAb 240)
  • 免疫印迹; 人类; 图 s6
艾博抗(上海)贸易有限公司 TP53抗体(Abcam, Ab240)被用于被用于免疫印迹在人类样本上 (图 s6). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(PAb 240)
  • 免疫细胞化学; 人类; 图 s9
艾博抗(上海)贸易有限公司 TP53抗体(Abcam, 240)被用于被用于免疫细胞化学在人类样本上 (图 s9). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(PAb 240)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 TP53抗体(Abcam, ab26)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2015) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(DO-7)
  • 免疫印迹; 人类; 1:1000; 图 4a
伯乐(Bio-Rad)公司 TP53抗体(AbD Serotec, MCA1703)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Mol Oncol (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 TP53抗体(Cell Signaling, 2528)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 TP53抗体(CST, 2528)被用于被用于免疫印迹在人类样本上 (图 5). Nucleic Acids Res (2016) ncbi
默克密理博中国
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1b
默克密理博中国 TP53抗体(EMD Millipore, 06-1283)被用于被用于免疫细胞化学在人类样本上 (图 1b). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s11c
默克密理博中国 TP53抗体(Merck Millipore, 06-1283)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s11c). Nat Commun (2018) ncbi
文章列表
  1. Rong X, Rao J, Li D, Jing Q, Lu Y, Ji Y. TRIM69 inhibits cataractogenesis by negatively regulating p53. Redox Biol. 2019;22:101157 pubmed 出版商
  2. Crippa S, Rossella V, Aprile A, Silvestri L, Rivis S, Scaramuzza S, et al. Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Invest. 2019;129:1566-1580 pubmed 出版商
  3. Zhang G, Liu Y, Xu L, Sha C, Zhang H, Xu W. Resveratrol alleviates lipopolysaccharide-induced inflammation in PC-12 cells and in rat model. BMC Biotechnol. 2019;19:10 pubmed 出版商
  4. Fu J, Yu W, Jiang D. Acidic pH promotes nucleus pulposus cell senescence through activating the p38 MAPK pathway. Biosci Rep. 2018;38: pubmed 出版商
  5. Luff S, Kao C, Papoutsakis E. Role of p53 and transcription-independent p53-induced apoptosis in shear-stimulated megakaryocytic maturation, particle generation, and platelet biogenesis. PLoS ONE. 2018;13:e0203991 pubmed 出版商
  6. Leslie P, Franklin D, Liu Y, Zhang Y. p53 Regulates the Expression of LRP1 and Apoptosis through a Stress Intensity-Dependent MicroRNA Feedback Loop. Cell Rep. 2018;24:1484-1495 pubmed 出版商
  7. Bernal A, Moltó Abad M, Dominguez D, Tusell L. Acute telomere deprotection prevents ongoing BFB cycles and rampant instability in p16INK4a-deficient epithelial cells. Oncotarget. 2018;9:27151-27170 pubmed 出版商
  8. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  9. Wang J, Wang F, Zhu J, Song M, An J, Li W. Transcriptome Profiling Reveals PHLDA1 as a Novel Molecular Marker for Ischemic Cardiomyopathy. J Mol Neurosci. 2018;65:102-109 pubmed 出版商
  10. Wang Z, Ding Y, Wang X, Lu S, Wang C, He C, et al. Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT. Cancer Lett. 2018;428:21-33 pubmed 出版商
  11. Jin L, Lu J, Gao J. Silencing SUMO2 promotes protection against degradation and apoptosis of nucleus pulposus cells through p53 signaling pathway in intervertebral disc degeneration. Biosci Rep. 2018;38: pubmed 出版商
  12. Yang X, Ding Y, Yang M, Yu L, Hu Y, Deng Y. Nestin Improves Preeclampsia-Like Symptoms by Inhibiting Activity of Cyclin-Dependent Kinase 5. Kidney Blood Press Res. 2018;43:616-627 pubmed 出版商
  13. Li F, Liu J, Bao R, Yan G, Feng X, Xu Y, et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat Commun. 2018;9:508 pubmed 出版商
  14. Shin C, Lee M, Han J, Jeong S, Ryu B, Chi S. Identification of XAF1-MT2A mutual antagonism as a molecular switch in cell-fate decisions under stressful conditions. Proc Natl Acad Sci U S A. 2017;114:5683-5688 pubmed 出版商
  15. Jang M, Kim S, Hwang D, Kim W, Lim S, Kim W, et al. BRAF-Mutated Colorectal Cancer Exhibits Distinct Clinicopathological Features from Wild-Type BRAF-Expressing Cancer Independent of the Microsatellite Instability Status. J Korean Med Sci. 2017;32:38-46 pubmed 出版商
  16. Walline H, Carey T, Goudsmit C, Bellile E, D Souza G, Peterson L, et al. High-Risk HPV, Biomarkers, and Outcome in Matched Cohorts of Head and Neck Cancer Patients Positive and Negative for HIV. Mol Cancer Res. 2017;15:179-188 pubmed 出版商
