这是一篇来自已证抗体库的有关牛 TUBA4A的综述,是根据1304篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合TUBA4A 抗体。
赛默飞世尔
小鼠 单克隆(236-10501)
  • 免疫组化-石蜡切片; 人类; 图 5i
赛默飞世尔 TUBA4A抗体(Invitrogen, A11126)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5i). Sci Adv (2022) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛默飞世尔 TUBA4A抗体(Invitrogen, 62204)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Aging Cell (2021) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:20; 图 4a
赛默飞世尔 TUBA4A抗体(Thermo, A21371)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 4a). elife (2020) ncbi
小鼠 单克隆(DM1A)
赛默飞世尔 TUBA4A抗体(Thermo Fisher, 62204)被用于. elife (2020) ncbi
小鼠 单克隆(DM1A)
  • 其他; 淡水涡虫;真涡虫; 1:1000
赛默飞世尔 TUBA4A抗体(Thermo/Fisher, MS581P1)被用于被用于其他在淡水涡虫;真涡虫样本上浓度为1:1000. elife (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图 2s1a
赛默飞世尔 TUBA4A抗体(Thermo Fisher, 62204)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2s1a). elife (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3f
赛默飞世尔 TUBA4A抗体(Neomarkers, DM1A)被用于被用于免疫印迹在人类样本上 (图 3f). Sci Rep (2019) ncbi
小鼠 单克隆(236-10501)
赛默飞世尔 TUBA4A抗体(Pierce, A11126)被用于. Int J Mol Med (2017) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 8d
赛默飞世尔 TUBA4A抗体(生活技术, A11126)被用于被用于免疫细胞化学在人类样本上 (图 8d). Mol Cell Biol (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 TUBA4A抗体(Thermo Scientific, 62204)被用于被用于免疫组化-石蜡切片在小鼠样本上. Acta Histochem (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 小鼠; 图 5f
赛默飞世尔 TUBA4A抗体(Thermo Fisher, MS-581-P1)被用于被用于免疫组化在小鼠样本上 (图 5f). Autophagy (2017) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:400; 图 3a
赛默飞世尔 TUBA4A抗体(生活技术, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 3a). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2C
赛默飞世尔 TUBA4A抗体(Lab Vision, MS-581-PO)被用于被用于免疫印迹在人类样本上 (图 2C). Sci Rep (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; fruit fly ; 1:100; 图 s4
赛默飞世尔 TUBA4A抗体(Fisher Scientific, A11126)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 s4). Biophys J (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:2000; 图 3c
赛默飞世尔 TUBA4A抗体(Thermo Scientific, 62204)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3c). Mol Neurobiol (2017) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 5a
赛默飞世尔 TUBA4A抗体(Invitrogen, A11126)被用于被用于免疫印迹在人类样本上 (图 5a). J Biol Chem (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA4A抗体(LabVision, DM1A)被用于被用于免疫印迹在人类样本上 (图 1). J Inflamm (Lond) (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:50; 图 7
赛默飞世尔 TUBA4A抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 7). Sci Rep (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; 小鼠; 1:200; 图 2b
赛默飞世尔 TUBA4A抗体(生活技术, A11126)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2b). Reprod Biomed Online (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA4A抗体(Thermo Scientific, A-11126)被用于被用于免疫印迹在人类样本上 (图 2). PLoS Pathog (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA4A抗体(Thermo Scientific, MS-581-P)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 TUBA4A抗体(ThermoFisher Scientific, MS-581-P1)被用于被用于免疫印迹在小鼠样本上 (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 s5
赛默飞世尔 TUBA4A抗体(Invitrogen, A11126)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 s5). Development (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 TUBA4A抗体(Lab Vision, MS-581)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 4b
赛默飞世尔 TUBA4A抗体(NeoMarkers, MS-581)被用于被用于免疫印迹在人类样本上 (图 4b). J Biol Chem (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2500; 图 5
赛默飞世尔 TUBA4A抗体(Pierce, 62204)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA4A抗体(NeoMarkers, MS-581-P0)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 婴儿利什曼原虫; 1:1000; 图 4
赛默飞世尔 TUBA4A抗体(Neomarkers, DM1A)被用于被用于免疫印迹在婴儿利什曼原虫样本上浓度为1:1000 (图 4). PLoS Negl Trop Dis (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:400; 图 6
赛默飞世尔 TUBA4A抗体(生活技术, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 6). Biol Reprod (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; malaria parasite P. falciparum; 1:2000; 图 3
赛默飞世尔 TUBA4A抗体(分子探针, A11126)被用于被用于免疫细胞化学在malaria parasite P. falciparum样本上浓度为1:2000 (图 3). J Cell Sci (2016) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 8
赛默飞世尔 TUBA4A抗体(生活技术, 236?C10501)被用于被用于免疫细胞化学在人类样本上 (图 8). J Exp Med (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 7
赛默飞世尔 TUBA4A抗体(Thermo Scientific, MS-581-P0)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 TUBA4A抗体(Thermo Scientific, DM1A)被用于被用于免疫印迹在人类样本上 (图 3). Br J Cancer (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔 TUBA4A抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 TUBA4A抗体(Neomarkers, MS581P1)被用于被用于免疫细胞化学在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 小鼠; 1:1000
赛默飞世尔 TUBA4A抗体(Thermo Scientific, MS-581-P0)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Reproduction (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA4A抗体(Lab Vision, DM1A)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:1000; 图 1
赛默飞世尔 TUBA4A抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000
赛默飞世尔 TUBA4A抗体(Fisher Scientific, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:2000. Integr Biol (Camb) (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
赛默飞世尔 TUBA4A抗体(Thermo Scientific, MS-581-P1)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠
赛默飞世尔 TUBA4A抗体(Invitrogen LifeTechnologies, A11126)被用于被用于免疫细胞化学在小鼠样本上. Cell Death Dis (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上. Acta Neuropathol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA4A抗体(Neomarker, MS-581-P1)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 2
赛默飞世尔 TUBA4A抗体(NeoMarkers, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔 TUBA4A抗体(生活技术, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Development (2015) ncbi
小鼠 单克隆(DM1A)
赛默飞世尔 TUBA4A抗体(Thermo, MS-581-P)被用于. Cell Prolif (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 TUBA4A抗体(Neomarkers, DM1A)被用于被用于免疫印迹在小鼠样本上 (图 1). Nature (2015) ncbi
小鼠 单克隆(DM1A)
赛默飞世尔 TUBA4A抗体(Thermo Fisher Scientific, MS-581-P1)被用于. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 TUBA4A抗体(Thermo Fisher Scientific, MS-581-P0)被用于被用于免疫印迹在小鼠样本上 (图 2). Int J Mol Med (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 9
赛默飞世尔 TUBA4A抗体(Thermo Scientific, 62204)被用于被用于免疫印迹在人类样本上 (图 9). Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
赛默飞世尔 TUBA4A抗体(NeoMarkers, MS-581-P0)被用于. Hum Mutat (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔 TUBA4A抗体(Thermo, DM-1A)被用于被用于免疫印迹在人类样本上 (图 3a). Nucleic Acids Res (2014) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; African green monkey
赛默飞世尔 TUBA4A抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在African green monkey样本上. Soft Matter (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 TUBA4A抗体(Thermo Fisher Scientific, MS581P)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 非洲爪蛙; 图 2
赛默飞世尔 TUBA4A抗体(Neomarkers, MS-581-P0)被用于被用于免疫印迹在非洲爪蛙样本上 (图 2). PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 TUBA4A抗体(Neomarkers, DM1A)被用于被用于免疫印迹在人类样本上 (图 5). PLoS Genet (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 TUBA4A抗体(Lab Vision, DM1A)被用于被用于免疫印迹在人类样本上 (图 3). J Proteome Res (2014) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠
赛默飞世尔 TUBA4A抗体(生活技术, A11126)被用于被用于免疫印迹在小鼠样本上. J Peripher Nerv Syst (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
赛默飞世尔 TUBA4A抗体(Thermo, MS-581-P0)被用于被用于免疫印迹在小鼠样本上. J Radiat Res (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
赛默飞世尔 TUBA4A抗体(NeoMarkers, MS-581-P)被用于被用于免疫印迹在小鼠样本上. Nat Commun (2014) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化-石蜡切片; 人类; 0.5 ug/ml
赛默飞世尔 TUBA4A抗体(Invitrogen, A11126)被用于被用于免疫组化-石蜡切片在人类样本上浓度为0.5 ug/ml. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 牛; 图 5, 6
赛默飞世尔 TUBA4A抗体(Invitrogen, A11126)被用于被用于免疫印迹在牛样本上 (图 5, 6). Endocrinology (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 TUBA4A抗体(ThermoFisher, MS-581-P1)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
赛默飞世尔 TUBA4A抗体(Neomarkers, MS-581-PO)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000
赛默飞世尔 TUBA4A抗体(NeoMarkers, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:5000. PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 TUBA4A抗体(Thermo Scientific, MS-581-P0)被用于被用于免疫印迹在小鼠样本上 (图 3). Int J Mol Sci (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类
赛默飞世尔 TUBA4A抗体(生活技术, noca)被用于被用于免疫细胞化学在人类样本上. Clin Cancer Res (2014) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠
  • 免疫细胞化学; 仓鼠
赛默飞世尔 TUBA4A抗体(Invitrogen, DM1A)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫细胞化学在仓鼠样本上. Neurobiol Aging (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 2). Int J Biochem Cell Biol (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; Cyrtanthus mackenii; 1 ug/ml; 图 3
赛默飞世尔 TUBA4A抗体(分子探针, A11126)被用于被用于免疫细胞化学在Cyrtanthus mackenii样本上浓度为1 ug/ml (图 3). AoB Plants (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1). Cell Signal (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔 TUBA4A抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. J Neurosci (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA4A抗体(Invitrogen, A11126)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1 ug/ml; 图 5
  • 免疫印迹; 人类; 1:1000; 图 s5
赛默飞世尔 TUBA4A抗体(分子探针, A-11126)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 5) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). BMC Cancer (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Biochem Res Int (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 牛; 1:200
赛默飞世尔 TUBA4A抗体(Invitrogen, 236-10501)被用于被用于免疫细胞化学在牛样本上浓度为1:200. Reprod Biol Endocrinol (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
赛默飞世尔 TUBA4A抗体(NeoMarkers, MS-581-P1)被用于被用于免疫印迹在人类样本上. Int J Cancer (2013) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:200; 图 4
赛默飞世尔 TUBA4A抗体(Invitrogen, 236-10501)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Gynecol Oncol (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠
赛默飞世尔 TUBA4A抗体(Invitrogen/Life Technologies, A11126)被用于被用于免疫细胞化学在小鼠样本上. Mol Biol Cell (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 s7
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫细胞化学在人类样本上 (图 s7). PLoS ONE (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 非洲爪蛙; 1:5000; 图 1e
赛默飞世尔 TUBA4A抗体(Neomarker, DM1A)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:5000 (图 1e). PLoS ONE (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; 大鼠; 1:50; 图 6
赛默飞世尔 TUBA4A抗体(Invitrogen, A11126)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 6). J Histochem Cytochem (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类
赛默飞世尔 TUBA4A抗体(Invitrogen, A11126)被用于被用于免疫印迹在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 TUBA4A抗体(分子探针, A11126)被用于被用于免疫细胞化学在人类样本上 (图 2). Cancer Genet (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1). Mol Biol Cell (2011) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 7
赛默飞世尔 TUBA4A抗体(Neomarkers, DM1A)被用于被用于免疫印迹在人类样本上 (图 7). Cell Death Dis (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 5b
赛默飞世尔 TUBA4A抗体(Invitrogen, 23610501)被用于被用于免疫印迹在人类样本上 (图 5b). PLoS ONE (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 TUBA4A抗体(分子探针, A11126)被用于被用于免疫印迹在人类样本上 (图 4). FASEB J (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1). J Mol Biol (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 s1
赛默飞世尔 TUBA4A抗体(Invitrogen, 236-10501)被用于被用于免疫细胞化学在人类样本上 (图 s1). PLoS ONE (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔 TUBA4A抗体(分子探针, A11126)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Biol Chem (2011) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:2000; 图 1
赛默飞世尔 TUBA4A抗体(NeoMarkers, DM1A)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1). Mol Biol Cell (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA4A抗体(分子探针, 236?C10501)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 仓鼠; 图 4
赛默飞世尔 TUBA4A抗体(Invitrogen, A11126)被用于被用于免疫印迹在仓鼠样本上 (图 4). Biochim Biophys Acta (2011) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 仓鼠; 图 4
  • 免疫印迹; 仓鼠; 图 8
赛默飞世尔 TUBA4A抗体(分子探针, A-11126)被用于被用于免疫细胞化学在仓鼠样本上 (图 4) 和 被用于免疫印迹在仓鼠样本上 (图 8). PLoS Pathog (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔 TUBA4A抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在人类样本上 (图 5). Eur J Cancer (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1). Biochem Biophys Res Commun (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA4A抗体(Invitrogen, 236-10501)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; Cyrtanthus mackenii; 1 ug/ml; 图 2
赛默飞世尔 TUBA4A抗体(分子探针, A11126)被用于被用于免疫组化在Cyrtanthus mackenii样本上浓度为1 ug/ml (图 2). Sex Plant Reprod (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Cycle (2010) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔 TUBA4A抗体(分子探针, A11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Development (2009) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔 TUBA4A抗体(Invitrogen, 236-10501)被用于被用于免疫细胞化学在人类样本上 (图 1). Bull Exp Biol Med (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 TUBA4A抗体(Invitrogen, 236-10501)被用于被用于免疫印迹在人类样本上 (图 3). Aging Cell (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:200; 图 7
赛默飞世尔 TUBA4A抗体(分子探针, A11126)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7). Analyst (2008) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 7
  • 免疫印迹; 小鼠; 图 7
赛默飞世尔 TUBA4A抗体(Lab Vision, DM1A)被用于被用于免疫印迹在人类样本上 (图 7) 和 被用于免疫印迹在小鼠样本上 (图 7). Cancer Cell (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 TUBA4A抗体(Zymed, 236-10501)被用于被用于免疫印迹在小鼠样本上 (图 1). J Biol Chem (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化-冰冻切片; 大鼠
赛默飞世尔 TUBA4A抗体(分子探针, A11126)被用于被用于免疫组化-冰冻切片在大鼠样本上. Dev Neurobiol (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:40; 图 3
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫细胞化学在小鼠样本上浓度为1:40 (图 3). In Vitro Cell Dev Biol Anim (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:400
赛默飞世尔 TUBA4A抗体(分子探针, A11126)被用于被用于免疫细胞化学在人类样本上浓度为1:400. FASEB J (2008) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 TUBA4A抗体(NeoMarkers, MS-581-P1)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Neurochem Int (2008) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; kangaroo; 2 ug/ml
赛默飞世尔 TUBA4A抗体(Invitrogen, noca)被用于被用于免疫细胞化学在kangaroo样本上浓度为2 ug/ml. Biophys J (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1:200; 图 3
赛默飞世尔 TUBA4A抗体(Invitrogen, A11126)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). FEBS Lett (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 表 1
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (表 1). Ann N Y Acad Sci (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; field poppy; 1:200; 图 8
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫组化在field poppy样本上浓度为1:200 (图 8). Planta (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 1). Cell Signal (2007) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
赛默飞世尔 TUBA4A抗体(Lab Vision, DM1A)被用于被用于免疫印迹在人类样本上. Blood (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫印迹在小鼠样本上. Stem Cells (2007) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 TUBA4A抗体(Neomarkers, DM1A)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cell Biol (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 1 ug/ml; 图 1
赛默飞世尔 TUBA4A抗体(分子探针, 236-10,501)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 1). Cancer Chemother Pharmacol (2007) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; Leishmania ; 1:1000; 图 3
赛默飞世尔 TUBA4A抗体(分子探针, noca)被用于被用于免疫细胞化学在Leishmania 样本上浓度为1:1000 (图 3). J Biol Chem (2006) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:200; 图 1
赛默飞世尔 TUBA4A抗体(分子探针, A-11126)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1). J Biol Chem (2006) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 图 6
赛默飞世尔 TUBA4A抗体(分子探针, A11126)被用于被用于免疫细胞化学在小鼠样本上 (图 6). J Cell Sci (2005) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:800; 图 3
赛默飞世尔 TUBA4A抗体(Neomarkers, MS-581-P1)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 3). Pediatr Blood Cancer (2006) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫细胞化学在人类样本上 (图 1). J Cell Sci (2005) ncbi
小鼠 单克隆(236-10501)
赛默飞世尔 TUBA4A抗体(分子探针, A11126)被用于. Biophys J (2004) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠
赛默飞世尔 TUBA4A抗体(分子探针, noca)被用于被用于免疫细胞化学在小鼠样本上. Nat Immunol (2004) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 非洲爪蛙; 图 2
赛默飞世尔 TUBA4A抗体(noco, noca)被用于被用于免疫细胞化学在非洲爪蛙样本上 (图 2). Annu Rev Cell Dev Biol (2003) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 0.4 ug/ml; 图 2
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上浓度为0.4 ug/ml (图 2). Proteomics (2003) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 6
赛默飞世尔 TUBA4A抗体(noco, A11126)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2003) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔 TUBA4A抗体(Affinity BioReagents, A11126)被用于被用于免疫印迹在大鼠样本上 (图 3). J Cell Biol (2002) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; African green monkey; 1:250; 图 3
赛默飞世尔 TUBA4A抗体(分子探针, noca)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:250 (图 3). Hum Mol Genet (2002) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠; 1:20,000; 图 6g
赛默飞世尔 TUBA4A抗体(Zymed, noca)被用于被用于免疫细胞化学在小鼠样本上浓度为1:20,000 (图 6g). Exp Cell Res (2001) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 小鼠
赛默飞世尔 TUBA4A抗体(分子探针, noca)被用于被用于免疫细胞化学在小鼠样本上. J Cell Biol (2001) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 仓鼠; 图 6
赛默飞世尔 TUBA4A抗体(noco, noca)被用于被用于免疫细胞化学在仓鼠样本上 (图 6). Mol Biol Cell (2000) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 1:20,000
赛默飞世尔 TUBA4A抗体(noco, noca)被用于被用于免疫印迹在人类样本上浓度为1:20,000. J Biol Chem (2000) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 TUBA4A抗体(分子探针, 236-10501)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2000) ncbi
小鼠 单克隆(236-10501)
  • 免疫印迹; 小鼠; 1:500; 图 5
赛默飞世尔 TUBA4A抗体(分子探针, A11126)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Anal Biochem (1999) ncbi
小鼠 单克隆(236-10501)
  • 免疫细胞化学; 大鼠; 1:200; 图 2
  • 免疫印迹; 大鼠; 1:12,000; 图 4
赛默飞世尔 TUBA4A抗体(noco, noca)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:12,000 (图 4). Mol Biol Cell (1999) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; 牛; 图 7
赛默飞世尔 TUBA4A抗体(分子探针, noco)被用于被用于免疫组化在牛样本上 (图 7). J Histochem Cytochem (1999) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔 TUBA4A抗体(noco, DM1a)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Mol Biol Cell (1999) ncbi
小鼠 单克隆(236-10501)
  • 流式细胞仪; 人类; 1:10
赛默飞世尔 TUBA4A抗体(Zymed, noca)被用于被用于流式细胞仪在人类样本上浓度为1:10. Cytometry (1998) ncbi
小鼠 单克隆(236-10501)
  • 免疫组化; fruit fly ; 图 4
赛默飞世尔 TUBA4A抗体(noco, noca)被用于被用于免疫组化在fruit fly 样本上 (图 4). Development (1992) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 2b, s7a, 4a
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, AB7291)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2b, s7a, 4a). Nat Commun (2022) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:1000; 图 5h, 8a
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 5h, 8a). Adv Sci (Weinh) (2022) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 小鼠; 1:4000; 图 2b
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫组化在小鼠样本上浓度为1:4000 (图 2b). Mol Metab (2021) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:1000
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. elife (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 5e
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). elife (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 1g
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1g). BMC Cancer (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 1a
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1a). Mol Metab (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab18251)被用于被用于免疫印迹在人类样本上 (图 1a). Nat Commun (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 ev1d
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上 (图 ev1d). EMBO J (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 2e). Cell Rep (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 5e
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab18251)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5e). J Cell Biol (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 1d
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1d). Nat Neurosci (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Cell (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 s4k
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 s4k). Science (2018) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 牛; 1 ug/ml; 图 1a
  • 免疫印迹; 牛; 0.2 ug/ml; 图 6b
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫细胞化学在牛样本上浓度为1 ug/ml (图 1a) 和 被用于免疫印迹在牛样本上浓度为0.2 ug/ml (图 6b). Graefes Arch Clin Exp Ophthalmol (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 4b). Oncogene (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫细胞化学在小鼠样本上 (图 1a). Sci Rep (2018) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 4b
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4b). Proteome Sci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 TUBA4A抗体(Sigma, ab18251)被用于被用于免疫印迹在人类样本上 (图 1d). J Biol Chem (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-冰冻切片; 小鼠; 图 5d
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, DM1A)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5d). Sci Rep (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 5
艾博抗(上海)贸易有限公司 TUBA4A抗体(abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 s1
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, DM1A)被用于被用于免疫印迹在人类样本上 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:6000; 图 1
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, 7291)被用于被用于免疫印迹在人类样本上浓度为1:6000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:500; 图 6
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(TU-01)
  • 免疫印迹; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7750)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:50,000; 图 st2
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 st2). Transl Res (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 2
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab18251)被用于被用于免疫细胞化学在人类样本上 (图 1). Cell Div (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 1:100; 图 s2
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, Ab64503)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 TUBA4A抗体(AbCam, Ab18251)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 s5
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, DM1A)被用于被用于免疫印迹在人类样本上 (图 s5). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 6
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 6). Endocrinology (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 大鼠; 1:400; 图 5
  • 免疫印迹; 大鼠; 1:10,000; 图 2
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 (图 5) 和 被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 2). Cell Signal (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化基因敲除验证; 人类; 1:5000; 图 s2
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, Ab7291)被用于被用于免疫组化基因敲除验证在人类样本上浓度为1:5000 (图 s2). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab182251)被用于被用于免疫印迹在小鼠样本上 (图 8). J Cell Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:6000; 图 6a
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:6000 (图 6a). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 TUBA4A抗体(abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2500; 图 4c
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 4c). Skelet Muscle (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 2
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Nat Commun (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 6
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab18251)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6). Reprod Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在小鼠样本上. Cardiovasc Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 金鱼; 1:200; 图 3
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫细胞化学在金鱼样本上浓度为1:200 (图 3). J Gen Physiol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, DM1A+DM1B)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图  2
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图  2). Cancer Lett (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 3
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). FEBS Lett (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 3e
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上 (图 3e) 和 被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 s4
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s4). Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 6
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, 7291)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6). Am J Physiol Endocrinol Metab (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000; 图 4
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Toxicol Lett (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 2, 3
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2, 3). Cell Cycle (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 家羊; 1:10,000; 图 1
艾博抗(上海)贸易有限公司 TUBA4A抗体(AbCam, ab7291)被用于被用于免疫印迹在家羊样本上浓度为1:10,000 (图 1). Int J Biochem Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在小鼠样本上 (图 5). Am J Physiol Endocrinol Metab (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 s9
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上 (图 s9). Nature (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-冰冻切片; 大鼠; 1:500
  • 免疫组化-石蜡切片; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500, 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Endocrinology (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, Ab7291)被用于被用于免疫印迹在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上. J Cell Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Int J Mol Sci (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上. Stem Cell Res (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab 7291)被用于被用于免疫印迹在小鼠样本上. J Appl Physiol (1985) (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:1000
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Cancer Res (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:5000. Methods Mol Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 s5
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s5). Nat Chem Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, 7291)被用于被用于免疫印迹在小鼠样本上 (图 3). EMBO Mol Med (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000; 图 8
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 8). Reprod Toxicol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:5000; 图 3
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, Ab7291)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 3). J Bioenerg Biomembr (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上. J Dermatol Sci (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 5d
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, AB7291)被用于被用于免疫细胞化学在小鼠样本上, 被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 5d). J Clin Invest (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 1:500
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在人类样本上. Nat Genet (2011) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:2500
艾博抗(上海)贸易有限公司 TUBA4A抗体(Abcam, ab7291)被用于被用于免疫印迹在大鼠样本上浓度为1:2500. J Comp Neurol (2008) ncbi
西格玛奥德里奇
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:1000; 图 10c
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 10c). elife (2022) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 1:1000; 图 4a
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4a). J Biol Chem (2022) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:4000; 图 s2a, s7a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 s2a, s7a). Nat Commun (2022) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 8k
  • 免疫印迹; 小鼠; 1:10,000; 图 8f
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 8k) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 8f). Diabetologia (2022) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:100; 图 5i
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5i). Commun Biol (2022) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3s2b
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3s2b). elife (2022) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; pigs ; 图 4a
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫细胞化学; 人类; 图 5f
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫组化-石蜡切片在pigs 样本上 (图 4a), 被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫细胞化学在人类样本上 (图 5f). Int J Mol Sci (2022) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 3c
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫细胞化学在人类样本上 (图 3c). Cell Rep (2022) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 大鼠; 1:4000; 图 1d
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化在大鼠样本上浓度为1:4000 (图 1d). Sci Rep (2021) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 2b
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2b). Antioxidants (Basel) (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化在小鼠样本上. elife (2021) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:200; 图 4g
  • 免疫印迹; 人类; 1:5000; 图 1d, 1g
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4g) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 1d, 1g). Nat Commun (2021) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:250; 图 5a
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 5a). Cell Rep (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 3i
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 3i). Nat Commun (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:500; 图 5b, 5c, 5d, 5e
  • 免疫印迹; 人类; 1:10,000; 图 2f
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5b, 5c, 5d, 5e) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 2f). Biology (Basel) (2021) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 2f
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2f). Biology (Basel) (2021) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fruit fly ; 1:10,000; 图 4d
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在fruit fly 样本上浓度为1:10,000 (图 4d). elife (2021) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 1a
西格玛奥德里奇 TUBA4A抗体(Sigma, T-5168)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 8b
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上 (图 8b). Nucleic Acids Res (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Aging Cell (2021) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T9026)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2a). Commun Biol (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 人类; 图 s2-2d
  • 免疫组化; 小鼠; 图 s2-2d
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在人类样本上 (图 s2-2d) 和 被用于免疫组化在小鼠样本上 (图 s2-2d). elife (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:200; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). J Cell Sci (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 人类; 图 2d
  • 免疫细胞化学; 人类; 图 2b
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2d) 和 被用于免疫细胞化学在人类样本上 (图 2b). Cancers (Basel) (2021) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 3g
西格玛奥德里奇 TUBA4A抗体(Sigma, T6199)被用于被用于免疫印迹在小鼠样本上 (图 3g). Cancers (Basel) (2021) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在人类样本上 (图 1b). Genes (Basel) (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 图 s4
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在斑马鱼样本上 (图 s4). PLoS Genet (2021) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 2h
西格玛奥德里奇 TUBA4A抗体(SIGMA, T9026)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2h). Commun Biol (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:50; 图 2b
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T7451)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2b). Mol Metab (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:500; 图 2b
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2b). J Cardiovasc Dev Dis (2021) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; fruit fly ; 1:10,000; 图 s3i
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:10,000 (图 s3i). Nat Commun (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:100; 图 5g
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5g). Dis Model Mech (2021) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000; 图 s5a
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s5a). Nat Commun (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:1000; 图 4a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4a). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1a
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1a). Eneuro (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 图 2c
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, 6-11B-1)被用于被用于免疫组化在小鼠样本上 (图 2c). Nat Commun (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 犬; 图 3a
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在犬样本上 (图 3a). J Exp Clin Cancer Res (2021) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2c, 2d
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在人类样本上 (图 2c, 2d). Science (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 图 5b
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在小鼠样本上 (图 5b). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:5000; 图 s2e
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 3a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在人类样本上浓度为1:5000 (图 s2e) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 3a). iScience (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:200; 图 3c
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T7451)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3c). Nat Commun (2021) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-自由浮动切片; 大鼠; 图 1d
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化-自由浮动切片在大鼠样本上 (图 1d). Neurobiol Dis (2021) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 1s2a
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1s2a). elife (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:500; 图 4h
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4h). Cell Stem Cell (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:4000; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T-9026)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 2a). elife (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 5b
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5b). elife (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 大鼠; 图 s3a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫细胞化学在大鼠样本上 (图 s3a). Nat Commun (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). elife (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 1d
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上 (图 1d). Science (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:5000; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2a). Science (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000; 图 5s3a
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5s3a). elife (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 3a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫细胞化学在人类样本上 (图 3a). Nat Commun (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:100; 图 s6l
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s6l). Nat Commun (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:2000; 图 4a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 4a). elife (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 5d
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上 (图 5d). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫沉淀; 人类; 图 1c
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫沉淀在人类样本上 (图 1c). elife (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 图 6a
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T7451)被用于被用于免疫组化在小鼠样本上 (图 6a). elife (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图 2f
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2f). Nat Commun (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:6000; 图 1e
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫印迹在小鼠样本上浓度为1:6000 (图 1e). EMBO Mol Med (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 5a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5a). Front Mol Biosci (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; roundworm ; 5 ug/ml; 图 11b
西格玛奥德里奇 TUBA4A抗体(Millipore Sigma, T7451)被用于被用于免疫组化在roundworm 样本上浓度为5 ug/ml (图 11b). elife (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 1:400; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, F2168)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 2a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; fruit fly ; 1:500; 图 3b
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化在fruit fly 样本上浓度为1:500 (图 3b). elife (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 1b
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1b). Nat Commun (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 图 5c
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上 (图 5c). Peerj (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 4a
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫细胞化学在人类样本上 (图 4a). Oncotarget (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 大鼠; 1:1000; 图 4a
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 4a). Br J Pharmacol (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:2500; 图 2s2a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在小鼠样本上浓度为1:2500 (图 2s2a). elife (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 5a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Adv (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich Co., St. Louis, MO, USA), clone B-5-1-2; #T5168)被用于被用于免疫印迹在人类样本上 (图 5). Cells (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 大鼠; 1:400; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 (图 2a). Curr Biol (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:500; 图 1c
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 1c). Science (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000; 图 4a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4a). Nat Commun (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图 5g
西格玛奥德里奇 TUBA4A抗体(Sigma, T-5168)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5g). elife (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:8000; 图 s7a
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:8000 (图 s7a). Science (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 非洲爪蛙; 1:500; 图 4n
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:500 (图 4n). NPJ Regen Med (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:700; 图 1k
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在小鼠样本上浓度为1:700 (图 1k). Development (2020) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 6b
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上 (图 6b). elife (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 小鼠; 1:5000; 图 4f
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 4f). Nat Commun (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:200; 图 s2d
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s2d). Nat Commun (2020) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:4000; 图 s4f
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 s4f). Stem Cell Reports (2020) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 3c
  • 免疫组化; fruit fly ; 1:15,000; 图 2g
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫印迹在小鼠样本上 (图 3c) 和 被用于免疫组化在fruit fly 样本上浓度为1:15,000 (图 2g). Sci Adv (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 4b
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上 (图 4b). Cell Rep (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 1:800; 图 2s1c
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 2s1c). elife (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 s3a
西格玛奥德里奇 TUBA4A抗体(Sigma, T9626)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3a). Sci Adv (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:4000; 图 7i
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在人类样本上浓度为1:4000 (图 7i). elife (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 s1c
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 s1c). Cell Rep (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; red swamp crayfish; 1:200; 图 3a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在red swamp crayfish样本上浓度为1:200 (图 3a). J Comp Neurol (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; garden sage; 图 2c
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在garden sage样本上 (图 2c). J Comp Neurol (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 1:200; 图 7a
  • 免疫印迹; 小鼠; 1:2000; 图 6a
西格玛奥德里奇 TUBA4A抗体(Sigma, Dm1a)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 7a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a). Mol Biol Cell (2019) ncbi
小鼠 单克隆(6-11B-1)
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于. elife (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 2c
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 2c). Sci Adv (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:10,000; 图 1b
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1b). elife (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:10,000; 图 1a
  • 免疫组化; 小鼠; 1:10,000; 图 s4
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10,000 (图 1a) 和 被用于免疫组化在小鼠样本上浓度为1:10,000 (图 s4). Sci Rep (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000; 图 s7g
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026,)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s7g). Nature (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 4c
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). elife (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2d
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 2d). Cells (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 6c
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Nat Commun (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5c
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5c). Nature (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 2c
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫细胞化学在人类样本上 (图 2c). J Mol Cell Biol (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3f
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 3f). Cell (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 1b
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫细胞化学在人类样本上 (图 1b). Cell Div (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:1000; 图 3s1b
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 3s1b). elife (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在人类样本上 (图 2a). Sci Rep (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 图 6a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫印迹在人类样本上 (图 6a). Cells (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 6a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上 (图 6a). Cells (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 s6b
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 s6b). Oncogene (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 5a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫印迹在小鼠样本上 (图 5a). Neuron (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:5000; 图 6a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6a). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:50; 图 1f
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1f). Cell Mol Gastroenterol Hepatol (2019) ncbi
小鼠 单克隆(B-5-1-2)
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于. Sci Adv (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图 1d
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). J Cell Biol (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; roundworm ; 图 10e
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在roundworm 样本上 (图 10e). Cancer Cell Int (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 3d
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3d). Nat Commun (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 1b
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1b). Nat Commun (2019) ncbi
小鼠 单克隆(DM1A)
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于. elife (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 6b
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6b). elife (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 7d
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 7d). Cell (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 s1f
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s1f). Sci Adv (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:100; 图 1c
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1c). J Gen Physiol (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fruit fly ; 图 1s1b
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在fruit fly 样本上 (图 1s1b). elife (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 1:1000; 图 s5g
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5g). Nat Cell Biol (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 s5g
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5g). Nat Cell Biol (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000; 图 s1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s1). Nature (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3h
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 3h). Sci Rep (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 图 4a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫细胞化学在小鼠样本上 (图 4a). J Am Soc Nephrol (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1c
西格玛奥德里奇 TUBA4A抗体(Millipore/Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 1c). iScience (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 1b
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Signal (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 大鼠; 图 7a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫细胞化学在大鼠样本上 (图 7a). Neuron (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图 6d
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6d). Redox Biol (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 6b
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 6b). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:500; 图 1d
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1d). Sci Rep (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 1a). J Pathol (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:500; 图 7a
  • 免疫印迹; 人类; 1:2000; 图 5b
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 5b). J Cell Sci (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 2d
西格玛奥德里奇 TUBA4A抗体(Sigma, T-5168)被用于被用于免疫印迹在小鼠样本上 (图 2d). Nat Cell Biol (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 人类; 1:2000; 图 2e
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 2e). Nat Commun (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 4e
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T5168)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4e). Nat Commun (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3d
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上 (图 3d). Sci Adv (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 8a
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 8a). BMC Cancer (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 1c
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1c). Nat Commun (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2000; 图 1a
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1a). Nature (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:2000; 图 5i
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T 5168)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5i). Cell Mol Life Sci (2019) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:3000; 图 s2d
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 s2d). Cancer Res (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A; T9026)被用于被用于免疫印迹在人类样本上 (图 1a). J Cell Biol (2019) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 5b
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5b). Mol Biol Cell (2019) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:500; 图 2a, 1b
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2a, 1b). Nat Commun (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 5d
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 5d). Nat Commun (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2b
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 2b). J Clin Invest (2018) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 s1a
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1a). Nat Commun (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在人类样本上 (图 2a). elife (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 s4b
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上 (图 s4b) 和 被用于免疫印迹在人类样本上 (图 3c). J Biol Chem (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 4b). MBio (2018) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1h
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 1h). Science (2018) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 斑马鱼; 1:500; 图 4d
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 4d). Gene Expr Patterns (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 非洲爪蛙; 图 3c
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫细胞化学在非洲爪蛙样本上 (图 3c). Neuron (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:4000; 图 s11d
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 s11d). Mol Syst Biol (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化-冰冻切片; 拟南芥; 1:100; 图 6c
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, B-5-1-2)被用于被用于免疫组化-冰冻切片在拟南芥样本上浓度为1:100 (图 6c). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1c
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 ex3g
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 ex3g). Nature (2018) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 s1c
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 s1c). EMBO J (2018) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Hum Mol Genet (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 1c
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 1c). Nat Genet (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 4f
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上 (图 4f). Mol Cell (2018) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上. Nature (2018) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1d
西格玛奥德里奇 TUBA4A抗体(Sigma, T90026)被用于被用于免疫印迹在人类样本上 (图 1d). Science (2018) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:1000; 图 3a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3a). J Cell Sci (2018) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 3d
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上 (图 3d). Nat Neurosci (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 s6a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 s6a). Nat Commun (2018) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:500; 图 2c
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2c). EMBO J (2018) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000; 图 3d
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3d). Neural Dev (2018) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 图 6c
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫组化在小鼠样本上 (图 6c). Hum Mol Genet (2018) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:5000; 图 1g
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5768)被用于被用于免疫细胞化学在人类样本上浓度为1:5000 (图 1g). Nat Commun (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3a
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3a). J Neurosci (2018) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:50,000; 图 s2f
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, 9026)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 s2f). elife (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 4a
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 4a). J Cell Sci (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:10,000; 图 2
  • 免疫组化; 小鼠; 1:10,000; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10,000 (图 2) 和 被用于免疫组化在小鼠样本上浓度为1:10,000 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:50,000; 图 1a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫印迹在小鼠样本上浓度为1:50,000 (图 1a). J Cell Biol (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 1:100; 图 3a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3a). J Cell Biol (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3i
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3i). PLoS Genet (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2a). Dev Biol (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 斑马鱼; 1:800; 图 1a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在斑马鱼样本上浓度为1:800 (图 1a). PLoS Genet (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; Dinophilus gyrociliatus; 1:200; 表 2
西格玛奥德里奇 TUBA4A抗体(SIGMA, T6793)被用于被用于免疫组化在Dinophilus gyrociliatus样本上浓度为1:200 (表 2). J Comp Neurol (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 图 s6a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫印迹在人类样本上 (图 s6a). FEBS Lett (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 8
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上 (图 8). Viruses (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1h
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1h). Sci Rep (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:100; 图 6a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6a). Sci Rep (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 非洲爪蛙; 1:2000; 图 2c
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, 6-11B-1)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:2000 (图 2c). FASEB J (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 s2d
西格玛奥德里奇 TUBA4A抗体(sigma, DM1A)被用于被用于免疫细胞化学在人类样本上 (图 s2d). J Cell Biol (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:2000; 图 1a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1a). J Cell Sci (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 图 6a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫印迹在人类样本上 (图 6a). Eur J Pharm Sci (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 图 s4f
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫细胞化学在小鼠样本上 (图 s4f). Genes Dev (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:50,000; 图 3
  • 免疫细胞化学; 小鼠; 1:50,000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11B-1)被用于被用于免疫细胞化学在人类样本上浓度为1:50,000 (图 3) 和 被用于免疫细胞化学在小鼠样本上浓度为1:50,000 (图 3). Cilia (2017) ncbi
小鼠 单克隆(B3)
  • 免疫细胞化学; 人类; 1:500; 图 3
  • 免疫细胞化学; 小鼠; 1:500; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T9822)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3). Cilia (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000; 图 3fs4h
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3fs4h). elife (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; marine lamprey; 1:500; 图 1c
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11b-1)被用于被用于免疫组化在marine lamprey样本上浓度为1:500 (图 1c). Nature (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:5000; 图 2c
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 2c). J Cell Biol (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000; 图 s5c
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s5c). Nat Commun (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s5g
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s5g). J Cell Biol (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Mol Ther (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 鸡; 图 10b
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫细胞化学在鸡样本上 (图 10b). Mol Biol Cell (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2a). J Cell Sci (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 人类; 1:10; 图 3
  • 免疫细胞化学; 小鼠; 1:10; 图 5a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6074)被用于被用于免疫组化在人类样本上浓度为1:10 (图 3) 和 被用于免疫细胞化学在小鼠样本上浓度为1:10 (图 5a). PLoS ONE (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s16a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s16a). Science (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 3a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在小鼠样本上 (图 3a). PLoS ONE (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 7a
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上 (图 7a) 和 被用于免疫印迹在人类样本上 (图 3b). J Biol Chem (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 流式细胞仪; 人类; 图 1c
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11B-1)被用于被用于流式细胞仪在人类样本上 (图 1c). PLoS Biol (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fruit fly ; 图 1e
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在fruit fly 样本上 (图 1e). PLoS ONE (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 日本大米鱼; 1:100; 图 s10a
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在日本大米鱼样本上浓度为1:100 (图 s10a). Nat Commun (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:10,000; 图 3a
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11-B-1)被用于被用于免疫细胞化学在人类样本上浓度为1:10,000 (图 3a). Am J Hum Genet (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 图 s3
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在斑马鱼样本上 (图 s3). Mol Neurodegener (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; Common quail; 1:1000; 图 7
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11B-1)被用于被用于免疫组化在Common quail样本上浓度为1:1000 (图 7). Front Cell Dev Biol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠; 图 5b
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5b). Sci Rep (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:20,000; 图 5b
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11B-1)被用于被用于免疫组化在小鼠样本上浓度为1:20,000 (图 5b). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; fruit fly ; 图 3f
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11B-1)被用于被用于免疫组化在fruit fly 样本上 (图 3f). J Cell Sci (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:500; 图 4a'
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11B-1)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4a'). Mol Biol Cell (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:200; 图 4b
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4b). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 s2i
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1a)被用于被用于免疫细胞化学在人类样本上 (图 s2i). J Cell Biol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; fruit fly ; 1:1000; 图 3a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:1000 (图 3a). Mol Biol Cell (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 3). Nature (2016) ncbi
小鼠 单克隆(6-11B-1)
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于. PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫细胞化学在人类样本上 (图 2a). Open Biol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:300; 图 s2
  • 免疫细胞化学; 小鼠; 1:300; 图 7a
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 s2) 和 被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 7a). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 6
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 图 6F
  • 免疫细胞化学; 人类; 图 6A
  • 免疫印迹; 人类; 图 5C
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫细胞化学在小鼠样本上 (图 6F), 被用于免疫细胞化学在人类样本上 (图 6A) 和 被用于免疫印迹在人类样本上 (图 5C). PLoS Genet (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2c
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2c). Science (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 5b
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). Cell Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 6
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 大鼠; 1:4000; 图 1b
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在大鼠样本上浓度为1:4000 (图 1b). Mol Neurobiol (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 2
  • 免疫印迹; 中国人仓鼠; 1:5000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2) 和 被用于免疫印迹在中国人仓鼠样本上浓度为1:5000 (图 1). J Cell Sci (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:2500; 图 1B
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2500 (图 1B). Mol Biol Cell (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:500
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Sci Rep (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 人类; 1:1000; 图 3S2B
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 3S2B). elife (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:2000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • proximity ligation assay; 小鼠; 1:20; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于proximity ligation assay在小鼠样本上浓度为1:20 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM 1A)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; fruit fly ; 1:100; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, 6-11B-1)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 2a). J Cell Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 非洲爪蛙; 1:700; 图 1d
  • 免疫组化; 小鼠; 1:700; 图 3-s1d
  • 免疫细胞化学; 人类; 1:700; 图 3b
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:700 (图 1d), 被用于免疫组化在小鼠样本上浓度为1:700 (图 3-s1d) 和 被用于免疫细胞化学在人类样本上浓度为1:700 (图 3b). elife (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 s8
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s8). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 3). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 2c
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). BMC Cancer (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图 3
  • 免疫印迹; 人类; 1:5000; 图 7
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; fruit fly ; 1:2000; 图 5
  • 免疫印迹; fruit fly ; 1:5000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:2000 (图 5) 和 被用于免疫印迹在fruit fly 样本上浓度为1:5000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:1000; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 2a). Neurotox Res (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于. Sci Rep (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 1b
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上 (图 1b). Cell Death Discov (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2500; 图 4
  • 免疫印迹; 大鼠; 1:2500; 图 s2
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:2500 (图 s2). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 s1
西格玛奥德里奇 TUBA4A抗体(Sigma, T-9026)被用于被用于免疫印迹在人类样本上 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fission yeast; 1:5000; 图 9
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在fission yeast样本上浓度为1:5000 (图 9). PLoS Genet (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:10,000; 图 1b, 3a
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上浓度为1:10,000 (图 1b, 3a). Methods Mol Biol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:2000; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 7b
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上 (图 7b). elife (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 s2
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s2). PLoS Genet (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 7
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上 (图 7). Front Neurosci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 1d
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1d). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:10,000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:1000; 图 1A
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1A). Methods Cell Biol (2016) ncbi
小鼠 单克隆(B3)
  • 免疫细胞化学; 人类; 1:1000; 图 1C
西格玛奥德里奇 TUBA4A抗体(Sigma, T9822)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1C). Methods Cell Biol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 人类; 1:6000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, 6-11B-1)被用于被用于免疫组化在人类样本上浓度为1:6000 (图 3). J Hepatol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:2000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T 5168)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Cell Death Dis (2016) ncbi
小鼠 单克隆(DM1A)
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于. Epigenetics Chromatin (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 图 3a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫细胞化学在小鼠样本上 (图 3a). Oncotarget (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 4). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:50,000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2b
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:5000; 图 4
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫细胞化学在人类样本上浓度为1:5000 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 2). J Cell Biol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:100; 图 3m
  • 免疫组化; 斑马鱼; 图 s2a
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11B1)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3m) 和 被用于免疫组化在斑马鱼样本上 (图 s2a). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图 3
  • 免疫印迹; 人类; 1:200; 图 s8
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 s8). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Stem Cells (2017) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:2000; 图 10
  • 免疫印迹; 小鼠; 1:4000; 图 13
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 10) 和 被用于免疫印迹在小鼠样本上浓度为1:4000 (图 13). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 1:2000; 图 10
  • 免疫印迹; 小鼠; 1:4000; 图 13
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 10) 和 被用于免疫印迹在小鼠样本上浓度为1:4000 (图 13). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:100; 图 7d
西格玛奥德里奇 TUBA4A抗体(Sigma, T 6793)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 7d). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图 4g
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上 (图 1). Genom Data (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 s3
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在人类样本上 (图 s3). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 3
  • 免疫印迹; African green monkey; 1:5000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3) 和 被用于免疫印迹在African green monkey样本上浓度为1:5000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 1:5000; 图 5a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 5a). J Pathol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 1:400; 图 3c
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 3c). Development (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 2). J Cell Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫细胞化学在人类样本上 (图 5). Cell Signal (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 斑马鱼; 1:400; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在斑马鱼样本上浓度为1:400 (图 2). Development (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; fruit fly ; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫组化在fruit fly 样本上 (图 3). Development (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:1000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 非洲爪蛙; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在非洲爪蛙样本上 (图 1). Open Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 非洲爪蛙; 1:5000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:5000 (图 2). Open Biol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 犬; 1:500; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:500 (图 2). Brain Behav (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 s4
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫细胞化学在人类样本上 (图 s4) 和 被用于免疫印迹在人类样本上 (图 2). J Cell Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2). Nat Cell Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). Cell Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 5a
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 5a). J Cell Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 s2
  • 免疫印迹; 人类; 1:5000; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s2) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fission yeast; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, B5-1-2)被用于被用于免疫印迹在fission yeast样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(B3)
  • 免疫组化; 人类; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9822)被用于被用于免疫组化在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:4000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 4). J Mol Biol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:100; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 牛; 1:10,000; 图 2
西格玛奥德里奇 TUBA4A抗体(Millipore, T9026)被用于被用于免疫印迹在牛样本上浓度为1:10,000 (图 2). J Reprod Dev (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Front Physiol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:250; 图 3g
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在斑马鱼样本上浓度为1:250 (图 3g). Front Neural Circuits (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Genes Dev (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Res (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 5d
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 5d). Int J Biol Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:100; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). J Cell Sci (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:1000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). J Cell Sci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 1:10,000; 图 3
  • 免疫印迹; 小鼠; 1:10,000; 图 s7
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s7). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:500; 图 s1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在人类样本上. Curr Protoc Stem Cell Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Vis Exp (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 1). J Clin Invest (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:300; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 1). Genome Biol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). Cell Cycle (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). PLoS Genet (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 s4
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 s4). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 6). J Virol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上 (图 1). elife (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:500; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 6
西格玛奥德里奇 TUBA4A抗体(SIGMA-Aldrich, T-9026)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 7). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 3). Traffic (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 图 1b
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在小鼠样本上 (图 1b). J Pathol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上 (图 6). Autophagy (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图 1
  • 免疫印迹; 人类; 1:1000; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T-9026)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6). J Neuroinflammation (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2
  • 免疫组化; 小鼠; 1:1000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2) 和 被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:25,000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在小鼠样本上浓度为1:25,000 (图 1). Am J Pathol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:1000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). Cell Cycle (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:500; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 2). J Cell Sci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:1000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fruit fly ; 1:10,000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在fruit fly 样本上浓度为1:10,000 (图 1). Development (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; fruit fly ; 1:100; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 1). Development (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:2500; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; axolotl; 1:100; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在axolotl样本上浓度为1:100 (图 2). elife (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 1). Oncogenesis (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Eur J Neurosci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 1:500; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2). Hepatology (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 11
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 11). J Virol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 表 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在大鼠样本上 (表 3). Toxicol Sci (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 淡水涡虫;真涡虫; 1:500; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11B-1)被用于被用于免疫组化在淡水涡虫;真涡虫样本上浓度为1:500 (图 4). BMC Dev Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 非洲爪蛙; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, B512)被用于被用于免疫印迹在非洲爪蛙样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 5
  • 免疫组化; 小鼠; 1:1000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5) 和 被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Hum Mol Genet (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:3000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:3000 (图 4). Dev Cell (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 4). J Virol (2016) ncbi
小鼠 单克隆(6-11B-1)
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于. Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 图 7
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在小鼠样本上 (图 7). Acta Neuropathol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 图 7
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上 (图 7). Acta Neuropathol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:3000; 图 5
  • 免疫印迹; 人类; 1:3000; 图 9
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上浓度为1:3000 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 9). Oncotarget (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 衣藻; 1:40,000; 图 s4
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在衣藻样本上浓度为1:40,000 (图 s4). elife (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). FEBS Lett (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上 (图 2). Open Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). elife (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠; 图 s1
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1). Nature (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 图 4j
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4j). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 图 s2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, 6-11B-1)被用于被用于免疫细胞化学在小鼠样本上 (图 s2). J Cell Biol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上 (图 2). J Cell Biol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:500; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s3
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s3). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:1000; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Nature (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 s3f
西格玛奥德里奇 TUBA4A抗体(Sigma., T6074)被用于被用于免疫印迹在小鼠样本上 (图 s3f). Immunity (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:500; 图 6a'
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11B-1)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 6a'). J Biol Chem (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 图 1
  • 免疫细胞化学; African green monkey; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11B-1)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫细胞化学在African green monkey样本上 (图 1). J Pharmacol Exp Ther (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:800; 表 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在小鼠样本上浓度为1:800 (表 1). J Vis Exp (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T-9026)被用于被用于免疫印迹在人类样本上 (图 5). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠; 图 3c
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3c). EMBO J (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 1c
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1c). J Biol Chem (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:2000; 图 4h
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 4h). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:20,000; 图 3g
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 3g). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 7f
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 7f). elife (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 5). Mol Metab (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:250
西格玛奥德里奇 TUBA4A抗体(SIGMA, T7451)被用于被用于免疫组化在斑马鱼样本上浓度为1:250. Hum Mol Genet (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Stem Cell Reports (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:1000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4). Front Pharmacol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 2). EMBO J (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 s11
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 s11). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 8
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 8). Mol Syst Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图 4b
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4b). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上 (图 3). J Neurosci (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, DM-1A)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 仓鼠; 1:10,000; 图 7
  • 免疫印迹; 人类; 1:10,000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在仓鼠样本上浓度为1:10,000 (图 7) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). J Biol Chem (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫印迹在人类样本上 (图 1). elife (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 图 7
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上 (图 7). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T5168)被用于被用于免疫印迹在人类样本上. Oncotarget (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:3000; 图 5b
  • 免疫印迹; 小鼠; 1:3000; 图 6f
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5b) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 6f). Oncotarget (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在大鼠样本上 (图 3). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 3c
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在小鼠样本上 (图 3c). elife (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 图 3
  • 免疫印迹; 小鼠; 1:5000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). J Cell Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 小鼠; 1:1000; 图 9
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 9). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; roundworm ; 图 2
  • 免疫细胞化学; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫细胞化学在roundworm 样本上 (图 2) 和 被用于免疫细胞化学在人类样本上 (图 1). elife (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; inshore hagfish; 1:1000; 图 3a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化-石蜡切片在inshore hagfish样本上浓度为1:1000 (图 3a). Nature (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在大鼠样本上 (图 1). Cell Stress Chaperones (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:4000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, B-5-1-2)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 3b). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:1000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 2). Genesis (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:1000; 图 5a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793-.5ML)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 大鼠; 1:3000; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫细胞化学在大鼠样本上浓度为1:3000 (图 5). Cell Med (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; Japanese lancelet; 1:200; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化在Japanese lancelet样本上浓度为1:200 (图 5). Zoological Lett (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 8d
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在人类样本上 (图 8d). PLoS Pathog (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上 (图 6). PLoS Genet (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Mol Biol Cell (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; roundworm ; 1:200; 图 3
  • 免疫印迹; roundworm ; 1:5000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫组化在roundworm 样本上浓度为1:200 (图 3) 和 被用于免疫印迹在roundworm 样本上浓度为1:5000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:10,000; 图 7
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 7). Diabetes (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 大鼠; 图 6i
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫细胞化学在大鼠样本上 (图 6i). J Neurosci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; longfin inshore squid; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在longfin inshore squid样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s3
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s3). Development (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). elife (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 小鼠; 1:1000; 图 2
  • 免疫印迹; 小鼠; 1:3000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 2). elife (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 1a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026-2ML)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1a). Mol Oncol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 鸡; 图 3
  • 免疫印迹; 鸡; 1:2000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, B512)被用于被用于免疫细胞化学在鸡样本上 (图 3) 和 被用于免疫印迹在鸡样本上浓度为1:2000 (图 2). Open Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6074)被用于被用于免疫细胞化学在小鼠样本上 (图 4). J Cell Physiol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 s4d
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T6793)被用于被用于免疫细胞化学在人类样本上 (图 s4d). Biomaterials (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nature (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图 s1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 犬; 1:4000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫印迹在犬样本上浓度为1:4000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Nat Med (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:25,000; 图 s4c
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在小鼠样本上浓度为1:25,000 (图 s4c). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Dis (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 s2
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在小鼠样本上 (图 s2). Cell Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 3). Cell Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 1c
西格玛奥德里奇 TUBA4A抗体(Sigma., T5168)被用于被用于免疫印迹在小鼠样本上 (图 1c). PLoS Genet (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; fruit fly ; 图 2
  • 免疫印迹; fruit fly ; 1:2000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫细胞化学在fruit fly 样本上 (图 2) 和 被用于免疫印迹在fruit fly 样本上浓度为1:2000 (图 3). J Cell Sci (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:3000; 图 1
  • 免疫组化; 人类; 1:3000; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在人类样本上浓度为1:3000 (图 1) 和 被用于免疫组化在人类样本上浓度为1:3000 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:500
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, B5-1-2)被用于被用于免疫印迹在人类样本上浓度为1:500. Nature (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:250
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:250 和 被用于免疫印迹在人类样本上浓度为1:5000. EMBO Rep (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, B512)被用于被用于免疫印迹在人类样本上 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nature (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). Neuron (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:500; 图 7
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 2). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:8000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:8000 (图 4). Nature (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; long-nosed rat kangaroo; 1:500; 图 1i
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在long-nosed rat kangaroo样本上浓度为1:500 (图 1i). Nat Commun (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 3). Genes Dev (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在人类样本上 (图 4). Int J Biol Sci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, B-5-1-2)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). PLoS Genet (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2). elife (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 4a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在人类样本上 (图 4a). BMC Cancer (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:5000; 图 s6
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上 (图 4). J Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2500
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:2500. Brain Behav (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; Crepidula fornicata; 1:400; 图 s12bb
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在Crepidula fornicata样本上浓度为1:400 (图 s12bb). Evodevo (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:4000; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:1500; 图 1
  • 免疫印迹; 人类; 1:1500; 图 1
  • 免疫细胞化学; 小鼠; 1:1500; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:1500 (图 1), 被用于免疫印迹在人类样本上浓度为1:1500 (图 1) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1500 (图 5). Mol Biol Cell (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 10
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在小鼠样本上 (图 10) 和 被用于免疫印迹在人类样本上 (图 7). J Clin Invest (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Brain (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:1000; 图 3h
  • 免疫印迹; 斑马鱼; 1:5000; 图 3d
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 3h) 和 被用于免疫印迹在斑马鱼样本上浓度为1:5000 (图 3d). Pharmacol Res (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000; 图 4b
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4b). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:2000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6074)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:1000; 图 7a
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 7a). Nat Cell Biol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 斑马鱼; 1:10,000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在斑马鱼样本上浓度为1:10,000 (图 1). Mol Neurodegener (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:30,000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:30,000 (图 4). Mol Cell Biol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上 (图 6). FASEB J (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫细胞化学在人类样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:10,000; 图 s2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫细胞化学在人类样本上浓度为1:10,000 (图 s2). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在大鼠样本上 (图 3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma, 9026)被用于被用于免疫印迹在小鼠样本上 (图 2a). EMBO Mol Med (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在人类样本上 (图 1). Int J Mol Sci (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 0.2 ug/ml; 图 4b
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为0.2 ug/ml (图 4b). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上 (图 1). J Reprod Dev (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). J Clin Invest (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上 (图 2). elife (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 大豆; 1:800
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫组化在大豆样本上浓度为1:800. Front Plant Sci (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 大豆; 1:2000
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫印迹在大豆样本上浓度为1:2000. Front Plant Sci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 4). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-石蜡切片; fruit fly ; 1:500; 图 s5f
  • 免疫印迹; fruit fly ; 1:1000; 图 s5a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫组化-石蜡切片在fruit fly 样本上浓度为1:500 (图 s5f) 和 被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 s5a). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上 (图 1). Orphanet J Rare Dis (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 1a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在小鼠样本上 (图 1a). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 鸡; 1:1000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在鸡样本上浓度为1:1000 (图 3). Mol Biol Cell (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 图 12
  • 免疫印迹; 小鼠; 图 12
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫细胞化学在小鼠样本上 (图 12) 和 被用于免疫印迹在小鼠样本上 (图 12). Mol Biol Cell (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 图 s3
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T-6793)被用于被用于免疫细胞化学在小鼠样本上 (图 s3). Mol Biol Cell (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-aldrich, DM1A)被用于被用于免疫细胞化学在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000; 图 2,3,4,5,8
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T-7451)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2,3,4,5,8). J Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠
西格玛奥德里奇 TUBA4A抗体(Sigma?CAldrich, T9026)被用于被用于免疫印迹在大鼠样本上. Neuroscience (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 ev3
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 ev3). EMBO Mol Med (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 s4
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T5168)被用于被用于免疫印迹在人类样本上. J Biol Chem (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 4d
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Oncotarget (2016) ncbi
小鼠 单克隆(DM1A)
  • proximity ligation assay; 人类; 图 7
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于proximity ligation assay在人类样本上 (图 7). J Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM-1A)被用于被用于免疫印迹在小鼠样本上 (图 2). Nat Immunol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫细胞化学在人类样本上 (图 2). PLoS Genet (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6
  • 免疫细胞化学; 小鼠; 1:500; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5). PLoS Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 s7
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, B-5-1-2)被用于被用于免疫印迹在人类样本上 (图 s7). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 家羊; 1:1000; 图 1a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, 6-11B-1)被用于被用于免疫印迹在家羊样本上浓度为1:1000 (图 1a). Am J Physiol Cell Physiol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 家羊; 1:1000; 图 1a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, B5-1-2)被用于被用于免疫印迹在家羊样本上浓度为1:1000 (图 1a). Am J Physiol Cell Physiol (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 图 s3
  • 免疫细胞化学; 人类; 1:1000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在小鼠样本上 (图 s3) 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2). J Med Genet (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:10,000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, 6?C11-B-1)被用于被用于免疫细胞化学在人类样本上浓度为1:10,000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:50,000; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:50,000 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma, T-6793)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). J Vis Exp (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 s3
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 s3). Nat Methods (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:3000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; fruit fly ; 1:50; 图 s1
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫细胞化学在fruit fly 样本上浓度为1:50 (图 s1). PLoS Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T 6074)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:2000; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). FEBS J (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 图 6d
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在小鼠样本上 (图 6d). J Biol Chem (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 2b
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, B-5-1-2)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). PLoS ONE (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫印迹在小鼠样本上 (图 2). Blood (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 衣藻; 1:3000; 图 5
  • 免疫印迹; 衣藻; 1:10,000; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在衣藻样本上浓度为1:3000 (图 5) 和 被用于免疫印迹在衣藻样本上浓度为1:10,000 (图 5). Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在斑马鱼样本上 (图 1). Antioxid Redox Signal (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 s11
西格玛奥德里奇 TUBA4A抗体(sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 s11). PLoS Genet (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 7b
西格玛奥德里奇 TUBA4A抗体(SIGMA, DM1A)被用于被用于免疫印迹在人类样本上 (图 7b). Mol Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:2000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). PLoS Pathog (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Redox Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; fruit fly ; 1:3000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在fruit fly 样本上浓度为1:3000 (图 4). Biol Open (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; fruit fly ; 1:10,000; 图 3a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1a)被用于被用于免疫印迹在fruit fly 样本上浓度为1:10,000 (图 3a). Dis Model Mech (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:10,000; 图 6a
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上浓度为1:10,000 (图 6a). Nat Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 7a
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 7a). Oncogene (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫细胞化学在小鼠样本上. elife (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:2500; 图 2b
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 2b). Mol Brain (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:30,000; 图 3c
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, B-5-1-2)被用于被用于免疫印迹在人类样本上浓度为1:30,000 (图 3c). Cancer Res (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 小鼠; 1:200; 图 6a
  • 免疫印迹; 小鼠; 1:5000; 图 5f,1
西格玛奥德里奇 TUBA4A抗体(sigma, T6074)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5f,1). Endocrinology (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 1c
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). PLoS Genet (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫细胞化学在小鼠样本上 (图 3). J Cell Sci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 5
西格玛奥德里奇 TUBA4A抗体(SIGMA-Aldrich, T-9026)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Biomed Res Int (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:4000; 图 s2
  • 免疫印迹; 人类; 1:10,000; 图 s2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1alpha)被用于被用于免疫细胞化学在人类样本上浓度为1:4000 (图 s2) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 s2). Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; domestic rabbit; 1:20,000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:20,000. J Cell Mol Med (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:4000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 1g
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上 (图 1g). RNA (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T-6074)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 2b
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 2b). J Cutan Pathol (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:8000; 图 10a
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:8000 (图 10a). J Biol Chem (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 犬; 1:10,000; 图 1a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在犬样本上浓度为1:10,000 (图 1a). Mol Biol Cell (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T 6793)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:1000; 图 1
  • 免疫印迹; 人类; 1:1000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:400
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在斑马鱼样本上浓度为1:400. Dev Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 10
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 10). BMC Cancer (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 1:500; 图 3
  • 免疫印迹; 小鼠; 1:5000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1 alpha)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). Mol Biol Cell (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化在小鼠样本上. J Neurosci (2015) ncbi
小鼠 单克隆(DM1A)
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于. Oncogene (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, 6-11B-1)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). FASEB J (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:500; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4). J Cell Sci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1c
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在人类样本上 (图 1c). Leukemia (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 3a
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫印迹在小鼠样本上 (图 3a). Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在大鼠样本上 (图 3). Nutr Neurosci (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 s8
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8). Nat Commun (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 6
  • 免疫印迹; 人类; 1:2000; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Cancer Biol Ther (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 1:2000
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. J Proteome Res (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:7500; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上浓度为1:7500 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). J Biol Chem (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, DM 1A)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 仓鼠; 1:5000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在仓鼠样本上浓度为1:5000 (图 2). J Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 s6m
西格玛奥德里奇 TUBA4A抗体(Sigma., B-5-1-2)被用于被用于免疫印迹在人类样本上 (图 s6m). Mol Cell (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11B-1)被用于被用于免疫细胞化学在人类样本上. Am J Hum Genet (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上 (图 2). Cell Death Dis (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 1f
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上 (图 1f) 和 被用于免疫印迹在人类样本上 (图 2a). J Biol Chem (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:50,000
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上浓度为1:50,000. J Biol Chem (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:1000; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T-7451)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 人类; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11B-1)被用于被用于免疫组化在人类样本上 (图 6). Sci Rep (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:200
  • 免疫细胞化学; 小鼠; 1:8000
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 和 被用于免疫细胞化学在小鼠样本上浓度为1:8000. PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 小鼠; 1:1000; 图 3a
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3a). J Cell Biochem (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 s1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上 (图 s1). Mol Biol Cell (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 4b
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上 (图 4b). ASN Neuro (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫沉淀; 人类; 图 3
  • 免疫细胞化学; 人类; 1:200; 图 3
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫沉淀在人类样本上 (图 3), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1). Cell Rep (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T-5168)被用于被用于免疫印迹在人类样本上. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上 (图 4). Int J Mol Sci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; starlet sea anemone; 1:100; 图 4a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫组化在starlet sea anemone样本上浓度为1:100 (图 4a). Evodevo (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在大鼠样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在人类样本上 (图 6). Cell Cycle (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 5d
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 5d). Blood (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 s1
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 s1). Stem Cell Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:2500; 图 7
  • 免疫印迹; 人类; 1:5000; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:2500 (图 7) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(6-11B-1)
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 图 1e
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在大鼠样本上 (图 1e). J Clin Invest (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:250
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11B-1)被用于被用于免疫细胞化学在人类样本上浓度为1:250. Cell Biol Int (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:1500; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫细胞化学在人类样本上浓度为1:1500 (图 5). Brain (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:5000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). J Diabetes Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2500; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 3). Cancer Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:400; 图 s1
  • 免疫印迹; 人类; 1:10,000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s1) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 4). Infect Immun (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; fruit fly
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫印迹在fruit fly 样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 5a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5a). Cancer Sci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 1:500; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:2500; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1a)被用于被用于免疫细胞化学在人类样本上浓度为1:2500 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:4000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 1). Dis Model Mech (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1