  17. Bauer M, Joerger A, Fersht A. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-compromised cells. Proc Natl Acad Sci U S A. 2016;113:E5271-80 pubmed 出版商
  18. Guerra E, Cimadamore A, Simeone P, Vacca G, Lattanzio R, Botti G, et al. p53, cathepsin D, Bcl-2 are joint prognostic indicators of breast cancer metastatic spreading. BMC Cancer. 2016;16:649 pubmed 出版商
  19. Oktay Y, Ãœlgen E, Can Ã, Akyerli C, Yüksel Å, Erdemgil Y, et al. IDH-mutant glioma specific association of rs55705857 located at 8q24.21 involves MYC deregulation. Sci Rep. 2016;6:27569 pubmed 出版商
  20. Lu B, Chen Q, Zhang X, Cheng L. Serous carcinoma arising from uterine adenomyosis/adenomyotic cyst of the cervical stump: a report of 3 cases. Diagn Pathol. 2016;11:46 pubmed 出版商
  21. Nooij L, Dreef E, Smit V, van Poelgeest M, Bosse T. Stathmin is a highly sensitive and specific biomarker for vulvar high-grade squamous intraepithelial lesions. J Clin Pathol. 2016;69:1070-1075 pubmed 出版商
  22. Ardighieri L, Mori L, Conzadori S, Bugatti M, Falchetti M, Donzelli C, et al. Identical TP53 mutations in pelvic carcinosarcomas and associated serous tubal intraepithelial carcinomas provide evidence of their clonal relationship. Virchows Arch. 2016;469:61-9 pubmed 出版商
  23. Ercilla A, Llopis A, Feu S, Aranda S, Ernfors P, Freire R, et al. New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress. Nucleic Acids Res. 2016;44:4745-62 pubmed 出版商
  24. Liu X, Wang S, Guo X, Wei F, Yin J, Zang Y, et al. Exogenous p53 and ASPP2 expression enhances rAdV-TK/ GCV-induced death in hepatocellular carcinoma cells lacking functional p53. Oncotarget. 2016;7:18896-905 pubmed 出版商
  25. Zheng F, Yue C, Li G, He B, Cheng W, Wang X, et al. Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype. Nat Commun. 2016;7:10180 pubmed 出版商
  26. Cubillos Rojas M, Schneider T, Sánchez Tena S, Bartrons R, Ventura F, Rosa J. Tris-acetate polyacrylamide gradient gel electrophoresis for the analysis of protein oligomerization. Anal Bioanal Chem. 2016;408:1715-9 pubmed 出版商
  27. Gruosso T, Garnier C, Abélanet S, Kieffer Y, Lemesre V, Bellanger D, et al. MAP3K8/TPL-2/COT is a potential predictive marker for MEK inhibitor treatment in high-grade serous ovarian carcinomas. Nat Commun. 2015;6:8583 pubmed 出版商
  28. Kramer H, Lai C, Patel H, Periyasamy M, Lin M, Feller S, et al. LRH-1 drives colon cancer cell growth by repressing the expression of the CDKN1A gene in a p53-dependent manner. Nucleic Acids Res. 2016;44:582-94 pubmed 出版商
  29. Catenacci D, Chapman C, Xu P, Koons A, Konda V, Siddiqui U, et al. Acquisition of Portal Venous Circulating Tumor Cells From Patients With Pancreaticobiliary Cancers by Endoscopic Ultrasound. Gastroenterology. 2015;149:1794-1803.e4 pubmed 出版商
  30. Domínguez D, Feijoo P, Bernal A, Ercilla A, Agell N, Genescà A, et al. Centrosome aberrations in human mammary epithelial cells driven by cooperative interactions between p16INK4a deficiency and telomere-dependent genotoxic stress. Oncotarget. 2015;6:28238-56 pubmed 出版商
  31. De Cesare M, Cominetti D, Doldi V, Lopergolo A, Deraco M, Gandellini P, et al. Anti-tumor activity of selective inhibitors of XPO1/CRM1-mediated nuclear export in diffuse malignant peritoneal mesothelioma: the role of survivin. Oncotarget. 2015;6:13119-32 pubmed
  32. Kankaya D, Kiremitci S, Tulunay O, Baltaci S. Gelsolin, NF-κB, and p53 expression in clear cell renal cell carcinoma: Impact on outcome. Pathol Res Pract. 2015;211:505-12 pubmed 出版商
  33. Leslie P, Ke H, Zhang Y. The MDM2 RING domain and central acidic domain play distinct roles in MDM2 protein homodimerization and MDM2-MDMX protein heterodimerization. J Biol Chem. 2015;290:12941-50 pubmed 出版商
  34. Geels Y, van der Putten L, van Tilborg A, Lurkin I, Zwarthoff E, Pijnenborg J, et al. Immunohistochemical and genetic profiles of endometrioid endometrial carcinoma arising from atrophic endometrium. Gynecol Oncol. 2015;137:245-51 pubmed 出版商