  • 免疫细胞化学; 小鼠; 1:1000; 图 s3
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, 6-11B-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s3). Dis Model Mech (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1d
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 1d). Gut (2016) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:5000
西格玛奥德里奇 TUBA4A抗体(sigma, T6793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000. Dev Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Cell Cycle (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:1000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 4). Am J Physiol Heart Circ Physiol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 5a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5a). Development (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:3000
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:3000. Cell Signal (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; African green monkey; 1:250; 图 3A
  • 免疫印迹; African green monkey; 1:1000; 图 3B
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A T9026)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:250 (图 3A) 和 被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 3B). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 s4
  • 免疫印迹; 人类; 图 s7
西格玛奥德里奇 TUBA4A抗体(Sigma, T-9026)被用于被用于免疫细胞化学在人类样本上 (图 s4) 和 被用于免疫印迹在人类样本上 (图 s7). PLoS Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上. Genes Cancer (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T5168)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫印迹在小鼠样本上 (图 3). Mol Biol Cell (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000
  • 免疫组化; 鸡
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在小鼠样本上浓度为1:1000 和 被用于免疫组化在鸡样本上. Development (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; Octopus bimaculoides; 图 4d
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在Octopus bimaculoides样本上 (图 4d). J Exp Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:50,000; 图 7
西格玛奥德里奇 TUBA4A抗体(sigma, T-5168)被用于被用于免疫印迹在人类样本上浓度为1:50,000 (图 7). Mol Cancer (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 犬
  • 免疫印迹; 犬
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在犬样本上 和 被用于免疫印迹在犬样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 犬
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在犬样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). J Cell Biol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:2000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1). J Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncogene (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 1). PLoS Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 图 1
  • 免疫印迹; 小鼠; 图 1
  • 免疫细胞化学; 犬; 图 1
  • 免疫印迹; 犬; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在小鼠样本上 (图 1), 被用于免疫印迹在小鼠样本上 (图 1), 被用于免疫细胞化学在犬样本上 (图 1) 和 被用于免疫印迹在犬样本上 (图 1). BMC Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 非洲爪蛙; 1:20,000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:20,000. Mol Biol Cell (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:200,000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:200,000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Med (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 s3
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, B-512)被用于被用于免疫印迹在人类样本上 (图 s3). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫印迹在小鼠样本上 (图 3). J Biol Chem (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, clone B-5-1-2)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图 s1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; California sea hare; 1:200
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在California sea hare样本上浓度为1:200. J Comp Neurol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; California sea hare; 1:200
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫组化在California sea hare样本上浓度为1:200. J Comp Neurol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Nat Med (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cell Proteomics (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上 (图 1). Am J Transl Res (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 s7
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T9026)被用于被用于免疫印迹在人类样本上 (图 s7). PLoS Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 5a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上 (图 5a). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在斑马鱼样本上. Dev Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2500; 图 s4e
西格玛奥德里奇 TUBA4A抗体(Sigma, T-9026)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 s4e). Mol Cancer (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:2000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, B-5-1-2)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上 (图 3). PLoS Pathog (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nat Genet (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; common lancelet; 1:500
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化在common lancelet样本上浓度为1:500. J Comp Neurol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 s6
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, B512)被用于被用于免疫印迹在人类样本上 (图 s6). J Clin Invest (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Development (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:250
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:250. Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 1b
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1a)被用于被用于免疫细胞化学在人类样本上 (图 1b). J Biol Chem (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 0.5 ug/ml; 图 1
  • 免疫印迹; 人类; 0.5 ug/ml; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在小鼠样本上浓度为0.5 ug/ml (图 1) 和 被用于免疫印迹在人类样本上浓度为0.5 ug/ml (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1.2 ug/ml
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1.2 ug/ml. J Comp Neurol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Genes Cancer (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 人类; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫组化在人类样本上 (图 6). Nat Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫印迹在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; fruit fly ; 图 s3
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在fruit fly 样本上 (图 s3). Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫印迹在人类样本上. J Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图 s9
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9). Nature (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 7
  • 免疫印迹; 小鼠; 1:20,000
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 7) 和 被用于免疫印迹在小鼠样本上浓度为1:20,000. PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上. Oncogene (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. FASEB J (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图 3e
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3e). Diabetes (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:30,000
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:30,000. PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2015) ncbi
小鼠 单克隆(B3)
  • 免疫组化-石蜡切片; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9822)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Neurosci (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Neurosci (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化-石蜡切片; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6074)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Neurosci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 s24
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 s24). PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2000; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, 6074)被用于被用于免疫印迹在人类样本上 (图 1). Cell Host Microbe (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 10 ug/ml
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml. Oncotarget (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:200
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Cytoskeleton (Hoboken) (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS Genet (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 1). Sci Signal (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在小鼠样本上 (图 3). EMBO J (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上浓度为1:10,000. J Cell Biol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:2000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫细胞化学在人类样本上浓度为1:2000. J Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫沉淀; 人类; 图 s3
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫沉淀在人类样本上 (图 s3). Nat Struct Mol Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上. Biol Open (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 人类; 1:3000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫组化在人类样本上浓度为1:3000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:1000. Br J Cancer (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上. PLoS Med (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • reverse phase protein lysate microarray; 人类; 1:5000; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于reverse phase protein lysate microarray在人类样本上浓度为1:5000 (图 5). J Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上. J Cell Biol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 2). Nat Neurosci (2015) ncbi
小鼠 单克隆(DM1A)
  • 染色质免疫沉淀 ; 人类; 1:10,000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于染色质免疫沉淀 在人类样本上浓度为1:10,000. J Immunol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:200
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T6793)被用于被用于免疫组化在斑马鱼样本上浓度为1:200. J Comp Neurol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上. Sci Rep (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:500
  • 免疫印迹; 小鼠; 1:1600
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 和 被用于免疫印迹在小鼠样本上浓度为1:1600. Toxicol Lett (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 2). Biol Open (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000; 图 6,7
西格玛奥德里奇 TUBA4A抗体(sigma aldrich, DM1A)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6,7). Mol Biol Cell (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上. Cell Signal (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
  • 免疫细胞化学; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:500
  • 免疫组化-冰冻切片; pigs ; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, 6-11B-1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000, 被用于免疫细胞化学在小鼠样本上浓度为1:1000, 被用于免疫印迹在小鼠样本上浓度为1:500 和 被用于免疫组化-冰冻切片在pigs 样本上浓度为1:1000. FASEB J (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-石蜡切片; 人类; 1:750; 图 5
  • 免疫细胞化学; 人类; 1:1000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1alpha)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:750 (图 5) 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 人类; 1:500
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Dev Neurobiol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T 9026)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:2000; 图 1a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, B512)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1a). Mol Biol Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Cell Physiol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 5). Aging Cell (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; fruit fly ; 1:2000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫组化在fruit fly 样本上浓度为1:2000. J Neurosci (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma Chemical Co., T 5168)被用于被用于免疫印迹在人类样本上. Int J Mol Med (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上. Mitochondrion (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 大鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫细胞化学在大鼠样本上. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T-6074)被用于被用于免疫印迹在人类样本上. Clin Exp Metastasis (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 3). J Virol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 斑马鱼; 1:2000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在斑马鱼样本上浓度为1:2000 (图 4). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 1). Springerplus (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 牛; 图 s4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在牛样本上 (图 s4). Nature (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:8000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T-5168)被用于被用于免疫印迹在小鼠样本上浓度为1:8000 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 s4
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(SIGMA, T5168)被用于被用于免疫细胞化学在人类样本上 (图 s4) 和 被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:2000. Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:20,000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:1000; 图 4B
  • 免疫印迹; 人类; 1:1000; 图 1A
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4B) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1A). Cell Cycle (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T6793)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Nat Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 2). Cell Death Dis (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:800; 图 3a
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 3a). J Med Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 猕猴; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T-5168)被用于被用于免疫细胞化学在猕猴样本上 (图 2). Nature (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 8
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, clone DM1A)被用于被用于免疫印迹在人类样本上 (图 8). Cell Cycle (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000. Dev Neurobiol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 s2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上 (图 s2). Autophagy (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 和 被用于免疫印迹在小鼠样本上浓度为1:5000. Nature (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫沉淀; 小鼠; 1:2000-1:4000; 图 5
西格玛奥德里奇 TUBA4A抗体(SIGMA, DM1A)被用于被用于免疫沉淀在小鼠样本上浓度为1:2000-1:4000 (图 5). Nat Cell Biol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Nature (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:4000
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:4000. Mol Immunol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 1:3000; 图 6a
  • 免疫细胞化学; 小鼠; 1:1000; 图 1b
西格玛奥德里奇 TUBA4A抗体(sigma, T7451)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 6a) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1b). PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6). Cell Cycle (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上 (图 2). Autophagy (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 4). Autophagy (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在小鼠样本上. Cell Cycle (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; roundworm ; 1:1500; 图 s4
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T6074)被用于被用于免疫印迹在roundworm 样本上浓度为1:1500 (图 s4). PLoS ONE (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, cat# T6793)被用于被用于免疫组化-石蜡切片在人类样本上. J Med Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Sci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:20,000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 1). Nature (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:8000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:8000 (图 1). Nature (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000. Toxicol Appl Pharmacol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 大鼠; 1:400; 图 4
  • 免疫印迹; 大鼠; 1:1000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). J Mol Neurosci (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 大鼠; 1:250; 图 1
  • 免疫印迹; 大鼠; 1:1000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). J Mol Neurosci (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; starlet sea anemone
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在starlet sea anemone样本上. BMC Cell Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上. Hum Reprod (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:200; 图 4
  • 免疫印迹; 人类; 图 3d; 3g
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4) 和 被用于免疫印迹在人类样本上 (图 3d; 3g). J Biol Chem (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T6074)被用于被用于免疫印迹在人类样本上浓度为1:10,000. J Appl Physiol (1985) (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 1:20,000
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在大鼠样本上浓度为1:20,000. Dev Neurobiol (2015) ncbi
小鼠 单克隆(B3)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, B3)被用于被用于免疫印迹在小鼠样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上浓度为1:10,000. J Cell Physiol (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. J Proteome Res (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:4000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:4000 (图 1). Nat Commun (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图 s1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s1). Nat Cell Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T-5168)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Nat Commun (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; fruit fly ; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫印迹在fruit fly 样本上 (图 1). elife (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Mol Biol Cell (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上 (图 2). Cardiovasc Res (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; African green monkey; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1a)被用于被用于免疫印迹在African green monkey样本上 (图 4). Biochemistry (Mosc) (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:2500
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:2500. FASEB J (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). elife (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:4000; 图 f7s2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 f7s2). elife (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fruit fly ; 1:2000
西格玛奥德里奇 TUBA4A抗体(SIGMA, B512)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000. Open Biol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:1000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). Nat Commun (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. FASEB J (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; pigs ; 图 2
  • 免疫细胞化学; 小鼠; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫细胞化学在pigs 样本上 (图 2) 和 被用于免疫细胞化学在小鼠样本上 (图 5). J Clin Invest (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:1000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2). Hum Reprod (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:20,000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:20,000. Nat Protoc (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上. Stem Cells (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; Hydractinia echinata; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在Hydractinia echinata样本上浓度为1:1000. Evol Dev (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:500
  • 免疫组化-石蜡切片; 小鼠; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上浓度为1:500 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000. Cell Res (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 图 3c
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11B-1)被用于被用于免疫印迹在小鼠样本上 (图 3c). J Neurosci (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 s1
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 s1). Oncogene (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 5
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 2). Blood (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:4000
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:4000. J Extracell Vesicles (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:3000
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T7451)被用于被用于免疫细胞化学在人类样本上浓度为1:3000. Methods Mol Biol (2016) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. PLoS Genet (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上 (图 4). elife (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; Rhynchospora pubera
  • 免疫组化; Rhynchospora tenuis; 1:40; 图 s2
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫组化在Rhynchospora pubera样本上 和 被用于免疫组化在Rhynchospora tenuis样本上浓度为1:40 (图 s2). Nat Commun (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:500; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5). Development (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:2000; 图 s10
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 s10). Hum Mol Genet (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 2). Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上 (图 4). J Exp Med (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫印迹在人类样本上 (图 4). BMC Cancer (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T-6793)被用于被用于免疫印迹在人类样本上. FEBS Lett (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Oncotarget (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Genome Res (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上 (图 1). EMBO J (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; groundhog; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074-200UL)被用于被用于免疫印迹在groundhog样本上浓度为1:1000. Mol Cancer Res (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma Chemical, T7451)被用于被用于免疫印迹在小鼠样本上. Mol Reprod Dev (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 七鳃鳗目; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在七鳃鳗目样本上浓度为1:1000. J Comp Neurol (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:5000; 图 1
  • 免疫印迹; 人类; 1:5000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:5000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Nat Commun (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上浓度为1:2000. Int J Mol Sci (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:2500
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在大鼠样本上浓度为1:2500. Mol Hum Reprod (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上 (图 2). Cancer Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上. BMC Genomics (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫沉淀; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫沉淀在人类样本上 (图 3). Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化在小鼠样本上. Biol Open (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上. J Nutr Biochem (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠; 1:100; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5). J Biol Chem (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T-9026)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:2000; 图 1-s3
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1-s3). elife (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上浓度为1:5000. Mol Oncol (2015) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上 (图 3). Nature (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000; 图 2
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Nat Med (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; Aspergillus sp.; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在Aspergillus sp.样本上浓度为1:1000. Genetics (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1??)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5). Mol Biol Cell (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, B512)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, B-5-1-2)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 非洲爪蛙; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫组化在非洲爪蛙样本上 (图 2). J Cell Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:100
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上浓度为1:100. FEBS Lett (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫印迹在人类样本上. Cell Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Nat Commun (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 s1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 s1). Mol Biol Cell (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; Atlantic halibut; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫细胞化学在Atlantic halibut样本上浓度为1:1000. J Comp Neurol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
  • 免疫沉淀; 小鼠
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫沉淀在人类样本上, 被用于免疫细胞化学在人类样本上, 被用于免疫印迹在人类样本上, 被用于免疫沉淀在小鼠样本上, 被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. FEBS J (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; fruit fly ; 1:5000; 图 s1
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1a)被用于被用于免疫印迹在fruit fly 样本上浓度为1:5000 (图 s1). Mol Biol Cell (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:20,000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 3). Skelet Muscle (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; western mosquitofish; 1:1000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T6793)被用于被用于免疫印迹在western mosquitofish样本上浓度为1:1000 (图 3). Front Neural Circuits (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 斑马鱼; 1:500
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在斑马鱼样本上浓度为1:500. Cell (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Nat Neurosci (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4). PLoS Genet (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T6074)被用于被用于免疫印迹在人类样本上 (图 2). Nat Commun (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 s4
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上 (图 s4). PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:5000. Biomed Res Int (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:20,000
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20,000. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上 (图 1). EMBO J (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在小鼠样本上. EMBO Mol Med (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:200
  • 免疫细胞化学; 犬; 1:200
  • 免疫印迹; 犬; 1:1000; 图 7
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上浓度为1:200, 被用于免疫细胞化学在犬样本上浓度为1:200 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 7). Cell Microbiol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2). Nat Commun (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫组化在人类样本上 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T-5168)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, B512)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:200
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793-2ML)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Open Biol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:1000; 图 s7
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s7). Nat Commun (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neurobiol Dis (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; pigs ; 1:10,000
  • 免疫细胞化学; African green monkey; 1:10,000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫印迹在pigs 样本上浓度为1:10,000 和 被用于免疫细胞化学在African green monkey样本上浓度为1:10,000. Nat Neurosci (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; African green monkey; 1:10,000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, 6-11B-1)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:10,000. Nat Neurosci (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫细胞化学在人类样本上. Exp Cell Res (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; red tail; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T-6793)被用于被用于免疫组化在red tail样本上浓度为1:1000. Aquat Toxicol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 非洲爪蛙
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化-冰冻切片在非洲爪蛙样本上. J Comp Neurol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上. PLoS Genet (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上. elife (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; African green monkey
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫细胞化学在African green monkey样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000
西格玛奥德里奇 TUBA4A抗体(Sigma, B512)被用于被用于免疫印迹在人类样本上浓度为1:10,000. J Biol Chem (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上浓度为1:5000. Prostate (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:15,000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:15,000. Nat Commun (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:1000; 图 2
  • 免疫印迹; 人类; 1:10,000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 2). Nat Cell Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上. Nat Commun (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:5000. Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 酵母菌目
  • 免疫印迹; fission yeast
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, B5-1-2)被用于被用于免疫印迹在酵母菌目样本上 和 被用于免疫印迹在fission yeast样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-自由浮动切片; 非洲爪蛙; 1:500
  • 免疫印迹; 非洲爪蛙
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化-自由浮动切片在非洲爪蛙样本上浓度为1:500 和 被用于免疫印迹在非洲爪蛙样本上. J Comp Neurol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, B512)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T9026)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T9026)被用于被用于免疫印迹在人类样本上. World J Gastroenterol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上浓度为1:5000. Traffic (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在大鼠样本上. Neuroscience (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上. Chromosoma (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠; 1:500
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Mol Endocrinol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Clin Invest (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 大鼠; 1:2000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T607)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Endocrinology (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上. Biol Reprod (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上 (图 1). FASEB J (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Cell Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T9026)被用于被用于免疫细胞化学在人类样本上. Histochem Cell Biol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, 611B1)被用于被用于免疫组化-冰冻切片在小鼠样本上. Cytoskeleton (Hoboken) (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; pigs
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1-A)被用于被用于免疫印迹在pigs 样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类
  • 免疫印迹; pigs
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11B-1)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在pigs 样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:100
西格玛奥德里奇 TUBA4A抗体(SIGMA, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Differentiation (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:100
西格玛奥德里奇 TUBA4A抗体(Sigma, T-6793)被用于被用于免疫组化在斑马鱼样本上浓度为1:100. J Biol Chem (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠
  • 酶联免疫吸附测定; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, 611B1)被用于被用于免疫细胞化学在小鼠样本上 和 被用于酶联免疫吸附测定在小鼠样本上. PLoS Genet (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 6
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在小鼠样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). PLoS Pathog (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上. Am J Hum Genet (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上. FEBS Lett (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在人类样本上. RNA (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上. Electrophoresis (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在大鼠样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上. Biochem Pharmacol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在斑马鱼样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 图 10
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在大鼠样本上 (图 10). Nat Protoc (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, B-5-1-2)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Nano Lett (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 1, 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上 (图 1, 2). Cell Commun Signal (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在人类样本上. J Cell Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上. J Cell Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 图 5, 7
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上 (图 5, 7). J Cell Sci (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上. Oncogene (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. PLoS ONE (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Mol Cell Proteomics (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:40,000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:40,000. Hum Mol Genet (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在人类样本上. Exp Cell Res (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; roundworm ; 图 6.5
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在roundworm 样本上 (图 6.5). Methods Enzymol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2b
西格玛奥德里奇 TUBA4A抗体(Sigma, T6074)被用于被用于免疫印迹在人类样本上 (图 2b). Oncogene (2015) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Dev Neurobiol (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 斑马鱼; 1:1000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在斑马鱼样本上浓度为1:1000 (图 3). J Neurosci Methods (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Stem Cells Transl Med (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上 (图 6). Autophagy (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:500
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, 611B1)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Biol Open (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 非洲爪蛙
西格玛奥德里奇 TUBA4A抗体(Sigma, B512)被用于被用于免疫印迹在非洲爪蛙样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fission yeast; 1:30,000
西格玛奥德里奇 TUBA4A抗体(Sigma, T-5168)被用于被用于免疫印迹在fission yeast样本上浓度为1:30,000. Cell Cycle (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-C11B-1)被用于被用于免疫细胞化学在人类样本上 (图 6). J Biol Chem (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma, T 9026)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Br J Pharmacol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 大鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T-6793)被用于被用于免疫组化在大鼠样本上. Dev Biol (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上. Cell Cycle (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5?C1?C2)被用于被用于免疫印迹在人类样本上 (图 2). Cell Death Differ (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化-冰冻切片在小鼠样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 3). Methods Mol Biol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10 000
西格玛奥德里奇 TUBA4A抗体(Sigma-Chemical, 9026)被用于被用于免疫印迹在小鼠样本上浓度为1:10 000. Free Radic Res (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; domestic rabbit; 1:20,000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6074)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:20,000. Eur J Nutr (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Death Dis (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫细胞化学在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫细胞化学在小鼠样本上. J Clin Invest (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上. PLoS Genet (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:200; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). Gastroenterology (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 大鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, 611B1)被用于被用于免疫印迹在大鼠样本上. Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, t7451)被用于被用于免疫细胞化学在人类样本上. elife (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫印迹在人类样本上浓度为1:5000. Cell Cycle (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma Chemical, T5168)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma Chemical, T6793)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 图 3c
  • 免疫细胞化学; 人类; 图 3a
西格玛奥德里奇 TUBA4A抗体(Sigma, 6-11B-1)被用于被用于免疫组化在小鼠样本上 (图 3c) 和 被用于免疫细胞化学在人类样本上 (图 3a). Hum Mol Genet (2014) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 4
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 4). PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T 9026)被用于被用于免疫印迹在小鼠样本上. DNA Repair (Amst) (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 TUBA4A抗体(Sigma-CAldrich, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Exp Eye Res (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 金鱼; 1:100; 表 1
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在金鱼样本上浓度为1:100 (表 1). J Comp Neurol (2014) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上 (图 1a). Oncogene (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, B512)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T5168)被用于被用于免疫印迹在小鼠样本上. Cell Death Differ (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Mol Vis (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 斑马鱼; 1:500
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:500. PLoS Genet (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:2000
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在人类样本上浓度为1:2000. Hum Mol Genet (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上. Nature (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上. Nature (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 非洲爪蛙; 1:100
  • 免疫印迹; 非洲爪蛙; 1 ug/ml
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫细胞化学在非洲爪蛙样本上浓度为1:100 和 被用于免疫印迹在非洲爪蛙样本上浓度为1 ug/ml. EMBO J (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 2a). Nucleic Acids Res (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, B512)被用于被用于免疫印迹在大鼠样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, 611B1)被用于被用于免疫印迹在小鼠样本上. Mol Cancer Ther (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. J Neurosci (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000; 图 s4
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s4). EMBO Rep (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 犬; 1:3000
  • 免疫印迹; 犬
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫细胞化学在犬样本上浓度为1:3000 和 被用于免疫印迹在犬样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上浓度为1:10,000 和 被用于免疫印迹在小鼠样本上浓度为1:10,000. PLoS ONE (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2014) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 1:10,000
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000. Biomaterials (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 图 s11
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫印迹在小鼠样本上 (图 s11). PLoS Genet (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在小鼠样本上. Stem Cells (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Stem Cells Dev (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; 非洲爪蛙; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:1000. Development (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在小鼠样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫细胞化学在小鼠样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:10,000. J Neurosci (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类; 1:400
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T-5168)被用于被用于免疫细胞化学在人类样本上浓度为1:400. PLoS ONE (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 大鼠; 1:10,000
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000. J Neurosci (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化-冰冻切片; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化-冰冻切片在人类样本上. Endocrinol Metab Clin North Am (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫细胞化学在小鼠样本上. Carcinogenesis (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 大鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T-6793)被用于被用于免疫组化在大鼠样本上. Invest Ophthalmol Vis Sci (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, 611B1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Cilia (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 鸡; 1:2000
西格玛奥德里奇 TUBA4A抗体(Sigma, B512)被用于被用于免疫细胞化学在鸡样本上浓度为1:2000. Cell Cycle (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, T5168)被用于被用于免疫印迹在人类样本上 (图 6). Cell Cycle (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫细胞化学在人类样本上. Nucleic Acids Res (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上. Biol Open (2012) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 淡水涡虫;真涡虫; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在淡水涡虫;真涡虫样本上浓度为1:1000. Development (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:800
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫组化在斑马鱼样本上浓度为1:800. Biol Open (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. PLoS ONE (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类; 1:2000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:2000. Mutat Res (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫细胞化学在人类样本上. Carcinogenesis (2013) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:3000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫细胞化学在人类样本上浓度为1:3000. PLoS ONE (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fission yeast
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在fission yeast样本上. Nucleic Acids Res (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类; 1:500
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫细胞化学在人类样本上浓度为1:500. J Virol (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫细胞化学; 人类; 1:2000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫细胞化学在人类样本上浓度为1:2000. Cell Cycle (2012) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Neurobiol Dis (2013) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T7451)被用于被用于免疫印迹在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2012) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 小鼠; 1:100
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Comp Neurol (2013) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, B512)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Development (2012) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-石蜡切片; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T7451)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Pathol (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; red rock crab; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, DM1A)被用于被用于免疫组化在red rock crab样本上浓度为1:1000. PLoS ONE (2012) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000. Dev Biol (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Nucleic Acids Res (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:5000; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). PLoS ONE (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上. Toxicol Appl Pharmacol (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫沉淀; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫沉淀在小鼠样本上. Nucleic Acids Res (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1A)被用于被用于免疫细胞化学在人类样本上. J Cell Sci (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上. J Cell Biochem (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T-5168)被用于被用于免疫印迹在人类样本上. Cancer Res (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在人类样本上. Blood (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫细胞化学; roundworm ; 1:500
西格玛奥德里奇 TUBA4A抗体(Sigma, DM1alpha)被用于被用于免疫细胞化学在roundworm 样本上浓度为1:500. Development (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在小鼠样本上. Immunity (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 家羊
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在家羊样本上. Heart Rhythm (2012) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; fruit fly ; 1:2,000
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2,000. Mol Cell Biol (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; fission yeast
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在fission yeast样本上. ACS Chem Biol (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫印迹在人类样本上 (图 6). Oncogene (2012) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类; 1:10,000; 图  6
西格玛奥德里奇 TUBA4A抗体(Sigma, B512)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图  6). Leuk Res (2012) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-自由浮动切片; 斑马鱼; 1:200; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T-6793)被用于被用于免疫组化-自由浮动切片在斑马鱼样本上浓度为1:200 (图 3). PLoS ONE (2011) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 小鼠; 1:3000; 图 1
西格玛奥德里奇 TUBA4A抗体(Sigma, B-5-1-2)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1). PLoS ONE (2011) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 图 2
西格玛奥德里奇 TUBA4A抗体(Sigma, T-6793)被用于被用于免疫组化在斑马鱼样本上 (图 2). Cell Death Differ (2011) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化; rye; 1:100
西格玛奥德里奇 TUBA4A抗体(Sigma, T 9026)被用于被用于免疫组化在rye样本上浓度为1:100. Chromosome Res (2011) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma, T5168)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:2000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T6793)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:2000. J Comp Neurol (2010) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 猕猴; 图 6
西格玛奥德里奇 TUBA4A抗体(Sigma, clone B-5-1-2)被用于被用于免疫印迹在猕猴样本上 (图 6). J Virol (2010) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2009) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T9026)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. J Comp Neurol (2009) ncbi
小鼠 单克隆(DM1A)
  • 免疫组化-石蜡切片; marine lamprey
西格玛奥德里奇 TUBA4A抗体(Sigma, T-9026)被用于被用于免疫组化-石蜡切片在marine lamprey样本上. J Comp Neurol (2009) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 七鳃鳗目; 1:500
西格玛奥德里奇 TUBA4A抗体(Sigma, T6793)被用于被用于免疫组化-冰冻切片在七鳃鳗目样本上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; marine lamprey; 1:500
西格玛奥德里奇 TUBA4A抗体(Sigma, 611B1)被用于被用于免疫组化-冰冻切片在marine lamprey样本上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:1000
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T-6793)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1000. J Comp Neurol (2008) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, B512)被用于被用于免疫印迹在人类样本上. J Cell Biol (2008) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma Aldrich, 611B1)被用于被用于免疫印迹在人类样本上. J Cell Biol (2008) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T9026)被用于被用于免疫印迹在人类样本上. Oncogene (2008) ncbi
小鼠 单克隆(B-5-1-2)
  • 免疫印迹; 猕猴
西格玛奥德里奇 TUBA4A抗体(Sigma-Aldrich, T5168)被用于被用于免疫印迹在猕猴样本上. J Virol (2007) ncbi
小鼠 单克隆(6-11B-1)
  • 免疫组化; 斑马鱼; 1:100
西格玛奥德里奇 TUBA4A抗体(Sigma, T 6793)被用于被用于免疫组化在斑马鱼样本上浓度为1:100. J Comp Neurol (2007) ncbi
小鼠 单克隆(DM1A)
  • 免疫印迹; 人类
西格玛奥德里奇 TUBA4A抗体(Sigma, T-9026)被用于被用于免疫印迹在人类样本上. J Biol Chem (2002) ncbi
文章列表
  1. Haynes E, Burnett K, He J, Jean Pierre M, Jarzyna M, Eliceiri K, et al. KLC4 shapes axon arbors during development and mediates adult behavior. elife. 2022;11: pubmed 出版商
  2. Francis V, Alshafie W, Kumar R, Girard M, Brais B, McPherson P. The ARSACS disease protein sacsin controls lysosomal positioning and reformation by regulating microtubule dynamics. J Biol Chem. 2022;298:102320 pubmed 出版商
  3. Hausrat T, Janiesch P, Breiden P, Lutz D, Hoffmeister Ullerich S, Hermans Borgmeyer I, et al. Disruption of tubulin-alpha4a polyglutamylation prevents aggregation of hyper-phosphorylated tau and microglia activation in mice. Nat Commun. 2022;13:4192 pubmed 出版商
  4. Werder R, Liu T, Abo K, Lindstrom Vautrin J, Villacorta Martin C, Huang J, et al. CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells. Sci Adv. 2022;8:eabo6566 pubmed 出版商
  5. Merino B, Casanueva xc1 lvarez E, Quesada I, Gonz xe1 lez Casimiro C, Fern xe1 ndez D xed az C, Postigo Casado T, et al. Insulin-degrading enzyme ablation in mouse pancreatic alpha cells triggers cell proliferation, hyperplasia and glucagon secretion dysregulation. Diabetologia. 2022;65:1375-1389 pubmed 出版商
  6. Kimura Yoshida C, Mochida K, Kanno S, Matsuo I. USP39 is essential for mammalian epithelial morphogenesis through upregulation of planar cell polarity components. Commun Biol. 2022;5:378 pubmed 出版商
  7. Zhang K, Yao E, Chen B, Chuang E, Wong J, Seed R, et al. Acquisition of cellular properties during alveolar formation requires differential activity and distribution of mitochondria. elife. 2022;11: pubmed 出版商
  8. Ousingsawat J, Centeio R, Schreiber R, Kunzelmann K. Expression of SLC26A9 in Airways and Its Potential Role in Asthma. Int J Mol Sci. 2022;23: pubmed 出版商
  9. Sivakumar S, Qi S, Cheng N, Sathe A, Kanchwala M, Kumar A, et al. TP53 promotes lineage commitment of human embryonic stem cells through ciliogenesis and sonic hedgehog signaling. Cell Rep. 2022;38:110395 pubmed 出版商
  10. Feng X, Guo J, An G, Wu Y, Liu Z, Meng B, et al. Genetic Aberrations and Interaction of NEK2 and TP53 Accelerate Aggressiveness of Multiple Myeloma. Adv Sci (Weinh). 2022;9:e2104491 pubmed 出版商
  11. Baeza V, Cifuentes M, Martinez F, Ramírez E, Nualart F, Ferrada L, et al. IIIG9 inhibition in adult ependymal cells changes adherens junctions structure and induces cellular detachment. Sci Rep. 2021;11:18537 pubmed 出版商
  12. Ikari S, Yang Q, Lu S, Liu Y, Hao F, Tong G, et al. Quercetin in Tartary Buckwheat Induces Autophagy against Protein Aggregations. Antioxidants (Basel). 2021;10: pubmed 出版商
  13. Viais R, Fariña Mosquera M, Villamor Payà M, Watanabe S, Palenzuela L, Lacasa C, et al. Augmin deficiency in neural stem cells causes p53-dependent apoptosis and aborts brain development. elife. 2021;10: pubmed 出版商
  14. Wang L, Rajah A, Brown C, McCaffrey L. CD13 orients the apical-basal polarity axis necessary for lumen formation. Nat Commun. 2021;12:4697 pubmed 出版商
  15. Watson A, Grant A, Parker S, Hill S, Whalen M, Chakrabarti J, et al. Breast tumor stiffness instructs bone metastasis via maintenance of mechanical conditioning. Cell Rep. 2021;35:109293 pubmed 出版商
  16. Xu P, Borges R, Fillatre J, de Oliveira Melo M, Cheng T, Thisse B, et al. Construction of a mammalian embryo model from stem cells organized by a morphogen signalling centre. Nat Commun. 2021;12:3277 pubmed 出版商
  17. Urdiciain A, Erausquin E, Zelaya M, Zazpe I, Lanciego J, Melendez B, et al. Silencing of Histone Deacetylase 6 Decreases Cellular Malignancy and Contributes to Primary Cilium Restoration, Epithelial-to-Mesenchymal Transition Reversion, and Autophagy Inhibition in Glioblastoma Cell Lines. Biology (Basel). 2021;10: pubmed 出版商
  18. Anderson E, MORERA A, Kour S, Cherry J, Ramesh N, Gleixner A, et al. Traumatic injury compromises nucleocytoplasmic transport and leads to TDP-43 pathology. elife. 2021;10: pubmed 出版商
  19. Su S, Chen J, Jiang Y, Wang Y, Vital T, Zhang J, et al. SPOP and OTUD7A Control EWS-FLI1 Protein Stability to Govern Ewing Sarcoma Growth. Adv Sci (Weinh). 2021;8:e2004846 pubmed 出版商
  20. Ramos Morales E, Bayam E, Del Pozo Rodríguez J, Salinas Giegé T, Marek M, Tilly P, et al. The structure of the mouse ADAT2/ADAT3 complex reveals the molecular basis for mammalian tRNA wobble adenosine-to-inosine deamination. Nucleic Acids Res. 2021;49:6529-6548 pubmed 出版商
  21. Zhao Y, Xie L, Shen C, Qi Q, Qin Y, Xing J, et al. SIRT2-knockdown rescues GARS-induced Charcot-Marie-Tooth neuropathy. Aging Cell. 2021;20:e13391 pubmed 出版商
  22. Kildey K, Gandhi N, Sahin K, Shah E, Boittier E, Duijf P, et al. Elevating CDCA3 levels in non-small cell lung cancer enhances sensitivity to platinum-based chemotherapy. Commun Biol. 2021;4:638 pubmed 出版商
  23. Hendley A, Rao A, Leonhardt L, Ashe S, Smith J, Giacometti S, et al. Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. elife. 2021;10: pubmed 出版商
  24. Wu Y, Liu Y, Hu Y, Wang L, Bai F, Xu C, et al. Control of multiciliogenesis by miR-34/449 in the male reproductive tract through enforcing cell cycle exit. J Cell Sci. 2021;134: pubmed 出版商
  25. Landin Malt A, Clancy S, Hwang D, Liu A, Smith C, Smith M, et al. Non-Canonical Wnt Signaling Regulates Cochlear Outgrowth and Planar Cell Polarity via Gsk3β Inhibition. Front Cell Dev Biol. 2021;9:649830 pubmed 出版商
  26. Koeniger A, Brichkina A, Nee I, Dempwolff L, Hupfer A, Galperin I, et al. Activation of Cilia-Independent Hedgehog/GLI1 Signaling as a Novel Concept for Neuroblastoma Therapy. Cancers (Basel). 2021;13: pubmed 出版商
  27. Nakajima W, Miyazaki K, Asano Y, Kubota S, Tanaka N. Krüppel-Like Factor 4 and Its Activator APTO-253 Induce NOXA-Mediated, p53-Independent Apoptosis in Triple-Negative Breast Cancer Cells. Genes (Basel). 2021;12: pubmed 出版商
  28. Keatinge M, Tsarouchas T, Munir T, Porter N, Larraz J, Gianni D, et al. CRISPR gRNA phenotypic screening in zebrafish reveals pro-regenerative genes in spinal cord injury. PLoS Genet. 2021;17:e1009515 pubmed 出版商
  29. Kariya Y, Oyama M, Suzuki T, Kariya Y. αvβ3 Integrin induces partial EMT independent of TGF-β signaling. Commun Biol. 2021;4:490 pubmed 出版商
  30. Grunddal K, Tonack S, Egerod K, Thompson J, Petersen N, Engelstoft M, et al. Adhesion receptor ADGRG2/GPR64 is in the GI-tract selectively expressed in mature intestinal tuft cells. Mol Metab. 2021;51:101231 pubmed 出版商
  31. Moore K, Fulmer D, Guo L, Koren N, Glover J, Moore R, et al. PDGFRα: Expression and Function during Mitral Valve Morphogenesis. J Cardiovasc Dev Dis. 2021;8: pubmed 出版商
  32. Boulanger A, Thinat C, Zuchner S, Fradkin L, Lortat Jacob H, Dura J. Axonal chemokine-like Orion induces astrocyte infiltration and engulfment during mushroom body neuronal remodeling. Nat Commun. 2021;12:1849 pubmed 出版商
  33. Niborski L, Paces Fessy M, Ricci P, Bourgeois A, Magalh xe3 es P, Kuzma Kuzniarska M, et al. Hnf1b haploinsufficiency differentially affects developmental target genes in a new renal cysts and diabetes mouse model. Dis Model Mech. 2021;14: pubmed 出版商
  34. Goldfarb A, Freeman K, Sahu R, Elagib K, Holy M, Arneja A, et al. Iron control of erythroid microtubule cytoskeleton as a potential target in treatment of iron-restricted anemia. Nat Commun. 2021;12:1645 pubmed 出版商
  35. Xu J, Deng X, Wu X, Zhu H, Zhu Y, Liu J, et al. Primary cilia regulate gastric cancer-induced bone loss via cilia/Wnt/β-catenin signaling pathway. Aging (Albany NY). 2021;13:8989-9010 pubmed 出版商
  36. Agostinelli E, Gonzalez Velandia K, Hernandez Clavijo A, Kumar Maurya D, Xerxa E, Lewin G, et al. A Role for STOML3 in Olfactory Sensory Transduction. Eneuro. 2021;8: pubmed 出版商
  37. Bianchi E, Sun Y, Almansa Ordonez A, Woods M, Goulding D, Martinez Martin N, et al. Control of oviductal fluid flow by the G-protein coupled receptor Adgrd1 is essential for murine embryo transit. Nat Commun. 2021;12:1251 pubmed 出版商
  38. Kumar B, Ahmad R, Giannico G, Zent R, Talmon G, Harris R, et al. Claudin-2 inhibits renal clear cell carcinoma progression by inhibiting YAP-activation. J Exp Clin Cancer Res. 2021;40:77 pubmed 出版商
  39. Li T, Huang T, Du M, Chen X, Du F, Ren J, et al. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science. 2021;371: pubmed 出版商
  40. Vong K, Ma T, Li B, Leung T, Nong W, Ngai S, et al. SOX9-COL9A3-dependent regulation of choroid plexus epithelial polarity governs blood-cerebrospinal fluid barrier integrity. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  41. Fleming Martinez A, D xf6 ppler H, Bastea L, Edenfield B, Patel T, Leitges M, et al. Dysfunctional EGFR and oxidative stress-induced PKD1 signaling drive formation of DCLK1+ pancreatic stem cells. iScience. 2021;24:102019 pubmed 出版商
  42. Ryu H, Lee H, Lee J, Noh H, Shin M, Kumar V, et al. The molecular dynamics of subdistal appendages in multi-ciliated cells. Nat Commun. 2021;12:612 pubmed 出版商
  43. Patkar O, Caruso M, Teakle N, Keshvari S, Bush S, Pridans C, et al. Analysis of homozygous and heterozygous Csf1r knockout in the rat as a model for understanding microglial function in brain development and the impacts of human CSF1R mutations. Neurobiol Dis. 2021;151:105268 pubmed 出版商
  44. Vergarajauregui S, Becker R, Steffen U, Sharkova M, Esser T, Petzold J, et al. AKAP6 orchestrates the nuclear envelope microtubule-organizing center by linking golgi and nucleus via AKAP9. elife. 2020;9: pubmed 出版商
  45. Samuel R, Majd H, Richter M, Ghazizadeh Z, Zekavat S, Navickas A, et al. Androgen Signaling Regulates SARS-CoV-2 Receptor Levels and Is Associated with Severe COVID-19 Symptoms in Men. Cell Stem Cell. 2020;27:876-889.e12 pubmed 出版商
  46. Fomicheva M, Macara I. Genome-wide CRISPR screen identifies noncanonical NF-κB signaling as a regulator of density-dependent proliferation. elife. 2020;9: pubmed 出版商
  47. Hao Q, Zong X, Sun Q, Lin Y, Song Y, Hashemikhabir S, et al. The S-phase-induced lncRNA SUNO1 promotes cell proliferation by controlling YAP1/Hippo signaling pathway. elife. 2020;9: pubmed 出版商
  48. Chenouard N, Xuan F, Tsien R. Synaptic vesicle traffic is supported by transient actin filaments and regulated by PKA and NO. Nat Commun. 2020;11:5318 pubmed 出版商
  49. Alonso Herranz L, Sahún Español Á, Paredes A, Gonzalo P, Gkontra P, Núñez V, et al. Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction. elife. 2020;9: pubmed 出版商
  50. Yan J, Bengtson C, Buchthal B, Hagenston A, Bading H. Coupling of NMDA receptors and TRPM4 guides discovery of unconventional neuroprotectants. Science. 2020;370: pubmed 出版商
  51. Steib E, Laporte M, Gambarotto D, Olieric N, Zheng C, Borgers S, et al. WDR90 is a centriolar microtubule wall protein important for centriole architecture integrity. elife. 2020;9: pubmed 出版商
  52. Magupalli V, Negro R, Tian Y, Hauenstein A, Di Caprio G, Skillern W, et al. HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science. 2020;369: pubmed 出版商
  53. Rogerson C, Ogden S, Britton E, Ang Y, Sharrocks A. Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor state to oesophageal adenocarcinoma. elife. 2020;9: pubmed 出版商
  54. McGilvray P, Anghel S, Sundaram A, Zhong F, Trnka M, Fuller J, et al. An ER translocon for multi-pass membrane protein biogenesis. elife. 2020;9: pubmed 出版商
  55. Chen J, Liu X, Ke K, Zou J, Gao Z, Habuchi T, et al. LINC00992 contributes to the oncogenic phenotypes in prostate cancer via targeting miR-3935 and augmenting GOLM1 expression. BMC Cancer. 2020;20:749 pubmed 出版商
  56. Capaci V, Bascetta L, Fantuz M, Beznoussenko G, Sommaggio R, Cancila V, et al. Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome. Nat Commun. 2020;11:3945 pubmed 出版商
  57. Yoshida S, Aoki K, Fujiwara K, Nakakura T, Kawamura A, Yamada K, et al. The novel ciliogenesis regulator DYRK2 governs Hedgehog signaling during mouse embryogenesis. elife. 2020;9: pubmed 出版商
  58. Varela Eirin M, Carpintero Fernández P, Sánchez Temprano A, Varela Vazquez A, Paíno C, Casado Diaz A, et al. Senolytic activity of small molecular polyphenols from olive restores chondrocyte redifferentiation and promotes a pro-regenerative environment in osteoarthritis. Aging (Albany NY). 2020;12:15882-15905 pubmed 出版商
  59. Fenech E, Lari F, Charles P, Fischer R, Laétitia Thézénas M, Bagola K, et al. Interaction mapping of endoplasmic reticulum ubiquitin ligases identifies modulators of innate immune signalling. elife. 2020;9: pubmed 出版商
  60. Menendez L, Trecek T, Gopalakrishnan S, Tao L, Markowitz A, Yu H, et al. Generation of inner ear hair cells by direct lineage conversion of primary somatic cells. elife. 2020;9: pubmed 出版商
  61. Gunesch J, Dixon A, Ebrahim T, Berrien Elliott M, Tatineni S, Kumar T, et al. CD56 regulates human NK cell cytotoxicity through Pyk2. elife. 2020;9: pubmed 出版商
  62. Lechertier T, Reynolds L, Kim H, Pedrosa A, Gómez Escudero J, Muñoz Félix J, et al. Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat Commun. 2020;11:2810 pubmed 出版商
  63. Booth D, King N. Genome editing enables reverse genetics of multicellular development in the choanoflagellate Salpingoeca rosetta. elife. 2020;9: pubmed 出版商
  64. Di Matteo F, Pipicelli F, Kyrousi C, Tovecci I, Penna E, Crispino M, et al. Cystatin B is essential for proliferation and interneuron migration in individuals with EPM1 epilepsy. EMBO Mol Med. 2020;12:e11419 pubmed 出版商
  65. Sapaly D, Delers P, Coridon J, Salman B, Letourneur F, Dumont F, et al. The Small-Molecule Flunarizine in Spinal Muscular Atrophy Patient Fibroblasts Impacts on the Gemin Components of the SMN Complex and TDP43, an RNA-Binding Protein Relevant to Motor Neuron Diseases. Front Mol Biosci. 2020;7:55 pubmed 出版商
  66. Yu C, Barry N, Wassie A, Sinha A, Bhattacharya A, Asano S, et al. Expansion microscopy of C. elegans. elife. 2020;9: pubmed 出版商
  67. Han J, Wang H, Zhang T, Chen Z, Zhao T, Lin L, et al. Resveratrol attenuates doxorubicin-induced meiotic failure through inhibiting oxidative stress and apoptosis in mouse oocytes. Aging (Albany NY). 2020;12:7717-7728 pubmed 出版商
  68. Smith S, Davidson L, Rebeiz M. Evolutionary expansion of apical extracellular matrix is required for the elongation of cells in a novel structure. elife. 2020;9: pubmed 出版商
  69. Bozic M, Caus M, Rodrigues Díez R, Pedraza N, Ruiz Ortega M, Garí E, et al. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nat Commun. 2020;11:1943 pubmed 出版商
  70. Wang X, Xie W, Yao Y, Zhu Y, Zhou J, Cui Y, et al. The heat shock protein family gene Hspa1l in male mice is dispensable for fertility. Peerj. 2020;8:e8702 pubmed 出版商
  71. Xu M, Ge C, Qin Y, Lou D, Li Q, Feng J, et al. Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation. Mol Metab. 2020;34:112-123 pubmed 出版商
  72. Berges R, Tchoghandjian A, Serge A, Honore S, Figarella Branger D, Bachmann F, et al. EB1-dependent long survival of glioblastoma-grafted mice with the oral tubulin-binder BAL101553 is associated with inhibition of tumor angiogenesis. Oncotarget. 2020;11:759-774 pubmed 出版商
  73. Gallo S, Spilinga M, Albano R, Ferrauto G, Di Gregorio E, Casanova E, et al. Activation of the MET receptor attenuates doxorubicin-induced cardiotoxicity in vivo and in vitro. Br J Pharmacol. 2020;177:3107-3122 pubmed 出版商
  74. Gigante E, Taylor M, Ivanova A, Kahn R, Caspary T. ARL13B regulates Sonic hedgehog signaling from outside primary cilia. elife. 2020;9: pubmed 出版商
  75. Reynders M, Matsuura B, Bérouti M, Simoneschi D, Marzio A, Pagano M, et al. PHOTACs enable optical control of protein degradation. Sci Adv. 2020;6:eaay5064 pubmed 出版商
  76. Leite M, Marques M, Melo J, Pinto M, Cavadas B, Aroso M, et al. Helicobacter Pylori Targets the EPHA2 Receptor Tyrosine Kinase in Gastric Cells Modulating Key Cellular Functions. Cells. 2020;9: pubmed 出版商
  77. Cao Y, Lipka J, Stucchi R, Burute M, Pan X, Portegies S, et al. Microtubule Minus-End Binding Protein CAMSAP2 and Kinesin-14 Motor KIFC3 Control Dendritic Microtubule Organization. Curr Biol. 2020;30:899-908.e6 pubmed 出版商
  78. Hu C, Wang W, Brind Amour J, Singh P, Reeves G, Lorincz M, et al. Vertebrate diapause preserves organisms long term through Polycomb complex members. Science. 2020;367:870-874 pubmed 出版商
  79. Eom T, Han S, Kim J, Blundon J, Wang Y, Yu J, et al. Schizophrenia-related microdeletion causes defective ciliary motility and brain ventricle enlargement via microRNA-dependent mechanisms in mice. Nat Commun. 2020;11:912 pubmed 出版商
  80. Sciascia N, Wu W, Zong D, Sun Y, Wong N, John S, et al. Suppressing proteasome mediated processing of Topoisomerase II DNA-protein complexes preserves genome integrity. elife. 2020;9: pubmed 出版商
  81. Nagaoka S, Nakaki F, Miyauchi H, Nosaka Y, Ohta H, Yabuta Y, et al. ZGLP1 is a determinant for the oogenic fate in mice. Science. 2020;: pubmed 出版商
  82. Herrera Rincon C, Pare J, Martyniuk C, Jannetty S, Harrison C, Fischer A, et al. An in vivo brain-bacteria interface: the developing brain as a key regulator of innate immunity. NPJ Regen Med. 2020;5:2 pubmed 出版商
  83. Wang L, Xie J, Zhang H, Tsang L, Tsang S, Braune E, et al. Notch signalling regulates epibranchial placode patterning and segregation. Development. 2020;147: pubmed 出版商
  84. Karge A, Bonar N, Wood S, Petersen C. tec-1 kinase negatively regulates regenerative neurogenesis in planarians. elife. 2020;9: pubmed 出版商
  85. Bodrug T, Wilson Kubalek E, Nithianantham S, Thompson A, Alfieri A, Gaska I, et al. The kinesin-5 tail domain directly modulates the mechanochemical cycle of the motor domain for anti-parallel microtubule sliding. elife. 2020;9: pubmed 出版商
  86. Zhao L, Ke H, Xu H, Wang G, Zhang H, Zou L, et al. TDP-43 facilitates milk lipid secretion by post-transcriptional regulation of Btn1a1 and Xdh. Nat Commun. 2020;11:341 pubmed 出版商
  87. Boukhalfa A, Nascimbeni A, Ramel D, Dupont N, Hirsch E, Gayral S, et al. PI3KC2α-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress. Nat Commun. 2020;11:294 pubmed 出版商
  88. Du X, Zhang Z, Zheng X, Zhang H, Dong D, Zhang Z, et al. An electrochemical biosensor for the detection of epithelial-mesenchymal transition. Nat Commun. 2020;11:192 pubmed 出版商
  89. Ahfeldt T, Ordureau A, Bell C, Sarrafha L, Sun C, Piccinotti S, et al. Pathogenic Pathways in Early-Onset Autosomal Recessive Parkinson's Disease Discovered Using Isogenic Human Dopaminergic Neurons. Stem Cell Reports. 2020;14:75-90 pubmed 出版商
  90. Even A, Morelli G, Broix L, Scaramuzzino C, Turchetto S, Gladwyn Ng I, et al. ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. Sci Adv. 2019;5:eaax2705 pubmed 出版商
  91. Naiman S, Huynh F, Gil R, Glick Y, Shahar Y, Touitou N, et al. SIRT6 Promotes Hepatic Beta-Oxidation via Activation of PPARα. Cell Rep. 2019;29:4127-4143.e8 pubmed 出版商
  92. Conti D, Gul P, Islam A, Martín Durán J, Pickersgill R, Draviam V. Kinetochores attached to microtubule-ends are stabilised by Astrin bound PP1 to ensure proper chromosome segregation. elife. 2019;8: pubmed 出版商
  93. Lehmann M, Lukonin I, Noe F, Schmoranzer J, Clementi C, Loerke D, et al. Nanoscale coupling of endocytic pit growth and stability. Sci Adv. 2019;5:eaax5775 pubmed 出版商
  94. Bendriem R, Singh S, Aleem A, Antonetti D, Ross M. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. elife. 2019;8: pubmed 出版商
  95. Larson G, Tran V, Yu S, Cai Y, Higgins C, Smith D, et al. EPS8 Facilitates Uncoating of Influenza A Virus. Cell Rep. 2019;29:2175-2183.e4 pubmed 出版商
  96. Brenneis G, Beltz B. Adult neurogenesis in crayfish: Origin, expansion, and migration of neural progenitor lineages in a pseudostratified neuroepithelium. J Comp Neurol. 2019;: pubmed 出版商
  97. Scaros A, Andouche A, Baratte S, Croll R. Histamine and histidine decarboxylase in the olfactory system and brain of the common cuttlefish Sepia officinalis (Linnaeus, 1758). J Comp Neurol. 2019;: pubmed 出版商
  98. Clark D, McMillan L, Tan S, Bellomo G, Massoue C, Thompson H, et al. Transient protein accumulation at the center of the T cell antigen-presenting cell interface drives efficient IL-2 secretion. elife. 2019;8: pubmed 出版商
  99. Vohnoutka R, Gulvady A, Goreczny G, Alpha K, Handelman S, Sexton J, et al. The focal adhesion scaffold protein Hic-5 regulates vimentin organization in fibroblasts. Mol Biol Cell. 2019;30:3037-3056 pubmed 出版商
  100. Rawlinson K, Lapraz F, Ballister E, Terasaki M, Rodgers J, McDowell R, et al. Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment. elife. 2019;8: pubmed 出版商
  101. Lummis N, Sánchez Pavón P, Kennedy G, Frantz A, Kihara Y, Blaho V, et al. LPA1/3 overactivation induces neonatal posthemorrhagic hydrocephalus through ependymal loss and ciliary dysfunction. Sci Adv. 2019;5:eaax2011 pubmed 出版商
  102. Nakamura Y, Dryanovski D, Kimura Y, Jackson S, Woods A, Yasui Y, et al. Cocaine-induced endocannabinoid signaling mediated by sigma-1 receptors and extracellular vesicle secretion. elife. 2019;8: pubmed 出版商
  103. Lai Y, Zhu M, Wu W, Rokutanda N, Togashi Y, Liang W, et al. HERC2 regulates RPA2 by mediating ATR-induced Ser33 phosphorylation and ubiquitin-dependent degradation. Sci Rep. 2019;9:14257 pubmed 出版商
  104. Martin Hurtado A, Martin Morales R, Robledinos Antón N, Blanco R, Palacios Blanco I, Lastres Becker I, et al. NRF2-dependent gene expression promotes ciliogenesis and Hedgehog signaling. Sci Rep. 2019;9:13896 pubmed 出版商
  105. Morris J, Yashinskie J, Koche R, Chandwani R, Tian S, Chen C, et al. α-Ketoglutarate links p53 to cell fate during tumour suppression. Nature. 2019;573:595-599 pubmed 出版商
  106. Morishita H, Zhao Y, Tamura N, Nishimura T, Kanda Y, Sakamaki Y, et al. A critical role of VMP1 in lipoprotein secretion. elife. 2019;8: pubmed 出版商
  107. Barbero G, Castro M, Villanueva M, Quezada M, Fernández N, Demorrow S, et al. An Autocrine Wnt5a Loop Promotes NF-κB Pathway Activation and Cytokine/Chemokine Secretion in Melanoma. Cells. 2019;8: pubmed 出版商
  108. Arrondel C, Missoury S, Snoek R, Patat J, Menara G, Collinet B, et al. Defects in t6A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome. Nat Commun. 2019;10:3967 pubmed 出版商
  109. Ombrato L, Nolan E, Kurelac I, Mavousian A, Bridgeman V, Heinze I, et al. Metastatic-niche labelling reveals parenchymal cells with stem features. Nature. 2019;572:603-608 pubmed 出版商
  110. Chatzifrangkeskou M, Pefani D, Eyres M, Vendrell I, Fischer R, Panková D, et al. RASSF1A is required for the maintenance of nuclear actin levels. EMBO J. 2019;38:e101168 pubmed 出版商
  111. Wang R, Yu R, Zhu C, Lin H, Lu X, Wang H. Tubulin detyrosination promotes human trophoblast syncytium formation. J Mol Cell Biol. 2019;: pubmed 出版商
  112. Sanghvi V, Leibold J, Mina M, Mohan P, Berishaj M, Li Z, et al. The Oncogenic Action of NRF2 Depends on De-glycation by Fructosamine-3-Kinase. Cell. 2019;178:807-819.e21 pubmed 出版商
  113. Hartono -, Hazawa M, Lim K, Dewi F, Kobayashi A, Wong R. Nucleoporin Nup58 localizes to centrosomes and mid-bodies during mitosis. Cell Div. 2019;14:7 pubmed 出版商
  114. Lekk I, Duboc V, Faro A, Nicolaou S, Blader P, Wilson S. Sox1a mediates the ability of the parapineal to impart habenular left-right asymmetry. elife. 2019;8: pubmed 出版商
  115. Jiang C, Trudeau S, Cheong T, Guo R, Teng M, Wang L, et al. CRISPR/Cas9 Screens Reveal Multiple Layers of B cell CD40 Regulation. Cell Rep. 2019;28:1307-1322.e8 pubmed 出版商
  116. Molinari E, Ramsbottom S, Srivastava S, Booth P, Alkanderi S, McLafferty S, et al. Targeted exon skipping rescues ciliary protein composition defects in Joubert syndrome patient fibroblasts. Sci Rep. 2019;9:10828 pubmed 出版商
  117. Dorsch L, Schuldt M, dos Remedios C, Schinkel A, de Jong P, Michels M, et al. Protein Quality Control Activation and Microtubule Remodeling in Hypertrophic Cardiomyopathy. Cells. 2019;8: pubmed 出版商
  118. Marcus J, Bejerano Sagie M, Patterson N, Bagchi S, Verkhusha V, Connolly D, et al. Septin 9 isoforms promote tumorigenesis in mammary epithelial cells by increasing migration and ECM degradation through metalloproteinase secretion at focal adhesions. Oncogene. 2019;38:5839-5859 pubmed 出版商
  119. Nakagawa N, Plestant C, Yabuno Nakagawa K, Li J, Lee J, Huang C, et al. Memo1-Mediated Tiling of Radial Glial Cells Facilitates Cerebral Cortical Development. Neuron. 2019;: pubmed 出版商
  120. Rossaert E, Pollari E, Jaspers T, Van Helleputte L, Jarpe M, Van Damme P, et al. Restoration of histone acetylation ameliorates disease and metabolic abnormalities in a FUS mouse model. Acta Neuropathol Commun. 2019;7:107 pubmed 出版商
  121. Barrows N, Anglero Rodriguez Y, Kim B, Jamison S, Le Sommer C, McGee C, et al. Dual roles for the ER membrane protein complex in flavivirus infection: viral entry and protein biogenesis. Sci Rep. 2019;9:9711 pubmed 出版商
  122. Quilichini E, Fabre M, Dirami T, Stedman A, De Vas M, Ozguc O, et al. Pancreatic ductal deletion of Hnf1b disrupts exocrine homeostasis, leads to pancreatitis and facilitates tumorigenesis. Cell Mol Gastroenterol Hepatol. 2019;: pubmed 出版商
  123. Candiracci J, Migeot V, Chionh Y, Bauer F, Brochier T, Russell B, et al. Reciprocal regulation of TORC signaling and tRNA modifications by Elongator enforces nutrient-dependent cell fate. Sci Adv. 2019;5:eaav0184 pubmed 出版商
  124. Ommer A, Figlia G, Pereira J, Datwyler A, Gerber J, Degeer J, et al. Ral GTPases in Schwann cells promote radial axonal sorting in the peripheral nervous system. J Cell Biol. 2019;: pubmed 出版商
  125. Ji J, Yuan J, Guo X, Ji R, Quan Q, Ding M, et al. Harmine suppresses hyper-activated Ras-MAPK pathway by selectively targeting oncogenic mutated Ras/Raf in Caenorhabditis elegans. Cancer Cell Int. 2019;19:159 pubmed 出版商
  126. Sajini A, Choudhury N, Wagner R, Bornelöv S, Selmi T, Spanos C, et al. Loss of 5-methylcytosine alters the biogenesis of vault-derived small RNAs to coordinate epidermal differentiation. Nat Commun. 2019;10:2550 pubmed 出版商
  127. Sauer M, Juranek S, Marks J, De Magis A, Kazemier H, Hilbig D, et al. DHX36 prevents the accumulation of translationally inactive mRNAs with G4-structures in untranslated regions. Nat Commun. 2019;10:2421 pubmed 出版商
  128. Hambleton E, Jones V, Maegele I, Kvaskoff D, Sachsenheimer T, Guse A. Sterol transfer by atypical cholesterol-binding NPC2 proteins in coral-algal symbiosis. elife. 2019;8: pubmed 出版商
  129. Mikuličić S, Finke J, Boukhallouk F, Wüstenhagen E, Sons D, Homsi Y, et al. ADAM17-dependent signaling is required for oncogenic human papillomavirus entry platform assembly. elife. 2019;8: pubmed 出版商
  130. Gregersen L, Mitter R, Ugalde A, Nojima T, Proudfoot N, Agami R, et al. SCAF4 and SCAF8, mRNA Anti-Terminator Proteins. Cell. 2019;: pubmed 出版商
  131. Sonego M, Pellarin I, Costa A, Vinciguerra G, Coan M, Kraut A, et al. USP1 links platinum resistance to cancer cell dissemination by regulating Snail stability. Sci Adv. 2019;5:eaav3235 pubmed 出版商
  132. Henriques T, Agostinelli E, Hernandez Clavijo A, Maurya D, Rock J, Harfe B, et al. TMEM16A calcium-activated chloride currents in supporting cells of the mouse olfactory epithelium. J Gen Physiol. 2019;: pubmed 出版商
  133. Weiss S, Melom J, Ormerod K, Zhang Y, Littleton J. Glial Ca2+signaling links endocytosis to K+ buffering around neuronal somas to regulate excitability. elife. 2019;8: pubmed 出版商
  134. A M, Fung T, Kettenbach A, Chakrabarti R, Higgs H. A complex containing lysine-acetylated actin inhibits the formin INF2. Nat Cell Biol. 2019;21:592-602 pubmed 出版商
  135. Pluvinage J, Haney M, Smith B, Sun J, Iram T, Bonanno L, et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature. 2019;568:187-192 pubmed 出版商
  136. Tsai C, Tsai C, Yi J, Kao H, Huang Y, Wang C, et al. Activin A regulates the epidermal growth factor receptor promoter by activating the PI3K/SP1 pathway in oral squamous cell carcinoma cells. Sci Rep. 2019;9:5197 pubmed 出版商
  137. Ignarski M, Rill C, Kaiser R, Kaldirim M, Neuhaus R, Esmaillie R, et al. The RNA-Protein Interactome of Differentiated Kidney Tubular Epithelial Cells. J Am Soc Nephrol. 2019;30:564-576 pubmed 出版商
  138. Patel N, Wang J, Shiozawa K, Jones K, Zhang Y, Prokop J, et al. HDAC2 Regulates Site-Specific Acetylation of MDM2 and Its Ubiquitination Signaling in Tumor Suppression. iScience. 2019;13:43-54 pubmed 出版商
  139. Ducommun S, Deak M, Zeigerer A, Göransson O, Seitz S, Collodet C, et al. Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates. Cell Signal. 2019;57:45-57 pubmed 出版商
  140. Farías G, Fréal A, Tortosa E, Stucchi R, Pan X, Portegies S, et al. Feedback-Driven Mechanisms between Microtubules and the Endoplasmic Reticulum Instruct Neuronal Polarity. Neuron. 2019;102:184-201.e8 pubmed 出版商
  141. Wu W, Zhang W, Choi M, Zhao J, Gao P, Xue M, et al. Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation. Redox Biol. 2019;22:101137 pubmed 出版商
  142. Kubli S, Bassi C, Roux C, Wakeham A, Göbl C, Zhou W, et al. AhR controls redox homeostasis and shapes the tumor microenvironment in BRCA1-associated breast cancer. Proc Natl Acad Sci U S A. 2019;116:3604-3613 pubmed 出版商
  143. Rangel L, Bernabé Rubio M, Fernández Barrera J, Casares Arias J, Millan J, Alonso M, et al. Caveolin-1α regulates primary cilium length by controlling RhoA GTPase activity. Sci Rep. 2019;9:1116 pubmed 出版商
  144. Paul D, Islam S, Manne R, Dinesh U, Malonia S, Maity B, et al. F-box protein FBXO16 functions as a tumor suppressor by attenuating nuclear β-catenin function. J Pathol. 2019;248:266-279 pubmed 出版商
  145. Song K, Gras C, Capin G, Gimber N, Lehmann M, Mohd S, et al. A SEPT1-based scaffold is required for Golgi integrity and function. J Cell Sci. 2019;132: pubmed 出版商
  146. Guo J, Dai X, Laurent B, Zheng N, Gan W, Zhang J, et al. AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nat Cell Biol. 2019;21:226-237 pubmed 出版商
  147. Shen Y, Zhang F, Li F, Jiang X, Yang Y, Li X, et al. Loss-of-function mutations in QRICH2 cause male infertility with multiple morphological abnormalities of the sperm flagella. Nat Commun. 2019;10:433 pubmed 出版商
  148. Fenderico N, van Scherpenzeel R, Goldflam M, Proverbio D, Jordens I, Kralj T, et al. Anti-LRP5/6 VHHs promote differentiation of Wnt-hypersensitive intestinal stem cells. Nat Commun. 2019;10:365 pubmed 出版商
  149. Vítor A, Sridhara S, Sabino J, Afonso A, Grosso A, Martin R, et al. Single-molecule imaging of transcription at damaged chromatin. Sci Adv. 2019;5:eaau1249 pubmed 出版商
  150. Li Z, Mbah N, Overmeyer J, Sarver J, George S, Trabbic C, et al. The JNK signaling pathway plays a key role in methuosis (non-apoptotic cell death) induced by MOMIPP in glioblastoma. BMC Cancer. 2019;19:77 pubmed 出版商
  151. Melamed Z, López Erauskin J, Baughn M, Zhang O, Drenner K, Sun Y, et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci. 2019;22:180-190 pubmed 出版商
  152. Smith B, Wang S, Jaime Figueroa S, Harbin A, Wang J, Hamman B, et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat Commun. 2019;10:131 pubmed 出版商
  153. Weinberg S, Singer B, Steinert E, Martinez C, Mehta M, Martínez Reyes I, et al. Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature. 2019;565:495-499 pubmed 出版商
  154. Wintgens J, Wichert S, Popovic L, Rossner M, Wehr M. Monitoring activities of receptor tyrosine kinases using a universal adapter in genetically encoded split TEV assays. Cell Mol Life Sci. 2019;76:1185-1199 pubmed 出版商
  155. Silberman A, Goldman O, Boukobza Assayag O, Jacob A, Rabinovich S, Adler L, et al. Acid-Induced Downregulation of ASS1 Contributes to the Maintenance of Intracellular pH in Cancer. Cancer Res. 2019;79:518-533 pubmed 出版商
  156. Cui Y, Carosi J, Yang Z, Ariotti N, Kerr M, Parton R, et al. Retromer has a selective function in cargo sorting via endosome transport carriers. J Cell Biol. 2019;218:615-631 pubmed 出版商
  157. Meisenberg C, Pinder S, Hopkins S, Wooller S, Benstead Hume G, Pearl F, et al. Repression of Transcription at DNA Breaks Requires Cohesin throughout Interphase and Prevents Genome Instability. Mol Cell. 2019;73:212-223.e7 pubmed 出版商
  158. Makhoul C, Gosavi P, Duffield R, Delbridge B, Williamson N, Gleeson P. Intersectin-1 interacts with the golgin GCC88 to couple the actin network and Golgi architecture. Mol Biol Cell. 2019;30:370-386 pubmed 出版商
  159. Bigenzahn J, Collu G, Kartnig F, Pieraks M, Vladimer G, Heinz L, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018;362:1171-1177 pubmed 出版商
  160. Huang N, Zhang D, Li F, Chai P, Wang S, Teng J, et al. M-Phase Phosphoprotein 9 regulates ciliogenesis by modulating CP110-CEP97 complex localization at the mother centriole. Nat Commun. 2018;9:4511 pubmed 出版商
  161. Deissler H, Lang G, Lang G. Fate of the Fc fusion protein aflibercept in retinal endothelial cells: competition of recycling and degradation. Graefes Arch Clin Exp Ophthalmol. 2019;257:83-94 pubmed 出版商
  162. Neubauer H, Tea M, Zebol J, Gliddon B, Stefanidis C, Moretti P, et al. Cytoplasmic dynein regulates the subcellular localization of sphingosine kinase 2 to elicit tumor-suppressive functions in glioblastoma. Oncogene. 2019;38:1151-1165 pubmed 出版商
  163. Craxton A, Munnur D, Jukes Jones R, Skalka G, Langlais C, Cain K, et al. PAXX and its paralogs synergistically direct DNA polymerase λ activity in DNA repair. Nat Commun. 2018;9:3877 pubmed 出版商
  164. Bianchi Smiraglia A, Bagati A, Fink E, Affronti H, Lipchick B, Moparthy S, et al. Inhibition of the aryl hydrocarbon receptor/polyamine biosynthesis axis suppresses multiple myeloma. J Clin Invest. 2018;128:4682-4696 pubmed 出版商
  165. Arii J, Watanabe M, Maeda F, Tokai Nishizumi N, Chihara T, Miura M, et al. ESCRT-III mediates budding across the inner nuclear membrane and regulates its integrity. Nat Commun. 2018;9:3379 pubmed 出版商
  166. Kane M, Rebensburg S, Takata M, Zang T, Yamashita M, Kvaratskhelia M, et al. Nuclear pore heterogeneity influences HIV-1 infection and the antiviral activity of MX2. elife. 2018;7: pubmed 出版商
  167. Zhang Y, Tan L, Yang Q, Li C, Liou Y. The microtubule-associated protein HURP recruits the centrosomal protein TACC3 to regulate K-fiber formation and support chromosome congression. J Biol Chem. 2018;293:15733-15747 pubmed 出版商
  168. Kühnl A, Musiol A, Heitzig N, Johnson D, Ehrhardt C, Grewal T, et al. Late Endosomal/Lysosomal Cholesterol Accumulation Is a Host Cell-Protective Mechanism Inhibiting Endosomal Escape of Influenza A Virus. MBio. 2018;9: pubmed 出版商
  169. Zhang J, Wu T, Simon J, Takada M, Saito R, Fan C, et al. VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma. Science. 2018;361:290-295 pubmed 出版商
  170. Song P, Perkins B. Developmental expression of the zebrafish Arf-like small GTPase paralogs arl13a and arl13b. Gene Expr Patterns. 2018;29:82-87 pubmed 出版商
  171. Cagnetta R, Frese C, Shigeoka T, Krijgsveld J, Holt C. Rapid Cue-Specific Remodeling of the Nascent Axonal Proteome. Neuron. 2018;99:29-46.e4 pubmed 出版商
  172. Trepte P, Kruse S, Kostova S, Hoffmann S, Buntru A, Tempelmeier A, et al. LuTHy: a double-readout bioluminescence-based two-hybrid technology for quantitative mapping of protein-protein interactions in mammalian cells. Mol Syst Biol. 2018;14:e8071 pubmed 出版商
  173. Reipert S, Goldammer H, Richardson C, Goldberg M, Hawkins T, Hollergschwandtner E, et al. Agitation Modules: Flexible Means to Accelerate Automated Freeze Substitution. J Histochem Cytochem. 2018;66:903-921 pubmed 出版商
  174. Bernal A, Moltó Abad M, Dominguez D, Tusell L. Acute telomere deprotection prevents ongoing BFB cycles and rampant instability in p16INK4a-deficient epithelial cells. Oncotarget. 2018;9:27151-27170 pubmed 出版商
  175. Rapino F, Delaunay S, Rambow F, Zhou Z, Tharun L, de Tullio P, et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature. 2018;558:605-609 pubmed 出版商
  176. Viau A, Bienaime F, Lukas K, Todkar A, Knoll M, Yakulov T, et al. Cilia-localized LKB1 regulates chemokine signaling, macrophage recruitment, and tissue homeostasis in the kidney. EMBO J. 2018;37: pubmed 出版商
  177. Pellegrini L, Hauser D, Li Y, Mamais A, Beilina A, Kumaran R, et al. Proteomic analysis reveals co-ordinated alterations in protein synthesis and degradation pathways in LRRK2 knockout mice. Hum Mol Genet. 2018;27:3257-3271 pubmed 出版商
  178. Manalo A, Schroer A, Fenix A, Shancer Z, Coogan J, Brolsma T, et al. Loss of CENP-F Results in Dilated Cardiomyopathy with Severe Disruption of Cardiac Myocyte Architecture. Sci Rep. 2018;8:7546 pubmed 出版商
  179. Gozdecka M, Meduri E, Mazan M, Tzelepis K, Dudek M, Knights A, et al. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat Genet. 2018;50:883-894 pubmed 出版商
  180. Ribeiro de Almeida C, Dhir S, Dhir A, Moghaddam A, Sattentau Q, Meinhart A, et al. RNA Helicase DDX1 Converts RNA G-Quadruplex Structures into R-Loops to Promote IgH Class Switch Recombination. Mol Cell. 2018;70:650-662.e8 pubmed 出版商
  181. Peltzer N, Darding M, Montinaro A, Dráber P, Draberova H, Kupka S, et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature. 2018;557:112-117 pubmed 出版商
  182. Muhar M, Ebert A, Neumann T, Umkehrer C, Jude J, Wieshofer C, et al. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science. 2018;360:800-805 pubmed 出版商
  183. Platani M, Samejima I, Samejima K, Kanemaki M, Earnshaw W. Seh1 targets GATOR2 and Nup153 to mitotic chromosomes. J Cell Sci. 2018;131: pubmed 出版商
  184. Qin L, Ma K, Wang Z, Hu Z, Matas E, Wei J, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564-575 pubmed 出版商
  185. Clemente C, Rius C, Alonso Herranz L, Martín Alonso M, Pollán A, Camafeita E, et al. MT4-MMP deficiency increases patrolling monocyte recruitment to early lesions and accelerates atherosclerosis. Nat Commun. 2018;9:910 pubmed 出版商
  186. Ruppert J, Samejima K, Platani M, Molina O, Kimura H, Jeyaprakash A, et al. HP1α targets the chromosomal passenger complex for activation at heterochromatin before mitotic entry. EMBO J. 2018;37: pubmed 出版商
  187. Spanos C, Maldonado E, Fisher C, Leenutaphong P, Oviedo Orta E, Windridge D, et al. Proteomic identification and characterization of hepatic glyoxalase 1 dysregulation in non-alcoholic fatty liver disease. Proteome Sci. 2018;16:4 pubmed 出版商
  188. Vidovic D, Davila R, Gronostajski R, Harvey T, Piper M. Transcriptional regulation of ependymal cell maturation within the postnatal brain. Neural Dev. 2018;13:2 pubmed 出版商
  189. Imtiaz A, Belyantseva I, Beirl A, Fenollar Ferrer C, Bashir R, Bukhari I, et al. CDC14A phosphatase is essential for hearing and male fertility in mouse and human. Hum Mol Genet. 2018;27:780-798 pubmed 出版商
  190. Bhardwaj A, Yang Y, Ueberheide B, Smith S. Whole proteome analysis of human tankyrase knockout cells reveals targets of tankyrase-mediated degradation. Nat Commun. 2017;8:2214 pubmed 出版商
  191. Krey J, Dumont R, Wilmarth P, David L, Johnson K, Barr Gillespie P. ELMOD1 Stimulates ARF6-GTP Hydrolysis to Stabilize Apical Structures in Developing Vestibular Hair Cells. J Neurosci. 2018;38:843-857 pubmed 出版商
  192. Matson J, Dumitru R, Coryell P, Baxley R, Chen W, Twaroski K, et al. Rapid DNA replication origin licensing protects stem cell pluripotency. elife. 2017;6: pubmed 出版商
  193. Stevenson N, Bergen D, Skinner R, Kague E, Martin Silverstone E, Robson Brown K, et al. Giantin-knockout models reveal a feedback loop between Golgi function and glycosyltransferase expression. J Cell Sci. 2017;130:4132-4143 pubmed 出版商
  194. Otto T, Candido S, Pilarz M, Sicinska E, Bronson R, Bowden M, et al. Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proc Natl Acad Sci U S A. 2017;114:10660-10665 pubmed 出版商
  195. Qu X, Yuan F, Corona C, Pasini S, Pero M, Gundersen G, et al. Stabilization of dynamic microtubules by mDia1 drives Tau-dependent Aβ1-42 synaptotoxicity. J Cell Biol. 2017;216:3161-3178 pubmed 出版商
  196. He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet. 2017;13:e1006992 pubmed 出版商
  197. Lee I, Kim G, Bae J, Kim J, Rhee K, Hwang D. The DNA replication protein Cdc6 inhibits the microtubule-organizing activity of the centrosome. J Biol Chem. 2017;292:16267-16276 pubmed 出版商
  198. Guo H, Kazadaeva Y, Ortega F, Manjunath N, Desai T. Trinucleotide repeat containing 6c (TNRC6c) is essential for microvascular maturation during distal airspace sacculation in the developing lung. Dev Biol. 2017;430:214-223 pubmed 出版商
  199. Scott C, Marsden A, Rebagliati M, Zhang Q, Chamling X, Searby C, et al. Nuclear/cytoplasmic transport defects in BBS6 underlie congenital heart disease through perturbation of a chromatin remodeling protein. PLoS Genet. 2017;13:e1006936 pubmed 出版商
  200. Kerbl A, Conzelmann M, Jekely G, Worsaae K. High diversity in neuropeptide immunoreactivity patterns among three closely related species of Dinophilidae (Annelida). J Comp Neurol. 2017;525:3596-3635 pubmed 出版商
  201. Wei J, Xu H, Meng W. Noncentrosomal microtubules regulate autophagosome transport through CAMSAP2-EB1 cross-talk. FEBS Lett. 2017;591:2379-2393 pubmed 出版商
  202. Bartusch C, Döring T, Prange R. Rab33B Controls Hepatitis B Virus Assembly by Regulating Core Membrane Association and Nucleocapsid Processing. Viruses. 2017;9: pubmed 出版商
  203. Xu P, Tao X, Zhao C, Huang Q, Chang H, Ban N, et al. DTX3L is upregulated in glioma and is associated with glioma progression. Int J Mol Med. 2017;40:491-498 pubmed 出版商
  204. Magescas J, Sengmanivong L, Viau A, Mayeux A, Dang T, Burtin M, et al. Spindle pole cohesion requires glycosylation-mediated localization of NuMA. Sci Rep. 2017;7:1474 pubmed 出版商
  205. Toriyama M, Toriyama M, Wallingford J, Finnell R. Folate-dependent methylation of septins governs ciliogenesis during neural tube closure. FASEB J. 2017;31:3622-3635 pubmed 出版商
  206. Allison R, Edgar J, Pearson G, Rizo T, Newton T, Günther S, et al. Defects in ER-endosome contacts impact lysosome function in hereditary spastic paraplegia. J Cell Biol. 2017;216:1337-1355 pubmed 出版商
  207. Dong C, Xu H, Zhang R, Tanaka N, Takeichi M, Meng W. CAMSAP3 accumulates in the pericentrosomal area and accompanies microtubule release from the centrosome via katanin. J Cell Sci. 2017;130:1709-1715 pubmed 出版商
  208. Wu X, Kosaraju J, Tam K. SLM, a novel carbazole-based fluorophore attenuates okadaic acid-induced tau hyperphosphorylation via down-regulating GSK-3? activity in SH-SY5Y cells. Eur J Pharm Sci. 2017;110:101-108 pubmed 出版商
  209. Filipescu D, Naughtin M, Podsypanina K, Lejour V, Wilson L, Gurard Levin Z, et al. Essential role for centromeric factors following p53 loss and oncogenic transformation. Genes Dev. 2017;31:463-480 pubmed 出版商
  210. Hua K, Ferland R. Fixation methods can differentially affect ciliary protein immunolabeling. Cilia. 2017;6:5 pubmed 出版商
  211. Lin C, Yao E, Zhang K, Jiang X, Croll S, Thompson Peer K, et al. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis. elife. 2017;6: pubmed 出版商
  212. Green S, Uy B, Bronner M. Ancient evolutionary origin of vertebrate enteric neurons from trunk-derived neural crest. Nature. 2017;544:88-91 pubmed 出版商
  213. Yasuda K, Clatterbuck Soper S, Jackrel M, Shorter J, Mili S. FUS inclusions disrupt RNA localization by sequestering kinesin-1 and inhibiting microtubule detyrosination. J Cell Biol. 2017;216:1015-1034 pubmed 出版商
  214. Bohnacker T, Prota A, Beaufils F, Burke J, Melone A, Inglis A, et al. Deconvolution of Buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention. Nat Commun. 2017;8:14683 pubmed 出版商
  215. Moradi M, Sivadasan R, Saal L, Lüningschrör P, Dombert B, Rathod R, et al. Differential roles of α-, β-, and γ-actin in axon growth and collateral branch formation in motoneurons. J Cell Biol. 2017;216:793-814 pubmed 出版商
  216. Williams C, Uytingco C, Green W, McIntyre J, Ukhanov K, Zimmerman A, et al. Gene Therapeutic Reversal of Peripheral Olfactory Impairment in Bardet-Biedl Syndrome. Mol Ther. 2017;25:904-916 pubmed 出版商
  217. Boswell B, Korol A, West Mays J, Musil L. Dual function of TGF? in lens epithelial cell fate: implications for secondary cataract. Mol Biol Cell. 2017;28:907-921 pubmed 出版商
  218. Baumann C, Wang X, Yang L, Viveiros M. Error-prone meiotic division and subfertility in mice with oocyte-conditional knockdown of pericentrin. J Cell Sci. 2017;130:1251-1262 pubmed 出版商
  219. Grzelak C, Sigglekow N, Tirnitz Parker J, Hamson E, Warren A, Maneck B, et al. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease. PLoS ONE. 2017;12:e0171480 pubmed 出版商
  220. Martínez Martín N, Maldonado P, Gasparrini F, Frederico B, Aggarwal S, Gaya M, et al. A switch from canonical to noncanonical autophagy shapes B cell responses. Science. 2017;355:641-647 pubmed 出版商
  221. Tormos A, Rius Pérez S, Jorques M, Rada P, Ramírez L, Valverde A, et al. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS ONE. 2017;12:e0171738 pubmed 出版商
  222. Francis J, Newman L, Cunningham L, Kahn R. A Trimer Consisting of the Tubulin-specific Chaperone D (TBCD), Regulatory GTPase ARL2, and β-Tubulin Is Required for Maintaining the Microtubule Network. J Biol Chem. 2017;292:4336-4349 pubmed 出版商
  223. Weeden C, Chen Y, Ma S, Hu Y, Ramm G, Sutherland K, et al. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway. PLoS Biol. 2017;15:e2000731 pubmed 出版商
  224. Vonk J, Yeshaw W, Pinto F, Faber A, Lahaye L, Kanon B, et al. Drosophila Vps13 Is Required for Protein Homeostasis in the Brain. PLoS ONE. 2017;12:e0170106 pubmed 出版商
  225. Inoue D, Stemmer M, Thumberger T, Ruppert T, Bärenz F, Wittbrodt J, et al. Expression of the novel maternal centrosome assembly factor Wdr8 is required for vertebrate embryonic mitoses. Nat Commun. 2017;8:14090 pubmed 出版商
  226. Macia M, Halbritter J, Delous M, Bredrup C, Gutter A, Filhol E, et al. Mutations in MAPKBP1 Cause Juvenile or Late-Onset Cilia-Independent Nephronophthisis. Am J Hum Genet. 2017;100:323-333 pubmed 出版商
  227. Ohki Y, Wenninger Weinzierl A, Hruscha A, Asakawa K, Kawakami K, Haass C, et al. Glycine-alanine dipeptide repeat protein contributes to toxicity in a zebrafish model of C9orf72 associated neurodegeneration. Mol Neurodegener. 2017;12:6 pubmed 出版商
  228. Matsubara Y, Nakano M, Kawamura K, Tsudzuki M, Funahashi J, Agata K, et al. Inactivation of Sonic Hedgehog Signaling and Polydactyly in Limbs of Hereditary Multiple Malformation, a Novel Type of Talpid Mutant. Front Cell Dev Biol. 2016;4:149 pubmed 出版商
  229. Jin M, Pomp O, Shinoda T, Toba S, Torisawa T, Furuta K, et al. Katanin p80, NuMA and cytoplasmic dynein cooperate to control microtubule dynamics. Sci Rep. 2017;7:39902 pubmed 出版商
  230. Kaliszewski M, Kennedy A, Blaes S, Shaffer R, Knott A, Song W, et al. SOD1 Lysine 123 Acetylation in the Adult Central Nervous System. Front Cell Neurosci. 2016;10:287 pubmed 出版商
  231. Takács Z, Jankovics F, Vilmos P, Lenart P, Röper K, Erdelyi M. The spectraplakin Short stop is an essential microtubule regulator involved in epithelial closure in Drosophila. J Cell Sci. 2017;130:712-724 pubmed 出版商
  232. Sierra Potchanant E, Cerabona D, Sater Z, He Y, Sun Z, Gehlhausen J, et al. INPP5E Preserves Genomic Stability through Regulation of Mitosis. Mol Cell Biol. 2017;37: pubmed 出版商
  233. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed 出版商
  234. Hirano T, Katoh Y, Nakayama K. Intraflagellar transport-A complex mediates ciliary entry and retrograde trafficking of ciliary G protein-coupled receptors. Mol Biol Cell. 2017;28:429-439 pubmed 出版商
  235. Da Ros M, Lehtiniemi T, Olotu O, Fischer D, Zhang F, Vihinen H, et al. FYCO1 and autophagy control the integrity of the haploid male germ cell-specific RNP granules. Autophagy. 2017;13:302-321 pubmed 出版商
  236. Ho Y, Zhou L, Tam K, Too H. Enhanced non-viral gene delivery by coordinated endosomal release and inhibition of β-tubulin deactylase. Nucleic Acids Res. 2017;45:e38 pubmed 出版商
  237. Bendre S, Rondelet A, Hall C, Schmidt N, Lin Y, Brouhard G, et al. GTSE1 tunes microtubule stability for chromosome alignment and segregation by inhibiting the microtubule depolymerase MCAK. J Cell Biol. 2016;215:631-647 pubmed
  238. Qu Y, Hahn I, Webb S, Pearce S, Prokop A. Periodic actin structures in neuronal axons are required to maintain microtubules. Mol Biol Cell. 2017;28:296-308 pubmed 出版商
  239. Hamdan M, Jones K, Cheong Y, Lane S. The sensitivity of the DNA damage checkpoint prevents oocyte maturation in endometriosis. Sci Rep. 2016;6:36994 pubmed 出版商
  240. Lin J, Kumari S, Kim C, Van T, Wachsmuth L, Polykratis A, et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature. 2016;540:124-128 pubmed 出版商
  241. Vuono E, Mukherjee A, Vierra D, Adroved M, Hodson C, Deans A, et al. The PTEN phosphatase functions cooperatively with the Fanconi anemia proteins in DNA crosslink repair. Sci Rep. 2016;6:36439 pubmed 出版商
  242. von Döhren J. Development of the Nervous System of Carinina ochracea (Palaeonemer-tea, Nemertea). PLoS ONE. 2016;11:e0165649 pubmed 出版商
  243. Capalbo L, Mela I, Abad M, Jeyaprakash A, Edwardson J, D Avino P. Coordinated regulation of the ESCRT-III component CHMP4C by the chromosomal passenger complex and centralspindlin during cytokinesis. Open Biol. 2016;6: pubmed
  244. Yu F, Sharma S, Skowronek A, Erdmann K. The serologically defined colon cancer antigen-3 (SDCCAG3) is involved in the regulation of ciliogenesis. Sci Rep. 2016;6:35399 pubmed 出版商
  245. Nowacka J, Baumgartner C, Pelorosso C, Roth M, Zuber J, Baccarini M. MEK1 is required for the development of NRAS-driven leukemia. Oncotarget. 2016;7:80113-80130 pubmed 出版商
  246. Andriani G, Almeida V, Faggioli F, Mauro M, Tsai W, Santambrogio L, et al. Whole Chromosome Instability induces senescence and promotes SASP. Sci Rep. 2016;6:35218 pubmed 出版商
  247. Hong C, Hamilton B. Zfp423 Regulates Sonic Hedgehog Signaling via Primary Cilium Function. PLoS Genet. 2016;12:e1006357 pubmed 出版商
  248. Kanakkanthara A, Jeganathan K, Limzerwala J, Baker D, Hamada M, Nam H, et al. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science. 2016;353:1549-1552 pubmed
  249. Koch K, Hartmann R, Schröter F, Suwala A, Maciaczyk D, Krüger A, et al. Reciprocal regulation of the cholinic phenotype and epithelial-mesenchymal transition in glioblastoma cells. Oncotarget. 2016;7:73414-73431 pubmed 出版商
  250. Vasconcelos F, Sessa A, Laranjeira C, Raposo A, Teixeira V, Hagey D, et al. MyT1 Counteracts the Neural Progenitor Program to Promote Vertebrate Neurogenesis. Cell Rep. 2016;17:469-483 pubmed 出版商
  251. Tofangchi A, Fan A, Saif M. Mechanism of Axonal Contractility in Embryonic Drosophila Motor Neurons In Vivo. Biophys J. 2016;111:1519-1527 pubmed 出版商
  252. Cizmecioglu O, Ni J, Xie S, Zhao J, Roberts T. Rac1-mediated membrane raft localization of PI3K/p110? is required for its activation by GPCRs or PTEN loss. elife. 2016;5: pubmed 出版商
  253. Oksdath M, Guil A, Grassi D, Sosa L, Quiroga S. The Motor KIF5C Links the Requirements of Stable Microtubules and IGF-1 Receptor Membrane Insertion for Neuronal Polarization. Mol Neurobiol. 2017;54:6085-6096 pubmed 出版商
  254. Qi L, Jafari N, Li X, Chen Z, Li L, Hytönen V, et al. Talin2-mediated traction force drives matrix degradation and cell invasion. J Cell Sci. 2016;129:3661-3674 pubmed
  255. Zhuang J, Kamp W, Li J, Liu C, Kang J, Wang P, et al. Forkhead Box O3A (FOXO3) and the Mitochondrial Disulfide Relay Carrier (CHCHD4) Regulate p53 Protein Nuclear Activity in Response to Exercise. J Biol Chem. 2016;291:24819-24827 pubmed
  256. Mariani L, Bijlsma M, Ivanova A, Suciu S, Kahn R, Caspary T. Arl13b regulates Shh signaling from both inside and outside the cilium. Mol Biol Cell. 2016;: pubmed
  257. Truong D, Puleo J, Llave A, Mouneimne G, Kamm R, Nikkhah M. Breast Cancer Cell Invasion into a Three Dimensional Tumor-Stroma Microenvironment. Sci Rep. 2016;6:34094 pubmed 出版商
  258. Dye B, Dedhia P, Miller A, Nagy M, White E, Shea L, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. elife. 2016;5: pubmed 出版商
  259. Wolfe S, Workman E, Heaney C, Niere F, Namjoshi S, Cacheaux L, et al. FMRP regulates an ethanol-dependent shift in GABABR function and expression with rapid antidepressant properties. Nat Commun. 2016;7:12867 pubmed 出版商
  260. Frolikova M, Sebkova N, Ded L, Dvorakova Hortova K. Characterization of CD46 and ?1 integrin dynamics during sperm acrosome reaction. Sci Rep. 2016;6:33714 pubmed 出版商
  261. Kotoku T, Kosaka K, Nishio M, Ishida Y, Kawaichi M, Matsuda E. CIBZ Regulates Mesodermal and Cardiac Differentiation of by Suppressing T and Mesp1 Expression in Mouse Embryonic Stem Cells. Sci Rep. 2016;6:34188 pubmed 出版商
  262. Vieillard J, Paschaki M, Duteyrat J, Augière C, Cortier E, Lapart J, et al. Transition zone assembly and its contribution to axoneme formation in Drosophila male germ cells. J Cell Biol. 2016;214:875-89 pubmed 出版商
  263. Hu H, Umemori H, Hsueh Y. Postsynaptic SDC2 induces transsynaptic signaling via FGF22 for bidirectional synaptic formation. Sci Rep. 2016;6:33592 pubmed 出版商
  264. Zhu S, Henninger K, McGrath B, Cavener D. PERK Regulates Working Memory and Protein Synthesis-Dependent Memory Flexibility. PLoS ONE. 2016;11:e0162766 pubmed 出版商
  265. Carbonneau M, M Gagné L, Lalonde M, Germain M, Motorina A, Guiot M, et al. The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nat Commun. 2016;7:12700 pubmed 出版商
  266. Walentek P, Quigley I, Sun D, Sajjan U, Kintner C, Harland R. Ciliary transcription factors and miRNAs precisely regulate Cp110 levels required for ciliary adhesions and ciliogenesis. elife. 2016;5: pubmed 出版商
  267. Chung I, Reichelt M, Shao L, Akita R, Koeppen H, Rangell L, et al. High cell-surface density of HER2 deforms cell membranes. Nat Commun. 2016;7:12742 pubmed 出版商
  268. Agatheeswaran S, Pattnayak N, Chakraborty S. Identification and functional characterization of the miRNA-gene regulatory network in chronic myeloid leukemia lineage negative cells. Sci Rep. 2016;6:32493 pubmed 出版商
  269. Hong X, Liu W, Song R, Shah J, Feng X, Tsang C, et al. SOX9 is targeted for proteasomal degradation by the E3 ligase FBW7 in response to DNA damage. Nucleic Acids Res. 2016;44:8855-8869 pubmed
  270. Padhan N, Nordling T, Sundstrom M, Akerud P, Birgisson H, Nygren P, et al. High sensitivity isoelectric focusing to establish a signaling biomarker for the diagnosis of human colorectal cancer. BMC Cancer. 2016;16:683 pubmed 出版商
  271. Fern ndez Majada V, Welz P, Ermolaeva M, Schell M, Adam A, Dietlein F, et al. The tumour suppressor CYLD regulates the p53 DNA damage response. Nat Commun. 2016;7:12508 pubmed 出版商
  272. Zak M, van Oort T, Hendriksen F, Garcia M, Vassart G, Grolman W. LGR4 and LGR5 Regulate Hair Cell Differentiation in the Sensory Epithelium of the Developing Mouse Cochlea. Front Cell Neurosci. 2016;10:186 pubmed 出版商
  273. Meghini F, Martins T, Tait X, Fujimitsu K, Yamano H, Glover D, et al. Targeting of Fzr/Cdh1 for timely activation of the APC/C at the centrosome during mitotic exit. Nat Commun. 2016;7:12607 pubmed 出版商
  274. Kasica N, Podlasz P, Sundvik M, Tamas A, Reglodi D, Kaleczyc J. Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Against Oxidative Stress in Zebrafish Hair Cells. Neurotox Res. 2016;30:633-647 pubmed
  275. Villa M, Crotta S, Dingwell K, Hirst E, Gialitakis M, Ahlfors H, et al. The aryl hydrocarbon receptor controls cyclin O to promote epithelial multiciliogenesis. Nat Commun. 2016;7:12652 pubmed 出版商