  35. Balboni A, Cherukuri P, Ung M, DeCastro A, Cheng C, DiRenzo J. p53 and ΔNp63α Coregulate the Transcriptional and Cellular Response to TGFβ and BMP Signals. Mol Cancer Res. 2015;13:732-42 pubmed 出版商
  36. Simons M, Nagtegaal I, Overbeek L, Flucke U, Massuger L, Bulten J. A patient with a noninvasive mucinous ovarian borderline tumor presenting with late pleural metastases. Int J Gynecol Pathol. 2015;34:143-50 pubmed 出版商
  37. Gurzu S, Kádár Z, Sugimura H, Bara T, Hălmaciu I, Jung I. Gastric cancer in young vs old Romanian patients: immunoprofile with emphasis on maspin and mena protein reactivity. APMIS. 2015;123:223-33 pubmed 出版商
  38. Greve K, Lindgreen J, Terp M, Pedersen C, Schmidt S, Mollenhauer J, et al. Ectopic expression of cancer/testis antigen SSX2 induces DNA damage and promotes genomic instability. Mol Oncol. 2015;9:437-49 pubmed 出版商
  39. Beck A, Brooks A, Zeiss C. Invasive ductular carcinoma in 2 rhesus macaques (Macaca mulatta). Comp Med. 2014;64:314-22 pubmed
  40. Gurzu S, Ciortea D, Tamasi A, Golea M, Bodi A, Sahlean D, et al. The immunohistochemical profile of granular cell (Abrikossoff) tumor suggests an endomesenchymal origin. Arch Dermatol Res. 2015;307:151-7 pubmed 出版商
  41. Mingels M, Masadah R, Geels Y, Otte Holler I, de Kievit I, van der Laak J, et al. High prevalence of atypical hyperplasia in the endometrium of patients with epithelial ovarian cancer. Am J Clin Pathol. 2014;142:213-21 pubmed 出版商
  42. Basak K, Doguc D, Aylak F, Karadayi N, Gultekin F. Effects of maternally exposed food coloring additives on laryngeal histology in rats. J Environ Pathol Toxicol Oncol. 2014;33:123-30 pubmed
  43. Senkiv Y, Riabtseva A, Heffeter P, Boiko N, Kowol C, Jungwith U, et al. Enhanced anticancer activity and circumvention of resistance mechanisms by novel polymeric/ phospholipidic nanocarriers of doxorubicin. J Biomed Nanotechnol. 2014;10:1369-81 pubmed
  44. Bradford C, Kumar B, Bellile E, Lee J, Taylor J, D SILVA N, et al. Biomarkers in advanced larynx cancer. Laryngoscope. 2014;124:179-87 pubmed 出版商
  45. Hao J, Yang C, Liu F, Yang Y, Li S, Li W, et al. Accessory breast cancer occurring concurrently with bilateral primary invasive breast carcinomas: a report of two cases and literature review. Cancer Biol Med. 2012;9:197-201 pubmed 出版商
  46. Kofod Olsen E, Møller J, Schleimann M, Bundgaard B, Bak R, Øster B, et al. Inhibition of p53-dependent, but not p53-independent, cell death by U19 protein from human herpesvirus 6B. PLoS ONE. 2013;8:e59223 pubmed 出版商
  47. Yue W, Sai K, Wu Q, Xia Y, Yu S, Chen Z. Long-term molecular changes in WHO grade II astrocytomas following radiotherapy. Chin J Cancer. 2012;31:159-65 pubmed 出版商
  48. Jung Y, Joo K, Seong D, Choi Y, Kong D, Kim Y, et al. Identification of prognostic biomarkers for glioblastomas using protein expression profiling. Int J Oncol. 2012;40:1122-32 pubmed 出版商
  49. Helal T, Fadel M, El Thobbani A, El Sarhi A. Immunoexpression of p53 and hMSH2 in oral squamous cell carcinoma and oral dysplastic lesions in Yemen: relationship to oral risk habits and prognostic factors. Oral Oncol. 2012;48:120-4 pubmed 出版商
  50. Su X, Li G, Liu W, Xie B, Jiang Y. Cytological differential diagnosis among adenocarcinoma, epithelial mesothelioma, and reactive mesothelial cells in serous effusions by immunocytochemistry. Diagn Cytopathol. 2011;39:900-8 pubmed 出版商
  51. Itahana K, Zhang Y. Mitochondrial p32 is a critical mediator of ARF-induced apoptosis. Cancer Cell. 2008;13:542-53 pubmed 出版商
  52. Sun B, Sun Y, Wang J, Zhao X, Wang X, Hao X. Extent, relationship and prognostic significance of apoptosis and cell proliferation in synovial sarcoma. Eur J Cancer Prev. 2006;15:258-65 pubmed
  53. Cao Y, Zhang M, Wang J, Zhang W, Li G, Zhao J. Recurrent intracranial hemangiopericytoma with multiple metastases. Chin Med J (Engl). 2006;119:169-73 pubmed
  54. Kale A, Soylemez F, Ensari A. Expressions of proliferation markers (Ki-67, proliferating cell nuclear antigen, and silver-staining nucleolar organizer regions) and of p53 tumor protein in gestational trophoblastic disease. Am J Obstet Gynecol. 2001;184:567-74 pubmed