  276. Yamada Y, Sato F. Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis. Sci Rep. 2016;6:31988 pubmed 出版商
  277. Chien J, Tsen S, Chien C, Liu H, Tung C, Lin C. ?TAT1 downregulation induces mitotic catastrophe in HeLa and A549 cells. Cell Death Discov. 2016;2:16006 pubmed 出版商
  278. Perez C, Pérez Zúñiga F, Garrido F, Reytor E, Portillo F, Pajares M. The Oncogene PDRG1 Is an Interaction Target of Methionine Adenosyltransferases. PLoS ONE. 2016;11:e0161672 pubmed 出版商
  279. Naidenow J, Hrgovic I, Doll M, Hailemariam Jahn T, Lang V, Kleemann J, et al. Peroxisome proliferator-activated receptor (PPAR) ? and ? activators induce ICAM-1 expression in quiescent non stimulated endothelial cells. J Inflamm (Lond). 2016;13:27 pubmed 出版商
  280. Fokkelman M, BalcıoÄŸlu H, Klip J, Yan K, Verbeek F, Danen E, et al. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour. Sci Rep. 2016;6:31707 pubmed 出版商
  281. Rasmussen M, Lyskjær I, Jersie Christensen R, Tarpgaard L, Primdal Bengtson B, Nielsen M, et al. miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells. Nat Commun. 2016;7:12436 pubmed 出版商
  282. Rijal K, Maraia R. Active Center Control of Termination by RNA Polymerase III and tRNA Gene Transcription Levels In Vivo. PLoS Genet. 2016;12:e1006253 pubmed 出版商
  283. Ghossoub R, Lindbæk L, Molla Herman A, Schmitt A, Christensen S, Benmerah A. Morphological and Functional Characterization of the Ciliary Pocket by Electron and Fluorescence Microscopy. Methods Mol Biol. 2016;1454:35-51 pubmed 出版商
  284. Yao X, Wang M, He X, He F, Zhang S, Lu W, et al. Electrical coupling regulates layer 1 interneuron microcircuit formation in the neocortex. Nat Commun. 2016;7:12229 pubmed 出版商
  285. Ramo K, Sugamura K, Craige S, Keaney J, Davis R. Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development. elife. 2016;5: pubmed 出版商
  286. Saatcioglu H, Cuevas I, Castrillon D. Control of Oocyte Reawakening by Kit. PLoS Genet. 2016;12:e1006215 pubmed 出版商
  287. Busse B, Bezrukov L, Blank P, Zimmerberg J. Resin embedded multicycle imaging (REMI): a tool to evaluate protein domains. Sci Rep. 2016;6:30284 pubmed 出版商
  288. Furukawa Y, Tanemura K, Igarashi K, Ideta Otsuka M, Aisaki K, Kitajima S, et al. Learning and Memory Deficits in Male Adult Mice Treated with a Benzodiazepine Sleep-Inducing Drug during the Juvenile Period. Front Neurosci. 2016;10:339 pubmed 出版商
  289. Liang J, Cao R, Zhang Y, Xia Y, Zheng Y, Li X, et al. PKM2 dephosphorylation by Cdc25A promotes the Warburg effect and tumorigenesis. Nat Commun. 2016;7:12431 pubmed 出版商
  290. Dhamad A, Zhou Z, Zhou J, Du Y. Systematic Proteomic Identification of the Heat Shock Proteins (Hsp) that Interact with Estrogen Receptor Alpha (ER?) and Biochemical Characterization of the ER?-Hsp70 Interaction. PLoS ONE. 2016;11:e0160312 pubmed 出版商
  291. Lie E, Ko J, Choi S, Roh J, Cho Y, Noh R, et al. SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion. Nat Commun. 2016;7:12328 pubmed 出版商
  292. Kim M, Froese C, Xie H, Trimble W. Immunofluorescent staining of septins in primary cilia. Methods Cell Biol. 2016;136:269-83 pubmed 出版商
  293. Grammatikopoulos T, Sambrotta M, Strautnieks S, Foskett P, Knisely A, Wagner B, et al. Mutations in DCDC2 (doublecortin domain containing protein 2) in neonatal sclerosing cholangitis. J Hepatol. 2016;65:1179-1187 pubmed 出版商
  294. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed 出版商
  295. Tsai S, Chang Y, Swamy K, Chiang R, Huang D. GAGA factor, a positive regulator of global gene expression, modulates transcriptional pausing and organization of upstream nucleosomes. Epigenetics Chromatin. 2016;9:32 pubmed 出版商
  296. Li L, Han L, Zhang J, Liu X, Ma R, Hou X, et al. Epsin2 promotes polarity establishment and meiotic division through activating Cdc42 in mouse oocyte. Oncotarget. 2016;7:50927-50936 pubmed 出版商
  297. Cao J, Wu L, Zhang S, Lu M, Cheung W, Cai W, et al. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res. 2016;44:e149 pubmed
  298. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  299. Li L, Shi L, Yang S, Yan R, Zhang D, Yang J, et al. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun. 2016;7:12235 pubmed 出版商
  300. Fritsch K, Mernberger M, Nist A, Stiewe T, Brehm A, Jacob R. Galectin-3 interacts with components of the nuclear ribonucleoprotein complex. BMC Cancer. 2016;16:502 pubmed 出版商
  301. Tan L, Toops K, Lakkaraju A. Protective responses to sublytic complement in the retinal pigment epithelium. Proc Natl Acad Sci U S A. 2016;113:8789-94 pubmed 出版商
  302. Meitinger F, Anzola J, Kaulich M, Richardson A, Stender J, Benner C, et al. 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration. J Cell Biol. 2016;214:155-66 pubmed 出版商
  303. Mihajlovic A, Bruce A. Rho-associated protein kinase regulates subcellular localisation of Angiomotin and Hippo-signalling during preimplantation mouse embryo development. Reprod Biomed Online. 2016;33:381-90 pubmed 出版商
  304. Pollock L, Gupta N, Chen X, Luna E, McDermott B. Supervillin Is a Component of the Hair Cell's Cuticular Plate and the Head Plates of Organ of Corti Supporting Cells. PLoS ONE. 2016;11:e0158349 pubmed 出版商
  305. Belvedere R, Bizzarro V, Forte G, Dal Piaz F, Parente L, Petrella A. Annexin A1 contributes to pancreatic cancer cell phenotype, behaviour and metastatic potential independently of Formyl Peptide Receptor pathway. Sci Rep. 2016;6:29660 pubmed 出版商
  306. Kurg R, Reinsalu O, Jagur S, Ounap K, Võsa L, Kasvandik S, et al. Biochemical and proteomic characterization of retrovirus Gag based microparticles carrying melanoma antigens. Sci Rep. 2016;6:29425 pubmed 出版商
  307. Yang C, Suzuki M, Yamakawa S, Uno S, Ishii A, Yamazaki S, et al. Claspin recruits Cdc7 kinase for initiation of DNA replication in human cells. Nat Commun. 2016;7:12135 pubmed 出版商
  308. Harwardt T, Lukas S, Zenger M, Reitberger T, Danzer D, Übner T, et al. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response. PLoS Pathog. 2016;12:e1005748 pubmed 出版商
  309. Lu R, Hu X, Zhou J, Sun J, Zhu A, Xu X, et al. COPS5 amplification and overexpression confers tamoxifen-resistance in ER?-positive breast cancer by degradation of NCoR. Nat Commun. 2016;7:12044 pubmed 出版商
  310. Peng H, Cheng Y, Hsu Y, Wu G, Kuo C, Liou J, et al. MPT0B098, a Microtubule Inhibitor, Suppresses JAK2/STAT3 Signaling Pathway through Modulation of SOCS3 Stability in Oral Squamous Cell Carcinoma. PLoS ONE. 2016;11:e0158440 pubmed 出版商
  311. Gao Y, Lui W, Lee W, Cheng C. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells. Sci Rep. 2016;6:28589 pubmed 出版商
  312. Miles D, de Vries N, Gisler S, Lieftink C, Akhtar W, Gogola E, et al. TRIM28 is an Epigenetic Barrier to Induced Pluripotent Stem Cell Reprogramming. Stem Cells. 2017;35:147-157 pubmed 出版商
  313. Müller A, Giambruno R, Weißer J, Májek P, Hofer A, Bigenzahn J, et al. Identifying Kinase Substrates via a Heavy ATP Kinase Assay and Quantitative Mass Spectrometry. Sci Rep. 2016;6:28107 pubmed 出版商
  314. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  315. Cacialli P, Gueguen M, Coumailleau P, D angelo L, Kah O, Lucini C, et al. BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification. PLoS ONE. 2016;11:e0158057 pubmed 出版商
  316. Marquer C, Tian H, Yi J, Bastien J, Dall Armi C, Yang Klingler Y, et al. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism. Nat Commun. 2016;7:11919 pubmed 出版商
  317. Yang D, Yuan Q, Balakrishnan A, Bantel H, Klusmann J, Manns M, et al. MicroRNA-125b-5p mimic inhibits acute liver failure. Nat Commun. 2016;7:11916 pubmed 出版商
  318. Toft D, Fuller M, Schipma M, Chen F, Cryns V, Layden B. ?B-crystallin and HspB2 deficiency is protective from diet-induced glucose intolerance. Genom Data. 2016;9:10-7 pubmed 出版商
  319. Bennesch M, Segala G, Wider D, Picard D. LSD1 engages a corepressor complex for the activation of the estrogen receptor ? by estrogen and cAMP. Nucleic Acids Res. 2016;44:8655-8670 pubmed
  320. Mukai K, Konno H, Akiba T, Uemura T, Waguri S, Kobayashi T, et al. Activation of STING requires palmitoylation at the Golgi. Nat Commun. 2016;7:11932 pubmed 出版商
  321. Dai J, Lu Y, Wang C, Chen X, Fan X, Gu H, et al. Vps33b regulates Vwf-positive vesicular trafficking in megakaryocytes. J Pathol. 2016;240:108-19 pubmed 出版商
  322. Eymery A, Liu Z, Ozonov E, Stadler M, Peters A. The methyltransferase Setdb1 is essential for meiosis and mitosis in mouse oocytes and early embryos. Development. 2016;143:2767-79 pubmed 出版商
  323. Hamlin A, Basford J, Jaeschke A, Hui D. LRP1 Protein Deficiency Exacerbates Palmitate-induced Steatosis and Toxicity in Hepatocytes. J Biol Chem. 2016;291:16610-9 pubmed 出版商
  324. Skoge R, Ziegler M. SIRT2 inactivation reveals a subset of hyperacetylated perinuclear microtubules inaccessible to HDAC6. J Cell Sci. 2016;129:2972-82 pubmed 出版商
  325. Yin Y, Gao D, Wang Y, Wang Z, Wang X, Ye J, et al. Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling. Proc Natl Acad Sci U S A. 2016;113:E3773-81 pubmed 出版商
  326. Wang Y, Li Y, Hu G, Huang X, Rao H, Xiong X, et al. Nek2A phosphorylates and stabilizes SuFu: A new strategy of Gli2/Hedgehog signaling regulatory mechanism. Cell Signal. 2016;28:1304-13 pubmed 出版商
  327. Matsumura S, Kojidani T, Kamioka Y, Uchida S, Haraguchi T, Kimura A, et al. Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1. Nat Commun. 2016;7:ncomms11858 pubmed 出版商
  328. Qi Y, Yu J, Han W, Fan X, Qian H, Wei H, et al. A splicing isoform of TEAD4 attenuates the Hippo-YAP signalling to inhibit tumour proliferation. Nat Commun. 2016;7:ncomms11840 pubmed 出版商
  329. Zhang J, Jiang Z, Liu X, Meng A. Eph/ephrin signaling maintains the boundary of dorsal forerunner cell cluster during morphogenesis of the zebrafish embryonic left-right organizer. Development. 2016;143:2603-15 pubmed 出版商
  330. Bergstralh D, Lovegrove H, Kujawiak I, Dawney N, Zhu J, Cooper S, et al. Pins is not required for spindle orientation in the Drosophila wing disc. Development. 2016;143:2573-81 pubmed 出版商
  331. Yin Y, Wang Y, Gao D, Ye J, Wang X, Fang L, et al. Accumulation of human full-length tau induces degradation of nicotinic acetylcholine receptor α4 via activating calpain-2. Sci Rep. 2016;6:27283 pubmed 出版商
  332. Penterling C, Drexler G, Böhland C, Stamp R, Wilke C, Braselmann H, et al. Depletion of Histone Demethylase Jarid1A Resulting in Histone Hyperacetylation and Radiation Sensitivity Does Not Affect DNA Double-Strand Break Repair. PLoS ONE. 2016;11:e0156599 pubmed 出版商
  333. Mukhopadhyay A, Sehgal L, Bose A, Gulvady A, Senapati P, Thorat R, et al. 14-3-3? Prevents Centrosome Amplification and Neoplastic Progression. Sci Rep. 2016;6:26580 pubmed 出版商
  334. Konopacki F, Wong H, Dwivedy A, Bellon A, Blower M, Holt C. ESCRT-II controls retinal axon growth by regulating DCC receptor levels and local protein synthesis. Open Biol. 2016;6:150218 pubmed 出版商
  335. Spitzbarth I, Lempp C, Kegler K, Ulrich R, Kalkuhl A, Deschl U, et al. Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis. Brain Behav. 2016;6:e00472 pubmed 出版商
  336. Brunk K, Zhu M, Bärenz F, Kratz A, Haselmann Weiss U, Antony C, et al. Cep78 is a new centriolar protein involved in Plk4-induced centriole overduplication. J Cell Sci. 2016;129:2713-8 pubmed 出版商
  337. van Ree J, Nam H, Jeganathan K, Kanakkanthara A, van Deursen J. Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes. Nat Cell Biol. 2016;18:814-21 pubmed 出版商
  338. Nutter C, Jaworski E, Verma S, Deshmukh V, Wang Q, Botvinnik O, et al. Dysregulation of RBFOX2 Is an Early Event in Cardiac Pathogenesis of Diabetes. Cell Rep. 2016;15:2200-2213 pubmed 出版商
  339. Daubon T, Spuul P, Alonso F, Fremaux I, Genot E. VEGF-A stimulates podosome-mediated collagen-IV proteolysis in microvascular endothelial cells. J Cell Sci. 2016;129:2586-98 pubmed 出版商
  340. Brosh R, Hrynyk I, Shen J, Waghray A, Zheng N, Lemischka I. A dual molecular analogue tuner for dissecting protein function in mammalian cells. Nat Commun. 2016;7:11742 pubmed 出版商
  341. Ma N, Ma Y, Nakashima A, Kikkawa U, Furuyashiki T. The Loss of Lam2 and Npr2-Npr3 Diminishes the Vacuolar Localization of Gtr1-Gtr2 and Disinhibits TORC1 Activity in Fission Yeast. PLoS ONE. 2016;11:e0156239 pubmed 出版商
  342. Elbaz B, Traka M, Kunjamma R, Dukala D, Brosius Lutz A, Anton E, et al. Adenomatous polyposis coli regulates radial axonal sorting and myelination in the PNS. Development. 2016;143:2356-66 pubmed 出版商
  343. Airik R, Schueler M, Airik M, Cho J, Ulanowicz K, Porath J, et al. SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling. PLoS ONE. 2016;11:e0156081 pubmed 出版商
  344. Lopez A, Kugelman J, Garcia Rivera J, Urias E, Salinas S, Fernandez Zapico M, et al. The Structure-Specific Recognition Protein 1 Associates with Lens Epithelium-Derived Growth Factor Proteins and Modulates HIV-1 Replication. J Mol Biol. 2016;428:2814-31 pubmed 出版商
  345. Liu X, Koehler K, Mikosz A, Hashino E, Holt J. Functional development of mechanosensitive hair cells in stem cell-derived organoids parallels native vestibular hair cells. Nat Commun. 2016;7:11508 pubmed 出版商
  346. Kobayashi E, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 2016;7:11624 pubmed 出版商
  347. Umezu K, Hiradate Y, Oikawa T, Ishiguro H, Numabe T, Hara K, et al. Exogenous neurotensin modulates sperm function in Japanese Black cattle. J Reprod Dev. 2016;62:409-14 pubmed 出版商
  348. Kessler S, Laggai S, Van Wonterg E, Gemperlein K, Muller R, Haybaeck J, et al. Transient Hepatic Overexpression of Insulin-Like Growth Factor 2 Induces Free Cholesterol and Lipid Droplet Formation. Front Physiol. 2016;7:147 pubmed 出版商
  349. Turner K, Hawkins T, Yáñez J, Anadón R, Wilson S, Folgueira M. Afferent Connectivity of the Zebrafish Habenulae. Front Neural Circuits. 2016;10:30 pubmed 出版商
  350. Franks T, Benner C, Narvaiza I, Marchetto M, Young J, Malik H, et al. Evolution of a transcriptional regulator from a transmembrane nucleoporin. Genes Dev. 2016;30:1155-71 pubmed 出版商
  351. Guinot A, Oeztuerk Winder F, Ventura J. miR-17-92/p38? Dysregulation Enhances Wnt Signaling and Selects Lgr6+ Cancer Stem-like Cells during Lung Adenocarcinoma Progression. Cancer Res. 2016;76:4012-22 pubmed 出版商
  352. Petit F, Deng C, Jamin S. Partial Müllerian Duct Retention in Smad4 Conditional Mutant Male Mice. Int J Biol Sci. 2016;12:667-76 pubmed 出版商
  353. de Jong P, Taniguchi K, Harris A, Bertin S, Takahashi N, Duong J, et al. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nat Commun. 2016;7:11551 pubmed 出版商
  354. Chang C, Hsu W, Tsai J, Tang C, Tang T. CEP295 interacts with microtubules and is required for centriole elongation. J Cell Sci. 2016;129:2501-13 pubmed 出版商
  355. Fusté N, Fernández Hernández R, Cemeli T, Mirantes C, Pedraza N, Rafel M, et al. Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin. Nat Commun. 2016;7:11581 pubmed 出版商
  356. Rao S, Flores Rodriguez N, Page S, Wong C, Robinson P, Chircop M. The Clathrin-dependent Spindle Proteome. Mol Cell Proteomics. 2016;15:2537-53 pubmed 出版商
  357. Hild M, Jaffe A. Production of 3-D Airway Organoids From Primary Human Airway Basal Cells and Their Use in High-Throughput Screening. Curr Protoc Stem Cell Biol. 2016;37:IE.9.1-IE.9.15 pubmed 出版商
  358. Ramesh S, Singh A, Cibi D, Hausenloy D, Singh M. In Vitro Culture of Epicardial Cells From Mouse Embryonic Heart. J Vis Exp. 2016;: pubmed 出版商
  359. Takenaka N, Nihata Y, Satoh T. Rac1 Activation Caused by Membrane Translocation of a Guanine Nucleotide Exchange Factor in Akt2-Mediated Insulin Signaling in Mouse Skeletal Muscle. PLoS ONE. 2016;11:e0155292 pubmed 出版商
  360. Lock R, Ingraham R, Maertens O, Miller A, Weledji N, Legius E, et al. Cotargeting MNK and MEK kinases induces the regression of NF1-mutant cancers. J Clin Invest. 2016;126:2181-90 pubmed 出版商
  361. Moshfegh C, Aires L, Kisielow M, Vogel V. A gonogenic stimulated transition of mouse embryonic stem cells with enhanced control of diverse differentiation pathways. Sci Rep. 2016;6:25104 pubmed 出版商
  362. Yen H, Liu Y, Kan C, Wei H, Lee S, Wei Y, et al. Disruption of the human COQ5-containing protein complex is associated with diminished coenzyme Q10 levels under two different conditions of mitochondrial energy deficiency. Biochim Biophys Acta. 2016;1860:1864-76 pubmed 出版商
  363. Pandolfini L, Luzi E, Bressan D, Ucciferri N, Bertacchi M, Brandi R, et al. RISC-mediated control of selected chromatin regulators stabilizes ground state pluripotency of mouse embryonic stem cells. Genome Biol. 2016;17:94 pubmed 出版商
  364. Marei H, Carpy A, Macek B, Malliri A. Proteomic analysis of Rac1 signaling regulation by guanine nucleotide exchange factors. Cell Cycle. 2016;15:1961-74 pubmed 出版商
  365. Riaz M, Raz Y, van Putten M, Paniagua Soriano G, Krom Y, Florea B, et al. PABPN1-Dependent mRNA Processing Induces Muscle Wasting. PLoS Genet. 2016;12:e1006031 pubmed 出版商
  366. Dai Y, Hung L, Chen R, Lai C, Chang K. ON 01910.Na inhibits growth of diffuse large B-cell lymphoma by cytoplasmic sequestration of sumoylated C-MYB/TRAF6 complex. Transl Res. 2016;175:129-143.e13 pubmed 出版商
  367. Pourcet B, Gage M, León T, Waddington K, Pello O, Steffensen K, et al. The nuclear receptor LXR modulates interleukin-18 levels in macrophages through multiple mechanisms. Sci Rep. 2016;6:25481 pubmed 出版商
  368. Humoud M, Doyle N, Royall E, Willcocks M, Sorgeloos F, van Kuppeveld F, et al. Feline Calicivirus Infection Disrupts Assembly of Cytoplasmic Stress Granules and Induces G3BP1 Cleavage. J Virol. 2016;90:6489-6501 pubmed 出版商
  369. Wang L, Lee K, Malonis R, SANCHEZ I, Dynlacht B. Tethering of an E3 ligase by PCM1 regulates the abundance of centrosomal KIAA0586/Talpid3 and promotes ciliogenesis. elife. 2016;5: pubmed 出版商
  370. Takeo Y, Kurabayashi N, Nguyen M, Sanada K. The G protein-coupled receptor GPR157 regulates neuronal differentiation of radial glial progenitors through the Gq-IP3 pathway. Sci Rep. 2016;6:25180 pubmed 出版商
  371. Marthandan S, Baumgart M, Priebe S, Groth M, Schaer J, Kaether C, et al. Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq. PLoS ONE. 2016;11:e0154531 pubmed 出版商
  372. Maria O, Liu Y, El Hakim M, Zeitouni A, Tran S. The role of human fibronectin- or placenta basement membrane extract-based gels in favouring the formation of polarized salivary acinar-like structures. J Tissue Eng Regen Med. 2017;11:2643-2657 pubmed 出版商
  373. Ahrabi S, Sarkar S, Pfister S, Pirovano G, Higgins G, Porter A, et al. A role for human homologous recombination factors in suppressing microhomology-mediated end joining. Nucleic Acids Res. 2016;44:5743-57 pubmed 出版商
  374. Rapiteanu R, Davis L, Williamson J, Timms R, Paul Luzio J, Lehner P. A Genetic Screen Identifies a Critical Role for the WDR81-WDR91 Complex in the Trafficking and Degradation of Tetherin. Traffic. 2016;17:940-58 pubmed 出版商
  375. Krall A, Xu S, Graeber T, Braas D, Christofk H. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun. 2016;7:11457 pubmed 出版商
  376. Guinot A, Lehmann H, Wild P, Frew I. Combined deletion of Vhl, Trp53 and Kif3a causes cystic and neoplastic renal lesions. J Pathol. 2016;239:365-73 pubmed 出版商
  377. Strappazzon F, Di Rita A, Cianfanelli V, D Orazio M, Nazio F, Fimia G, et al. Prosurvival AMBRA1 turns into a proapoptotic BH3-like protein during mitochondrial apoptosis. Autophagy. 2016;12:963-75 pubmed 出版商
  378. Lee K, Lee H, Lin H, Tsay H, Tsai F, Shyue S, et al. Role of transient receptor potential ankyrin 1 channels in Alzheimer's disease. J Neuroinflammation. 2016;13:92 pubmed 出版商
  379. Noda K, Kitami M, Kitami K, Kaku M, Komatsu Y. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A. 2016;113:E2589-97 pubmed 出版商
  380. Kim S, Choi K, Cho S, Yun S, Jeon J, Koh Y, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep. 2016;6:24933 pubmed 出版商
  381. Rodriguez Ortiz C, Flores J, Valenzuela J, Rodriguez G, Zumkehr J, Tran D, et al. The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress. Am J Pathol. 2016;186:1623-34 pubmed 出版商
  382. Guen V, Gamble C, Perez D, Bourassa S, Zappel H, Gartner J, et al. STAR syndrome-associated CDK10/Cyclin M regulates actin network architecture and ciliogenesis. Cell Cycle. 2016;15:678-88 pubmed 出版商
  383. Suli A, Pujol R, Cunningham D, Hailey D, Prendergast A, Rubel E, et al. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells. J Cell Sci. 2016;129:2250-60 pubmed 出版商
  384. Mata Garrido J, Casafont I, Tapia O, Berciano M, Lafarga M. Neuronal accumulation of unrepaired DNA in a novel specific chromatin domain: structural, molecular and transcriptional characterization. Acta Neuropathol Commun. 2016;4:41 pubmed 出版商
  385. Kwenda L, Collins C, Dattoli A, Dunleavy E. Nucleolar activity and CENP-C regulate CENP-A and CAL1 availability for centromere assembly in meiosis. Development. 2016;143:1400-12 pubmed 出版商
  386. Papke B, Murarka S, Vogel H, Martín Gago P, Kovacevic M, Truxius D, et al. Identification of pyrazolopyridazinones as PDE? inhibitors. Nat Commun. 2016;7:11360 pubmed 出版商
  387. Sefton E, Bhullar B, Mohaddes Z, Hanken J. Evolution of the head-trunk interface in tetrapod vertebrates. elife. 2016;5:e09972 pubmed 出版商
  388. Chaudhary S, Madhukrishna B, Adhya A, Keshari S, Mishra S. Overexpression of caspase 7 is ER? dependent to affect proliferation and cell growth in breast cancer cells by targeting p21(Cip). Oncogenesis. 2016;5:e219 pubmed 出版商
  389. Brüggen B, Kremser C, Bickert A, Ebel P, Vom Dorp K, Schultz K, et al. Defective ceramide synthases in mice cause reduced amplitudes in electroretinograms and altered sphingolipid composition in retina and cornea. Eur J Neurosci. 2016;44:1700-13 pubmed 出版商
  390. Waisbourd Zinman O, Koh H, Tsai S, Lavrut P, Dang C, Zhao X, et al. The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology. 2016;64:880-93 pubmed 出版商
  391. Chiang T, le Sage C, Larrieu D, Demir M, Jackson S. CRISPR-Cas9(D10A) nickase-based genotypic and phenotypic screening to enhance genome editing. Sci Rep. 2016;6:24356 pubmed 出版商
  392. Saito A, Ferhadian D, Sowd G, Serrao E, Shi J, Halambage U, et al. Roles of Capsid-Interacting Host Factors in Multimodal Inhibition of HIV-1 by PF74. J Virol. 2016;90:5808-5823 pubmed 出版商
  393. Taguchi K, Takaku M, Egner P, Morita M, Kaneko T, Mashimo T, et al. Generation of a New Model Rat: Nrf2 Knockout Rats Are Sensitive to Aflatoxin B1 Toxicity. Toxicol Sci. 2016;152:40-52 pubmed 出版商
  394. Peiris T, Ramirez D, Barghouth P, Oviedo N. The Akt signaling pathway is required for tissue maintenance and regeneration in planarians. BMC Dev Biol. 2016;16:7 pubmed 出版商
  395. Chu C, Ossipova O, Ioannou A, Sokol S. Prickle3 synergizes with Wtip to regulate basal body organization and cilia growth. Sci Rep. 2016;6:24104 pubmed 出版商
  396. Hakim S, Dyson J, Feeney S, Davies E, Sriratana A, Koenig M, et al. Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet. 2016;25:2295-2313 pubmed
  397. Canton J, Schlam D, Breuer C, Gutschow M, Glogauer M, Grinstein S. Calcium-sensing receptors signal constitutive macropinocytosis and facilitate the uptake of NOD2 ligands in macrophages. Nat Commun. 2016;7:11284 pubmed 出版商
  398. Balasooriya G, Johnson J, Basson M, Rawlins E. An FGFR1-SPRY2 Signaling Axis Limits Basal Cell Proliferation in the Steady-State Airway Epithelium. Dev Cell. 2016;37:85-97 pubmed 出版商
  399. Juárez Vicente F, Luna Pelaez N, Garcia Dominguez M. The Sumo protease Senp7 is required for proper neuronal differentiation. Biochim Biophys Acta. 2016;1863:1490-8 pubmed 出版商
  400. Lawrence E, Boucher E, Mandato C. Mitochondria-cytoskeleton associations in mammalian cytokinesis. Cell Div. 2016;11:3 pubmed 出版商
  401. Strickland S, Vande Pol S. The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC. J Virol. 2016;90:5611-5621 pubmed 出版商
  402. Tanaka H, Ng N, Yang Yu Z, Casco Robles M, Maruo F, Tsonis P, et al. A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts. Nat Commun. 2016;7:11069 pubmed 出版商
  403. Yadav P, Selvaraj B, Bender F, Behringer M, Moradi M, Sivadasan R, et al. Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling. Acta Neuropathol. 2016;132:93-110 pubmed 出版商
  404. Eisch V, Lu X, Gabriel D, Djabali K. Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson-Gilford progeria fibroblasts. Oncotarget. 2016;7:24700-18 pubmed 出版商
  405. Li Y, Liu D, López Paz C, OLSON B, Umen J. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division. elife. 2016;5:e10767 pubmed 出版商
  406. Xu X, Tan X, Hulshoff M, Wilhelmi T, Zeisberg M, Zeisberg E. Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells. FEBS Lett. 2016;590:1222-33 pubmed 出版商
  407. McKenzie C, Bassi Z, Debski J, Gottardo M, Callaini G, Dadlez M, et al. Cross-regulation between Aurora B and Citron kinase controls midbody architecture in cytokinesis. Open Biol. 2016;6: pubmed 出版商
  408. Gschweitl M, Ulbricht A, Barnes C, Enchev R, Stoffel Studer I, Meyer Schaller N, et al. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. elife. 2016;5:e13841 pubmed 出版商
  409. Delling M, Indzhykulian A, Liu X, Li Y, Xie T, Corey D, et al. Primary cilia are not calcium-responsive mechanosensors. Nature. 2016;531:656-60 pubmed 出版商
  410. San Agustin J, Klena N, Granath K, Panigrahy A, Stewart E, Devine W, et al. Genetic link between renal birth defects and congenital heart disease. Nat Commun. 2016;7:11103 pubmed 出版商
  411. Pal K, Hwang S, Somatilaka B, Badgandi H, Jackson P, DeFea K, et al. Smoothened determines ?-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J Cell Biol. 2016;212:861-75 pubmed 出版商
  412. Zhao W, Liu J, Zhang X, Deng L. MLL5 maintains spindle bipolarity by preventing aberrant cytosolic aggregation of PLK1. J Cell Biol. 2016;212:829-43 pubmed 出版商
  413. Yuan X, Cao J, He X, Serra R, Qu J, Cao X, et al. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nat Commun. 2016;7:11024 pubmed 出版商
  414. Kamiyama D, Sekine S, Barsi Rhyne B, Hu J, Chen B, Gilbert L, et al. Versatile protein tagging in cells with split fluorescent protein. Nat Commun. 2016;7:11046 pubmed 出版商
  415. Chavali P, Chandrasekaran G, Barr A, Tátrai P, Taylor C, Papachristou E, et al. A CEP215-HSET complex links centrosomes with spindle poles and drives centrosome clustering in cancer. Nat Commun. 2016;7:11005 pubmed 出版商
  416. Obino D, Farina F, Malbec O, Sáez P, Maurin M, Gaillard J, et al. Actin nucleation at the centrosome controls lymphocyte polarity. Nat Commun. 2016;7:10969 pubmed 出版商
  417. Decorsière A, Mueller H, van Breugel P, Abdul F, Gerossier L, Beran R, et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature. 2016;531:386-9 pubmed 出版商
  418. Vlantis K, Wullaert A, Polykratis A, Kondylis V, Dannappel M, Schwarzer R, et al. NEMO Prevents RIP Kinase 1-Mediated Epithelial Cell Death and Chronic Intestinal Inflammation by NF-κB-Dependent and -Independent Functions. Immunity. 2016;44:553-567 pubmed 出版商
  419. Katoh Y, Terada M, Nishijima Y, Takei R, Nozaki S, Hamada H, et al. Overall Architecture of the Intraflagellar Transport (IFT)-B Complex Containing Cluap1/IFT38 as an Essential Component of the IFT-B Peripheral Subcomplex. J Biol Chem. 2016;291:10962-75 pubmed 出版商
  420. Kovalevich J, Cornec A, Yao Y, James M, Crowe A, Lee V, et al. Characterization of Brain-Penetrant Pyrimidine-Containing Molecules with Differential Microtubule-Stabilizing Activities Developed as Potential Therapeutic Agents for Alzheimer's Disease and Related Tauopathies. J Pharmacol Exp Ther. 2016;357:432-50 pubmed 出版商
  421. Mori F, Ferraiuolo M, Santoro R, Sacconi A, Goeman F, Pallocca M, et al. Multitargeting activity of miR-24 inhibits long-term melatonin anticancer effects. Oncotarget. 2016;7:20532-48 pubmed 出版商
  422. May Simera H. Evaluation of Planar-Cell-Polarity Phenotypes in Ciliopathy Mouse Mutant Cochlea. J Vis Exp. 2016;:53559 pubmed 出版商
  423. Mitxelena J, Apraiz A, Vallejo Rodríguez J, Malumbres M, Zubiaga A. E2F7 regulates transcription and maturation of multiple microRNAs to restrain cell proliferation. Nucleic Acids Res. 2016;: pubmed
  424. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  425. Du Z, Li L, Huang X, Jin J, Huang S, Zhang Q, et al. The epigenetic modifier CHD5 functions as a novel tumor suppressor for renal cell carcinoma and is predominantly inactivated by promoter CpG methylation. Oncotarget. 2016;7:21618-30 pubmed 出版商
  426. Swenson S, Cannon A, Harris N, Taylor N, Fox J, Khalimonchuk O. Analysis of Oligomerization Properties of Heme a Synthase Provides Insights into Its Function in Eukaryotes. J Biol Chem. 2016;291:10411-25 pubmed 出版商
  427. Makani V, Jang Y, Christopher K, Judy W, Eckstein J, Hensley K, et al. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR. PLoS ONE. 2016;11:e0149715 pubmed 出版商
  428. Terré B, Piergiovanni G, Segura Bayona S, Gil Gómez G, Youssef S, Attolini C, et al. GEMC1 is a critical regulator of multiciliated cell differentiation. EMBO J. 2016;35:942-60 pubmed 出版商
  429. Moiseeva O, Lopes Paciencia S, Huot G, Lessard F, Ferbeyre G. Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase. Aging (Albany NY). 2016;8:366-81 pubmed
  430. Nakayama R, Zhang Y, Czaplinski J, Anatone A, Sicinska E, Fletcher J, et al. Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma. Oncotarget. 2016;7:16581-92 pubmed 出版商
  431. Eriksson J, Le Joncour V, Nummela P, Jahkola T, Virolainen S, Laakkonen P, et al. Gene expression analyses of primary melanomas reveal CTHRC1 as an important player in melanoma progression. Oncotarget. 2016;7:15065-92 pubmed 出版商
  432. McLaughlin D, Coey C, Yang W, Drohat A, Matunis M. Characterizing Requirements for Small Ubiquitin-like Modifier (SUMO) Modification and Binding on Base Excision Repair Activity of Thymine-DNA Glycosylase in Vivo. J Biol Chem. 2016;291:9014-24 pubmed 出版商
  433. Xu Q, Zhang Y, Wei Q, Huang Y, Hu J, Ling K. Phosphatidylinositol phosphate kinase PIPKIγ and phosphatase INPP5E coordinate initiation of ciliogenesis. Nat Commun. 2016;7:10777 pubmed 出版商
  434. Fong S, Lin H, Wu M, Chen C, Huang Y. CPEB3 Deficiency Elevates TRPV1 Expression in Dorsal Root Ganglia Neurons to Potentiate Thermosensation. PLoS ONE. 2016;11:e0148491 pubmed 出版商
  435. Ro S, Xue X, Ramakrishnan S, Cho C, Namkoong S, Jang I, et al. Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. elife. 2016;5:e12204 pubmed 出版商
  436. Jia L, Li B, Yu H. The Bub1-Plk1 kinase complex promotes spindle checkpoint signalling through Cdc20 phosphorylation. Nat Commun. 2016;7:10818 pubmed 出版商
  437. Ost M, Coleman V, Voigt A, van Schothorst E, Keipert S, van der Stelt I, et al. Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action. Mol Metab. 2016;5:79-90 pubmed 出版商
  438. Laird A, Mackovski N, Rinkwitz S, Becker T, Giacomotto J. Tissue-specific models of spinal muscular atrophy confirm a critical role of SMN in motor neurons from embryonic to adult stages. Hum Mol Genet. 2016;25:1728-38 pubmed 出版商
  439. Jackson S, Olufs Z, Tran K, Zaidan N, Sridharan R. Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage. Stem Cell Reports. 2016;6:302-11 pubmed 出版商
  440. Vukićević T, Schulz M, Faust D, Klussmann E. The Trafficking of the Water Channel Aquaporin-2 in Renal Principal Cells-a Potential Target for Pharmacological Intervention in Cardiovascular Diseases. Front Pharmacol. 2016;7:23 pubmed 出版商
  441. Ladurner R, Kreidl E, Ivanov M, Ekker H, Idarraga Amado M, Busslinger G, et al. Sororin actively maintains sister chromatid cohesion. EMBO J. 2016;35:635-53 pubmed 出版商
  442. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  443. Sieber J, Hauer C, Bhuvanagiri M, Leicht S, Krijgsveld J, Neu Yilik G, et al. Proteomic Analysis Reveals Branch-specific Regulation of the Unfolded Protein Response by Nonsense-mediated mRNA Decay. Mol Cell Proteomics. 2016;15:1584-97 pubmed 出版商
  444. Tang E, Lee W, Cheng C. Coordination of Actin- and Microtubule-Based Cytoskeletons Supports Transport of Spermatids and Residual Bodies/Phagosomes During Spermatogenesis in the Rat Testis. Endocrinology. 2016;157:1644-59 pubmed 出版商
  445. Gawron D, Ndah E, Gevaert K, Van Damme P. Positional proteomics reveals differences in N-terminal proteoform stability. Mol Syst Biol. 2016;12:858 pubmed 出版商
  446. Bowles J, Feng C, Miles K, Ineson J, Spiller C, Koopman P. ALDH1A1 provides a source of meiosis-inducing retinoic acid in mouse fetal ovaries. Nat Commun. 2016;7:10845 pubmed 出版商
  447. Zhang Q, Gao X, Li C, Feliciano C, Wang D, Zhou D, et al. Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice. J Neurosci. 2016;36:2247-60 pubmed 出版商
  448. del Río C, Navarrete C, Collado J, Bellido M, Gómez Cañas M, Pazos M, et al. The cannabinoid quinol VCE-004.8 alleviates bleomycin-induced scleroderma and exerts potent antifibrotic effects through peroxisome proliferator-activated receptor-γ and CB2 pathways. Sci Rep. 2016;6:21703 pubmed 出版商
  449. Prabhu A, Luu W, Sharpe L, Brown A. Cholesterol-mediated Degradation of 7-Dehydrocholesterol Reductase Switches the Balance from Cholesterol to Vitamin D Synthesis. J Biol Chem. 2016;291:8363-73 pubmed 出版商
  450. Chuang T, Lee K, Lou Y, Lu C, Tarn W. A Point Mutation in the Exon Junction Complex Factor Y14 Disrupts Its Function in mRNA Cap Binding and Translation Enhancement. J Biol Chem. 2016;291:8565-74 pubmed 出版商
  451. Baron A, von Schubert C, Cubizolles F, Siemeister G, Hitchcock M, Mengel A, et al. Probing the catalytic functions of Bub1 kinase using the small molecule inhibitors BAY-320 and BAY-524. elife. 2016;5: pubmed 出版商
  452. Bhattacharyya S, Rainey M, Arya P, Mohapatra B, Mushtaq I, Dutta S, et al. Endocytic recycling protein EHD1 regulates primary cilia morphogenesis and SHH signaling during neural tube development. Sci Rep. 2016;6:20727 pubmed 出版商
  453. Hoffmann C, Mao X, Dieterle M, Moreau F, Al Absi A, Steinmetz A, et al. CRP2, a new invadopodia actin bundling factor critically promotes breast cancer cell invasion and metastasis. Oncotarget. 2016;7:13688-705 pubmed 出版商
  454. Alonso F, Domingos Pereira S, Le Gal L, Derré L, Meda P, Jichlinski P, et al. Targeting endothelial connexin40 inhibits tumor growth by reducing angiogenesis and improving vessel perfusion. Oncotarget. 2016;7:14015-28 pubmed 出版商
  455. Ren C, Yang Y, Sun J, Wu Z, Zhang R, Shen D, et al. Exercise Training Improves the Altered Renin-Angiotensin System in the Rostral Ventrolateral Medulla of Hypertensive Rats. Oxid Med Cell Longev. 2016;2016:7413963 pubmed 出版商
  456. Malecova B, Dall Agnese A, Madaro L, Gatto S, Coutinho Toto P, Albini S, et al. TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells. elife. 2016;5: pubmed 出版商
  457. Liu A, Zhou Z, Dang R, Zhu Y, Qi J, He G, et al. Neuroligin 1 regulates spines and synaptic plasticity via LIMK1/cofilin-mediated actin reorganization. J Cell Biol. 2016;212:449-63 pubmed 出版商
  458. Taverna E, Mora Bermúdez F, Strzyz P, Florio M, Icha J, Haffner C, et al. Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells. Sci Rep. 2016;6:21206 pubmed 出版商
  459. Chojnacka K, Bilinska B, Mruk D. Interleukin 1alpha-induced disruption of the Sertoli cell cytoskeleton affects gap junctional communication. Cell Signal. 2016;28:469-480 pubmed 出版商
  460. Wike C, Graves H, Hawkins R, Gibson M, Ferdinand M, Zhang T, et al. Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis. elife. 2016;5:e11402 pubmed 出版商
  461. Sugahara F, Pascual Anaya J, Oisi Y, Kuraku S, Aota S, Adachi N, et al. Evidence from cyclostomes for complex regionalization of the ancestral vertebrate brain. Nature. 2016;531:97-100 pubmed 出版商
  462. Kim D, Helfman D. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene. 2016;35:4495-508 pubmed 出版商
  463. Hong M, Nam K, Kim K, Kim S, Kim I. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha. Cell Stress Chaperones. 2016;21:485-97 pubmed 出版商
  464. Czub B, Shah A, Alfano G, Kruczek P, Chakarova C, Bhattacharya S. TOPORS, a Dual E3 Ubiquitin and Sumo1 Ligase, Interacts with 26 S Protease Regulatory Subunit 4, Encoded by the PSMC1 Gene. PLoS ONE. 2016;11:e0148678 pubmed 出版商
  465. Singhal G, Fisher F, Chee M, Tan T, El Ouaamari A, Adams A, et al. Fibroblast Growth Factor 21 (FGF21) Protects against High Fat Diet Induced Inflammation and Islet Hyperplasia in Pancreas. PLoS ONE. 2016;11:e0148252 pubmed 出版商
  466. Khalid S, Drasche A, Thurner M, Hermann M, Ashraf M, Fresser F, et al. cJun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation. Sci Rep. 2016;6:20930 pubmed 出版商
  467. Kim N, Kim M, Sung P, Bae Y, Shin E, Yoo J. Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A. Nat Commun. 2016;7:10631 pubmed 出版商
  468. Chen S, Blank M, Iyer A, Huang B, Wang L, Grummt I, et al. SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing. Nat Commun. 2016;7:10734 pubmed 出版商
  469. Uribe R, Gu T, Bronner M. A novel subset of enteric neurons revealed by ptf1a:GFP in the developing zebrafish enteric nervous system. Genesis. 2016;54:123-8 pubmed 出版商
  470. Khan N, Willemarck N, Talebi A, Marchand A, Binda M, Dehairs J, et al. Identification of drugs that restore primary cilium expression in cancer cells. Oncotarget. 2016;7:9975-92 pubmed 出版商
  471. Raredon M, Ghaedi M, Calle E, Niklason L. A Rotating Bioreactor for Scalable Culture and Differentiation of Respiratory Epithelium. Cell Med. 2015;7:109-21 pubmed 出版商
  472. Kaji T, Reimer J, Morov A, Kuratani S, Yasui K. Amphioxus mouth after dorso-ventral inversion. Zoological Lett. 2016;2:2 pubmed 出版商
  473. Liu C, Rajapakse A, Riedo E, Fellay B, Bernhard M, Montani J, et al. Targeting arginase-II protects mice from high-fat-diet-induced hepatic steatosis through suppression of macrophage inflammation. Sci Rep. 2016;6:20405 pubmed 出版商
  474. Harding C, Egarter S, Gow M, Jiménez Ruiz E, Ferguson D, Meissner M. Gliding Associated Proteins Play Essential Roles during the Formation of the Inner Membrane Complex of Toxoplasma gondii. PLoS Pathog. 2016;12:e1005403 pubmed 出版商
  475. Nagy Z, Kalousi A, Furst A, Koch M, Fischer B, Soutoglou E. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs. PLoS Genet. 2016;12:e1005791 pubmed 出版商
  476. Maiden S, Petrova Y, Gumbiner B. Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model. PLoS ONE. 2016;11:e0148574 pubmed 出版商
  477. Sharma A, Lyashchenko A, Lu L, Nasrabady S, Elmaleh M, Mendelsohn M, et al. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat Commun. 2016;7:10465 pubmed 出版商
  478. Dos Santos E, Carneiro Lobo T, Aoki M, Levantini E, Bassères D. Aurora kinase targeting in lung cancer reduces KRAS-induced transformation. Mol Cancer. 2016;15:12 pubmed 出版商
  479. Swaminathan V, Fischer R, Waterman C. The FAK-Arp2/3 interaction promotes leading edge advance and haptosensing by coupling nascent adhesions to lamellipodia actin. Mol Biol Cell. 2016;27:1085-100 pubmed 出版商
  480. Franz A, Pirson P, Pilger D, Halder S, Achuthankutty D, Kashkar H, et al. Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression. Nat Commun. 2016;7:10612 pubmed 出版商
  481. Lancaster G, Kammoun H, Kraakman M, Kowalski G, Bruce C, Febbraio M. PKR is not obligatory for high-fat diet-induced obesity and its associated metabolic and inflammatory complications. Nat Commun. 2016;7:10626 pubmed 出版商
  482. Marmugi A, Parnis J, Chen X, Carmichael L, Hardy J, Mannan N, et al. Sorcin Links Pancreatic β-Cell Lipotoxicity to ER Ca2+ Stores. Diabetes. 2016;65:1009-21 pubmed 出版商
  483. Yau K, Schätzle P, Tortosa E, Pagès S, Holtmaat A, Kapitein L, et al. Dendrites In Vitro and In Vivo Contain Microtubules of Opposite Polarity and Axon Formation Correlates with Uniform Plus-End-Out Microtubule Orientation. J Neurosci. 2016;36:1071-85 pubmed 出版商
  484. Tan X, Xu X, Zeisberg M, Zeisberg E. DNMT1 and HDAC2 Cooperate to Facilitate Aberrant Promoter Methylation in Inorganic Phosphate-Induced Endothelial-Mesenchymal Transition. PLoS ONE. 2016;11:e0147816 pubmed 出版商
  485. Stevenson J, Conaty E, Walsh R, Poidomani P, Samoriski C, Scollins B, et al. The Amyloid Precursor Protein of Alzheimer's Disease Clusters at the Organelle/Microtubule Interface on Organelles that Bind Microtubules in an ATP Dependent Manner. PLoS ONE. 2016;11:e0147808 pubmed 出版商
  486. Button R, Vincent J, Strang C, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget. 2016;7:5157-75 pubmed 出版商
  487. Tadokoro T, Gao X, Hong C, Hotten D, Hogan B. BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors. Development. 2016;143:764-73 pubmed 出版商
  488. Grego Bessa J, Bloomekatz J, Castel P, Omelchenko T, Baselga J, Anderson K. The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium. elife. 2016;5:e12034 pubmed 出版商
  489. Rasmussen R, Gajjar M, Jensen K, Hamerlik P. Enhanced efficacy of combined HDAC and PARP targeting in glioblastoma. Mol Oncol. 2016;10:751-63 pubmed 出版商
  490. Wood L, Booth D, Vargiu G, Ohta S, deLima Alves F, Samejima K, et al. Auxin/AID versus conventional knockouts: distinguishing the roles of CENP-T/W in mitotic kinetochore assembly and stability. Open Biol. 2016;6:150230 pubmed 出版商
  491. Villarroel Espíndola F, Tapia C, González Stegmaier R, Concha I, Slebe J. Polyglucosan Molecules Induce Mitochondrial Impairment and Apoptosis in Germ Cells Without Affecting the Integrity and Functionality of Sertoli Cells. J Cell Physiol. 2016;231:2142-52 pubmed 出版商
  492. Crowley C, Klanrit P, Butler C, Varanou A, Platé M, Hynds R, et al. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold. Biomaterials. 2016;83:283-93 pubmed 出版商
  493. Luchsinger L, de Almeida M, Corrigan D, Mumau M, Snoeck H. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature. 2016;529:528-31 pubmed 出版商
  494. Ikeda S, Kitadate A, Ito M, Abe F, Nara M, Watanabe A, et al. Disruption of CCL20-CCR6 interaction inhibits metastasis of advanced cutaneous T-cell lymphoma. Oncotarget. 2016;7:13563-74 pubmed 出版商
  495. Choi S, Chen Z, Tang L, Fang Y, Shin S, Panarelli N, et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384 pubmed 出版商
  496. Tien S, Lee H, Yang Y, Lin M, Chen Y, Chang Z. The Shp2-induced epithelial disorganization defect is reversed by HDAC6 inhibition independent of Cdc42. Nat Commun. 2016;7:10420 pubmed 出版商
  497. Du Y, Yamaguchi H, Wei Y, Hsu J, Wang H, Hsu Y, et al. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat Med. 2016;22:194-201 pubmed 出版商
  498. Watari K, Shibata T, Nabeshima H, Shinoda A, Fukunaga Y, Kawahara A, et al. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice. Sci Rep. 2016;6:19470 pubmed 出版商
  499. Kelkar M, Senthilkumar K, Jadhav S, Gupta S, Ahn B, De A. Enhancement of human sodium iodide symporter gene therapy for breast cancer by HDAC inhibitor mediated transcriptional modulation. Sci Rep. 2016;6:19341 pubmed 出版商
  500. Avgustinova A, Iravani M, Robertson D, Fearns A, Gao Q, Klingbeil P, et al. Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat Commun. 2016;7:10305 pubmed 出版商
  501. Cherepkova M, Sineva G, Pospelov V. Leukemia inhibitory factor (LIF) withdrawal activates mTOR signaling pathway in mouse embryonic stem cells through the MEK/ERK/TSC2 pathway. Cell Death Dis. 2016;7:e2050 pubmed 出版商
  502. Quétier I, Marshall J, Spencer Dene B, Lachmann S, Casamassima A, Franco C, et al. Knockout of the PKN Family of Rho Effector Kinases Reveals a Non-redundant Role for PKN2 in Developmental Mesoderm Expansion. Cell Rep. 2016;14:440-448 pubmed 出版商
  503. Choi Y, Meghani K, Brault M, Leclerc L, He Y, Day T, et al. Platinum and PARP Inhibitor Resistance Due to Overexpression of MicroRNA-622 in BRCA1-Mutant Ovarian Cancer. Cell Rep. 2016;14:429-439 pubmed 出版商
  504. Faria J, Loureiro I, Santarém N, Macedo Ribeiro S, Tavares J, Cordeiro da Silva A. Leishmania infantum Asparagine Synthetase A Is Dispensable for Parasites Survival and Infectivity. PLoS Negl Trop Dis. 2016;10:e0004365 pubmed 出版商
  505. Gingras J, Gawor M, Bernadzki K, Grady R, Hallock P, Glass D, et al. Α-Dystrobrevin-1 recruits Grb2 and α-catulin to organize neurotransmitter receptors at the neuromuscular junction. J Cell Sci. 2016;129:898-911 pubmed 出版商
  506. Yang Y, Li W, Hoque M, Hou L, Shen S, Tian B, et al. PAF Complex Plays Novel Subunit-Specific Roles in Alternative Cleavage and Polyadenylation. PLoS Genet. 2016;12:e1005794 pubmed 出版商
  507. Camlin N, Sobinoff A, Sutherland J, Beckett E, Jarnicki A, Vanders R, et al. Maternal Smoke Exposure Impairs the Long-Term Fertility of Female Offspring in a Murine Model. Biol Reprod. 2016;94:39 pubmed 出版商
  508. Kono M, Heincke D, Wilcke L, Wong T, Bruns C, Herrmann S, et al. Pellicle formation in the malaria parasite. J Cell Sci. 2016;129:673-80 pubmed 出版商
  509. Mauvezin C, Neisch A, Ayala C, Kim J, Beltrame A, Braden C, et al. Coordination of autophagosome-lysosome fusion and transport by a Klp98A-Rab14 complex in Drosophila. J Cell Sci. 2016;129:971-82 pubmed 出版商
  510. Hoang Minh L, Deleyrolle L, Siebzehnrubl D, Ugartemendia G, Futch H, Griffith B, et al. Disruption of KIF3A in patient-derived glioblastoma cells: effects on ciliogenesis, hedgehog sensitivity, and tumorigenesis. Oncotarget. 2016;7:7029-43 pubmed 出版商
  511. Ketel K, Krauss M, Nicot A, Puchkov D, Wieffer M, Müller R, et al. A phosphoinositide conversion mechanism for exit from endosomes. Nature. 2016;529:408-12 pubmed 出版商
  512. Hori A, Barnouin K, Snijders A, Toda T. A non-canonical function of Plk4 in centriolar satellite integrity and ciliogenesis through PCM1 phosphorylation. EMBO Rep. 2016;17:326-37 pubmed 出版商
  513. Puvirajesinghe T, Bertucci F, Jain A, Scerbo P, Belotti E, Audebert S, et al. Identification of p62/SQSTM1 as a component of non-canonical Wnt VANGL2-JNK signalling in breast cancer. Nat Commun. 2016;7:10318 pubmed 出版商
  514. Murakami K, Günesdogan U, Zylicz J, Tang W, Sengupta R, Kobayashi T, et al. NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers. Nature. 2016;529:403-407 pubmed 出版商
  515. Ruegsegger C, Stucki D, Steiner S, Angliker N, Radecke J, Keller E, et al. Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology. Neuron. 2016;89:129-46 pubmed 出版商
  516. Zhou H, Wang T, Zheng T, Teng J, Chen J. Cep57 is a Mis12-interacting kinetochore protein involved in kinetochore targeting of Mad1-Mad2. Nat Commun. 2016;7:10151 pubmed 出版商
  517. Wang M, Itoh M, Li S, Hida Y, Ohta K, Hayakawa M, et al. CED-4 is an mRNA-binding protein that delivers ced-3 mRNA to ribosomes. Biochem Biophys Res Commun. 2016;470:48-53 pubmed 出版商
  518. Terranova Barberio M, Roca M, Zotti A, Leone A, Bruzzese F, Vitagliano C, et al. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Oncotarget. 2016;7:7715-31 pubmed 出版商
  519. Lee S, Frattini V, Bansal M, Castano A, Sherman D, Hutchinson K, et al. An ID2-dependent mechanism for VHL inactivation in cancer. Nature. 2016;529:172-7 pubmed 出版商
  520. Kajtez J, Solomatina A, Novak M, Polak B, VukuÅ¡ić K, Rüdiger J, et al. Overlap microtubules link sister k-fibres and balance the forces on bi-oriented kinetochores. Nat Commun. 2016;7:10298 pubmed 出版商
  521. Sansó M, Levin R, Lipp J, Wang V, Greifenberg A, Quezada E, et al. P-TEFb regulation of transcription termination factor Xrn2 revealed by a chemical genetic screen for Cdk9 substrates. Genes Dev. 2016;30:117-31 pubmed 出版商
  522. Ghosh A, Ghosh S, Dasgupta D, Ghosh A, Datta S, Sikdar N, et al. Hepatitis B Virus X Protein Upregulates hELG1/ ATAD5 Expression through E2F1 in Hepatocellular Carcinoma. Int J Biol Sci. 2016;12:30-41 pubmed 出版商
  523. Drusenheimer N, Migdal B, Jäckel S, Tveriakhina L, Scheider K, Schulz K, et al. The Mammalian Orthologs of Drosophila Lgd, CC2D1A and CC2D1B, Function in the Endocytic Pathway, but Their Individual Loss of Function Does Not Affect Notch Signalling. PLoS Genet. 2015;11:e1005749 pubmed 出版商
  524. Nelson J, Cook E, Loregger A, Hoeksema M, Scheij S, Kovacevic I, et al. Deubiquitylase Inhibition Reveals Liver X Receptor-independent Transcriptional Regulation of the E3 Ubiquitin Ligase IDOL and Lipoprotein Uptake. J Biol Chem. 2016;291:4813-25 pubmed 出版商
  525. Gomez Villafuertes R, García Huerta P, Díaz Hernández J, Miras Portugal M. PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions. Sci Rep. 2015;5:18417 pubmed 出版商
  526. Dias J, Rito T, Torlai Triglia E, Kukalev A, Ferrai C, Chotalia M, et al. Methylation of RNA polymerase II non-consensus Lysine residues marks early transcription in mammalian cells. elife. 2015;4: pubmed 出版商
  527. Ge C, Che L, Du C. The UBC Domain Is Required for BRUCE to Promote BRIT1/MCPH1 Function in DSB Signaling and Repair Post Formation of BRUCE-USP8-BRIT1 Complex. PLoS ONE. 2015;10:e0144957 pubmed 出版商
  528. Huang R, Langdon S, Tse M, Mullen P, Um I, Faratian D, et al. The role of HDAC2 in chromatin remodelling and response to chemotherapy in ovarian cancer. Oncotarget. 2016;7:4695-711 pubmed 出版商
  529. Lee E, Jin D, Lee B, Kim Y, Han J, Shim Y, et al. Negative effect of cyclin D1 overexpression on recurrence-free survival in stage II-IIIA lung adenocarcinoma and its expression modulation by vorinostat in vitro. BMC Cancer. 2015;15:982 pubmed 出版商
  530. Stanic J, Carta M, Eberini I, Pelucchi S, Marcello E, Genazzani A, et al. Rabphilin 3A retains NMDA receptors at synaptic sites through interaction with GluN2A/PSD-95 complex. Nat Commun. 2015;6:10181 pubmed 出版商
  531. Giampietro C, Disanza A, Bravi L, Barrios Rodiles M, Corada M, Frittoli E, et al. The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling. J Cell Biol. 2015;211:1177-92 pubmed 出版商
  532. Franco Villanueva A, Wandosell F, Antón I. Neuritic complexity of hippocampal neurons depends on WIP-mediated mTORC1 and Abl family kinases activities. Brain Behav. 2015;5:e00359 pubmed 出版商
  533. Lyons D, Perry K, Henry J. Spiralian gastrulation: germ layer formation, morphogenesis, and fate of the blastopore in the slipper snail Crepidula fornicata. Evodevo. 2015;6:24 pubmed 出版商
  534. Wille C, Nawandar D, Henning A, Ma S, Oetting K, Lee D, et al. 5-hydroxymethylation of the EBV genome regulates the latent to lytic switch. Proc Natl Acad Sci U S A. 2015;112:E7257-65 pubmed 出版商
  535. Mills K, Brocardo M, Henderson B. APC binds the Miro/Milton motor complex to stimulate transport of mitochondria to the plasma membrane. Mol Biol Cell. 2016;27:466-82 pubmed 出版商
  536. Edmonds M, Boyd K, Moyo T, Mitra R, Duszynski R, Arrate M, et al. MicroRNA-31 initiates lung tumorigenesis and promotes mutant KRAS-driven lung cancer. J Clin Invest. 2016;126:349-64 pubmed 出版商
  537. Müller Schiffmann A, Herring A, Abdel Hafiz L, Chepkova A, Schäble S, Wedel D, et al. Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain. 2016;139:509-25 pubmed 出版商
  538. Pinho B, Reis S, Guedes Dias P, Leitão Rocha A, Quintas C, Valentão P, et al. Pharmacological modulation of HDAC1 and HDAC6 in vivo in a zebrafish model: Therapeutic implications for Parkinson's disease. Pharmacol Res. 2016;103:328-39 pubmed 出版商
  539. Dupont T, Yang S, Patel J, Hatzi K, Malik A, Tam W, et al. Selective targeting of BCL6 induces oncogene addiction switching to BCL2 in B-cell lymphoma. Oncotarget. 2016;7:3520-32 pubmed 出版商
  540. Ageta Ishihara N, Yamazaki M, Konno K, Nakayama H, Abe M, Hashimoto K, et al. A CDC42EP4/septin-based perisynaptic glial scaffold facilitates glutamate clearance. Nat Commun. 2015;6:10090 pubmed 出版商
  541. Pillai S, Nguyen J, Johnson J, Haura E, Coppola D, Chellappan S. Tank binding kinase 1 is a centrosome-associated kinase necessary for microtubule dynamics and mitosis. Nat Commun. 2015;6:10072 pubmed 出版商
  542. Farina F, Gaillard J, Guérin C, Couté Y, Sillibourne J, Blanchoin L, et al. The centrosome is an actin-organizing centre. Nat Cell Biol. 2016;18:65-75 pubmed 出版商
  543. Ohashi A, Ohori M, Iwai K, Nambu T, Miyamoto M, Kawamoto T, et al. A Novel Time-Dependent CENP-E Inhibitor with Potent Antitumor Activity. PLoS ONE. 2015;10:e0144675 pubmed 出版商
  544. Dobrowolny G, Bernardini C, Martini M, Baranzini M, Barba M, Musarò A. Muscle Expression of SOD1(G93A) Modulates microRNA and mRNA Transcription Pattern Associated with the Myelination Process in the Spinal Cord of Transgenic Mice. Front Cell Neurosci. 2015;9:463 pubmed 出版商
  545. Veldman M, Rios Galdamez Y, Lu X, Gu X, Qin W, Li S, et al. The N17 domain mitigates nuclear toxicity in a novel zebrafish Huntington's disease model. Mol Neurodegener. 2015;10:67 pubmed 出版商
  546. Grandy R, Whitfield T, Wu H, Fitzgerald M, VanOudenhove J, Zaidi S, et al. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation. Mol Cell Biol. 2016;36:615-27 pubmed 出版商
  547. Lommel M, Trairatphisan P, Gäbler K, Laurini C, Muller A, Kaoma T, et al. L-plastin Ser5 phosphorylation in breast cancer cells and in vitro is mediated by RSK downstream of the ERK/MAPK pathway. FASEB J. 2016;30:1218-33 pubmed 出版商
  548. Qian G, Fan W, Ahlemeyer B, Karnati S, Baumgart Vogt E. Peroxisomes in Different Skeletal Cell Types during Intramembranous and Endochondral Ossification and Their Regulation during Osteoblast Differentiation by Distinct Peroxisome Proliferator-Activated Receptors. PLoS ONE. 2015;10:e0143439 pubmed 出版商
  549. Qi D, Kaur Gill N, Santiskulvong C, Sifuentes J, Dorigo O, Rao J, et al. Screening cell mechanotype by parallel microfiltration. Sci Rep. 2015;5:17595 pubmed 出版商
  550. Etemad B, Kuijt T, Kops G. Kinetochore-microtubule attachment is sufficient to satisfy the human spindle assembly checkpoint. Nat Commun. 2015;6:8987 pubmed 出版商
  551. Garcia Manteiga J, Bonfiglio S, Folladori L, Malosio M, Lazarevic D, Stupka E, et al. REST-Governed Gene Expression Profiling in a Neuronal Cell Model Reveals Novel Direct and Indirect Processes of Repression and Up-Regulation. Front Cell Neurosci. 2015;9:438 pubmed 出版商
  552. Cuttano R, Rudini N, Bravi L, Corada M, Giampietro C, Papa E, et al. KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med. 2016;8:6-24 pubmed 出版商
  553. Ni Y, Tao L, Chen C, Song H, Li Z, Gao Y, et al. The Deubiquitinase USP17 Regulates the Stability and Nuclear Function of IL-33. Int J Mol Sci. 2015;16:27956-66 pubmed 出版商
  554. Leclercq A, Veillat V, Loriot S, Spuul P, Madonna F, Roques X, et al. A Methodology for Concomitant Isolation of Intimal and Adventitial Endothelial Cells from the Human Thoracic Aorta. PLoS ONE. 2015;10:e0143144 pubmed 出版商
  555. Fukuda M, Inoue M, Muramatsu D, Miyachi H, Shinkai Y. Knockout mouse production assisted by Blm knockdown. J Reprod Dev. 2016;62:121-5 pubmed 出版商
  556. Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo S, Low D, et al. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest. 2016;126:68-84 pubmed 出版商
  557. Liwak Muir U, Dobson C, Naing T, Wylie Q, Chehade L, Baird S, et al. ERK8 is a novel HuR kinase that regulates tumour suppressor PDCD4 through a miR-21 dependent mechanism. Oncotarget. 2016;7:1439-50 pubmed 出版商
  558. Gao X, Krokowski D, Guan B, Bederman I, Majumder M, Parisien M, et al. Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response. elife. 2015;4:e10067 pubmed 出版商
  559. Gzyl J, Chmielowska BÄ…k J, PrzymusiÅ„ski R, Gwóźdź E. Cadmium affects microtubule organization and post-translational modifications of tubulin in seedlings of soybean (Glycine max L.). Front Plant Sci. 2015;6:937 pubmed 出版商
  560. dos Santos N, Matias A, Higa G, Kihara A, Cerchiaro G. Copper Uptake in Mammary Epithelial Cells Activates Cyclins and Triggers Antioxidant Response. Oxid Med Cell Longev. 2015;2015:162876 pubmed 出版商
  561. Cristini A, Park J, Capranico G, Legube G, Favre G, Sordet O. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Res. 2016;44:1161-78 pubmed 出版商
  562. Gogendeau D, Siudeja K, Gambarotto D, Pennetier C, Bardin A, Basto R. Aneuploidy causes premature differentiation of neural and intestinal stem cells. Nat Commun. 2015;6:8894 pubmed 出版商
  563. Jahic A, Khundadze M, Jaenisch N, Schüle R, Klimpe S, Klebe S, et al. The spectrum of KIAA0196 variants, and characterization of a murine knockout: implications for the mutational mechanism in hereditary spastic paraplegia type SPG8. Orphanet J Rare Dis. 2015;10:147 pubmed 出版商
  564. Iarriccio L, Manguán García C, Pintado Berninches L, Mancheño J, Molina A, Perona R, et al. GSE4, a Small Dyskerin- and GSE24.2-Related Peptide, Induces Telomerase Activity, Cell Proliferation and Reduces DNA Damage, Oxidative Stress and Cell Senescence in Dyskerin Mutant Cells. PLoS ONE. 2015;10:e0142980 pubmed 出版商
  565. Massouridès E, Polentes J, Mangeot P, Mournetas V, Nectoux J, Deburgrave N, et al. Dp412e: a novel human embryonic dystrophin isoform induced by BMP4 in early differentiated cells. Skelet Muscle. 2015;5:40 pubmed 出版商
  566. Furuta M, Hori T, Fukagawa T. Chromatin binding of RCC1 during mitosis is important for its nuclear localization in interphase. Mol Biol Cell. 2016;27:371-81 pubmed 出版商
  567. Copeland S, Thurston S, Copeland J. Actin- and microtubule-dependent regulation of Golgi morphology by FHDC1. Mol Biol Cell. 2016;27:260-76 pubmed 出版商
  568. Sassa A, Kamoshita N, Kanemaru Y, Honma M, Yasui M. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome. PLoS ONE. 2015;10:e0142218 pubmed 出版商
  569. Zhang Z, Wu N, Lu Y, Davidson D, Colonna M, Veillette A. DNAM-1 controls NK cell activation via an ITT-like motif. J Exp Med. 2015;212:2165-82 pubmed 出版商
  570. Cazals Y, Bevengut M, Zanella S, Brocard F, Barhanin J, Gestreau C. KCNK5 channels mostly expressed in cochlear outer sulcus cells are indispensable for hearing. Nat Commun. 2015;6:8780 pubmed 出版商
  571. Ksionda O, Melton A, Bache J, Tenhagen M, Bakker J, Harvey R, et al. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene. 2016;35:3658-68 pubmed 出版商
  572. Fontinha D, Lopes F, Marques S, Alenquer M, Simas J. Murid Gammaherpesvirus Latency-Associated Protein M2 Promotes the Formation of Conjugates between Transformed B Lymphoma Cells and T Helper Cells. PLoS ONE. 2015;10:e0142540 pubmed 出版商
  573. Yen Y, Hsiao J, Jiang S, Chang J, Wang S, Shen Y, et al. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget. 2015;6:41837-55 pubmed 出版商
  574. Roos A, Satterfield L, Zhao S, Fuja D, Shuck R, Hicks M, et al. Loss of Runx2 sensitises osteosarcoma to chemotherapy-induced apoptosis. Br J Cancer. 2015;113:1289-97 pubmed 出版商
  575. Gao X, Bali A, Randell S, Hogan B. GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells. J Cell Biol. 2015;211:669-82 pubmed 出版商
  576. Stanojlović M, GuÅ¡evac I, Grković I, Zlatković J, Mitrović N, Zarić M, et al. Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus. Neuroscience. 2015;311:308-21 pubmed 出版商
  577. Fernández Santiago R, Carballo Carbajal I, Castellano G, Torrent R, Richaud Y, Sánchez Danés A, et al. Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients. EMBO Mol Med. 2015;7:1529-46 pubmed 出版商
  578. Antonucci L, Fagman J, Kim J, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A. 2015;112:E6166-74 pubmed 出版商
  579. Eiseler T, Wille C, Koehler C, Illing A, Seufferlein T. Protein Kinase D2 Assembles a Multiprotein Complex at the Trans-Golgi Network to Regulate Matrix Metalloproteinase Secretion. J Biol Chem. 2016;291:462-77 pubmed 出版商
  580. Jia D, Tan Y, Liu H, Ooi S, Li L, Wright K, et al. Cardamonin reduces chemotherapy-enriched breast cancer stem-like cells in vitro and in vivo. Oncotarget. 2016;7:771-85 pubmed 出版商
  581. Dumas A, Lê Bury G, Marie Anaïs F, Herit F, Mazzolini J, Guilbert T, et al. The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. J Cell Biol. 2015;211:359-72 pubmed 出版商
  582. Zampieri A, Champagne J, Auzemery B, Fuentes I, Maurel B, Bienvenu F. Hyper sensitive protein detection by Tandem-HTRF reveals Cyclin D1 dynamics in adult mouse. Sci Rep. 2015;5:15739 pubmed 出版商
  583. Chauhan S, Ahmed Z, Bradfute S, Arko Mensah J, Mandell M, Won Choi S, et al. Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nat Commun. 2015;6:8620 pubmed 出版商
  584. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  585. Fuchs M, Luthold C, Guilbert S, Varlet A, Lambert H, Jetté A, et al. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis. PLoS Genet. 2015;11:e1005582 pubmed 出版商
  586. Geister K, Brinkmeier M, Cheung L, Wendt J, Oatley M, Burgess D, et al. LINE-1 Mediated Insertion into Poc1a (Protein of Centriole 1 A) Causes Growth Insufficiency and Male Infertility in Mice. PLoS Genet. 2015;11:e1005569 pubmed 出版商
  587. Tonsing Carter E, Bailey B, Saadatzadeh M, Ding J, Wang H, Sinn A, et al. Potentiation of Carboplatin-Mediated DNA Damage by the Mdm2 Modulator Nutlin-3a in a Humanized Orthotopic Breast-to-Lung Metastatic Model. Mol Cancer Ther. 2015;14:2850-63 pubmed 出版商
  588. Teng R, Wu T, Afolayan A, Konduri G. Nitrotyrosine impairs mitochondrial function in fetal lamb pulmonary artery endothelial cells. Am J Physiol Cell Physiol. 2016;310:C80-8 pubmed 出版商
  589. Slaats G, Isabella C, Kroes H, Dempsey J, Gremmels H, Monroe G, et al. MKS1 regulates ciliary INPP5E levels in Joubert syndrome. J Med Genet. 2016;53:62-72 pubmed 出版商
  590. Bizet A, Becker Heck A, Ryan R, Weber K, Filhol E, Krug P, et al. Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization. Nat Commun. 2015;6:8666 pubmed 出版商
  591. Baumann C, Viveiros M. Meiotic Spindle Assessment in Mouse Oocytes by siRNA-mediated Silencing. J Vis Exp. 2015;: pubmed 出版商
  592. Han L, Ge J, Zhang L, Ma R, Hou X, Li B, et al. Sirt6 depletion causes spindle defects and chromosome misalignment during meiosis of mouse oocyte. Sci Rep. 2015;5:15366 pubmed 出版商
  593. Bolukbasi M, Gupta A, Oikemus S, Derr A, Garber M, Brodsky M, et al. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat Methods. 2015;12:1150-6 pubmed 出版商
  594. Vajravelu B, Hong K, Al Maqtari T, Cao P, Keith M, Wysoczynski M, et al. C-Kit Promotes Growth and Migration of Human Cardiac Progenitor Cells via the PI3K-AKT and MEK-ERK Pathways. PLoS ONE. 2015;10:e0140798 pubmed 出版商
  595. Radford S, Hoang T, Głuszek A, Ohkura H, McKim K. Lateral and End-On Kinetochore Attachments Are Coordinated to Achieve Bi-orientation in Drosophila Oocytes. PLoS Genet. 2015;11:e1005605 pubmed 出版商
  596. Renga B, Francisci D, Carino A, Marchianò S, Cipriani S, Chiara Monti M, et al. The HIV matrix protein p17 induces hepatic lipid accumulation via modulation of nuclear receptor transcriptoma. Sci Rep. 2015;5:15403 pubmed 出版商
  597. Müller W, Schröder H, Tolba E, Diehl Seifert B, Wang X. Mineralization of bone-related SaOS-2 cells under physiological hypoxic conditions. FEBS J. 2016;283:74-87 pubmed 出版商
  598. Singh J, Wen X, Scales S. The Orphan G Protein-coupled Receptor Gpr175 (Tpra40) Enhances Hedgehog Signaling by Modulating cAMP Levels. J Biol Chem. 2015;290:29663-75 pubmed 出版商
  599. Klar A, Gopinadh J, Kleber S, Wadle A, Renner C. Treatment with 5-Aza-2'-Deoxycytidine Induces Expression of NY-ESO-1 and Facilitates Cytotoxic T Lymphocyte-Mediated Tumor Cell Killing. PLoS ONE. 2015;10:e0139221 pubmed 出版商
  600. Matthews G, Mehdipour P, Cluse L, Falkenberg K, Wang E, Roth M, et al. Functional-genetic dissection of HDAC dependencies in mouse lymphoid and myeloid malignancies. Blood. 2015;126:2392-403 pubmed 出版商
  601. Kong J, Hardin K, Dinkins M, Wang G, He Q, Mujadzic T, et al. Regulation of Chlamydomonas flagella and ependymal cell motile cilia by ceramide-mediated translocation of GSK3. Mol Biol Cell. 2015;26:4451-65 pubmed 出版商
  602. Yuzugullu H, Baitsch L, Von T, Steiner A, Tong H, Ni J, et al. A PI3K p110β-Rac signalling loop mediates Pten-loss-induced perturbation of haematopoiesis and leukaemogenesis. Nat Commun. 2015;6:8501 pubmed 出版商
  603. Meda F, Gauron C, Rampon C, Teillon J, Volovitch M, Vriz S. Nerves Control Redox Levels in Mature Tissues Through Schwann Cells and Hedgehog Signaling. Antioxid Redox Signal. 2016;24:299-311 pubmed 出版商
  604. Aviner R, Shenoy A, Elroy Stein O, Geiger T. Uncovering Hidden Layers of Cell Cycle Regulation through Integrative Multi-omic Analysis. PLoS Genet. 2015;11:e1005554 pubmed 出版商
  605. Jiang S, Du J, Kong Q, Li C, Li Y, Sun H, et al. A Group of ent-Kaurane Diterpenoids Inhibit Hedgehog Signaling and Induce Cilia Elongation. PLoS ONE. 2015;10:e0139830 pubmed 出版商
  606. Miles W, Lepesant J, Bourdeaux J, Texier M, Kerenyi M, Nakakido M, et al. The LSD1 Family of Histone Demethylases and the Pumilio Posttranscriptional Repressor Function in a Complex Regulatory Feedback Loop. Mol Cell Biol. 2015;35:4199-211 pubmed 出版商
  607. Felli N, Errico M, Pedini F, Petrini M, Puglisi R, Bellenghi M, et al. AP2α controls the dynamic balance between miR-126&126* and miR-221&222 during melanoma progression. Oncogene. 2016;35:3016-26 pubmed 出版商
  608. Nawandar D, Wang A, Makielski K, Lee D, Ma S, Barlow E, et al. Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells. PLoS Pathog. 2015;11:e1005195 pubmed 出版商
  609. Voets E, Marsman J, Demmers J, Beijersbergen R, Wolthuis R. The lethal response to Cdk1 inhibition depends on sister chromatid alignment errors generated by KIF4 and isoform 1 of PRC1. Sci Rep. 2015;5:14798 pubmed 出版商
  610. Yao M, Xie C, Kiang M, Teng Y, Harman D, Tiffen J, et al. Targeting of cytosolic phospholipase A2α impedes cell cycle re-entry of quiescent prostate cancer cells. Oncotarget. 2015;6:34458-74 pubmed 出版商
  611. Bagulho A, Vilas Boas F, Pena A, Peneda C, Santos F, Jerónimo A, et al. The extracellular matrix modulates H2O2 degradation and redox signaling in endothelial cells. Redox Biol. 2015;6:454-460 pubmed 出版商
  612. Hasanagic M, van Meel E, Luan S, Aurora R, Kornfeld S, Eissenberg J. The lysosomal enzyme receptor protein (LERP) is not essential, but is implicated in lysosomal function in Drosophila melanogaster. Biol Open. 2015;4:1316-25 pubmed 出版商
  613. Shnitsar I, Bashkurov M, Masson G, Ogunjimi A, Mosessian S, Cabeza E, et al. PTEN regulates cilia through Dishevelled. Nat Commun. 2015;6:8388 pubmed 出版商
  614. Beck K, Ehmann N, Andlauer T, Ljaschenko D, Strecker K, Fischer M, et al. Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons. Dis Model Mech. 2015;8:1389-400 pubmed 出版商
  615. Raman M, Sergeev M, Garnaas M, Lydeard J, Huttlin E, Goessling W, et al. Systematic proteomics of the VCP-UBXD adaptor network identifies a role for UBXN10 in regulating ciliogenesis. Nat Cell Biol. 2015;17:1356-69 pubmed 出版商
  616. Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed 出版商
  617. Nemazanyy I, Montagnac G, Russell R, Morzyglod L, Burnol A, Guan K, et al. Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nat Commun. 2015;6:8283 pubmed 出版商
  618. Basheer W, Harris B, Mentrup H, Abreha M, Thames E, Lea J, et al. Cardiomyocyte-specific overexpression of the ubiquitin ligase Wwp1 contributes to reduction in Connexin 43 and arrhythmogenesis. J Mol Cell Cardiol. 2015;88:1-13 pubmed 出版商
  619. Stephen L, Tawamie H, Davis G, Tebbe L, Nurnberg P, Nurnberg G, et al. TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23). elife. 2015;4: pubmed 出版商
  620. Ho D, Kim H, Kim J, Sim H, Ahn H, Kim J, et al. Leucine-Rich Repeat Kinase 2 (LRRK2) phosphorylates p53 and induces p21(WAF1/CIP1) expression. Mol Brain. 2015;8:54 pubmed 出版商
  621. Zhu L, Wang Z, Wang W, Wang C, Hua S, Su Z, et al. Mitotic Protein CSPP1 Interacts with CENP-H Protein to Coordinate Accurate Chromosome Oscillation in Mitosis. J Biol Chem. 2015;290:27053-66 pubmed 出版商
  622. Qiao Y, Lin S, Chen Y, Voon D, Zhu F, Chuang L, et al. RUNX3 is a novel negative regulator of oncogenic TEAD-YAP complex in gastric cancer. Oncogene. 2016;35:2664-74 pubmed 出版商
  623. D Amato N, Rogers T, Gordon M, Greene L, Cochrane D, Spoelstra N, et al. A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. Cancer Res. 2015;75:4651-64 pubmed 出版商
  624. Dong H, Chen Z, Wang C, Xiong Z, Zhao W, Jia C, et al. Rictor Regulates Spermatogenesis by Controlling Sertoli Cell Cytoskeletal Organization and Cell Polarity in the Mouse Testis. Endocrinology. 2015;156:4244-56 pubmed 出版商
  625. Imai Y, Kobayashi Y, Inoshita T, Meng H, Arano T, Uemura K, et al. The Parkinson's Disease-Associated Protein Kinase LRRK2 Modulates Notch Signaling through the Endosomal Pathway. PLoS Genet. 2015;11:e1005503 pubmed 出版商
  626. Hu M, Wang Z, Teng Y, Jiang Z, Ma X, Hou N, et al. Loss of protein phosphatase 6 in oocytes causes failure of meiosis II exit and impaired female fertility. J Cell Sci. 2015;128:3769-80 pubmed 出版商
  627. Plescher M, Teleman A, Demetriades C. TSC2 mediates hyperosmotic stress-induced inactivation of mTORC1. Sci Rep. 2015;5:13828 pubmed 出版商
  628. Marthandan S, Priebe S, Baumgart M, Groth M, Cellerino A, Guthke R, et al. Similarities in Gene Expression Profiles during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts. Biomed Res Int. 2015;2015:731938 pubmed 出版商
  629. Van de Mark D, Kong D, Loncarek J, Stearns T. MDM1 is a microtubule-binding protein that negatively regulates centriole duplication. Mol Biol Cell. 2015;26:3788-802 pubmed 出版商
  630. Bida O, Gidoni M, Ideses D, Efroni S, Ginsberg D. A novel mitosis-associated lncRNA, MA-linc1, is required for cell cycle progression and sensitizes cancer cells to Paclitaxel. Oncotarget. 2015;6:27880-90 pubmed 出版商
  631. Zagani R, El Assaad W, Gamache I, Teodoro J. Inhibition of adipose triglyceride lipase (ATGL) by the putative tumor suppressor G0S2 or a small molecule inhibitor attenuates the growth of cancer cells. Oncotarget. 2015;6:28282-95 pubmed 出版商
  632. Cooper S, Sadok A, Bousgouni V, Bakal C. Apolar and polar transitions drive the conversion between amoeboid and mesenchymal shapes in melanoma cells. Mol Biol Cell. 2015;26:4163-70 pubmed 出版商
  633. Zhou N, Yuan S, Wang R, Zhang W, Chen J. Role of dual specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1B) in S-phase entry of HPV E7 expressing cells from quiescence. Oncotarget. 2015;6:30745-61 pubmed 出版商
  634. Kruzliak P, Hare D, Zvonícek V, Klimas J, Zulli A. Simvastatin impairs the induction of pulmonary fibrosis caused by a western style diet: a preliminary study. J Cell Mol Med. 2015;19:2647-54 pubmed 出版商
  635. Kim S, Lee K, Choi J, Ringstad N, Dynlacht B. Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle. Nat Commun. 2015;6:8087 pubmed 出版商
  636. Moreau K, Ghislat G, Hochfeld W, Renna M, Zavodszky E, Runwal G, et al. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat Commun. 2015;6:8045 pubmed 出版商
  637. Galicia Vázquez G, Chu J, Pelletier J. eIF4AII is dispensable for miRNA-mediated gene silencing. RNA. 2015;21:1826-33 pubmed 出版商
  638. Barbone D, Follo C, Echeverry N, Gerbaudo V, Klabatsa A, Bueno R, et al. Autophagy Correlates with the Therapeutic Responsiveness of Malignant Pleural Mesothelioma in 3D Models. PLoS ONE. 2015;10:e0134825 pubmed 出版商
  639. Lang U, Cheung C, Vladar E, Swetter S, Kim J. Loss of primary cilia correlates with cytologic severity in dysplastic melanocytic nevi. J Cutan Pathol. 2016;43:113-9 pubmed 出版商
  640. Takata K, Tomida J, Reh S, Swanhart L, Takata M, Hukriede N, et al. Conserved overlapping gene arrangement, restricted expression, and biochemical activities of DNA polymerase ν (POLN). J Biol Chem. 2015;290:24278-93 pubmed 出版商
  641. Archibald A, Al Masri M, Liew Spilger A, McCaffrey L. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell. 2015;26:3578-95 pubmed 出版商
  642. Vertii A, Zimmerman W, Ivshina M, Doxsey S. Centrosome-intrinsic mechanisms modulate centrosome integrity during fever. Mol Biol Cell. 2015;26:3451-63 pubmed 出版商
  643. Meraviglia V, Azzimato V, Colussi C, Florio M, Binda A, Panariti A, et al. Acetylation mediates Cx43 reduction caused by electrical stimulation. J Mol Cell Cardiol. 2015;87:54-64 pubmed 出版商
  644. Panet E, Ozer E, Mashriki T, Lazar I, Itzkovich D, Tzur A. Purifying Cytokinetic Cells from an Asynchronous Population. Sci Rep. 2015;5:13230 pubmed 出版商
  645. Kanfer G, Courtheoux T, Peterka M, Meier S, Soste M, Melnik A, et al. Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat Commun. 2015;6:8015 pubmed 出版商
  646. Lee H, Park Y, Cho M, Chae S, Yoo Y, Kwon M, et al. The chromatin remodeller RSF1 is essential for PLK1 deposition and function at mitotic kinetochores. Nat Commun. 2015;6:7904 pubmed 出版商
  647. Gokey J, Dasgupta A, Amack J. The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish. Dev Biol. 2015;407:115-30 pubmed 出版商
  648. Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 2015;15:577 pubmed 出版商
  649. Guo Y, Zheng Y. Lamins position the nuclear pores and centrosomes by modulating dynein. Mol Biol Cell. 2015;26:3379-89 pubmed 出版商
  650. Ohata S, Herranz Pérez V, Nakatani J, Boletta A, García Verdugo J, Álvarez Buylla A. Mechanosensory Genes Pkd1 and Pkd2 Contribute to the Planar Polarization of Brain Ventricular Epithelium. J Neurosci. 2015;35:11153-68 pubmed 出版商
  651. Lehti M, Kotaja N, Sironen A. KIF1-binding protein interacts with KIF3A in haploid male germ cells. Reproduction. 2015;150:209-16 pubmed 出版商
  652. Ahn J, Li J, Chen E, Kent D, Park H, Green A. JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation. Oncogene. 2016;35:2235-46 pubmed 出版商
  653. Jiang L, Tam B, Ying G, Wu S, Hauswirth W, Frederick J, et al. Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function. FASEB J. 2015;29:4866-80 pubmed 出版商
  654. Chen C, Tian F, Lu L, Wang Y, Xiao Z, Yu C, et al. Characterization of Cep85 - a new antagonist of Nek2A that is involved in the regulation of centrosome disjunction. J Cell Sci. 2015;128:3290-303 pubmed 出版商
  655. Roncero A, López Nieva P, Cobos Fernández M, Villa Morales M, González Sánchez L, López Lorenzo J, et al. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development. Leukemia. 2016;30:94-103 pubmed 出版商
  656. Kim H, Nagano Y, Choi S, Park S, Kim H, Yao T, et al. HDAC6 maintains mitochondrial connectivity under hypoxic stress by suppressing MARCH5/MITOL dependent MFN2 degradation. Biochem Biophys Res Commun. 2015;464:1235-1240 pubmed 出版商
  657. Chesser A, Ganeshan V, Yang J, Johnson G. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr Neurosci. 2016;19:21-31 pubmed 出版商
  658. Cymerman I, Gozdz A, Urbanska M, Milek J, Dziembowska M, Jaworski J. Structural Plasticity of Dendritic Spines Requires GSK3α and GSK3β. PLoS ONE. 2015;10:e0134018 pubmed 出版商
  659. Sutani T, Sakata T, Nakato R, Masuda K, Ishibashi M, Yamashita D, et al. Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation. Nat Commun. 2015;6:7815 pubmed 出版商
  660. Sarma P, Bag I, Ramaiah M, Kamal A, Bhadra U, Pal Bhadra M. Bisindole-PBD regulates breast cancer cell proliferation via SIRT-p53 axis. Cancer Biol Ther. 2015;16:1486-501 pubmed 出版商
  661. Stiess M, Wegehingel S, Nguyen C, Nickel W, Bradke F, Cambridge S. A Dual SILAC Proteomic Labeling Strategy for Quantifying Constitutive and Cell-Cell Induced Protein Secretion. J Proteome Res. 2015;14:3229-38 pubmed 出版商
  662. Bach A, Derocq D, Laurent Matha V, Montcourrier P, Sebti S, Orsetti B, et al. Nuclear cathepsin D enhances TRPS1 transcriptional repressor function to regulate cell cycle progression and transformation in human breast cancer cells. Oncotarget. 2015;6:28084-103 pubmed 出版商
  663. Navarro F, Lieberman J. miR-34 and p53: New Insights into a Complex Functional Relationship. PLoS ONE. 2015;10:e0132767 pubmed 出版商
  664. Kortüm F, Harms F, Hennighausen N, Rosenberger G. αPIX Is a Trafficking Regulator that Balances Recycling and Degradation of the Epidermal Growth Factor Receptor. PLoS ONE. 2015;10:e0132737 pubmed 出版商
  665. Chen S, Okada M, Nakato R, Izumi K, Bando M, Shirahige K. The Deubiquitinating Enzyme USP7 Regulates Androgen Receptor Activity by Modulating Its Binding to Chromatin. J Biol Chem. 2015;290:21713-23 pubmed 出版商
  666. Schraivogel D, Schindler S, Danner J, Kremmer E, Pfaff J, Hannus S, et al. Importin-β facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels. Nucleic Acids Res. 2015;43:7447-61 pubmed 出版商
  667. Newell Litwa K, Badoual M, Asmussen H, Patel H, Whitmore L, Horwitz A. ROCK1 and 2 differentially regulate actomyosin organization to drive cell and synaptic polarity. J Cell Biol. 2015;210:225-42 pubmed 出版商
  668. Li W, Hu Y, Oh S, Ma Q, Merkurjev D, Song X, et al. Condensin I and II Complexes License Full Estrogen Receptor α-Dependent Enhancer Activation. Mol Cell. 2015;59:188-202 pubmed 出版商
  669. Alby C, Piquand K, Huber C, Megarbané A, Ichkou A, Legendre M, et al. Mutations in KIAA0586 Cause Lethal Ciliopathies Ranging from a Hydrolethalus Phenotype to Short-Rib Polydactyly Syndrome. Am J Hum Genet. 2015;97:311-8 pubmed 出版商
  670. Felzen V, Hiebel C, Koziollek Drechsler I, Reißig S, Wolfrum U, Kögel D, et al. Estrogen receptor α regulates non-canonical autophagy that provides stress resistance to neuroblastoma and breast cancer cells and involves BAG3 function. Cell Death Dis. 2015;6:e1812 pubmed 出版商
  671. Cho Y, Park D, Cavalli V. Filamin A is required in injured axons for HDAC5 activity and axon regeneration. J Biol Chem. 2015;290:22759-70 pubmed 出版商
  672. Regan J, Kannan P, Kemp M, Kramer B, Newnham J, Jobe A, et al. Damage-Associated Molecular Pattern and Fetal Membrane Vascular Injury and Collagen Disorganization in Lipopolysaccharide-Induced Intra-amniotic Inflammation in Fetal Sheep. Reprod Sci. 2016;23:69-80 pubmed 出版商
  673. Beckman D, Santos L, Americo T, Ledo J, de Mello F, Linden R. Prion Protein Modulates Monoaminergic Systems and Depressive-like Behavior in Mice. J Biol Chem. 2015;290:20488-98 pubmed 出版商
  674. Wu C, Jiao H, Lai Y, Zheng W, Chen K, Qu H, et al. Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis. Nat Commun. 2015;6:7531 pubmed 出版商
  675. Xu Q, Zhang Y, Wei Q, Huang Y, Li Y, Ling K, et al. BBS4 and BBS5 show functional redundancy in the BBSome to regulate the degradative sorting of ciliary sensory receptors. Sci Rep. 2015;5:11855 pubmed 出版商
  676. Maggiorani D, Dissard R, Belloy M, Saulnier Blache J, Casemayou A, Ducassé L, et al. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells. PLoS ONE. 2015;10:e0131416 pubmed 出版商
  677. Ohashi A, Ohori M, Iwai K, Nakayama Y, Nambu T, Morishita D, et al. Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells. Nat Commun. 2015;6:7668 pubmed 出版商
  678. Rivas S, Armisén R, Rojas D, Maldonado E, Huerta H, Tapia J, et al. The Ski Protein is Involved in the Transformation Pathway of Aurora Kinase A. J Cell Biochem. 2016;117:334-43 pubmed 出版商
  679. Sadaie M, Dillon C, Narita M, Young A, Cairney C, Godwin L, et al. Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition. Mol Biol Cell. 2015;26:2971-85 pubmed 出版商
  680. Andersson L, Scharin Täng M, Lundqvist A, Lindbom M, Mardani I, Fogelstrand P, et al. Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischaemia. Cardiovasc Res. 2015;107:478-86 pubmed 出版商
  681. Lebrun Julien F, Suter U. Combined HDAC1 and HDAC2 Depletion Promotes Retinal Ganglion Cell Survival After Injury Through Reduction of p53 Target Gene Expression. ASN Neuro. 2015;7: pubmed 出版商
  682. Lin Y, Bhuwania R, Gromova K, Failla A, Lange T, Riecken K, et al. Drosophila homologue of Diaphanous 1 (DIAPH1) controls the metastatic potential of colon cancer cells by regulating microtubule-dependent adhesion. Oncotarget. 2015;6:18577-89 pubmed
  683. Graffe M, Zenisek D, Taraska J. A marginal band of microtubules transports and organizes mitochondria in retinal bipolar synaptic terminals. J Gen Physiol. 2015;146:109-17 pubmed 出版商
  684. Watson J, Rulands S, Wilkinson A, Wuidart A, Ousset M, Van Keymeulen A, et al. Clonal Dynamics Reveal Two Distinct Populations of Basal Cells in Slow-Turnover Airway Epithelium. Cell Rep. 2015;12:90-101 pubmed 出版商
  685. Madrigal Matute J, Fernandez García C, Blanco Colio L, Burillo E, Fortuño A, Martinez Pinna R, et al. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis. Free Radic Biol Med. 2015;86:352-61 pubmed 出版商
  686. Macvicar T, Mannack L, Lees R, Lane J. Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells. Int J Mol Sci. 2015;16:13356-80 pubmed 出版商
  687. Salinas Saavedra M, Stephenson T, Dunn C, Martindale M. Par system components are asymmetrically localized in ectodermal epithelia, but not during early development in the sea anemone Nematostella vectensis. Evodevo. 2015;6:20 pubmed 出版商
  688. Galoian K, Qureshi A, D Ippolito G, Schiller P, Molinari M, Johnstone A, et al. Epigenetic regulation of embryonic stem cell marker miR302C in human chondrosarcoma as determinant of antiproliferative activity of proline-rich polypeptide 1. Int J Oncol. 2015;47:465-72 pubmed 出版商
  689. Heinemann A, Cullinane C, De Paoli Iseppi R, Wilmott J, Gunatilake D, Madore J, et al. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling. Oncotarget. 2015;6:21507-21 pubmed
  690. Nishida H, Ikegami A, Kaneko C, Kakuma H, Nishi H, Tanaka N, et al. Dexamethasone and BCAA Failed to Modulate Muscle Mass and mTOR Signaling in GH-Deficient Rats. PLoS ONE. 2015;10:e0128805 pubmed 出版商
  691. Faggi F, Codenotti S, Poliani P, Cominelli M, Chiarelli N, Colombi M, et al. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS ONE. 2015;10:e0130287 pubmed 出版商
  692. Zhu J, Su F, Mukherjee S, Mori E, Hu B, Asaithamby A. FANCD2 influences replication fork processes and genome stability in response to clustered DSBs. Cell Cycle. 2015;14:1809-22 pubmed 出版商
  693. McGirt L, Jia P, Baerenwald D, Duszynski R, Dahlman K, Zic J, et al. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood. 2015;126:508-19 pubmed 出版商
  694. Aspalter I, Gordon E, Dubrac A, Ragab A, Narloch J, Vizan P, et al. Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat Commun. 2015;6:7264 pubmed 出版商
  695. Gierut J, Lyons J, Shah M, Genetti C, Breault D, Haigis K. Oncogenic K-Ras promotes proliferation in quiescent intestinal stem cells. Stem Cell Res. 2015;15:165-71 pubmed 出版商
  696. Whalley H, Porter A, Diamantopoulou Z, White G, Castañeda Saucedo E, Malliri A. Cdk1 phosphorylates the Rac activator Tiam1 to activate centrosomal Pak and promote mitotic spindle formation. Nat Commun. 2015;6:7437 pubmed 出版商
  697. Taylor S, Dantas T, Durán I, Wu S, Lachman R, Nelson S, et al. Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome. Nat Commun. 2015;6:7092 pubmed 出版商
  698. Xie L, Pi X, Townley Tilson W, Li N, Wehrens X, Entman M, et al. PHD2/3-dependent hydroxylation tunes cardiac response to β-adrenergic stress via phospholamban. J Clin Invest. 2015;125:2759-71 pubmed 出版商
  699. Kowal T, Falk M. Primary cilia found on HeLa and other cancer cells. Cell Biol Int. 2015;39:1341-7 pubmed 出版商
  700. Jinks R, Puffenberger E, Baple E, Harding B, Crino P, Fogo A, et al. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73. Brain. 2015;138:2173-90 pubmed 出版商
  701. Kim D, Yeom J, Lee B, Lee K, Bae J, Rhee S. Inhibition of discoidin domain receptor 2-mediated lung cancer cells progression by gold nanoparticle-aptamer-assisted delivery of peptides containing transmembrane-juxtamembrane 1/2 domain. Biochem Biophys Res Commun. 2015;464:392-5 pubmed 出版商
  702. Rato L, Alves M, Dias T, Cavaco J, Oliveira P. Testicular Metabolic Reprogramming in Neonatal Streptozotocin-Induced Type 2 Diabetic Rats Impairs Glycolytic Flux and Promotes Glycogen Synthesis. J Diabetes Res. 2015;2015:973142 pubmed 出版商
  703. Selvaraj D, Gangadharan V, Michalski C, Kurejova M, Stösser S, Srivastava K, et al. A Functional Role for VEGFR1 Expressed in Peripheral Sensory Neurons in Cancer Pain. Cancer Cell. 2015;27:780-96 pubmed 出版商
  704. Luo W, Liu W, Hu X, Hanna M, Caravaca A, Paul S. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody. Sci Rep. 2015;5:11161 pubmed 出版商
  705. Dille S, Kleinschnitz E, Kontchou C, Nölke T, Häcker G. In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport. Infect Immun. 2015;83:3268-80 pubmed 出版商
  706. Neo S, Itahana Y, Alagu J, Kitagawa M, Guo A, Lee S, et al. TRIM28 Is an E3 Ligase for ARF-Mediated NPM1/B23 SUMOylation That Represses Centrosome Amplification. Mol Cell Biol. 2015;35:2851-63 pubmed 出版商
  707. Strauss A, Kawasaki F, Ordway R. A Distinct Perisynaptic Glial Cell Type Forms Tripartite Neuromuscular Synapses in the Drosophila Adult. PLoS ONE. 2015;10:e0129957 pubmed 出版商
  708. Fukuda T, Wu W, Okada M, Maeda I, Kojima Y, Hayami R, et al. Class I histone deacetylase inhibitors inhibit the retention of BRCA1 and 53BP1 at the site of DNA damage. Cancer Sci. 2015;106:1050-6 pubmed 出版商
  709. Krokowski D, Jobava R, Guan B, Farabaugh K, Wu J, Majumder M, et al. Coordinated Regulation of the Neutral Amino Acid Transporter SNAT2 and the Protein Phosphatase Subunit GADD34 Promotes Adaptation to Increased Extracellular Osmolarity. J Biol Chem. 2015;290:17822-37 pubmed 出版商
  710. Foster J, Gouveia R, Connon C. Low-glucose enhances keratocyte-characteristic phenotype from corneal stromal cells in serum-free conditions. Sci Rep. 2015;5:10839 pubmed 出版商
  711. Barr A, Bakal C. A sensitised RNAi screen reveals a ch-TOG genetic interaction network required for spindle assembly. Sci Rep. 2015;5:10564 pubmed 出版商
  712. Tian L, Ding S, You Y, Li T, Liu Y, Wu X, et al. Leiomodin-3-deficient mice display nemaline myopathy with fast-myofiber atrophy. Dis Model Mech. 2015;8:635-41 pubmed 出版商
  713. Abdelhamed Z, Natarajan S, Wheway G, Inglehearn C, Toomes C, Johnson C, et al. The Meckel-Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the non-canonical Wnt pathway. Dis Model Mech. 2015;8:527-41 pubmed 出版商
  714. Koenig J, Werdehausen R, Linley J, Habib A, Vernon J, Lolignier S, et al. Regulation of Nav1.7: A Conserved SCN9A Natural Antisense Transcript Expressed in Dorsal Root Ganglia. PLoS ONE. 2015;10:e0128830 pubmed 出版商
  715. Urban B, Collard T, Eagle C, Southern S, Greenhough A, Hamdollah Zadeh M, et al. BCL-3 expression promotes colorectal tumorigenesis through activation of AKT signalling. Gut. 2016;65:1151-64 pubmed 出版商
  716. Poncy A, Antoniou A, Cordi S, Pierreux C, Jacquemin P, Lemaigre F. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. Dev Biol. 2015;404:136-48 pubmed 出版商
  717. Moiseeva O, Lessard F, Acevedo Aquino M, Vernier M, Tsantrizos Y, Ferbeyre G. Mutant lamin A links prophase to a p53 independent senescence program. Cell Cycle. 2015;14:2408-21 pubmed 出版商
  718. Bosco D, Kenworthy R, Zorio D, Sang Q. Human mesenchymal stem cells are resistant to Paclitaxel by adopting a non-proliferative fibroblastic state. PLoS ONE. 2015;10:e0128511 pubmed 出版商
  719. Kim J, Kim B, Lee H, Thakkar S, Babbitt D, Eguchi S, et al. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells. Am J Physiol Heart Circ Physiol. 2015;309:H425-33 pubmed 出版商
  720. Yang N, Li L, Eguether T, Sundberg J, Pazour G, Chen J. Intraflagellar transport 27 is essential for hedgehog signaling but dispensable for ciliogenesis during hair follicle morphogenesis. Development. 2015;142:2194-202 pubmed 出版商
  721. Tembe V, Martino Echarri E, Marzec K, Mok M, Brodie K, Mills K, et al. The BARD1 BRCT domain contributes to p53 binding, cytoplasmic and mitochondrial localization, and apoptotic function. Cell Signal. 2015;27:1763-71 pubmed 出版商
  722. Herms A, Bosch M, Reddy B, Schieber N, Fajardo A, Rupérez C, et al. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nat Commun. 2015;6:7176 pubmed 出版商
  723. Tojo Y, Sekine H, Hirano I, Pan X, Souma T, Tsujita T, et al. Hypoxia Signaling Cascade for Erythropoietin Production in Hepatocytes. Mol Cell Biol. 2015;35:2658-72 pubmed 出版商
  724. Alonso Curbelo D, Osterloh L, Cañón E, Calvo T, Martínez Herranz R, Karras P, et al. RAB7 counteracts PI3K-driven macropinocytosis activated at early stages of melanoma development. Oncotarget. 2015;6:11848-62 pubmed
  725. Panic M, Hata S, Neuner A, Schiebel E. The centrosomal linker and microtubules provide dual levels of spatial coordination of centrosomes. PLoS Genet. 2015;11:e1005243 pubmed 出版商
  726. Kiss A, Gong X, Kowalewski J, Shafqat Abbasi H, Strömblad S, Lock J. Non-monotonic cellular responses to heterogeneity in talin protein expression-level. Integr Biol (Camb). 2015;7:1171-85 pubmed 出版商
  727. Yeh J, Kreimer S, Walker S, Emori M, Krystal H, Richardson A, et al. Granulin, a novel STAT3-interacting protein, enhances STAT3 transcriptional function and correlates with poorer prognosis in breast cancer. Genes Cancer. 2015;6:153-68 pubmed
  728. Greenfeld H, Takasaki K, Walsh M, Ersing I, Bernhardt K, Ma Y, et al. TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation. PLoS Pathog. 2015;11:e1004890 pubmed 出版商
  729. Fauster A, Rebsamen M, Huber K, Bigenzahn J, Stukalov A, Lardeau C, et al. A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis. Cell Death Dis. 2015;6:e1767 pubmed 出版商
  730. Jackson B, Ivanova I, Dagnino L. An ELMO2-RhoG-ILK network modulates microtubule dynamics. Mol Biol Cell. 2015;26:2712-25 pubmed 出版商
  731. Stasiulewicz M, Gray S, Mastromina I, Silva J, Björklund M, Seymour P, et al. A conserved role for Notch signaling in priming the cellular response to Shh through ciliary localisation of the key Shh transducer Smo. Development. 2015;142:2291-303 pubmed 出版商
  732. Ramirez M, Oakley T. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides. J Exp Biol. 2015;218:1513-20 pubmed 出版商
  733. Heubach J, Monsior J, Deenen R, Niegisch G, Szarvas T, Niedworok C, et al. The long noncoding RNA HOTAIR has tissue and cell type-dependent effects on HOX gene expression and phenotype of urothelial cancer cells. Mol Cancer. 2015;14:108 pubmed 出版商
  734. De Zio D, Molinari F, Rizza S, Gatta L, Ciotti M, Salvatore A, et al. Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth. Cell Mol Life Sci. 2015;72:4173-91 pubmed 出版商
  735. Ketema M, Secades P, Kreft M, Nahidiazar L, Janssen H, Jalink K, et al. The rod domain is not essential for the function of plectin in maintaining tissue integrity. Mol Biol Cell. 2015;26:2402-17 pubmed 出版商
  736. Teng Y, Radde B, Litchfield L, Ivanova M, Prough R, Clark B, et al. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells. J Biol Chem. 2015;290:15799-811 pubmed 出版商
  737. Reales E, Bernabé Rubio M, Casares Arias J, Rentero C, Fernández Barrera J, Rangel L, et al. The MAL protein is crucial for proper membrane condensation at the ciliary base, which is required for primary cilium elongation. J Cell Sci. 2015;128:2261-70 pubmed 出版商
  738. Prosser S, Sahota N, Pelletier L, Morrison C, Fry A. Nek5 promotes centrosome integrity in interphase and loss of centrosome cohesion in mitosis. J Cell Biol. 2015;209:339-48 pubmed 出版商
  739. Bergeron D, Pal G, Beaulieu Y, Chabot B, Bachand F. Regulated Intron Retention and Nuclear Pre-mRNA Decay Contribute to PABPN1 Autoregulation. Mol Cell Biol. 2015;35:2503-17 pubmed 出版商
  740. Tanas M, Ma S, Jadaan F, Ng C, Weigelt B, Reis Filho J, et al. Mechanism of action of a WWTR1(TAZ)-CAMTA1 fusion oncoprotein. Oncogene. 2016;35:929-38 pubmed 出版商
  741. Piskareva O, Harvey H, Nolan J, Conlon R, Alcock L, Buckley P, et al. The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro. Cancer Lett. 2015;364:142-55 pubmed 出版商
  742. Moldovan J, Moran J. The Zinc-Finger Antiviral Protein ZAP Inhibits LINE and Alu Retrotransposition. PLoS Genet. 2015;11:e1005121 pubmed 出版商
  743. Omari S, Waters M, Naranian T, Kim K, Perumalsamy A, Chi M, et al. Mcl-1 is a key regulator of the ovarian reserve. Cell Death Dis. 2015;6:e1755 pubmed 出版商
  744. Castelli M, De Pascalis C, Distefano G, Ducano N, Oldani A, Lanzetti L, et al. Regulation of the microtubular cytoskeleton by Polycystin-1 favors focal adhesions turnover to modulate cell adhesion and migration. BMC Cell Biol. 2015;16:15 pubmed 出版商
  745. Breznau E, Semack A, Higashi T, Miller A. MgcRacGAP restricts active RhoA at the cytokinetic furrow and both RhoA and Rac1 at cell-cell junctions in epithelial cells. Mol Biol Cell. 2015;26:2439-55 pubmed 出版商
  746. Liu P, Paulson J, Forster C, Shapiro S, Ashe K, Zahs K. Characterization of a Novel Mouse Model of Alzheimer's Disease--Amyloid Pathology and Unique β-Amyloid Oligomer Profile. PLoS ONE. 2015;10:e0126317 pubmed 出版商
  747. Thress K, Paweletz C, Felip E, Cho B, Stetson D, Dougherty B, et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med. 2015;21:560-2 pubmed 出版商
  748. Naipal K, Raams A, Bruens S, Brandsma I, Verkaik N, Jaspers N, et al. Attenuated XPC expression is not associated with impaired DNA repair in bladder cancer. PLoS ONE. 2015;10:e0126029 pubmed 出版商
  749. Williamson R, Cowell C, Reville T, Roper J, Rendall T, Bass M. Coronin-1C Protein and Caveolin Protein Provide Constitutive and Inducible Mechanisms of Rac1 Protein Trafficking. J Biol Chem. 2015;290:15437-49 pubmed 出版商
  750. Isogai T, van der Kammen R, Innocenti M. SMIFH2 has effects on Formins and p53 that perturb the cell cytoskeleton. Sci Rep. 2015;5:9802 pubmed 出版商
  751. Sato S, Kawamata Y, Takahashi A, Imai Y, Hanyu A, Okuma A, et al. Ablation of the p16(INK4a) tumour suppressor reverses ageing phenotypes of klotho mice. Nat Commun. 2015;6:7035 pubmed 出版商
  752. Mishra D, Chaudhary S, Krishna B, Mishra S. Identification of Critical Elements for Regulation of Inorganic Pyrophosphatase (PPA1) in MCF7 Breast Cancer Cells. PLoS ONE. 2015;10:e0124864 pubmed 出版商
  753. Carrigan I, Croll R, Wyeth R. Morphology, innervation, and peripheral sensory cells of the siphon of aplysia californica. J Comp Neurol. 2015;523:2409-25 pubmed 出版商
  754. Vicuña L, Strochlic D, Latremoliere A, Bali K, Simonetti M, Husainie D, et al. The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell-derived leukocyte elastase. Nat Med. 2015;21:518-23 pubmed 出版商
  755. Song W, Cho Y, Watt D, Cavalli V. Tubulin-tyrosine Ligase (TTL)-mediated Increase in Tyrosinated α-Tubulin in Injured Axons Is Required for Retrograde Injury Signaling and Axon Regeneration. J Biol Chem. 2015;290:14765-75 pubmed 出版商
  756. Ratovitski E. Phospho-ΔNp63α-responsive microRNAs contribute to the regulation of necroptosis in squamous cell carcinoma upon cisplatin exposure. FEBS Lett. 2015;589:1352-8 pubmed 出版商
  757. Caruso M, Ferranti F, Corano Scheri K, Dobrowolny G, Ciccarone F, Grammatico P, et al. R-spondin 1/dickkopf-1/beta-catenin machinery is involved in testicular embryonic angiogenesis. PLoS ONE. 2015;10:e0124213 pubmed 出版商
  758. Gago Fuentes R, Fernández Puente P, Megias D, Carpintero Fernández P, Mateos J, Acea B, et al. Proteomic Analysis of Connexin 43 Reveals Novel Interactors Related to Osteoarthritis. Mol Cell Proteomics. 2015;14:1831-45 pubmed 出版商
  759. Sun Y, Ponz Sarvisé M, Chang S, Chang W, Chen C, Hsu J, et al. Proteasome inhibition enhances the killing effect of BikDD gene therapy. Am J Transl Res. 2015;7:319-27 pubmed
  760. Pozo K, Hillmann A, Augustyn A, Plattner F, Hai T, Singh T, et al. Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma tumorigenesis. Oncotarget. 2015;6:12080-93 pubmed
  761. Ceballos Chávez M, Subtil Rodríguez A, Giannopoulou E, Soronellas D, Vázquez Chávez E, Vicent G, et al. The chromatin Remodeler CHD8 is required for activation of progesterone receptor-dependent enhancers. PLoS Genet. 2015;11:e1005174 pubmed 出版商
  762. Khuperkar D, Helen M, Magre I, Joseph J. Inter-cellular transport of ran GTPase. PLoS ONE. 2015;10:e0125506 pubmed 出版商
  763. Brzoska E, Kowalski K, Markowska Zagrajek A, Kowalewska M, Archacki R, Plaskota I, et al. Sdf-1 (CXCL12) induces CD9 expression in stem cells engaged in muscle regeneration. Stem Cell Res Ther. 2015;6:46 pubmed 出版商
  764. Briona L, Poulain F, Mosimann C, Dorsky R. Wnt/ß-catenin signaling is required for radial glial neurogenesis following spinal cord injury. Dev Biol. 2015;403:15-21 pubmed 出版商
  765. Koizume S, Ito S, Nakamura Y, Yoshihara M, Furuya M, Yamada R, et al. Lipid starvation and hypoxia synergistically activate ICAM1 and multiple genes in an Sp1-dependent manner to promote the growth of ovarian cancer. Mol Cancer. 2015;14:77 pubmed 出版商
  766. Tebbi A, Guittet O, Tuphile K, Cabrié A, Lepoivre M. Caspase-dependent Proteolysis of Human Ribonucleotide Reductase Small Subunits R2 and p53R2 during Apoptosis. J Biol Chem. 2015;290:14077-90 pubmed 出版商
  767. Lu J, Luo C, Bali K, Xie R, Mains R, Eipper B, et al. A role for Kalirin-7 in nociceptive sensitization via activity-dependent modulation of spinal synapses. Nat Commun. 2015;6:6820 pubmed 出版商
  768. Navis A, van Lith S, van Duijnhoven S, de Pooter M, Yetkin Arik B, Wesseling P, et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol. 2015;130:131-44 pubmed 出版商
  769. Antonenkov V, Isomursu A, Mennerich D, Vapola M, Weiher H, Kietzmann T, et al. The Human Mitochondrial DNA Depletion Syndrome Gene MPV17 Encodes a Non-selective Channel That Modulates Membrane Potential. J Biol Chem. 2015;290:13840-61 pubmed 出版商
  770. Ohashi M, Holthaus A, Calderwood M, Lai C, Krastins B, Sarracino D, et al. The EBNA3 family of Epstein-Barr virus nuclear proteins associates with the USP46/USP12 deubiquitination complexes to regulate lymphoblastoid cell line growth. PLoS Pathog. 2015;11:e1004822 pubmed 出版商
  771. Akizu N, Cantagrel V, Zaki M, Al Gazali L, Wang X, Rosti R, et al. Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat Genet. 2015;47:528-34 pubmed 出版商
  772. Castro A, Becerra M, Manso M, Anadón R. Neuronal Organization of the Brain in the Adult Amphioxus (Branchiostoma lanceolatum): A Study With Acetylated Tubulin Immunohistochemistry. J Comp Neurol. 2015;523:2211-32 pubmed 出版商
  773. Westcott J, Prechtl A, Maine E, Dang T, Esparza M, Sun H, et al. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest. 2015;125:1927-43 pubmed 出版商
  774. Yi J, Zhang X, Huan X, Song S, Wang W, Tian Q, et al. Dual targeting of microtubule and topoisomerase II by α-carboline derivative YCH337 for tumor proliferation and growth inhibition. Oncotarget. 2015;6:8960-73 pubmed
  775. Liu J, Zeng H, Liu A. The loss of Hh responsiveness by a non-ciliary Gli2 variant. Development. 2015;142:1651-60 pubmed 出版商
  776. Hori A, Peddie C, Collinson L, Toda T. Centriolar satellite- and hMsd1/SSX2IP-dependent microtubule anchoring is critical for centriole assembly. Mol Biol Cell. 2015;26:2005-19 pubmed 出版商
  777. Chen A, Akhshi T, Lavoie B, Wilde A. Importin β2 Mediates the Spatio-temporal Regulation of Anillin through a Noncanonical Nuclear Localization Signal. J Biol Chem. 2015;290:13500-9 pubmed 出版商
  778. Ma S, Jiang B, Deng W, Gu Z, Wu F, Li T, et al. D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. Oncotarget. 2015;6:8606-20 pubmed
  779. Tabariès S, Annis M, Hsu B, Tam C, Savage P, Park M, et al. Lyn modulates Claudin-2 expression and is a therapeutic target for breast cancer liver metastasis. Oncotarget. 2015;6:9476-87 pubmed
  780. Dorgau B, Herrling R, Schultz K, Greb H, Segelken J, Ströh S, et al. Connexin50 couples axon terminals of mouse horizontal cells by homotypic gap junctions. J Comp Neurol. 2015;523:2062-81 pubmed 出版商
  781. Li L, Xu Z, Liu G, Xu C, Wang Z, Li X, et al. Expression of 1N3R-Tau isoform inhibits cell proliferation by inducing S phase arrest in N2a cells. PLoS ONE. 2015;10:e0119865 pubmed 出版商
  782. Shin C, Grossmann A, Holmen S, Robinson J. The BRAF kinase domain promotes the development of gliomas in vivo. Genes Cancer. 2015;6:9-18 pubmed
  783. Bazellières E, Conte V, Elosegui Artola A, Serra Picamal X, Bintanel Morcillo M, Roca Cusachs P, et al. Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat Cell Biol. 2015;17:409-20 pubmed 出版商
  784. Ting P, Damoiseaux R, Titz B, Bradley K, Graeber T, Fernandez Vega V, et al. Identification of small molecules that disrupt signaling between ABL and its positive regulator RIN1. PLoS ONE. 2015;10:e0121833 pubmed 出版商
  785. Ainsua Enrich E, Serrano Candelas E, Álvarez Errico D, Picado C, Sayós J, Rivera J, et al. The adaptor 3BP2 is required for KIT receptor expression and human mast cell survival. J Immunol. 2015;194:4309-18 pubmed 出版商
  786. Takada S, Collins E, Kurahashi K. The FHA domain determines Drosophila Chk2/Mnk localization to key mitotic structures and is essential for early embryonic DNA damage responses. Mol Biol Cell. 2015;26:1811-28 pubmed 出版商
  787. Coon B, Baeyens N, Han J, Budatha M, Ross T, Fang J, et al. Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. J Cell Biol. 2015;208:975-86 pubmed 出版商
  788. Xu G, Chapman J, Brandsma I, Yuan J, Mistrik M, Bouwman P, et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature. 2015;521:541-544 pubmed 出版商
  789. Iervolino A, Trepiccione F, Petrillo F, Spagnuolo M, Scarfò M, Frezzetti D, et al. Selective dicer suppression in the kidney alters GSK3β/β-catenin pathways promoting a glomerulocystic disease. PLoS ONE. 2015;10:e0119142 pubmed 出版商
  790. Perdigão Henriques R, Petrocca F, Altschuler G, Thomas M, Le M, Tan S, et al. miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes. Oncogene. 2016;35:158-72 pubmed 出版商
  791. Philippou A, Minozzo F, Spinazzola J, Smith L, Lei H, Rassier D, et al. Masticatory muscles of mouse do not undergo atrophy in space. FASEB J. 2015;29:2769-79 pubmed 出版商
  792. Han J, Song B, Kim J, Kodali V, Pottekat A, Wang M, et al. Antioxidants Complement the Requirement for Protein Chaperone Function to Maintain β-Cell Function and Glucose Homeostasis. Diabetes. 2015;64:2892-904 pubmed 出版商
  793. Leclere L, Fransolet M, Côté F, Cambier P, Arnould T, Van Cutsem P, et al. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells. PLoS ONE. 2015;10:e0115831 pubmed 出版商
  794. Koh H, Chang C, Jeon S, Yoon H, Ahn Y, Kim H, et al. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nat Commun. 2015;6:6340 pubmed 出版商
  795. Kobayashi A, Hashizume C, Dowaki T, Wong R. Therapeutic potential of mitotic interaction between the nucleoporin Tpr and aurora kinase A. Cell Cycle. 2015;14:1447-58 pubmed 出版商
  796. Liu Y, Lee J, Ackerman S. Mutations in the microtubule-associated protein 1A (Map1a) gene cause Purkinje cell degeneration. J Neurosci. 2015;35:4587-98 pubmed 出版商
  797. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed 出版商
  798. Conn S, Pillman K, Toubia J, Conn V, Salmanidis M, Phillips C, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125-34 pubmed 出版商
  799. Tassinari V, Campolo F, Cesarini V, Todaro F, Dolci S, Rossi P. Fgf9 inhibition of meiotic differentiation in spermatogonia is mediated by Erk-dependent activation of Nodal-Smad2/3 signaling and is antagonized by Kit Ligand. Cell Death Dis. 2015;6:e1688 pubmed 出版商
  800. Burgess H, Mohr I. Cellular 5'-3' mRNA exonuclease Xrn1 controls double-stranded RNA accumulation and anti-viral responses. Cell Host Microbe. 2015;17:332-344 pubmed 出版商
  801. Rappa G, Green T, Karbanová J, Corbeil D, Lorico A. Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells. Oncotarget. 2015;6:7970-91 pubmed
  802. Zhang L, Li W, Ni J, Wu J, Liu J, Zhang Z, et al. RC/BTB2 is essential for formation of primary cilia in mammalian cells. Cytoskeleton (Hoboken). 2015;72:171-81 pubmed 出版商
  803. Cheng H, Chern Y, Chen I, Liu C, Li S, Chun S, et al. Effects on murine behavior and lifespan of selectively decreasing expression of mutant huntingtin allele by supt4h knockdown. PLoS Genet. 2015;11:e1005043 pubmed 出版商
  804. Wengrod J, Wang D, Weiss S, Zhong H, Osman I, Gardner L. Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma. Sci Signal. 2015;8:ra27 pubmed 出版商
  805. Gillespie M, Gold E, Ramsey S, Podolsky I, Aderem A, Ranish J. An LXR-NCOA5 gene regulatory complex directs inflammatory crosstalk-dependent repression of macrophage cholesterol efflux. EMBO J. 2015;34:1244-58 pubmed 出版商
  806. Prosser S, Morrison C. Centrin2 regulates CP110 removal in primary cilium formation. J Cell Biol. 2015;208:693-701 pubmed 出版商
  807. Aguilar Arnal L, Katada S, Orozco Solis R, Sassone Corsi P. NAD(+)-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1. Nat Struct Mol Biol. 2015;22:312-8 pubmed 出版商
  808. Voets E, Wolthuis R. MASTL promotes cyclin B1 destruction by enforcing Cdc20-independent binding of cyclin B1 to the APC/C. Biol Open. 2015;4:484-95 pubmed 出版商
  809. Iemura K, Tanaka K. Chromokinesin Kid and kinetochore kinesin CENP-E differentially support chromosome congression without end-on attachment to microtubules. Nat Commun. 2015;6:6447 pubmed 出版商
  810. Tsuru A, Setoguchi T, Matsunoshita Y, Nagao Kitamoto H, Nagano S, Yokouchi M, et al. Hairy/enhancer-of-split related with YRPW motif protein 1 promotes osteosarcoma metastasis via matrix metallopeptidase 9 expression. Br J Cancer. 2015;112:1232-40 pubmed 出版商
  811. Martínez Torres A, Quiney C, Attout T, Boullet H, Herbi L, Vela L, et al. CD47 agonist peptides induce programmed cell death in refractory chronic lymphocytic leukemia B cells via PLCγ1 activation: evidence from mice and humans. PLoS Med. 2015;12:e1001796 pubmed 出版商
  812. Thangavel S, Berti M, Levikova M, Pinto C, Gomathinayagam S, Vujanovic M, et al. DNA2 drives processing and restart of reversed replication forks in human cells. J Cell Biol. 2015;208:545-62 pubmed 出版商
  813. Xiong J, Todorova D, Su N, Kim J, Lee P, Shen Z, et al. Stemness factor Sall4 is required for DNA damage response in embryonic stem cells. J Cell Biol. 2015;208:513-20 pubmed 出版商
  814. Xie Q, Wu Q, Horbinski C, Flavahan W, Yang K, Zhou W, et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci. 2015;18:501-10 pubmed 出版商
  815. Carvallo L, Lopez L, Che F, Lim J, Eugenin E, Williams D, et al. Buprenorphine decreases the CCL2-mediated chemotactic response of monocytes. J Immunol. 2015;194:3246-58 pubmed 出版商
  816. Zolfaghari P, Carré J, Parker N, Curtin N, Duchen M, Singer M. Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (but not UCP3) in a rodent model of sepsis. Am J Physiol Endocrinol Metab. 2015;308:E713-25 pubmed 出版商
  817. Stoyek M, Croll R, Smith F. Intrinsic and extrinsic innervation of the heart in zebrafish (Danio rerio). J Comp Neurol. 2015;523:1683-700 pubmed 出版商
  818. Banks C, Boanca G, Lee Z, Florens L, Washburn M. Proteins interacting with cloning scars: a source of false positive protein-protein interactions. Sci Rep. 2015;5:8530 pubmed 出版商
  819. Fernandes S, Salta S, Summavielle T. Methamphetamine promotes α-tubulin deacetylation in endothelial cells: the protective role of acetyl-l-carnitine. Toxicol Lett. 2015;234:131-8 pubmed 出版商
  820. Kratz A, Bärenz F, Richter K, Hoffmann I. Plk4-dependent phosphorylation of STIL is required for centriole duplication. Biol Open. 2015;4:370-7 pubmed 出版商
  821. Beaven R, Dzhindzhev N, Qu Y, Hahn I, Dajas Bailador F, Ohkura H, et al. Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system. Mol Biol Cell. 2015;26:1491-508 pubmed 出版商
  822. Nakagawa Y, Sedukhina A, Okamoto N, Nagasawa S, Suzuki N, Ohta T, et al. NF-κB signaling mediates acquired resistance after PARP inhibition. Oncotarget. 2015;6:3825-39 pubmed
  823. Ducommun S, Deak M, Sumpton D, Ford R, Núñez Galindo A, Kussmann M, et al. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate. Cell Signal. 2015;27:978-88 pubmed 出版商
  824. Narita K, Sasamoto S, Koizumi S, Okazaki S, Nakamura H, Inoue T, et al. TRPV4 regulates the integrity of the blood-cerebrospinal fluid barrier and modulates transepithelial protein transport. FASEB J. 2015;29:2247-59 pubmed 出版商
  825. Wang Y, Tan B, Mu R, Chang Y, Wu M, Tu H, et al. Ubiquitin-associated domain-containing ubiquitin regulatory X (UBX) protein UBXN1 is a negative regulator of nuclear factor κB (NF-κB) signaling. J Biol Chem. 2015;290:10395-405 pubmed 出版商
  826. Pollack D, Xiao Y, Shrivasatava V, Levy A, Andrusier M, D ARMIENTO J, et al. CDK14 expression is down-regulated by cigarette smoke in vivo and in vitro. Toxicol Lett. 2015;234:120-30 pubmed 出版商
  827. Ito T, Taniguchi H, Fukagai K, Okamuro S, Kobayashi A. Inhibitory mechanism of FAT4 gene expression in response to actin dynamics during Src-induced carcinogenesis. PLoS ONE. 2015;10:e0118336 pubmed 出版商
  828. Wu L, Russell D, Wong S, Chen M, Tsai T, St John J, et al. Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development. 2015;142:681-91 pubmed 出版商
  829. Morris E, Assi K, Salh B, Dedhar S. Integrin-linked kinase links dynactin-1/dynactin-2 with cortical integrin receptors to orient the mitotic spindle relative to the substratum. Sci Rep. 2015;5:8389 pubmed 出版商
  830. Hsieh W, Huang Y, Wang T, Ming Y, Tsai C, Pang J. IFI27, a novel epidermal growth factor-stabilized protein, is functionally involved in proliferation and cell cycling of human epidermal keratinocytes. Cell Prolif. 2015;48:187-97 pubmed 出版商
  831. Locher H, de Groot J, van Iperen L, Huisman M, Frijns J, Chuva de Sousa Lopes S. Development of the stria vascularis and potassium regulation in the human fetal cochlea: Insights into hereditary sensorineural hearing loss. Dev Neurobiol. 2015;75:1219-40 pubmed 出版商
  832. Kondapalli K, Llongueras J, Capilla González V, Prasad H, Hack A, Smith C, et al. A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma. Nat Commun. 2015;6:6289 pubmed 出版商
  833. Raghunandan M, Chaudhury I, Kelich S, Hanenberg H, Sobeck A. FANCD2, FANCJ and BRCA2 cooperate to promote replication fork recovery independently of the Fanconi Anemia core complex. Cell Cycle. 2015;14:342-53 pubmed 出版商
  834. Ohta S, Wood L, Toramoto I, Yagyu K, Fukagawa T, Earnshaw W. CENP-32 is required to maintain centrosomal dominance in bipolar spindle assembly. Mol Biol Cell. 2015;26:1225-37 pubmed 出版商
  835. Chen J, Ren J, Jing Q, Lu S, Zhang Y, Liu Y, et al. TSH/TSHR Signaling Suppresses Fatty Acid Synthase (FASN) Expression in Adipocytes. J Cell Physiol. 2015;230:2233-9 pubmed 出版商
  836. Guerrero A, Iglesias C, Raguz S, Floridia E, Gil J, Pombo C, et al. The cerebral cavernous malformation 3 gene is necessary for senescence induction. Aging Cell. 2015;14:274-83 pubmed 出版商
  837. Okumura M, Sakuma C, Miura M, Chihara T. Linking cell surface receptors to microtubules: tubulin folding cofactor D mediates Dscam functions during neuronal morphogenesis. J Neurosci. 2015;35:1979-90 pubmed 出版商
  838. González N, Martín Duce A, Martínez Arrieta F, Moreno Villegas Z, Portal Núñez S, Sanz R, et al. Effect of bombesin receptor subtype-3 and its synthetic agonist on signaling, glucose transport and metabolism in myocytes from patients with obesity and type 2 diabetes. Int J Mol Med. 2015;35:925-31 pubmed 出版商
  839. Michel S, Canonne M, Arnould T, Renard P. Inhibition of mitochondrial genome expression triggers the activation of CHOP-10 by a cell signaling dependent on the integrated stress response but not the mitochondrial unfolded protein response. Mitochondrion. 2015;21:58-68 pubmed 出版商
  840. West A, Khoury Hanold W, Staron M, Tal M, Pineda C, Lang S, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520:553-7 pubmed 出版商
  841. Kozlova N, Samoylenko A, Drobot L, Kietzmann T. Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog. 2016;55:170-81 pubmed 出版商
  842. Sleiman N, McFarland T, Jones L, Cala S. Transitions of protein traffic from cardiac ER to junctional SR. J Mol Cell Cardiol. 2015;81:34-45 pubmed 出版商
  843. Cuello Carrión F, Shortrede J, Alvarez Olmedo D, Cayado Gutiérrez N, Castro G, Zoppino F, et al. HER2 and β-catenin protein location: importance in the prognosis of breast cancer patients and their correlation when breast cancer cells suffer stressful situations. Clin Exp Metastasis. 2015;32:151-68 pubmed 出版商
  844. Kwun H, Shuda M, Camacho C, Gamper A, Thant M, Chang Y, et al. Restricted protein phosphatase 2A targeting by Merkel cell polyomavirus small T antigen. J Virol. 2015;89:4191-200 pubmed 出版商
  845. Horstick E, Jordan D, Bergeron S, Tabor K, Serpe M, Feldman B, et al. Increased functional protein expression using nucleotide sequence features enriched in highly expressed genes in zebrafish. Nucleic Acids Res. 2015;43:e48 pubmed 出版商
  846. Santhana Kumar K, Tripolitsioti D, Ma M, Grählert J, Egli K, Fiaschetti G, et al. The Ser/Thr kinase MAP4K4 drives c-Met-induced motility and invasiveness in a cell-based model of SHH medulloblastoma. Springerplus. 2015;4:19 pubmed 出版商
  847. Marsolier J, Perichon M, Debarry J, Villoutreix B, Chluba J, Lopez T, et al. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation. Nature. 2015;520:378-82 pubmed 出版商
  848. Piatti P, Lim C, Nat R, Villunger A, Geley S, Shue Y, et al. Embryonic stem cell differentiation requires full length Chd1. Sci Rep. 2015;5:8007 pubmed 出版商
  849. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  850. López de Figueroa P, Lotz M, Blanco F, Caramés B. Autophagy activation and protection from mitochondrial dysfunction in human chondrocytes. Arthritis Rheumatol. 2015;67:966-76 pubmed 出版商
  851. Niemeyer B, Parrish J, Spoelstra N, Joyal T, Richer J, Jedlicka P. Variable expression of PIK3R3 and PTEN in Ewing Sarcoma impacts oncogenic phenotypes. PLoS ONE. 2015;10:e0116895 pubmed 出版商
  852. Silva V, Plooster M, Leung J, Cassimeris L. A delay prior to mitotic entry triggers caspase 8-dependent cell death in p53-deficient Hela and HCT-116 cells. Cell Cycle. 2015;14:1070-81 pubmed 出版商
  853. Bangs F, Schrode N, Hadjantonakis A, Anderson K. Lineage specificity of primary cilia in the mouse embryo. Nat Cell Biol. 2015;17:113-22 pubmed 出版商
  854. Al Gubory K, Arianmanesh M, Garrel C, Fowler P. The conceptus regulates tryptophanyl-tRNA synthetase and superoxide dismutase 2 in the sheep caruncular endometrium during early pregnancy. Int J Biochem Cell Biol. 2015;60:112-8 pubmed 出版商
  855. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed 出版商
  856. Waters A, Asfahani R, Carroll P, Bicknell L, Lescai F, Bright A, et al. The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes. J Med Genet. 2015;52:147-56 pubmed 出版商
  857. Gao Z, Zhang J, Henagan T, Lee J, Ye X, Wang H, et al. P65 inactivation in adipocytes and macrophages attenuates adipose inflammatory response in lean but not in obese mice. Am J Physiol Endocrinol Metab. 2015;308:E496-505 pubmed 出版商
  858. Rebsamen M, Pochini L, Stasyk T, de Araújo M, Galluccio M, Kandasamy R, et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 2015;519:477-81 pubmed 出版商
  859. van Bergeijk P, Adrian M, Hoogenraad C, Kapitein L. Optogenetic control of organelle transport and positioning. Nature. 2015;518:111-114 pubmed 出版商
  860. Thomas Y, Peter M, Mechali F, Blanchard J, Coux O, Baldin V. Kizuna is a novel mitotic substrate for CDC25B phosphatase. Cell Cycle. 2014;13:3867-77 pubmed 出版商
  861. Kita E, Scott E, Goodhill G. The influence of activity on axon pathfinding in the optic tectum. Dev Neurobiol. 2015;75:608-20 pubmed 出版商
  862. Brandstaetter H, Kishi Itakura C, Tumbarello D, Manstein D, Buss F. Loss of functional MYO1C/myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion. Autophagy. 2014;10:2310-23 pubmed 出版商
  863. Kim J, Ishiguro K, Nambu A, Akiyoshi B, Yokobayashi S, Kagami A, et al. Meikin is a conserved regulator of meiosis-I-specific kinetochore function. Nature. 2015;517:466-71 pubmed 出版商
  864. Imajo M, Ebisuya M, Nishida E. Dual role of YAP and TAZ in renewal of the intestinal epithelium. Nat Cell Biol. 2015;17:7-19 pubmed 出版商
  865. Renard H, Simunovic M, Lemière J, Boucrot E, Garcia Castillo M, Arumugam S, et al. Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature. 2015;517:493-6 pubmed 出版商
  866. Ling X, Xu C, Fan C, Zhong K, Li F, Wang X. FL118 induces p53-dependent senescence in colorectal cancer cells by promoting degradation of MdmX. Cancer Res. 2014;74:7487-97 pubmed 出版商
  867. Jilg C, Ketscher A, Metzger E, Hummel B, Willmann D, Rüsseler V, et al. PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells. Oncotarget. 2014;5:12646-64 pubmed
  868. Katsunuma K, Yoshinaga K, Ohira Y, Eta R, Sato T, Horii T, et al. Z-100, extracted from Mycobacterium tuberculosis strain Aoyama B, promotes TNF-α production via nucleotide-binding oligomerization domain containing 2 (Nod2)-dependent NF-κB activation in RAW264.7 cells. Mol Immunol. 2015;64:218-27 pubmed 出版商
  869. Rao Y, Hao R, Wang B, Yao T. A Mec17-Myosin II Effector Axis Coordinates Microtubule Acetylation and Actin Dynamics to Control Primary Cilium Biogenesis. PLoS ONE. 2014;9:e114087 pubmed 出版商
  870. Qiao X, Roth I, Féraille E, Hasler U. Different effects of ZO-1, ZO-2 and ZO-3 silencing on kidney collecting duct principal cell proliferation and adhesion. Cell Cycle. 2014;13:3059-75 pubmed 出版商
  871. Da Ros M, Hirvonen N, Olotu O, Toppari J, Kotaja N. Retromer vesicles interact with RNA granules in haploid male germ cells. Mol Cell Endocrinol. 2015;401:73-83 pubmed 出版商
  872. Li M, Bian C, Yu X. Poly(ADP-ribosyl)ation is recognized by ECT2 during mitosis. Cell Cycle. 2014;13:2944-51 pubmed 出版商
  873. Shen W, Li H, Chen G, Chern Y, Tu P. Mutations in the ubiquitin-binding domain of OPTN/optineurin interfere with autophagy-mediated degradation of misfolded proteins by a dominant-negative mechanism. Autophagy. 2015;11:685-700 pubmed 出版商
  874. Cho S, Yun S, Jo C, Lee D, Choi K, Song J, et al. SUMO1 promotes Aβ production via the modulation of autophagy. Autophagy. 2015;11:100-12 pubmed 出版商
  875. Hoon J, Li H, Koh C. POPX2 phosphatase regulates cell polarity and centrosome placement. Cell Cycle. 2014;13:2459-68 pubmed 出版商
  876. Chuang C, Guh J, Lu C, Chen H, Chuang L. S100B is required for high glucose-induced pro-fibrotic gene expression and hypertrophy in mesangial cells. Int J Mol Med. 2015;35:546-52 pubmed 出版商
  877. Bond M, Ghosh S, Wang P, Hanover J. Conserved nutrient sensor O-GlcNAc transferase is integral to C. elegans pathogen-specific immunity. PLoS ONE. 2014;9:e113231 pubmed 出版商
  878. Hofmeister W, Nilsson D, Topa A, Anderlid B, Darki F, Matsson H, et al. CTNND2-a candidate gene for reading problems and mild intellectual disability. J Med Genet. 2015;52:111-22 pubmed 出版商
  879. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  880. Meng L, Ward A, Chun S, Bennett C, Beaudet A, Rigo F. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature. 2015;518:409-12 pubmed 出版商
  881. Pickholtz I, Saadyan S, Keshet G, Wang V, Cohen R, Bouwman P, et al. Cooperation between BRCA1 and vitamin D is critical for histone acetylation of the p21waf1 promoter and growth inhibition of breast cancer cells and cancer stem-like cells. Oncotarget. 2014;5:11827-46 pubmed
  882. Tang E, Mok K, Lee W, Cheng C. EB1 regulates tubulin and actin cytoskeletal networks at the sertoli cell blood-testis barrier in male rats: an in vitro study. Endocrinology. 2015;156:680-93 pubmed 出版商
  883. Liu J, Bain L. Arsenic inhibits hedgehog signaling during P19 cell differentiation. Toxicol Appl Pharmacol. 2014;281:243-53 pubmed 出版商
  884. Colbert P, Vermeer D, Wieking B, Lee J, Vermeer P. EphrinB1: novel microtubule associated protein whose expression affects taxane sensitivity. Oncotarget. 2015;6:953-68 pubmed
  885. Leyk J, Goldbaum O, Noack M, Richter Landsberg C. Inhibition of HDAC6 modifies tau inclusion body formation and impairs autophagic clearance. J Mol Neurosci. 2015;55:1031-46 pubmed 出版商
  886. Dubuc T, Dattoli A, Babonis L, Salinas Saavedra M, Röttinger E, Martindale M, et al. In vivo imaging of Nematostella vectensis embryogenesis and late development using fluorescent probes. BMC Cell Biol. 2014;15:44 pubmed 出版商
  887. Green C, Fraser S, Day M. Insulin-like growth factor 1 increases apical fibronectin in blastocysts to increase blastocyst attachment to endometrial epithelial cells in vitro. Hum Reprod. 2015;30:284-98 pubmed 出版商
  888. Nakashima H, Nguyen T, Goins W, Chiocca E. Interferon-stimulated gene 15 (ISG15) and ISG15-linked proteins can associate with members of the selective autophagic process, histone deacetylase 6 (HDAC6) and SQSTM1/p62. J Biol Chem. 2015;290:1485-95 pubmed 出版商
  889. Vigelsø A, Dybboe R, Hansen C, Dela F, Helge J, Guadalupe Grau A. GAPDH and β-actin protein decreases with aging, making Stain-Free technology a superior loading control in Western blotting of human skeletal muscle. J Appl Physiol (1985). 2015;118:386-94 pubmed 出版商
  890. Bian W, Miao W, He S, Wan Z, Luo Z, Yu X. A novel Wnt5a-Frizzled4 signaling pathway mediates activity-independent dendrite morphogenesis via the distal PDZ motif of Frizzled 4. Dev Neurobiol. 2015;75:805-22 pubmed 出版商
  891. Wu H, Rong Y, Correia K, Min J, Morgan J. Comparison of the enzymatic and functional properties of three cytosolic carboxypeptidase family members. J Biol Chem. 2015;290:1222-32 pubmed 出版商
  892. Boscia F, Passaro C, Gigantino V, Perdonà S, Franco R, Portella G, et al. High levels of GPR30 protein in human testicular carcinoma in situ and seminomas correlate with low levels of estrogen receptor-beta and indicate a switch in estrogen responsiveness. J Cell Physiol. 2015;230:1290-7 pubmed 出版商
  893. Kararigas G, Fliegner D, Forler S, Klein O, Schubert C, Gustafsson J, et al. Comparative proteomic analysis reveals sex and estrogen receptor β effects in the pressure overloaded heart. J Proteome Res. 2014;13:5829-36 pubmed 出版商
  894. Kim H, Xu H, Yao Q, Li W, Huang Q, Outeda P, et al. Ciliary membrane proteins traffic through the Golgi via a Rabep1/GGA1/Arl3-dependent mechanism. Nat Commun. 2014;5:5482 pubmed 出版商
  895. Nijenhuis W, Vallardi G, Teixeira A, Kops G, Saurin A. Negative feedback at kinetochores underlies a responsive spindle checkpoint signal. Nat Cell Biol. 2014;16:1257-64 pubmed 出版商
  896. Chen J, Shin J, Zhao R, Phan L, Wang H, Xue Y, et al. CSN6 drives carcinogenesis by positively regulating Myc stability. Nat Commun. 2014;5:5384 pubmed 出版商
  897. Andlauer T, Scholz Kornehl S, Tian R, Kirchner M, Babikir H, Depner H, et al. Drep-2 is a novel synaptic protein important for learning and memory. elife. 2014;3: pubmed 出版商
  898. Husedzinovic A, Neumann B, Reymann J, Draeger Meurer S, Chari A, Erfle H, et al. The catalytically inactive tyrosine phosphatase HD-PTP/PTPN23 is a novel regulator of SMN complex localization. Mol Biol Cell. 2015;26:161-71 pubmed 出版商
  899. Komaravolu R, Adam C, Moonen J, Harmsen M, Goebeler M, Schmidt M. Erk5 inhibits endothelial migration via KLF2-dependent down-regulation of PAK1. Cardiovasc Res. 2015;105:86-95 pubmed 出版商
  900. Vulto van Silfhout A, Nakagawa T, Bahi Buisson N, Haas S, Hu H, Bienek M, et al. Variants in CUL4B are associated with cerebral malformations. Hum Mutat. 2015;36:106-17 pubmed 出版商
  901. Korobko E, Kiselev S, Korobko I. Characterization of Rabaptin-5 γ isoform. Biochemistry (Mosc). 2014;79:856-64 pubmed 出版商
  902. Martínez Vega R, Garrido F, Partearroyo T, Cediel R, Zeisel S, Martínez Álvarez C, et al. Folic acid deficiency induces premature hearing loss through mechanisms involving cochlear oxidative stress and impairment of homocysteine metabolism. FASEB J. 2015;29:418-32 pubmed 出版商
  903. Katz Y, Li F, Lambert N, Sokol E, Tam W, Cheng A, et al. Musashi proteins are post-transcriptional regulators of the epithelial-luminal cell state. elife. 2014;3:e03915 pubmed 出版商
  904. Carmena M, Lombardía M, Ogawa H, Earnshaw W. Polo kinase regulates the localization and activity of the chromosomal passenger complex in meiosis and mitosis in Drosophila melanogaster. Open Biol. 2014;4:140162 pubmed 出版商
  905. Kim M, Kim M, Lee M, Kim C, Lim D. The MST1/2-SAV1 complex of the Hippo pathway promotes ciliogenesis. Nat Commun. 2014;5:5370 pubmed 出版商
  906. Israeli Rosenberg S, Chen C, Li R, Deussen D, Niesman I, Okada H, et al. Caveolin modulates integrin function and mechanical activation in the cardiomyocyte. FASEB J. 2015;29:374-84 pubmed 出版商
  907. Cai Y, Fedeles S, Dong K, Anyatonwu G, Onoe T, Mitobe M, et al. Altered trafficking and stability of polycystins underlie polycystic kidney disease. J Clin Invest. 2014;124:5129-44 pubmed 出版商
  908. Akoury E, Zhang L, Ao A, Slim R. NLRP7 and KHDC3L, the two maternal-effect proteins responsible for recurrent hydatidiform moles, co-localize to the oocyte cytoskeleton. Hum Reprod. 2015;30:159-69 pubmed 出版商
  909. Giles R, Ajzenberg H, Jackson P. 3D spheroid model of mIMCD3 cells for studying ciliopathies and renal epithelial disorders. Nat Protoc. 2014;9:2725-31 pubmed 出版商
  910. Campbell P, Shen K, Sapio M, Glenn T, Talbot W, Marlow F. Unique function of Kinesin Kif5A in localization of mitochondria in axons. J Neurosci. 2014;34:14717-32 pubmed 出版商
  911. Kim K, Ossipova O, Sokol S. Neural crest specification by inhibition of the ROCK/Myosin II pathway. Stem Cells. 2015;33:674-85 pubmed 出版商
  912. Kraus Y, Flici H, Hensel K, Plickert G, Leitz T, Frank U. The embryonic development of the cnidarian Hydractinia echinata. Evol Dev. 2014;16:323-38 pubmed 出版商
  913. Mardilovich K, Gabrielsen M, McGarry L, Orange C, Patel R, Shanks E, et al. Elevated LIM kinase 1 in nonmetastatic prostate cancer reflects its role in facilitating androgen receptor nuclear translocation. Mol Cancer Ther. 2015;14:246-58 pubmed 出版商
  914. Sun Q, Luo T, Ren Y, Florey O, Shirasawa S, Sasazuki T, et al. Competition between human cells by entosis. Cell Res. 2014;24:1299-310 pubmed 出版商
  915. Sleiman S, Olson D, Bourassa M, Karuppagounder S, Zhang Y, Gale J, et al. Hydroxamic acid-based histone deacetylase (HDAC) inhibitors can mediate neuroprotection independent of HDAC inhibition. J Neurosci. 2014;34:14328-37 pubmed 出版商
  916. Nishibuchi G, Machida S, Osakabe A, Murakoshi H, Hiragami Hamada K, Nakagawa R, et al. N-terminal phosphorylation of HP1α increases its nucleosome-binding specificity. Nucleic Acids Res. 2014;42:12498-511 pubmed 出版商
  917. O Loghlen A, Martin N, Krusche B, Pemberton H, Alonso M, Chandler H, et al. The nuclear receptor NR2E1/TLX controls senescence. Oncogene. 2015;34:4069-4077 pubmed 出版商
  918. Lee K, Tarn W. TRAP150 activates splicing in composite terminal exons. Nucleic Acids Res. 2014;42:12822-32 pubmed 出版商
  919. Bultema J, Boyle J, Malenke P, Martin F, Dell Angelica E, Cheney R, et al. Myosin vc interacts with Rab32 and Rab38 proteins and works in the biogenesis and secretion of melanosomes. J Biol Chem. 2014;289:33513-28 pubmed 出版商
  920. Van der Meulen J, Sanghvi V, Mavrakis K, Durinck K, Fang F, Matthijssens F, et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood. 2015;125:13-21 pubmed 出版商
  921. Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;3: pubmed 出版商
  922. Vestergaard M, Awan A, Warzecha C, Christensen S, Andersen C. Immunofluorescence Microscopy and mRNA Analysis of Human Embryonic Stem Cells (hESCs) Including Primary Cilia Associated Signaling Pathways. Methods Mol Biol. 2016;1307:123-40 pubmed 出版商
  923. Agircan F, Schiebel E. Sensors at centrosomes reveal determinants of local separase activity. PLoS Genet. 2014;10:e1004672 pubmed 出版商
  924. Gegg M, Böttcher A, Burtscher I, Hasenoeder S, Van Campenhout C, Aichler M, et al. Flattop regulates basal body docking and positioning in mono- and multiciliated cells. elife. 2014;3: pubmed 出版商
  925. Cabral G, Marques A, Schubert V, Pedrosa Harand A, Schlögelhofer P. Chiasmatic and achiasmatic inverted meiosis of plants with holocentric chromosomes. Nat Commun. 2014;5:5070 pubmed 出版商
  926. Goggolidou P, Stevens J, Agueci F, Keynton J, Wheway G, Grimes D, et al. ATMIN is a transcriptional regulator of both lung morphogenesis and ciliogenesis. Development. 2014;141:3966-77 pubmed 出版商
  927. Aoto K, Trainor P. Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival. Hum Mol Genet. 2015;24:698-713 pubmed 出版商
  928. Lin Y, Zhang H, Liang J, Li K, Zhu W, Fu L, et al. Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proc Natl Acad Sci U S A. 2014;111:E4504-12 pubmed 出版商
  929. Liang N, Zhang C, Dill P, Panasyuk G, Pion D, Koka V, et al. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med. 2014;211:2249-63 pubmed 出版商
  930. Reese J, Suman V, Subramaniam M, Wu X, Negron V, Gingery A, et al. ERβ1: characterization, prognosis, and evaluation of treatment strategies in ERα-positive and -negative breast cancer. BMC Cancer. 2014;14:749 pubmed 出版商
  931. Ali M, Chuang C, Saif M. Reprogramming cellular phenotype by soft collagen gels. Soft Matter. 2014;10:8829-37 pubmed 出版商
  932. An J, Jang S, Kim J, Kim C, Song P, Choi K. The expression of p21 is upregulated by forkhead box A1/2 in p53-null H1299 cells. FEBS Lett. 2014;588:4065-70 pubmed 出版商
  933. Choi J, Park B, Chi S, Bae K, Kim S, Cho S, et al. HAX1 regulates E3 ubiquitin ligase activity of cIAPs by promoting their dimerization. Oncotarget. 2014;5:10084-99 pubmed
  934. Gray A, Stephens C, Bigelow R, Coleman D, Cardelli J. The polyphenols (-)-epigallocatechin-3-gallate and luteolin synergistically inhibit TGF-β-induced myofibroblast phenotypes through RhoA and ERK inhibition. PLoS ONE. 2014;9:e109208 pubmed 出版商
  935. Ilagan J, Ramakrishnan A, Hayes B, Murphy M, Zebari A, Bradley P, et al. U2AF1 mutations alter splice site recognition in hematological malignancies. Genome Res. 2015;25:14-26 pubmed 出版商
  936. Charlaftis N, Suddason T, Wu X, Anwar S, Karin M, Gallagher E. The MEKK1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines. EMBO J. 2014;33:2581-96 pubmed 出版商
  937. Jia D, Yang W, Li L, Liu H, Tan Y, Ooi S, et al. β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer. Cell Death Differ. 2015;22:298-310 pubmed 出版商
  938. Moskwa P, Zinn P, Choi Y, Shukla S, Fendler W, Chen C, et al. A functional screen identifies miRs that induce radioresistance in glioblastomas. Mol Cancer Res. 2014;12:1767-78 pubmed 出版商
  939. Cohen Kedar S, Baram L, Elad H, Brazowski E, Guzner Gur H, Dotan I. Human intestinal epithelial cells respond to β-glucans via Dectin-1 and Syk. Eur J Immunol. 2014;44:3729-40 pubmed 出版商
  940. McGinnis L, Pelech S, Kinsey W. Post-ovulatory aging of oocytes disrupts kinase signaling pathways and lysosome biogenesis. Mol Reprod Dev. 2014;81:928-45 pubmed 出版商
  941. Curran K, Allen L, Porter B, Dodge J, Lope C, Willadsen G, et al. Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis. PLoS ONE. 2014;9:e108266 pubmed 出版商
  942. Suzuki D, Murakami Y, Escriva H, Wada H. A comparative examination of neural circuit and brain patterning between the lamprey and amphioxus reveals the evolutionary origin of the vertebrate visual center. J Comp Neurol. 2015;523:251-61 pubmed 出版商
  943. Patel D, Dubash A, Kreitzer G, Green K. Disease mutations in desmoplakin inhibit Cx43 membrane targeting mediated by desmoplakin-EB1 interactions. J Cell Biol. 2014;206:779-97 pubmed 出版商
  944. Wrzesinski K, Rogowska Wrzesinska A, Kanlaya R, Borkowski K, Schwämmle V, Dai J, et al. The cultural divide: exponential growth in classical 2D and metabolic equilibrium in 3D environments. PLoS ONE. 2014;9:e106973 pubmed 出版商
  945. Chan Y, West S. Spatial control of the GEN1 Holliday junction resolvase ensures genome stability. Nat Commun. 2014;5:4844 pubmed 出版商
  946. Ribeiro Varandas E, Pereira H, Monteiro S, Neves E, Brito L, Ferreira R, et al. Bisphenol A disrupts transcription and decreases viability in aging vascular endothelial cells. Int J Mol Sci. 2014;15:15791-805 pubmed 出版商
  947. Rocha C, Martins A, Rato L, Silva B, Oliveira P, Alves M. Melatonin alters the glycolytic profile of Sertoli cells: implications for male fertility. Mol Hum Reprod. 2014;20:1067-76 pubmed 出版商
  948. Yanagi T, Krajewska M, Matsuzawa S, Reed J. PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells. Cancer Res. 2014;74:5795-807 pubmed 出版商
  949. Saini Y, Dang H, Livraghi Butrico A, Kelly E, Jones L, O Neal W, et al. Gene expression in whole lung and pulmonary macrophages reflects the dynamic pathology associated with airway surface dehydration. BMC Genomics. 2014;15:726 pubmed 出版商
  950. Tao L, Chen C, Song H, Piccioni M, Shi G, Li B. Deubiquitination and stabilization of IL-33 by USP21. Int J Clin Exp Pathol. 2014;7:4930-7 pubmed
  951. Liu C, Lin C, Gao C, May Simera H, Swaroop A, Li T. Null and hypomorph Prickle1 alleles in mice phenocopy human Robinow syndrome and disrupt signaling downstream of Wnt5a. Biol Open. 2014;3:861-70 pubmed 出版商
  952. Liu J, Zheng L, Ma L, Wang B, Zhao Y, Wu N, et al. Oleanolic acid inhibits proliferation and invasiveness of Kras-transformed cells via autophagy. J Nutr Biochem. 2014;25:1154-1160 pubmed 出版商
  953. Rotunno M, Auclair J, Maniatis S, Shaffer S, AGAR J, Bosco D. Identification of a misfolded region in superoxide dismutase 1 that is exposed in amyotrophic lateral sclerosis. J Biol Chem. 2014;289:28527-38 pubmed 出版商
  954. Peng M, Emmadi R, Wang Z, Wiley E, Gann P, Khan S, et al. PTK6/BRK is expressed in the normal mammary gland and activated at the plasma membrane in breast tumors. Oncotarget. 2014;5:6038-48 pubmed
  955. Ishii H, Saitoh M, Sakamoto K, Kondo T, Katoh R, Tanaka S, et al. Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J Biol Chem. 2014;289:27386-99 pubmed 出版商
  956. Wang W, Wu T, Kirschner M. The master cell cycle regulator APC-Cdc20 regulates ciliary length and disassembly of the primary cilium. elife. 2014;3:e03083 pubmed 出版商
  957. Passaro C, Volpe M, Botta G, Scamardella E, Perruolo G, Gillespie D, et al. PARP inhibitor olaparib increases the oncolytic activity of dl922-947 in in vitro and in vivo model of anaplastic thyroid carcinoma. Mol Oncol. 2015;9:78-92 pubmed 出版商
  958. Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature. 2014;513:90-4 pubmed 出版商
  959. Rharass T, Lemcke H, Lantow M, Kuznetsov S, Weiss D, Panàkovà D. Ca2+-mediated mitochondrial reactive oxygen species metabolism augments Wnt/?-catenin pathway activation to facilitate cell differentiation. J Biol Chem. 2014;289:27937-51 pubmed 出版商
  960. Xu M, Nagati J, Xie J, Li J, Walters H, Moon Y, et al. An acetate switch regulates stress erythropoiesis. Nat Med. 2014;20:1018-26 pubmed 出版商
  961. James S, Banta T, Barra J, Ciraku L, Coile C, Cuda Z, et al. Restraint of the G2/M transition by the SR/RRM family mRNA shuttling binding protein SNXAHRB1 in Aspergillus nidulans. Genetics. 2014;198:617-33 pubmed 出版商
  962. Lee Y, Santé J, Comerci C, Cyge B, Menezes L, Li F, et al. Cby1 promotes Ahi1 recruitment to a ring-shaped domain at the centriole-cilium interface and facilitates proper cilium formation and function. Mol Biol Cell. 2014;25:2919-33 pubmed 出版商
  963. Bazot Q, Deschamps T, Tafforeau L, Siouda M, Leblanc P, Harth Hertle M, et al. Epstein-Barr virus nuclear antigen 3A protein regulates CDKN2B transcription via interaction with MIZ-1. Nucleic Acids Res. 2014;42:9700-16 pubmed 出版商
  964. Vassilopoulos A, Tominaga Y, Kim H, Lahusen T, Li B, Yu H, et al. WEE1 murine deficiency induces hyper-activation of APC/C and results in genomic instability and carcinogenesis. Oncogene. 2015;34:3023-35 pubmed 出版商
  965. Werner M, Mitchell J, Putzbach W, Bacon E, Kim S, Mitchell B. Radial intercalation is regulated by the Par complex and the microtubule-stabilizing protein CLAMP/Spef1. J Cell Biol. 2014;206:367-76 pubmed 出版商
  966. Silva P, Reis R, Bolanos Garcia V, Florindo C, Tavares A, Bousbaa H. Dynein-dependent transport of spindle assembly checkpoint proteins off kinetochores toward spindle poles. FEBS Lett. 2014;588:3265-73 pubmed 出版商
  967. Isogaya K, Koinuma D, Tsutsumi S, Saito R, Miyazawa K, Aburatani H, et al. A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression. Cell Res. 2014;24:994-1008 pubmed 出版商
  968. Requejo Aguilar R, Lopez Fabuel I, Fernandez E, Martins L, Almeida A, Bolanos J. PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat Commun. 2014;5:4514 pubmed 出版商
  969. Smith C, Matheson T, Trombly D, Sun X, Campeau E, Han X, et al. A separable domain of the p150 subunit of human chromatin assembly factor-1 promotes protein and chromosome associations with nucleoli. Mol Biol Cell. 2014;25:2866-81 pubmed 出版商
  970. Eilertsen M, Drivenes O, Edvardsen R, Bradley C, Ebbesson L, Helvik J. Exorhodopsin and melanopsin systems in the pineal complex and brain at early developmental stages of Atlantic halibut (Hippoglossus hippoglossus). J Comp Neurol. 2014;522:4003-22 pubmed 出版商
  971. Ro S, Semple I, Park H, Park H, Park H, Kim M, et al. Sestrin2 promotes Unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1. FEBS J. 2014;281:3816-27 pubmed 出版商
  972. Persson B, Jaffe A, Fearns R, Danahay H. Respiratory syncytial virus can infect basal cells and alter human airway epithelial differentiation. PLoS ONE. 2014;9:e102368 pubmed 出版商
  973. Galletta B, Guillen R, Fagerstrom C, Brownlee C, Lerit D, Megraw T, et al. Drosophila pericentrin requires interaction with calmodulin for its function at centrosomes and neuronal basal bodies but not at sperm basal bodies. Mol Biol Cell. 2014;25:2682-94 pubmed 出版商
  974. Moorwood C, Philippou A, Spinazzola J, Keyser B, Macarak E, Barton E. Absence of ?-sarcoglycan alters the response of p70S6 kinase to mechanical perturbation in murine skeletal muscle. Skelet Muscle. 2014;4:13 pubmed 出版商
  975. Mungamuri S, Wang S, Manfredi J, Gu W, Aaronson S. Ash2L enables P53-dependent apoptosis by favoring stable transcription pre-initiation complex formation on its pro-apoptotic target promoters. Oncogene. 2015;34:2461-70 pubmed 出版商
  976. Serrano Velez J, Rodriguez Alvarado M, Torres Vazquez I, Fraser S, Yasumura T, Vanderpool K, et al. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons. Front Neural Circuits. 2014;8:66 pubmed 出版商
  977. Brohl A, Solomon D, Chang W, Wang J, Song Y, Sindiri S, et al. The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet. 2014;10:e1004475 pubmed 出版商
  978. Nickerson K, Homer C, Kessler S, Dixon L, Kabi A, Gordon I, et al. The dietary polysaccharide maltodextrin promotes Salmonella survival and mucosal colonization in mice. PLoS ONE. 2014;9:e101789 pubmed 出版商
  979. Elzi D, Song M, Hakala K, Weintraub S, Shiio Y. Proteomic Analysis of the EWS-Fli-1 Interactome Reveals the Role of the Lysosome in EWS-Fli-1 Turnover. J Proteome Res. 2014;13:3783-91 pubmed 出版商
  980. Bernier R, Golzio C, Xiong B, Stessman H, Coe B, Penn O, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell. 2014;158:263-276 pubmed 出版商
  981. Lodato S, Molyneaux B, Zuccaro E, Goff L, Chen H, Yuan W, et al. Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons. Nat Neurosci. 2014;17:1046-54 pubmed 出版商
  982. Hopkins J, Hwang G, Jacob J, Sapp N, Bedigian R, Oka K, et al. Meiosis-specific cohesin component, Stag3 is essential for maintaining centromere chromatid cohesion, and required for DNA repair and synapsis between homologous chromosomes. PLoS Genet. 2014;10:e1004413 pubmed 出版商
  983. Fernandez Vidal A, Guitton Sert L, Cadoret J, Drac M, Schwob E, Baldacci G, et al. A role for DNA polymerase ? in the timing of DNA replication. Nat Commun. 2014;5:4285 pubmed 出版商
  984. Manguan García C, Pintado Berninches L, Carrillo J, Machado Pinilla R, Sastre L, Perez Quilis C, et al. Expression of the genetic suppressor element 24.2 (GSE24.2) decreases DNA damage and oxidative stress in X-linked dyskeratosis congenita cells. PLoS ONE. 2014;9:e101424 pubmed 出版商
  985. Chondrogiannis G, Kastamoulas M, Kanavaros P, Vartholomatos G, Bai M, Baltogiannis D, et al. Cytokine effects on cell viability and death of prostate carcinoma cells. Biomed Res Int. 2014;2014:536049 pubmed 出版商
  986. Kutten J, McGovern D, Hobson C, Luffy S, Nieponice A, Tobita K, et al. Decellularized tracheal extracellular matrix supports epithelial migration, differentiation, and function. Tissue Eng Part A. 2015;21:75-84 pubmed 出版商
  987. Takeda A, Oberoi Khanuja T, Glatz G, Schulenburg K, Scholz R, Carpy A, et al. Ubiquitin-dependent regulation of MEKK2/3-MEK5-ERK5 signaling module by XIAP and cIAP1. EMBO J. 2014;33:1784-801 pubmed 出版商
  988. O Rourke B, Gomez Ferreria M, Berk R, Hackl A, Nicholas M, O Rourke S, et al. Cep192 controls the balance of centrosome and non-centrosomal microtubules during interphase. PLoS ONE. 2014;9:e101001 pubmed 出版商
  989. Fernandes J, Vieira M, Carreto L, Santos M, Duarte C, Carvalho A, et al. In vitro ischemia triggers a transcriptional response to down-regulate synaptic proteins in hippocampal neurons. PLoS ONE. 2014;9:e99958 pubmed 出版商
  990. Kim C, Pasparakis M. Epidermal p65/NF-?B signalling is essential for skin carcinogenesis. EMBO Mol Med. 2014;6:970-83 pubmed 出版商
  991. Glotfelty L, Zahs A, Hodges K, Shan K, Alto N, Hecht G. Enteropathogenic E. coli effectors EspG1/G2 disrupt microtubules, contribute to tight junction perturbation and inhibit restoration. Cell Microbiol. 2014;16:1767-83 pubmed 出版商
  992. Veleri S, Manjunath S, Fariss R, May Simera H, Brooks M, Foskett T, et al. Ciliopathy-associated gene Cc2d2a promotes assembly of subdistal appendages on the mother centriole during cilia biogenesis. Nat Commun. 2014;5:4207 pubmed 出版商
  993. Antanavičiūtė I, Rysevaite K, Liutkevicius V, Marandykina A, Rimkute L, Sveikatiene R, et al. Long-distance communication between laryngeal carcinoma cells. PLoS ONE. 2014;9:e99196 pubmed 出版商
  994. Qiu W, Kassem M. miR-141-3p inhibits human stromal (mesenchymal) stem cell proliferation and differentiation. Biochim Biophys Acta. 2014;1843:2114-21 pubmed 出版商
  995. Kim D, Birendra K, Zhu W, Motamedchaboki K, Doye V, Roux K. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc Natl Acad Sci U S A. 2014;111:E2453-61 pubmed 出版商
  996. Mamouni K, Cristini A, Guirouilh Barbat J, Monferran S, Lemarie A, Faye J, et al. RhoB promotes ?H2AX dephosphorylation and DNA double-strand break repair. Mol Cell Biol. 2014;34:3144-55 pubmed 出版商
  997. Premkumar M, Sule G, Nagamani S, Chakkalakal S, Nordin A, Jain M, et al. Argininosuccinate lyase in enterocytes protects from development of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2014;307:G347-54 pubmed 出版商
  998. Sung P, Murayama A, Kang W, Kim M, Yoon S, Fukasawa M, et al. Hepatitis C virus entry is impaired by claudin-1 downregulation in diacylglycerol acyltransferase-1-deficient cells. J Virol. 2014;88:9233-44 pubmed 出版商
  999. Shrestha R, Tamura N, Fries A, Levin N, Clark J, Draviam V. TAO1 kinase maintains chromosomal stability by facilitating proper congression of chromosomes. Open Biol. 2014;4:130108 pubmed 出版商
  1000. Tsurusaki Y, Koshimizu E, Ohashi H, Phadke S, Kou I, Shiina M, et al. De novo SOX11 mutations cause Coffin-Siris syndrome. Nat Commun. 2014;5:4011 pubmed 出版商
  1001. Mannino M, Gomez Roman N, Hochegger H, Chalmers A. Differential sensitivity of Glioma stem cells to Aurora kinase A inhibitors: implications for stem cell mitosis and centrosome dynamics. Stem Cell Res. 2014;13:135-43 pubmed 出版商
  1002. Fernandes K, Harder J, JOHN S, Shrager P, Libby R. DLK-dependent signaling is important for somal but not axonal degeneration of retinal ganglion cells following axonal injury. Neurobiol Dis. 2014;69:108-16 pubmed 出版商
  1003. Soares F, Tattoli I, Rahman M, Robertson S, Belcheva A, Liu D, et al. The mitochondrial protein NLRX1 controls the balance between extrinsic and intrinsic apoptosis. J Biol Chem. 2014;289:19317-30 pubmed 出版商
  1004. Strickland A, Rebelo A, Zhang F, Price J, Bolon B, Silva J, et al. Characterization of the mitofusin 2 R94W mutation in a knock-in mouse model. J Peripher Nerv Syst. 2014;19:152-64 pubmed 出版商
  1005. Kielar M, Tuy F, Bizzotto S, Lebrand C, de Juan Romero C, Poirier K, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923-33 pubmed 出版商
  1006. Ling Y, Wong C, Li K, Chan K, Boukamp P, Liu W. CCHCR1 interacts with EDC4, suggesting its localization in P-bodies. Exp Cell Res. 2014;327:12-23 pubmed 出版商
  1007. Iida M, Bak S, Murakami Y, Kim E, Iwata H. Transient suppression of AHR activity in early red seabream embryos does not prevent the disruption of peripheral nerve projection by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Aquat Toxicol. 2014;154:39-47 pubmed 出版商
  1008. Tian G, Lodowski K, Lee R, Imanishi Y. Retrograde intraciliary trafficking of opsin during the maintenance of cone-shaped photoreceptor outer segments of Xenopus laevis. J Comp Neurol. 2014;522:3577-3589 pubmed 出版商
  1009. Godde N, Sheridan J, Smith L, Pearson H, Britt K, Galea R, et al. Scribble modulates the MAPK/Fra1 pathway to disrupt luminal and ductal integrity and suppress tumour formation in the mammary gland. PLoS Genet. 2014;10:e1004323 pubmed 出版商
  1010. Li R, Tan J, Chen L, Feng J, Liang W, Guo X, et al. Iqcg is essential for sperm flagellum formation in mice. PLoS ONE. 2014;9:e98053 pubmed 出版商
  1011. Choi Y, Pan Y, Park E, Konstantinopoulos P, De S, D ANDREA A, et al. MicroRNAs down-regulate homologous recombination in the G1 phase of cycling cells to maintain genomic stability. elife. 2014;3:e02445 pubmed 出版商
  1012. Cheong F, Feng L, Sarkeshik A, Yates J, Schroer T. Dynactin integrity depends upon direct binding of dynamitin to Arp1. Mol Biol Cell. 2014;25:2171-80 pubmed 出版商
  1013. Hans F, Fiesel F, Strong J, J ckel S, Rasse T, Geisler S, et al. UBE2E ubiquitin-conjugating enzymes and ubiquitin isopeptidase Y regulate TDP-43 protein ubiquitination. J Biol Chem. 2014;289:19164-79 pubmed 出版商
  1014. Barrios A, Gómez A, Sáez J, Ciossani G, Toffolo E, Battaglioli E, et al. Differential properties of transcriptional complexes formed by the CoREST family. Mol Cell Biol. 2014;34:2760-70 pubmed
  1015. Kitagawa K, Shibata K, Matsumoto A, Matsumoto M, Ohhata T, Nakayama K, et al. Fbw7 targets GATA3 through cyclin-dependent kinase 2-dependent proteolysis and contributes to regulation of T-cell development. Mol Cell Biol. 2014;34:2732-44 pubmed
  1016. Zhu Y, Liu C, Cui Y, Nadiminty N, Lou W, Gao A. Interleukin-6 induces neuroendocrine differentiation (NED) through suppression of RE-1 silencing transcription factor (REST). Prostate. 2014;74:1086-94 pubmed 出版商
  1017. Zavodszky E, Seaman M, Moreau K, Jimenez Sanchez M, Breusegem S, Harbour M, et al. Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. Nat Commun. 2014;5:3828 pubmed 出版商
  1018. Shaw Hallgren G, Chmielarska Masoumi K, Zarrizi R, Hellman U, Karlsson P, Helou K, et al. Association of nuclear-localized Nemo-like kinase with heat-shock protein 27 inhibits apoptosis in human breast cancer cells. PLoS ONE. 2014;9:e96506 pubmed 出版商
  1019. Thoresen S, Campsteijn C, Vietri M, Schink K, Liestøl K, Andersen J, et al. ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4. Nat Cell Biol. 2014;16:550-60 pubmed 出版商
  1020. Liu J, MCCLELAND M, Stawiski E, Gnad F, Mayba O, Haverty P, et al. Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer. Nat Commun. 2014;5:3830 pubmed 出版商
  1021. Ma L, Aslanian A, Sun H, Jin M, Shi Y, Yates J, et al. Identification of small ubiquitin-like modifier substrates with diverse functions using the Xenopus egg extract system. Mol Cell Proteomics. 2014;13:1659-75 pubmed 出版商
  1022. Okada N, Toda T, Yamamoto M, Sato M. CDK-dependent phosphorylation of Alp7-Alp14 (TACC-TOG) promotes its nuclear accumulation and spindle microtubule assembly. Mol Biol Cell. 2014;25:1969-82 pubmed 出版商
  1023. Nakada T, Hagino Yamagishi K, Nakanishi K, Yokosuka M, Saito T, Toyoda F, et al. Expression of G proteins in the olfactory receptor neurons of the newt Cynops pyrrhogaster: their unique projection into the olfactory bulbs. J Comp Neurol. 2014;522:3501-19 pubmed 出版商
  1024. Mäki Jouppila J, Laine L, Rehnberg J, Narvi E, Tiikkainen P, Hukasova E, et al. Centmitor-1, a novel acridinyl-acetohydrazide, possesses similar molecular interaction field and antimitotic cellular phenotype as rigosertib, on 01910.Na. Mol Cancer Ther. 2014;13:1054-66 pubmed 出版商
  1025. Negishi M, Wongpalee S, Sarkar S, Park J, Lee K, Shibata Y, et al. A new lncRNA, APTR, associates with and represses the CDKN1A/p21 promoter by recruiting polycomb proteins. PLoS ONE. 2014;9:e95216 pubmed 出版商
  1026. Garimella S, Gehlhaus K, Dine J, Pitt J, Grandin M, Chakka S, et al. Identification of novel molecular regulators of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in breast cancer cells by RNAi screening. Breast Cancer Res. 2014;16:R41 pubmed 出版商
  1027. Hayes S, Hng K, Clark P, Thistlethwaite F, Hawkins R, Ang Y. Immunohistochemical assessment of NY-ESO-1 expression in esophageal adenocarcinoma resection specimens. World J Gastroenterol. 2014;20:4011-6 pubmed 出版商
  1028. Yamamoto R, Ohshiro Y, Shimotani T, Yamamoto M, Matsuyama S, Ide H, et al. Hypersensitivity of mouse NEIL1-knockdown cells to hydrogen peroxide during S phase. J Radiat Res. 2014;55:707-12 pubmed 出版商
  1029. Touat Hamici Z, Legrain Y, Bulteau A, Chavatte L. Selective up-regulation of human selenoproteins in response to oxidative stress. J Biol Chem. 2014;289:14750-61 pubmed 出版商
  1030. Rydell G, Renard H, Garcia Castillo M, Dingli F, Loew D, Lamaze C, et al. Rab12 localizes to Shiga toxin-induced plasma membrane invaginations and controls toxin transport. Traffic. 2014;15:772-87 pubmed 出版商
  1031. Han X, Cheng D, Song F, Zeng T, An L, Xie K. Decelerated transport and its mechanism of 2,5-hexanedione on middle-molecular-weight neurofilament in rat dorsal root ganglia cells. Neuroscience. 2014;269:192-8 pubmed 出版商
  1032. Kuijt T, Omerzu M, Saurin A, Kops G. Conditional targeting of MAD1 to kinetochores is sufficient to reactivate the spindle assembly checkpoint in metaphase. Chromosoma. 2014;123:471-80 pubmed 出版商
  1033. Kuwahara M, Suzuki J, Tofukuji S, Yamada T, Kanoh M, Matsumoto A, et al. The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nat Commun. 2014;5:3555 pubmed 出版商
  1034. Daems C, Martin L, Brousseau C, Tremblay J. MEF2 is restricted to the male gonad and regulates expression of the orphan nuclear receptor NR4A1. Mol Endocrinol. 2014;28:886-98 pubmed 出版商
  1035. Liu Y, Tsai I, Morleo M, Oh E, Leitch C, Massa F, et al. Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators. J Clin Invest. 2014;124:2059-70 pubmed
  1036. Kiss A, Horvath P, Rothballer A, Kutay U, Csucs G. Nuclear motility in glioma cells reveals a cell-line dependent role of various cytoskeletal components. PLoS ONE. 2014;9:e93431 pubmed 出版商
  1037. Feuer S, Liu X, Donjacour A, Lin W, Simbulan R, Giritharan G, et al. Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology. 2014;155:1956-69 pubmed 出版商
  1038. Castellani L, Root McCaig J, Frendo Cumbo S, Beaudoin M, Wright D. Exercise training protects against an acute inflammatory insult in mouse epididymal adipose tissue. J Appl Physiol (1985). 2014;116:1272-80 pubmed 出版商
  1039. Sutherland J, Fraser B, Sobinoff A, Pye V, Davidson T, Siddall N, et al. Developmental expression of Musashi-1 and Musashi-2 RNA-binding proteins during spermatogenesis: analysis of the deleterious effects of dysregulated expression. Biol Reprod. 2014;90:92 pubmed 出版商
  1040. Dubois V, Laurent M, Sinnesael M, Cielen N, Helsen C, Clinckemalie L, et al. A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle. FASEB J. 2014;28:2979-94 pubmed 出版商
  1041. Kuo P, Huang Y, Hsieh C, Lee J, Lin B, Hung L. STK31 is a cell-cycle regulated protein that contributes to the tumorigenicity of epithelial cancer cells. PLoS ONE. 2014;9:e93303 pubmed 出版商
  1042. Rennoll S, Scott S, Yochum G. Targeted repression of AXIN2 and MYC gene expression using designer TALEs. Biochem Biophys Res Commun. 2014;446:1120-5 pubmed 出版商
  1043. Turgay Y, Champion L, Balázs C, Held M, Toso A, Gerlich D, et al. SUN proteins facilitate the removal of membranes from chromatin during nuclear envelope breakdown. J Cell Biol. 2014;204:1099-109 pubmed 出版商
  1044. Jia J, Bosley A, Thompson A, Hoskins J, Cheuk A, Collins I, et al. CLPTM1L promotes growth and enhances aneuploidy in pancreatic cancer cells. Cancer Res. 2014;74:2785-95 pubmed 出版商
  1045. Gunkel M, Flottmann B, Heilemann M, Reymann J, Erfle H. Integrated and correlative high-throughput and super-resolution microscopy. Histochem Cell Biol. 2014;141:597-603 pubmed 出版商
  1046. Cobbs C, Matlaf L, Harkins L. Methods for the detection of cytomegalovirus in glioblastoma cells and tissues. Methods Mol Biol. 2014;1119:165-96 pubmed 出版商
  1047. Crouse J, Lopes V, SanAgustin J, Keady B, Williams D, Pazour G. Distinct functions for IFT140 and IFT20 in opsin transport. Cytoskeleton (Hoboken). 2014;71:302-10 pubmed 出版商
  1048. Mackeh R, Lorin S, Ratier A, Mejdoubi Charef N, Baillet A, Bruneel A, et al. Reactive oxygen species, AMP-activated protein kinase, and the transcription cofactor p300 regulate ?-tubulin acetyltransferase-1 (?TAT-1/MEC-17)-dependent microtubule hyperacetylation during cell stress. J Biol Chem. 2014;289:11816-28 pubmed 出版商
  1049. Waitkus M, Chandrasekharan U, Willard B, Tee T, Hsieh J, Przybycin C, et al. Signal integration and gene induction by a functionally distinct STAT3 phosphoform. Mol Cell Biol. 2014;34:1800-11 pubmed 出版商
  1050. Uzer G, Pongkitwitoon S, Ian C, Thompson W, Rubin J, Chan M, et al. Gap junctional communication in osteocytes is amplified by low intensity vibrations in vitro. PLoS ONE. 2014;9:e90840 pubmed 出版商
  1051. Romani S, Illi B, De Mori R, Savino M, Gleeson J, Valente E. The ciliary proteins Meckelin and Jouberin are required for retinoic acid-dependent neural differentiation of mouse embryonic stem cells. Differentiation. 2014;87:134-146 pubmed 出版商
  1052. Fitzpatrick P, Shattil S, Ablooglu A. C-terminal COOH of integrin ?1 is necessary for ?1 association with the kindlin-2 adapter protein. J Biol Chem. 2014;289:11183-93 pubmed 出版商
  1053. Follit J, San Agustin J, Jonassen J, Huang T, Rivera Perez J, Tremblay K, et al. Arf4 is required for Mammalian development but dispensable for ciliary assembly. PLoS Genet. 2014;10:e1004170 pubmed 出版商
  1054. Meehan A, Saenz D, Guevera R, Morrison J, Peretz M, Fadel H, et al. A cyclophilin homology domain-independent role for Nup358 in HIV-1 infection. PLoS Pathog. 2014;10:e1003969 pubmed 出版商
  1055. Herve D, Philippi A, Belbouab R, Zerah M, Chabrier S, Collardeau Frachon S, et al. Loss of ?1?1 soluble guanylate cyclase, the major nitric oxide receptor, leads to moyamoya and achalasia. Am J Hum Genet. 2014;94:385-94 pubmed 出版商
  1056. Gu L, Talati P, Vogiatzi P, Romero Weaver A, Abdulghani J, Liao Z, et al. Pharmacologic suppression of JAK1/2 by JAK1/2 inhibitor AZD1480 potently inhibits IL-6-induced experimental prostate cancer metastases formation. Mol Cancer Ther. 2014;13:1246-58 pubmed 出版商
  1057. Imamura K, Maeda S, Kawamura I, Matsuyama K, Shinohara N, Yahiro Y, et al. Human immunodeficiency virus type 1 enhancer-binding protein 3 is essential for the expression of asparagine-linked glycosylation 2 in the regulation of osteoblast and chondrocyte differentiation. J Biol Chem. 2014;289:9865-79 pubmed 出版商
  1058. Khan K, Schneider Poetsch T, Ishfaq M, Ito A, Yoshimoto R, Mukaida N, et al. Splicing inhibition induces gene expression through canonical NF-?B pathway and extracellular signal-related kinase activation. FEBS Lett. 2014;588:1053-7 pubmed 出版商
  1059. Gonçalves V, Henriques A, Henriques A, Pereira J, Pereira J, Neves Costa A, et al. Phosphorylation of SRSF1 by SRPK1 regulates alternative splicing of tumor-related Rac1b in colorectal cells. RNA. 2014;20:474-82 pubmed 出版商
  1060. Uno M, Saitoh Y, Mochida K, Tsuruyama E, Kiyono T, Imoto I, et al. NF-?B inducing kinase, a central signaling component of the non-canonical pathway of NF-?B, contributes to ovarian cancer progression. PLoS ONE. 2014;9:e88347 pubmed 出版商
  1061. Wang Y, Kuramitsu Y, Tokuda K, Okada F, Baron B, Akada J, et al. Proteomic analysis indicates that overexpression and nuclear translocation of lactoylglutathione lyase (GLO1) is associated with tumor progression in murine fibrosarcoma. Electrophoresis. 2014;35:2195-202 pubmed 出版商
  1062. Liang Q, Dexheimer T, Zhang P, Rosenthal A, Villamil M, You C, et al. A selective USP1-UAF1 inhibitor links deubiquitination to DNA damage responses. Nat Chem Biol. 2014;10:298-304 pubmed 出版商
  1063. Ryszawy D, Sarna M, Rak M, Szpak K, Kedracka Krok S, Michalik M, et al. Functional links between Snail-1 and Cx43 account for the recruitment of Cx43-positive cells into the invasive front of prostate cancer. Carcinogenesis. 2014;35:1920-30 pubmed 出版商
  1064. Martínez Diez M, Guillén Navarro M, Pera B, Bouchet B, Martinez Leal J, Barasoain I, et al. PM060184, a new tubulin binding agent with potent antitumor activity including P-glycoprotein over-expressing tumors. Biochem Pharmacol. 2014;88:291-302 pubmed 出版商
  1065. Zhai G, Gu Q, He J, Lou Q, Chen X, Jin X, et al. Sept6 is required for ciliogenesis in Kupffer's vesicle, the pronephros, and the neural tube during early embryonic development. Mol Cell Biol. 2014;34:1310-21 pubmed 出版商
  1066. Salabei J, Gibb A, Hill B. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat Protoc. 2014;9:421-38 pubmed 出版商
  1067. Wong Y, Holzbaur E. The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci. 2014;34:1293-305 pubmed 出版商
  1068. Arroyo A, Camoletto P, Morando L, Sassoè Pognetto M, Giustetto M, Van Veldhoven P, et al. Pharmacological reversion of sphingomyelin-induced dendritic spine anomalies in a Niemann Pick disease type A mouse model. EMBO Mol Med. 2014;6:398-413 pubmed 出版商
  1069. Turner M, Cronin J, Healey G, Sheldon I. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology. 2014;155:1453-65 pubmed 出版商
  1070. Cheng Y, Holloway M, Nguyen K, McCauley D, Landesman Y, Kauffman M, et al. XPO1 (CRM1) inhibition represses STAT3 activation to drive a survivin-dependent oncogenic switch in triple-negative breast cancer. Mol Cancer Ther. 2014;13:675-86 pubmed 出版商
  1071. Potthoff E, Franco D, D Alessandro V, Starck C, Falk V, Zambelli T, et al. Toward a rational design of surface textures promoting endothelialization. Nano Lett. 2014;14:1069-79 pubmed 出版商
  1072. Ashraf M, Ebner M, Wallner C, Haller M, Khalid S, Schwelberger H, et al. A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury. Cell Commun Signal. 2014;12:6 pubmed 出版商
  1073. Diagouraga B, Grichine A, Fertin A, Wang J, Khochbin S, Sadoul K. Motor-driven marginal band coiling promotes cell shape change during platelet activation. J Cell Biol. 2014;204:177-85 pubmed 出版商
  1074. Zemljic Harpf A, Godoy J, Platoshyn O, Asfaw E, Busija A, Domenighetti A, et al. Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci. 2014;127:1104-16 pubmed 出版商
  1075. Xu C, Fan C, Wang X. Regulation of Mdm2 protein stability and the p53 response by NEDD4-1 E3 ligase. Oncogene. 2015;34:281-9 pubmed 出版商
  1076. Sike A, Nagy E, Vedelek B, Pusztai D, Szerémy P, Venetianer A, et al. mRNA levels of related Abcb genes change opposite to each other upon histone deacetylase inhibition in drug-resistant rat hepatoma cells. PLoS ONE. 2014;9:e84915 pubmed 出版商
  1077. Honarpour N, Rose C, Brumbaugh J, Anderson J, Graham R, Sweredoski M, et al. F-box protein FBXL16 binds PP2A-B55? and regulates differentiation of embryonic stem cells along the FLK1+ lineage. Mol Cell Proteomics. 2014;13:780-91 pubmed 出版商
  1078. D Anselmi F, Masiello M, Cucina A, Proietti S, Dinicola S, Pasqualato A, et al. Microenvironment promotes tumor cell reprogramming in human breast cancer cell lines. PLoS ONE. 2013;8:e83770 pubmed 出版商
  1079. Yao G, Su X, Nguyen V, Roberts K, Li X, Takakura A, et al. Polycystin-1 regulates actin cytoskeleton organization and directional cell migration through a novel PC1-Pacsin 2-N-Wasp complex. Hum Mol Genet. 2014;23:2769-79 pubmed 出版商
  1080. Miura S, Hamada S, Masamune A, Satoh K, Shimosegawa T. CUB-domain containing protein 1 represses the epithelial phenotype of pancreatic cancer cells. Exp Cell Res. 2014;321:209-18 pubmed 出版商
  1081. Manil Ségalen M, Culetto E, Legouis R, Lefebvre C. Interactions between endosomal maturation and autophagy: analysis of ESCRT machinery during Caenorhabditis elegans development. Methods Enzymol. 2014;534:93-118 pubmed 出版商
  1082. Chen Y, Thang M, Chan Y, Huang Y, Ma N, Yu A, et al. Global assessment of Antrodia cinnamomea-induced microRNA alterations in hepatocarcinoma cells. PLoS ONE. 2013;8:e82751 pubmed 出版商
  1083. Klinger M, Wang W, Kuhns S, Bärenz F, Dräger Meurer S, Pereira G, et al. The novel centriolar satellite protein SSX2IP targets Cep290 to the ciliary transition zone. Mol Biol Cell. 2014;25:495-507 pubmed 出版商
  1084. Shrivastava V, Marmor H, Chernyak S, Goldstein M, Feliciano M, Vigodner M. Cigarette smoke affects posttranslational modifications and inhibits capacitation-induced changes in human sperm proteins. Reprod Toxicol. 2014;43:125-9 pubmed 出版商
  1085. Li A, Jiao Y, Yong K, Wang F, Gao C, Yan B, et al. SALL4 is a new target in endometrial cancer. Oncogene. 2015;34:63-72 pubmed 出版商
  1086. Sharma Walia N, Chandran K, Patel K, Veettil M, Marginean A. The Kaposi's sarcoma-associated herpesvirus (KSHV)-induced 5-lipoxygenase-leukotriene B4 cascade plays key roles in KSHV latency, monocyte recruitment, and lipogenesis. J Virol. 2014;88:2131-56 pubmed 出版商
  1087. Maurya D, Menini A. Developmental expression of the calcium-activated chloride channels TMEM16A and TMEM16B in the mouse olfactory epithelium. Dev Neurobiol. 2014;74:657-75 pubmed 出版商
  1088. Sanchez Roman I, Gomez A, Naudi A, Jove M, Gomez J, Lopez Torres M, et al. Independent and additive effects of atenolol and methionine restriction on lowering rat heart mitochondria oxidative stress. J Bioenerg Biomembr. 2014;46:159-72 pubmed 出版商
  1089. Tapanes Castillo A, Shabazz F, Mboge M, Vajn K, Oudega M, Plunkett J. Characterization of a novel primary culture system of adult zebrafish brainstem cells. J Neurosci Methods. 2014;223:11-9 pubmed 出版商
  1090. Basford J, Koch S, Anjak A, Singh V, Krause E, Robbins N, et al. Smooth muscle LDL receptor-related protein-1 deletion induces aortic insufficiency and promotes vascular cardiomyopathy in mice. PLoS ONE. 2013;8:e82026 pubmed 出版商
  1091. McIntyre B, Alev C, Mechael R, Salci K, Lee J, Fiebig Comyn A, et al. Expansive generation of functional airway epithelium from human embryonic stem cells. Stem Cells Transl Med. 2014;3:7-17 pubmed 出版商
  1092. Rennoll S, Konsavage W, Yochum G. Nuclear AXIN2 represses MYC gene expression. Biochem Biophys Res Commun. 2014;443:217-22 pubmed 出版商
  1093. Tan S, Shui G, Zhou J, Shi Y, Huang J, Xia D, et al. Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway. Autophagy. 2014;10:226-42 pubmed 出版商
  1094. Jodoin J, Shboul M, Albrecht T, Lee E, Wagner E, Reversade B, et al. The snRNA-processing complex, Integrator, is required for ciliogenesis and dynein recruitment to the nuclear envelope via distinct mechanisms. Biol Open. 2013;2:1390-6 pubmed 出版商
  1095. Chu C, Gerstenzang E, Ossipova O, Sokol S. Lulu regulates Shroom-induced apical constriction during neural tube closure. PLoS ONE. 2013;8:e81854 pubmed 出版商
  1096. Rødland G, Tvegård T, Boye E, Grallert B. Crosstalk between the Tor and Gcn2 pathways in response to different stresses. Cell Cycle. 2014;13:453-61 pubmed 出版商
  1097. Boisvert R, Rego M, Azzinaro P, Mauro M, Howlett N. Coordinate nuclear targeting of the FANCD2 and FANCI proteins via a FANCD2 nuclear localization signal. PLoS ONE. 2013;8:e81387 pubmed 出版商
  1098. Law B, Spain V, Leinster V, Chia R, Beilina A, Cho H, et al. A direct interaction between leucine-rich repeat kinase 2 and specific ?-tubulin isoforms regulates tubulin acetylation. J Biol Chem. 2014;289:895-908 pubmed 出版商
  1099. Alves M, Martins A, Vaz C, Correia S, Moreira P, Oliveira P, et al. Metformin and male reproduction: effects on Sertoli cell metabolism. Br J Pharmacol. 2014;171:1033-42 pubmed 出版商
  1100. Chang K, Chang W, Chang Y, Hung L, Lai C, Yeh Y, et al. Ran GTPase-activating protein 1 is a therapeutic target in diffuse large B-cell lymphoma. PLoS ONE. 2013;8:e79863 pubmed 出版商
  1101. Liu X, Xiao W, Wang X, Li Y, Han J, Li Y. The p38-interacting protein (p38IP) regulates G2/M progression by promoting ?-tubulin acetylation via inhibiting ubiquitination-induced degradation of the acetyltransferase GCN5. J Biol Chem. 2013;288:36648-61 pubmed 出版商
  1102. Dawes L, Sugiyama Y, Lovicu F, Harris C, Shelley E, McAvoy J. Interactions between lens epithelial and fiber cells reveal an intrinsic self-assembly mechanism. Dev Biol. 2014;385:291-303 pubmed 出版商
  1103. Singh A, Zapata M, Choi Y, Yoon S. GSI promotes vincristine-induced apoptosis by enhancing multi-polar spindle formation. Cell Cycle. 2014;13:157-66 pubmed 出版商
  1104. Chen Y, Pan H, Tseng H, Chu H, Hung Y, Yen Y, et al. Differentiated epithelial- and mesenchymal-like phenotypes in subcutaneous mouse xenografts using diffusion weighted-magnetic resonance imaging. Int J Mol Sci. 2013;14:21943-59 pubmed 出版商
  1105. de Poot S, Lai K, van der Wal L, Plasman K, Van Damme P, Porter A, et al. Granzyme M targets topoisomerase II alpha to trigger cell cycle arrest and caspase-dependent apoptosis. Cell Death Differ. 2014;21:416-26 pubmed 出版商
  1106. Eldin P, Chazal N, Fenard D, Bernard E, Guichou J, Briant L. Vpr expression abolishes the capacity of HIV-1 infected cells to repair uracilated DNA. Nucleic Acids Res. 2014;42:1698-710 pubmed 出版商
  1107. Proia D, Zhang C, Sequeira M, Jimenez J, He S, Spector N, et al. Preclinical activity profile and therapeutic efficacy of the HSP90 inhibitor ganetespib in triple-negative breast cancer. Clin Cancer Res. 2014;20:413-24 pubmed 出版商
  1108. Whiteman E, Fan S, Harder J, Walton K, Liu C, Soofi A, et al. Crumbs3 is essential for proper epithelial development and viability. Mol Cell Biol. 2014;34:43-56 pubmed 出版商
  1109. Cochrane A. HIV-1 Rev function and RNA nuclear-cytoplasmic export. Methods Mol Biol. 2014;1087:103-14 pubmed 出版商
  1110. Garcia E, Santana Martínez R, Silva Islas C, Colín González A, Galvan Arzate S, Heras Y, et al. S-allyl cysteine protects against MPTP-induced striatal and nigral oxidative neurotoxicity in mice: participation of Nrf2. Free Radic Res. 2014;48:159-67 pubmed 出版商
  1111. Setyarani M, Zinellu A, Carru C, Zulli A. High dietary taurine inhibits myocardial apoptosis during an atherogenic diet: association with increased myocardial HSP70 and HSF-1 but not caspase 3. Eur J Nutr. 2014;53:929-37 pubmed 出版商
  1112. Aukkarasongsup P, Haruyama N, Matsumoto T, Shiga M, Moriyama K. Periostin inhibits hypoxia-induced apoptosis in human periodontal ligament cells via TGF-? signaling. Biochem Biophys Res Commun. 2013;441:126-32 pubmed 出版商
  1113. Hashizume C, Kobayashi A, Wong R. Down-modulation of nucleoporin RanBP2/Nup358 impaired chromosomal alignment and induced mitotic catastrophe. Cell Death Dis. 2013;4:e854 pubmed 出版商
  1114. Hashizume C, Moyori A, Kobayashi A, Yamakoshi N, Endo A, Wong R. Nucleoporin Nup62 maintains centrosome homeostasis. Cell Cycle. 2013;12:3804-16 pubmed 出版商
  1115. Egbert M, Ruetze M, Sattler M, Wenck H, Gallinat S, Lucius R, et al. The matricellular protein periostin contributes to proper collagen function and is downregulated during skin aging. J Dermatol Sci. 2014;73:40-8 pubmed 出版商
  1116. Drivas T, Holzbaur E, Bennett J. Disruption of CEP290 microtubule/membrane-binding domains causes retinal degeneration. J Clin Invest. 2013;123:4525-39 pubmed 出版商
  1117. Pazos P, Lima L, Casanueva F, Dieguez C, Garcia M. Interleukin 6 deficiency modulates the hypothalamic expression of energy balance regulating peptides during pregnancy in mice. PLoS ONE. 2013;8:e72339 pubmed 出版商
  1118. Martinez Sanchez A, Murphy C. miR-1247 functions by targeting cartilage transcription factor SOX9. J Biol Chem. 2013;288:30802-14 pubmed 出版商
  1119. Hosogane M, Funayama R, Nishida Y, Nagashima T, Nakayama K. Ras-induced changes in H3K27me3 occur after those in transcriptional activity. PLoS Genet. 2013;9:e1003698 pubmed 出版商
  1120. DelGiorno K, Hall J, Takeuchi K, Pan F, Halbrook C, Washington M, et al. Identification and manipulation of biliary metaplasia in pancreatic tumors. Gastroenterology. 2014;146:233-44.e5 pubmed 出版商
  1121. Kim Y, Zheng Y. Generation and characterization of a conditional deletion allele for Lmna in mice. Biochem Biophys Res Commun. 2013;440:8-13 pubmed 出版商
  1122. Yi X, Pashaj A, Xia M, Moreau R. Reversal of obesity-induced hypertriglyceridemia by (R)-?-lipoic acid in ZDF (fa/fa) rats. Biochem Biophys Res Commun. 2013;439:390-5 pubmed 出版商
  1123. Tucker B, Mullins R, Streb L, Anfinson K, Eyestone M, Kaalberg E, et al. Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. elife. 2013;2:e00824 pubmed 出版商
  1124. Chen Y, Kamili A, Hardy J, Groblewski G, Khanna K, Byrne J. Tumor protein D52 represents a negative regulator of ATM protein levels. Cell Cycle. 2013;12:3083-97 pubmed 出版商
  1125. Lu J, Chang Y, Wang C, Lin Y, Lin C, Wu Z. Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor ?-induced lipolysis in 3T3-L1 adipocytes. PLoS ONE. 2013;8:e71517 pubmed 出版商
  1126. Tan E, Caro S, Potnis A, Lanza C, Slawson C. O-linked N-acetylglucosamine cycling regulates mitotic spindle organization. J Biol Chem. 2013;288:27085-99 pubmed 出版商
  1127. Zhang Y, Seo S, Bhattarai S, Bugge K, Searby C, Zhang Q, et al. BBS mutations modify phenotypic expression of CEP290-related ciliopathies. Hum Mol Genet. 2014;23:40-51 pubmed 出版商
  1128. Kumar M, Allison D, Baranova N, Wamsley J, Katz A, Bekiranov S, et al. NF-?B regulates mesenchymal transition for the induction of non-small cell lung cancer initiating cells. PLoS ONE. 2013;8:e68597 pubmed 出版商
  1129. Gonzalez Silva C, Vera J, Bono M, Gonzalez Billault C, Baxter B, Hansen A, et al. Ca2+-activated Cl- channels of the ClCa family express in the cilia of a subset of rat olfactory sensory neurons. PLoS ONE. 2013;8:e69295 pubmed 出版商
  1130. Horton J, Stefanick D, Gassman N, Williams J, Gabel S, Cuneo M, et al. Preventing oxidation of cellular XRCC1 affects PARP-mediated DNA damage responses. DNA Repair (Amst). 2013;12:774-85 pubmed 出版商
  1131. Yuki K, Yoshida T, Miyake S, Tsubota K, Ozawa Y. Neuroprotective role of superoxide dismutase 1 in retinal ganglion cells and inner nuclear layer cells against N-methyl-d-aspartate-induced cytotoxicity. Exp Eye Res. 2013;115:230-8 pubmed 出版商
  1132. Newton C, Stoyek M, Croll R, Smith F. Regional innervation of the heart in the goldfish, Carassius auratus: a confocal microscopy study. J Comp Neurol. 2014;522:456-78 pubmed 出版商
  1133. Alfonso Pérez T, Domínguez Sánchez M, Garcia Dominguez M, Reyes J. Cytoplasmic interaction of the tumour suppressor protein hSNF5 with dynamin-2 controls endocytosis. Oncogene. 2014;33:3064-74 pubmed 出版商
  1134. Boutros R, Mondesert O, Lorenzo C, Astuti P, McArthur G, Chircop M, et al. CDC25B overexpression stabilises centrin 2 and promotes the formation of excess centriolar foci. PLoS ONE. 2013;8:e67822 pubmed 出版商
  1135. van Boxtel R, Gomez Puerto C, Mokry M, Eijkelenboom A, van der Vos K, Nieuwenhuis E, et al. FOXP1 acts through a negative feedback loop to suppress FOXO-induced apoptosis. Cell Death Differ. 2013;20:1219-29 pubmed 出版商
  1136. Zhang L, Wahlin K, Li Y, Masuda T, Yang Z, Zack D, et al. RIT2, a neuron-specific small guanosine triphosphatase, is expressed in retinal neuronal cells and its promoter is modulated by the POU4 transcription factors. Mol Vis. 2013;19:1371-86 pubmed
  1137. Kim S, Scott S, Bennett M, Carson R, Fessel J, Brown H, et al. Multi-organ abnormalities and mTORC1 activation in zebrafish model of multiple acyl-CoA dehydrogenase deficiency. PLoS Genet. 2013;9:e1003563 pubmed 出版商
  1138. Luijten M, Basten S, Claessens T, Vernooij M, Scott C, Janssen R, et al. Birt-Hogg-Dube syndrome is a novel ciliopathy. Hum Mol Genet. 2013;22:4383-97 pubmed 出版商
  1139. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498:492-6 pubmed 出版商
  1140. Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen A, et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature. 2013;498:516-20 pubmed 出版商
  1141. Samwer M, Dehne H, Spira F, Kollmar M, Gerlich D, Urlaub H, et al. The nuclear F-actin interactome of Xenopus oocytes reveals an actin-bundling kinesin that is essential for meiotic cytokinesis. EMBO J. 2013;32:1886-902 pubmed 出版商
  1142. Tomida J, Itaya A, Shigechi T, Unno J, Uchida E, Ikura M, et al. A novel interplay between the Fanconi anemia core complex and ATR-ATRIP kinase during DNA cross-link repair. Nucleic Acids Res. 2013;41:6930-41 pubmed 出版商
  1143. Tan C, Hagen T. mTORC1 dependent regulation of REDD1 protein stability. PLoS ONE. 2013;8:e63970 pubmed 出版商
  1144. Kolupaeva V, Daempfling L, Basilico C. The B55? regulatory subunit of protein phosphatase 2A mediates fibroblast growth factor-induced p107 dephosphorylation and growth arrest in chondrocytes. Mol Cell Biol. 2013;33:2865-78 pubmed 出版商
  1145. Ma T, Galimberti F, Erkmen C, Memoli V, Chinyengetere F, SEMPERE L, et al. Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer. Mol Cancer Ther. 2013;12:1545-55 pubmed 出版商
  1146. Brochier C, Dennis G, Rivieccio M, McLaughlin K, Coppola G, Ratan R, et al. Specific acetylation of p53 by HDAC inhibition prevents DNA damage-induced apoptosis in neurons. J Neurosci. 2013;33:8621-32 pubmed 出版商
  1147. Dai C, Sun F, Zhu C, Hu X. Tumor environmental factors glucose deprivation and lactic acidosis induce mitotic chromosomal instability--an implication in aneuploid human tumors. PLoS ONE. 2013;8:e63054 pubmed 出版商
  1148. Przewoźniak M, Czaplicka I, Czerwinska A, Markowska Zagrajek A, Moraczewski J, Stremińska W, et al. Adhesion proteins--an impact on skeletal myoblast differentiation. PLoS ONE. 2013;8:e61760 pubmed 出版商
  1149. Grabole N, Tischler J, Hackett J, Kim S, Tang F, Leitch H, et al. Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation. EMBO Rep. 2013;14:629-37 pubmed 出版商
  1150. Boehlke C, Kotsis F, Buchholz B, Powelske C, Eckardt K, Walz G, et al. Kif3a guides microtubular dynamics, migration and lumen formation of MDCK cells. PLoS ONE. 2013;8:e62165 pubmed 出版商
  1151. Svensson K, Christianson H, Wittrup A, Bourseau Guilmain E, Lindqvist E, Svensson L, et al. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem. 2013;288:17713-24 pubmed 出版商
  1152. Scaramuzzino C, Monaghan J, Milioto C, Lanson N, Maltare A, Aggarwal T, et al. Protein arginine methyltransferase 1 and 8 interact with FUS to modify its sub-cellular distribution and toxicity in vitro and in vivo. PLoS ONE. 2013;8:e61576 pubmed 出版商
  1153. Moreno A, Soleto I, García Sanz P, Moreno Bueno G, Palmero I. ING4 regulates a secretory phenotype in primary fibroblasts with dual effects on cell proliferation and tumor growth. Oncogene. 2014;33:1945-53 pubmed 出版商
  1154. Rodriguez Martin T, Cuchillo Ibanez I, Noble W, Nyenya F, Anderton B, Hanger D. Tau phosphorylation affects its axonal transport and degradation. Neurobiol Aging. 2013;34:2146-57 pubmed 出版商
  1155. Tan C, Hagen T. Destabilization of CDC6 upon DNA damage is dependent on neddylation but independent of Cullin E3 ligases. Int J Biochem Cell Biol. 2013;45:1489-98 pubmed 出版商
  1156. Li X, Xiao Z, Han J, Chen L, Xiao H, Ma F, et al. Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair. Biomaterials. 2013;34:5107-16 pubmed 出版商
  1157. Gal J, Chen J, Barnett K, Yang L, Brumley E, Zhu H. HDAC6 regulates mutant SOD1 aggregation through two SMIR motifs and tubulin acetylation. J Biol Chem. 2013;288:15035-45 pubmed 出版商
  1158. Reginensi A, Scott R, Gregorieff A, Bagherie Lachidan M, Chung C, Lim D, et al. Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet. 2013;9:e1003380 pubmed 出版商
  1159. Hirano T, Takagi K, Hoshino Y, Abe T. DNA damage response in male gametes of Cyrtanthus mackenii during pollen tube growth. AoB Plants. 2013;5:plt004 pubmed 出版商
  1160. Luo M, Ling T, Xie W, Sun H, Zhou Y, Zhu Q, et al. NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells. Stem Cells. 2013;31:1278-86 pubmed 出版商
  1161. Navis A, Bourgonje A, Wesseling P, Wright A, Hendriks W, Verrijp K, et al. Effects of dual targeting of tumor cells and stroma in human glioblastoma xenografts with a tyrosine kinase inhibitor against c-MET and VEGFR2. PLoS ONE. 2013;8:e58262 pubmed 出版商
  1162. Behrens A, Iacovino M, Lohr J, Ren Y, Zierold C, Harvey R, et al. Nkx2-5 mediates differential cardiac differentiation through interaction with Hoxa10. Stem Cells Dev. 2013;22:2211-20 pubmed 出版商
  1163. Pe er T, Lahmi R, Sharaby Y, Chorni E, Noach M, Vecsler M, et al. Gas2l3, a novel constriction site-associated protein whose regulation is mediated by the APC/C Cdh1 complex. PLoS ONE. 2013;8:e57532 pubmed 出版商
  1164. Dush M, Nascone Yoder N. Jun N-terminal kinase maintains tissue integrity during cell rearrangement in the gut. Development. 2013;140:1457-66 pubmed 出版商
  1165. Trakala M, Fernández Miranda G, Perez de Castro I, Heeschen C, Malumbres M. Aurora B prevents delayed DNA replication and premature mitotic exit by repressing p21(Cip1). Cell Cycle. 2013;12:1030-41 pubmed 出版商
  1166. Tan C, Hagen T. Post-translational regulation of mTOR complex 1 in hypoxia and reoxygenation. Cell Signal. 2013;25:1235-44 pubmed 出版商
  1167. Lang J, Maeda Y, Bannerman P, Xu J, Horiuchi M, Pleasure D, et al. Adenomatous polyposis coli regulates oligodendroglial development. J Neurosci. 2013;33:3113-30 pubmed 出版商
  1168. Imbalzano K, Cohet N, Wu Q, Underwood J, Imbalzano A, Nickerson J. Nuclear shape changes are induced by knockdown of the SWI/SNF ATPase BRG1 and are independent of cytoskeletal connections. PLoS ONE. 2013;8:e55628 pubmed 出版商
  1169. Greer Y, Fields A, Brown A, Rubin J. Atypical protein kinase C? is required for Wnt3a-dependent neurite outgrowth and binds to phosphorylated dishevelled 2. J Biol Chem. 2013;288:9438-46 pubmed 出版商
  1170. Kim H, Woo H, Ryu J, Bok J, Kim J, Choi S, et al. Conditional deletion of pten leads to defects in nerve innervation and neuronal survival in inner ear development. PLoS ONE. 2013;8:e55609 pubmed 出版商
  1171. Taylor D, Moser R, Regulier E, Breuillaud L, Dixon M, Beesen A, et al. MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition. J Neurosci. 2013;33:2313-25 pubmed 出版商
  1172. Rodriguez Diaz R, Caicedo A. Novel approaches to studying the role of innervation in the biology of pancreatic islets. Endocrinol Metab Clin North Am. 2013;42:39-56 pubmed 出版商
  1173. Barakat M, Humke E, Scott M. Kif3a is necessary for initiation and maintenance of medulloblastoma. Carcinogenesis. 2013;34:1382-92 pubmed 出版商
  1174. Dawes L, Sugiyama Y, Tanedo A, Lovicu F, McAvoy J. Wnt-frizzled signaling is part of an FGF-induced cascade that promotes lens fiber differentiation. Invest Ophthalmol Vis Sci. 2013;54:1582-90 pubmed 出版商
  1175. Willaredt M, Gorgas K, Gardner H, Tucker K. Multiple essential roles for primary cilia in heart development. Cilia. 2012;1:23 pubmed 出版商
  1176. Brandhagen B, Tieszen C, Ulmer T, Tracy M, Goyeneche A, Telleria C. Cytostasis and morphological changes induced by mifepristone in human metastatic cancer cells involve cytoskeletal filamentous actin reorganization and impairment of cell adhesion dynamics. BMC Cancer. 2013;13:35 pubmed 出版商
  1177. Wang Y, Dantas T, Lalor P, Dockery P, Morrison C. Promoter hijack reveals pericentrin functions in mitosis and the DNA damage response. Cell Cycle. 2013;12:635-46 pubmed 出版商
  1178. Carra E, Barbieri F, Marubbi D, Pattarozzi A, Favoni R, Florio T, et al. Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures. Cell Cycle. 2013;12:491-500 pubmed 出版商
  1179. Peng X, Gao H, Wang Y, Yang B, Liu T, Sun Y, et al. Conversion of rat embryonic stem cells into neural precursors in chemical-defined medium. Biochem Biophys Res Commun. 2013;431:783-7 pubmed 出版商
  1180. Hu C, Sethi J, Hagen T. The role of the cullin-5 e3 ubiquitin ligase in the regulation of insulin receptor substrate-1. Biochem Res Int. 2012;2012:282648 pubmed 出版商
  1181. Gu B, Eick D, Bensaude O. CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo. Nucleic Acids Res. 2013;41:1591-603 pubmed 出版商
  1182. Tattoli I, Philpott D, Girardin S. The bacterial and cellular determinants controlling the recruitment of mTOR to the Salmonella-containing vacuole. Biol Open. 2012;1:1215-25 pubmed 出版商
  1183. Beane W, Morokuma J, Lemire J, Levin M. Bioelectric signaling regulates head and organ size during planarian regeneration. Development. 2013;140:313-22 pubmed 出版商
  1184. Bubenshchikova E, Ichimura K, Fukuyo Y, Powell R, Hsu C, Morrical S, et al. Wtip and Vangl2 are required for mitotic spindle orientation and cloaca morphogenesis. Biol Open. 2012;1:588-96 pubmed 出版商
  1185. Newman A, Scholefield C, Kemp A, Newman M, McIver E, Kamal A, et al. TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-κB signalling. PLoS ONE. 2012;7:e50672 pubmed 出版商
  1186. Fan C, Lum M, Xu C, Black J, Wang X. Ubiquitin-dependent regulation of phospho-AKT dynamics by the ubiquitin E3 ligase, NEDD4-1, in the insulin-like growth factor-1 response. J Biol Chem. 2013;288:1674-84 pubmed 出版商
  1187. Jullien L, Mestre M, Roux P, Gire V. Eroded human telomeres are more prone to remain uncapped and to trigger a G2 checkpoint response. Nucleic Acids Res. 2013;41:900-11 pubmed 出版商
  1188. Gao M, Rendtlew Danielsen J, Wei L, Zhou D, Xu Q, Li M, et al. A novel role of human holliday junction resolvase GEN1 in the maintenance of centrosome integrity. PLoS ONE. 2012;7:e49687 pubmed 出版商
  1189. Ribeiro Varandas E, Viegas W, Sofia Pereira H, Delgado M. Bisphenol A at concentrations found in human serum induces aneugenic effects in endothelial cells. Mutat Res. 2013;751:27-33 pubmed 出版商
  1190. Blakemore L, Boes C, Cordell R, Manson M. Curcumin-induced mitotic arrest is characterized by spindle abnormalities, defects in chromosomal congression and DNA damage. Carcinogenesis. 2013;34:351-60 pubmed 出版商
  1191. Aivar P, Fernandez Orth J, Gomis Pèrez C, Alberdi A, Alaimo A, Rodriguez M, et al. Surface expression and subunit specific control of steady protein levels by the Kv7.2 helix A-B linker. PLoS ONE. 2012;7:e47263 pubmed 出版商
  1192. Duncan A, Forcina J, Birt A, Townson D. Estrous cycle-dependent changes of Fas expression in the bovine corpus luteum: influence of keratin 8/18 intermediate filaments and cytokines. Reprod Biol Endocrinol. 2012;10:90 pubmed 出版商
  1193. Limbo O, Moiani D, Kertokalio A, Wyman C, Tainer J, Russell P. Mre11 ATLD17/18 mutation retains Tel1/ATM activity but blocks DNA double-strand break repair. Nucleic Acids Res. 2012;40:11435-49 pubmed 出版商
  1194. Dinh P, Beura L, Das P, Panda D, Das A, Pattnaik A. Induction of stress granule-like structures in vesicular stomatitis virus-infected cells. J Virol. 2013;87:372-83 pubmed 出版商
  1195. Conroy P, Saladino C, Dantas T, Lalor P, Dockery P, Morrison C. C-NAP1 and rootletin restrain DNA damage-induced centriole splitting and facilitate ciliogenesis. Cell Cycle. 2012;11:3769-78 pubmed 出版商
  1196. Koch S, Scifo E, Rokka A, Trippner P, Lindfors M, Korhonen R, et al. Cathepsin D deficiency induces cytoskeletal changes and affects cell migration pathways in the brain. Neurobiol Dis. 2013;50:107-19 pubmed 出版商
  1197. Coffey K, Blackburn T, Cook S, Golding B, Griffin R, Hardcastle I, et al. Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PLoS ONE. 2012;7:e45539 pubmed 出版商
  1198. Pakala S, Nair V, Reddy S, Kumar R. Signaling-dependent phosphorylation of mitotic centromere-associated kinesin regulates microtubule depolymerization and its centrosomal localization. J Biol Chem. 2012;287:40560-9 pubmed 出版商
  1199. Queen K, Shi M, Zhang F, Cvek U, Scott R. Epstein-Barr virus-induced epigenetic alterations following transient infection. Int J Cancer. 2013;132:2076-86 pubmed 出版商
  1200. Kopeikina K, Polydoro M, Tai H, Yaeger E, Carlson G, Pitstick R, et al. Synaptic alterations in the rTg4510 mouse model of tauopathy. J Comp Neurol. 2013;521:1334-53 pubmed 出版商
  1201. Spiller C, Feng C, Jackson A, Gillis A, Rolland A, Looijenga L, et al. Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development. 2012;139:4123-32 pubmed 出版商
  1202. Cigna N, Farrokhi Moshai E, Brayer S, Marchal Sommé J, Wemeau Stervinou L, Fabre A, et al. The hedgehog system machinery controls transforming growth factor-?-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis. Am J Pathol. 2012;181:2126-37 pubmed 出版商
  1203. Hebras C, McDougall A. Urochordate ascidians possess a single isoform of Aurora kinase that localizes to the midbody via TPX2 in eggs and cleavage stage embryos. PLoS ONE. 2012;7:e45431 pubmed 出版商
  1204. Loessner D, Quent V, Kraemer J, Weber E, Hutmacher D, Magdolen V, et al. Combined expression of KLK4, KLK5, KLK6, and KLK7 by ovarian cancer cells leads to decreased adhesion and paclitaxel-induced chemoresistance. Gynecol Oncol. 2012;127:569-78 pubmed 出版商
  1205. Holt J, Lane S, Jennings P, Garcia Higuera I, Moreno S, Jones K. APC(FZR1) prevents nondisjunction in mouse oocytes by controlling meiotic spindle assembly timing. Mol Biol Cell. 2012;23:3970-81 pubmed 出版商
  1206. Gartner S, Liu Y, Natesan S. De novo generation of cells within human nurse macrophages and consequences following HIV-1 infection. PLoS ONE. 2012;7:e40139 pubmed 出版商
  1207. Chen Y, Sundvik M, Rozov S, Priyadarshini M, Panula P. MANF regulates dopaminergic neuron development in larval zebrafish. Dev Biol. 2012;370:237-49 pubmed 出版商
  1208. Wallmen B, Schrempp M, Hecht A. Intrinsic properties of Tcf1 and Tcf4 splice variants determine cell-type-specific Wnt/?-catenin target gene expression. Nucleic Acids Res. 2012;40:9455-69 pubmed 出版商
  1209. Cha S, McAdams M, Kormish J, Wylie C, Kofron M. Foxi2 is an animally localized maternal mRNA in Xenopus, and an activator of the zygotic ectoderm activator Foxi1e. PLoS ONE. 2012;7:e41782 pubmed 出版商
  1210. Xiao Y, Karnati S, Qian G, Nenicu A, Fan W, Tchatalbachev S, et al. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways. PLoS ONE. 2012;7:e41097 pubmed 出版商
  1211. Hsin I, Hsiao Y, Wu M, Jan M, Tang S, Lin Y, et al. Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells. Toxicol Appl Pharmacol. 2012;263:330-7 pubmed 出版商
  1212. Chao H, Lai Y, Lu Y, Lin C, Mai W, Huang Y. NMDAR signaling facilitates the IPO5-mediated nuclear import of CPEB3. Nucleic Acids Res. 2012;40:8484-98 pubmed
  1213. Ma M, Chircop M. SNX9, SNX18 and SNX33 are required for progression through and completion of mitosis. J Cell Sci. 2012;125:4372-82 pubmed 出版商
  1214. Watanabe T, Sakai Y, Koga D, Bochimoto H, Hira Y, Hosaka M, et al. A unique ball-shaped Golgi apparatus in the rat pituitary gonadotrope: its functional implications in relation to the arrangement of the microtubule network. J Histochem Cytochem. 2012;60:588-602 pubmed 出版商
  1215. Liu K, Wang H, Long Y, Ye J, Yuan L. Coordinate lentiviral expression of Cre recombinase and RFP/EGFP mediated by FMDV 2A and analysis of Cre activity. J Cell Biochem. 2012;113:2909-19 pubmed 出版商
  1216. Ren G, Baritaki S, Marathe H, Feng J, Park S, Beach S, et al. Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor RKIP in breast and prostate cancer. Cancer Res. 2012;72:3091-104 pubmed 出版商
  1217. Shia W, Okumura A, Yan M, Sarkeshik A, Lo M, Matsuura S, et al. PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood. 2012;119:4953-62 pubmed 出版商
  1218. Mikeladze Dvali T, von Tobel L, Strnad P, Knott G, Leonhardt H, Schermelleh L, et al. Analysis of centriole elimination during C. elegans oogenesis. Development. 2012;139:1670-9 pubmed 出版商
  1219. Austenaa L, Barozzi I, Chronowska A, Termanini A, Ostuni R, Prosperini E, et al. The histone methyltransferase Wbp7 controls macrophage function through GPI glycolipid anchor synthesis. Immunity. 2012;36:572-85 pubmed 出版商
  1220. Chkourko H, Guerrero Serna G, Lin X, Darwish N, Pohlmann J, Cook K, et al. Remodeling of mechanical junctions and of microtubule-associated proteins accompany cardiac connexin43 lateralization. Heart Rhythm. 2012;9:1133-1140.e6 pubmed 出版商
  1221. Beriault D, Haddad O, McCuaig J, Robinson Z, Russell D, Lane E, et al. The mechanical behavior of mutant K14-R125P keratin bundles and networks in NEB-1 keratinocytes. PLoS ONE. 2012;7:e31320 pubmed 出版商
  1222. Herz H, Mohan M, Garrett A, Miller C, Casto D, Zhang Y, et al. Polycomb repressive complex 2-dependent and -independent functions of Jarid2 in transcriptional regulation in Drosophila. Mol Cell Biol. 2012;32:1683-93 pubmed 出版商
  1223. Koch A, Rode H, Richters A, Rauh D, Hauf S. A chemical genetic approach for covalent inhibition of analogue-sensitive aurora kinase. ACS Chem Biol. 2012;7:723-31 pubmed 出版商
  1224. Macia A, Gallel P, Vaquero M, Gou Fabregas M, Santacana M, Maliszewska A, et al. Sprouty1 is a candidate tumor-suppressor gene in medullary thyroid carcinoma. Oncogene. 2012;31:3961-72 pubmed 出版商
  1225. Charters G, Stones C, Shelling A, Baguley B, Finlay G. Centrosomal dysregulation in human metastatic melanoma cell lines. Cancer Genet. 2011;204:477-85 pubmed 出版商
  1226. Choo Y, Boh B, Lou J, Eng J, Leck Y, Anders B, et al. Characterization of the role of COP9 signalosome in regulating cullin E3 ubiquitin ligase activity. Mol Biol Cell. 2011;22:4706-15 pubmed 出版商
  1227. Balsas P, Galán Malo P, Marzo I, Naval J. Bortezomib resistance in a myeloma cell line is associated to PSM?5 overexpression and polyploidy. Leuk Res. 2012;36:212-8 pubmed 出版商
  1228. Rauert H, Stühmer T, Bargou R, Wajant H, Siegmund D. TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms. Cell Death Dis. 2011;2:e194 pubmed 出版商
  1229. He H, Yu F, Sun C, Luo Y. CBP/p300 and SIRT1 are involved in transcriptional regulation of S-phase specific histone genes. PLoS ONE. 2011;6:e22088 pubmed 出版商
  1230. Liu D, Hsu C, Tsai S, Hsiao C, Wang W. A variant of fibroblast growth factor receptor 2 (Fgfr2) regulates left-right asymmetry in zebrafish. PLoS ONE. 2011;6:e21793 pubmed 出版商
  1231. Li D, Shin J, Duan D. iNOS ablation does not improve specific force of the extensor digitorum longus muscle in dystrophin-deficient mdx4cv mice. PLoS ONE. 2011;6:e21618 pubmed 出版商
  1232. Ko C, Tsai M, Tseng W, Cheng C, Huang C, Wu J, et al. Integration of CNS survival and differentiation by HIF2α. Cell Death Differ. 2011;18:1757-70 pubmed 出版商
  1233. Houben A, Kumke K, Nagaki K, Hause G. CENH3 distribution and differential chromatin modifications during pollen development in rye (Secale cereale L.). Chromosome Res. 2011;19:471-80 pubmed 出版商
  1234. Vanderperre B, Staskevicius A, Tremblay G, McCoy M, O Neill M, Cashman N, et al. An overlapping reading frame in the PRNP gene encodes a novel polypeptide distinct from the prion protein. FASEB J. 2011;25:2373-86 pubmed 出版商
  1235. Boh B, Smith P, Hagen T. Neddylation-induced conformational control regulates cullin RING ligase activity in vivo. J Mol Biol. 2011;409:136-45 pubmed 出版商
  1236. Nasonkin I, Lazo K, Hambright D, Brooks M, Fariss R, Swaroop A. Distinct nuclear localization patterns of DNA methyltransferases in developing and mature mammalian retina. J Comp Neurol. 2011;519:1914-30 pubmed 出版商
  1237. Stern C, Luoma J, Meitzen J, Mermelstein P. Corticotropin releasing factor-induced CREB activation in striatal neurons occurs via a novel G?? signaling pathway. PLoS ONE. 2011;6:e18114 pubmed 出版商
  1238. Chang H, Jennings P, Stewart J, Verrills N, Jones K. Essential role of protein phosphatase 2A in metaphase II arrest and activation of mouse eggs shown by okadaic acid, dominant negative protein phosphatase 2A, and FTY720. J Biol Chem. 2011;286:14705-12 pubmed 出版商
  1239. Tooley J, Miller S, Stukenberg P. The Ndc80 complex uses a tripartite attachment point to couple microtubule depolymerization to chromosome movement. Mol Biol Cell. 2011;22:1217-26 pubmed 出版商
  1240. Chua Y, Boh B, Ponyeam W, Hagen T. Regulation of cullin RING E3 ubiquitin ligases by CAND1 in vivo. PLoS ONE. 2011;6:e16071 pubmed 出版商
  1241. Stoepker C, Hain K, Schuster B, Hilhorst Hofstee Y, Rooimans M, Steltenpool J, et al. SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat Genet. 2011;43:138-41 pubmed 出版商
  1242. Skalski M, Sharma N, Williams K, Kruspe A, Coppolino M. SNARE-mediated membrane traffic is required for focal adhesion kinase signaling and Src-regulated focal adhesion turnover. Biochim Biophys Acta. 2011;1813:148-58 pubmed 出版商
  1243. Uyttebroek L, Shepherd I, Harrisson F, Hubens G, Blust R, Timmermans J, et al. Neurochemical coding of enteric neurons in adult and embryonic zebrafish (Danio rerio). J Comp Neurol. 2010;518:4419-38 pubmed 出版商
  1244. Mire C, White J, Whitt M. A spatio-temporal analysis of matrix protein and nucleocapsid trafficking during vesicular stomatitis virus uncoating. PLoS Pathog. 2010;6:e1000994 pubmed 出版商
  1245. Richter A, Schagdarsurengin U, Rastetter M, Steinmann K, Dammann R. Protein kinase A-mediated phosphorylation of the RASSF1A tumour suppressor at Serine 203 and regulation of RASSF1A function. Eur J Cancer. 2010;46:2986-95 pubmed 出版商
  1246. Leck Y, Choo Y, Tan C, Smith P, Hagen T. Biochemical and cellular effects of inhibiting Nedd8 conjugation. Biochem Biophys Res Commun. 2010;398:588-93 pubmed 出版商
  1247. Yu F, Chai T, He H, Hagen T, Luo Y. Thioredoxin-interacting protein (Txnip) gene expression: sensing oxidative phosphorylation status and glycolytic rate. J Biol Chem. 2010;285:25822-30 pubmed 出版商
  1248. Boichuk S, Hu L, Hein J, Gjoerup O. Multiple DNA damage signaling and repair pathways deregulated by simian virus 40 large T antigen. J Virol. 2010;84:8007-20 pubmed 出版商
  1249. Hirano T, Hoshino Y. Sperm dimorphism in terms of nuclear shape and microtubule accumulation in Cyrtanthus mackenii. Sex Plant Reprod. 2010;23:153-62 pubmed 出版商
  1250. Irvine M, Philipsz S, Frausto M, Mijatov B, Gallagher S, Fung C, et al. Amino terminal hydrophobic import signals target the p14(ARF) tumor suppressor to the mitochondria. Cell Cycle. 2010;9:829-39 pubmed
  1251. Chang H, Minahan K, Merriman J, Jones K. Calmodulin-dependent protein kinase gamma 3 (CamKIIgamma3) mediates the cell cycle resumption of metaphase II eggs in mouse. Development. 2009;136:4077-81 pubmed 出版商
  1252. Wodarczyk C, Rowe I, Chiaravalli M, Pema M, Qian F, Boletta A. A novel mouse model reveals that polycystin-1 deficiency in ependyma and choroid plexus results in dysfunctional cilia and hydrocephalus. PLoS ONE. 2009;4:e7137 pubmed 出版商
  1253. Clarke J, Emson P, Irvine R. Distribution and neuronal expression of phosphatidylinositol phosphate kinase IIgamma in the mouse brain. J Comp Neurol. 2009;517:296-312 pubmed 出版商
  1254. Jin L, Zhang G, Jamison C, Takano H, Haydon P, Selzer M. Axon regeneration in the absence of growth cones: acceleration by cyclic AMP. J Comp Neurol. 2009;515:295-312 pubmed 出版商
  1255. Shkarupeta M, Kostrjukova E, Lazarev V, Levitskii S, Basovskii Y, Govorun V. Localization of C. trachomatis Inc proteins in expression of their genes in HeLa cell culture. Bull Exp Biol Med. 2008;146:237-42 pubmed
  1256. Barreiro Iglesias A, Aldegunde M, Anadón R, Rodicio M. Extensive presence of serotonergic cells and fibers in the peripheral nervous system of lampreys. J Comp Neurol. 2009;512:478-99 pubmed 出版商
  1257. Haferkamp S, Becker T, Scurr L, Kefford R, Rizos H. p16INK4a-induced senescence is disabled by melanoma-associated mutations. Aging Cell. 2008;7:733-45 pubmed
  1258. Barreiro Iglesias A, Villar Cerviño V, Villar Cheda B, Anadón R, Rodicio M. Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates. J Comp Neurol. 2008;511:438-53 pubmed 出版商
  1259. Kim Y, Park S, Park J. Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device. Analyst. 2008;133:1432-9 pubmed 出版商
  1260. Tripathi R, McTigue D. Chronically increased ciliary neurotrophic factor and fibroblast growth factor-2 expression after spinal contusion in rats. J Comp Neurol. 2008;510:129-44 pubmed 出版商
  1261. Itahana K, Zhang Y. Mitochondrial p32 is a critical mediator of ARF-induced apoptosis. Cancer Cell. 2008;13:542-53 pubmed 出版商
  1262. Nakaya T, Kawai T, Suzuki T. Regulation of FE65 nuclear translocation and function by amyloid beta-protein precursor in osmotically stressed cells. J Biol Chem. 2008;283:19119-31 pubmed 出版商
  1263. Olsson C, Holmberg A, Holmgren S. Development of enteric and vagal innervation of the zebrafish (Danio rerio) gut. J Comp Neurol. 2008;508:756-70 pubmed 出版商
  1264. Pandithage R, Lilischkis R, Harting K, Wolf A, Jedamzik B, Lüscher Firzlaff J, et al. The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. J Cell Biol. 2008;180:915-29 pubmed 出版商
  1265. Carneiro A, Fragel Madeira L, Silva Neto M, Linden R. A role for CK2 upon interkinetic nuclear migration in the cell cycle of retinal progenitor cells. Dev Neurobiol. 2008;68:620-31 pubmed 出版商
  1266. Ramsey C, Yeung F, Stoddard P, Li D, Creutz C, Mayo M. Copine-I represses NF-kappaB transcription by endoproteolysis of p65. Oncogene. 2008;27:3516-26 pubmed 出版商
  1267. Woost P, Kolb R, Chang C, Finesilver M, Inagami T, Hopfer U. Development of an AT2-deficient proximal tubule cell line for transport studies. In Vitro Cell Dev Biol Anim. 2007;43:352-60 pubmed
  1268. Gabet A, Accardi R, Bellopede A, Popp S, Boukamp P, Sylla B, et al. Impairment of the telomere/telomerase system and genomic instability are associated with keratinocyte immortalization induced by the skin human papillomavirus type 38. FASEB J. 2008;22:622-32 pubmed
  1269. Lü L, Li J, Yew D, Rudd J, Mak Y. Oxidative stress on the astrocytes in culture derived from a senescence accelerated mouse strain. Neurochem Int. 2008;52:282-9 pubmed
  1270. Egner A, Geisler C, von Middendorff C, Bock H, Wenzel D, Medda R, et al. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J. 2007;93:3285-90 pubmed
  1271. Nishiya T, Kajita E, Horinouchi T, Nishimoto A, Miwa S. Distinct roles of TIR and non-TIR regions in the subcellular localization and signaling properties of MyD88. FEBS Lett. 2007;581:3223-9 pubmed
  1272. Supino R, Favini E, Cuccuru G, Zunino F, Scovassi A. Effect of paclitaxel on intracellular localization of c-Myc and P-c-Myc in prostate carcinoma cell lines. Ann N Y Acad Sci. 2007;1095:175-81 pubmed
  1273. Gossot O, Geitmann A. Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton. Planta. 2007;226:405-16 pubmed
  1274. Martin Latil S, Mousson L, Autret A, Colbere Garapin F, Blondel B. Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway. J Virol. 2007;81:4457-64 pubmed
  1275. Chew E, Poobalasingam T, Hawkey C, Hagen T. Characterization of cullin-based E3 ubiquitin ligases in intact mammalian cells--evidence for cullin dimerization. Cell Signal. 2007;19:1071-80 pubmed
  1276. De Fanis U, Mori F, Kurnat R, Lee W, Bova M, Adkinson N, et al. GATA3 up-regulation associated with surface expression of CD294/CRTH2: a unique feature of human Th cells. Blood. 2007;109:4343-50 pubmed
  1277. Wegmüller D, Raineri I, Gross B, Oakeley E, Moroni C. A cassette system to study embryonic stem cell differentiation by inducible RNA interference. Stem Cells. 2007;25:1178-85 pubmed
  1278. Pellegrini E, Mouriec K, Anglade I, Menuet A, Le Page Y, Gueguen M, et al. Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish. J Comp Neurol. 2007;501:150-67 pubmed
  1279. Kim J, Lee C, Bonifant C, Ressom H, Waldman T. Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA. Mol Cell Biol. 2007;27:662-77 pubmed
  1280. Henley D, Isbill M, Fernando R, Foster J, Wimalasena J. Paclitaxel induced apoptosis in breast cancer cells requires cell cycle transit but not Cdc2 activity. Cancer Chemother Pharmacol. 2007;59:235-49 pubmed
  1281. Valdes R, Liu W, Ullman B, Landfear S. Comprehensive examination of charged intramembrane residues in a nucleoside transporter. J Biol Chem. 2006;281:22647-55 pubmed
  1282. Sharma M, Leung L, Brocardo M, Henderson J, Flegg C, Henderson B. Membrane localization of adenomatous polyposis coli protein at cellular protrusions: targeting sequences and regulation by beta-catenin. J Biol Chem. 2006;281:17140-9 pubmed
  1283. Hao M, Li X, Rizzo M, Rocheleau J, Dawant B, Piston D. Regulation of two insulin granule populations within the reserve pool by distinct calcium sources. J Cell Sci. 2005;118:5873-84 pubmed
  1284. Barlow J, Wiley J, Mous M, Narendran A, Gee M, Goldberg M, et al. Differentiation of rhabdomyosarcoma cell lines using retinoic acid. Pediatr Blood Cancer. 2006;47:773-84 pubmed
  1285. Remacle A, Rozanov D, Baciu P, Chekanov A, Golubkov V, Strongin A. The transmembrane domain is essential for the microtubular trafficking of membrane type-1 matrix metalloproteinase (MT1-MMP). J Cell Sci. 2005;118:4975-84 pubmed
  1286. Babcock H, Chen C, Zhuang X. Using single-particle tracking to study nuclear trafficking of viral genes. Biophys J. 2004;87:2749-58 pubmed
  1287. Jacobelli J, Chmura S, Buxton D, Davis M, Krummel M. A single class II myosin modulates T cell motility and stopping, but not synapse formation. Nat Immunol. 2004;5:531-8 pubmed
  1288. Nascimento A, Roland J, Gelfand V. Pigment cells: a model for the study of organelle transport. Annu Rev Cell Dev Biol. 2003;19:469-91 pubmed
  1289. Martin K, Hart C, Liu J, Leung W, Patton W. Simultaneous trichromatic fluorescence detection of proteins on Western blots using an amine-reactive dye in combination with alkaline phosphatase- and horseradish peroxidase-antibody conjugates. Proteomics. 2003;3:1215-27 pubmed
  1290. Ashton A, Ware G, Kaul D, Ware J. Inhibition of tumor necrosis factor alpha-mediated NFkappaB activation and leukocyte adhesion, with enhanced endothelial apoptosis, by G protein-linked receptor (TP) ligands. J Biol Chem. 2003;278:11858-66 pubmed
  1291. Madison D, Yaciuk P, Kwok R, Lundblad J. Acetylation of the adenovirus-transforming protein E1A determines nuclear localization by disrupting association with importin-alpha. J Biol Chem. 2002;277:38755-63 pubmed
  1292. Rohde G, Wenzel D, Haucke V. A phosphatidylinositol (4,5)-bisphosphate binding site within mu2-adaptin regulates clathrin-mediated endocytosis. J Cell Biol. 2002;158:209-14 pubmed
  1293. Errico A, Ballabio A, Rugarli E. Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum Mol Genet. 2002;11:153-63 pubmed
  1294. Hernandez Blazquez F, Joazeiro P, Omori Y, Yamasaki H. Control of intracellular movement of connexins by E-cadherin in murine skin papilloma cells. Exp Cell Res. 2001;270:235-47 pubmed
  1295. Gramolini A, Belanger G, Jasmin B. Distinct regions in the 3' untranslated region are responsible for targeting and stabilizing utrophin transcripts in skeletal muscle cells. J Cell Biol. 2001;154:1173-83 pubmed
  1296. Vogelsberg Ragaglia V, Bruce J, Richter Landsberg C, Zhang B, Hong M, Trojanowski J, et al. Distinct FTDP-17 missense mutations in tau produce tau aggregates and other pathological phenotypes in transfected CHO cells. Mol Biol Cell. 2000;11:4093-104 pubmed
  1297. Deloulme J, Assard N, Mbele G, Mangin C, Kuwano R, Baudier J. S100A6 and S100A11 are specific targets of the calcium- and zinc-binding S100B protein in vivo. J Biol Chem. 2000;275:35302-10 pubmed
  1298. Pryde J, Walker A, Rossi A, Hannah S, Haslett C. Temperature-dependent arrest of neutrophil apoptosis. Failure of Bax insertion into mitochondria at 15 degrees C prevents the release of cytochrome c. J Biol Chem. 2000;275:33574-84 pubmed
  1299. Berggren K, Steinberg T, Lauber W, Carroll J, Lopez M, Chernokalskaya E, et al. A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Anal Biochem. 1999;276:129-43 pubmed
  1300. Timm S, Titus B, Bernd K, Barroso M. The EF-hand Ca(2+)-binding protein p22 associates with microtubules in an N-myristoylation-dependent manner. Mol Biol Cell. 1999;10:3473-88 pubmed
  1301. Panchuk Voloshina N, Bishop Stewart J, Bhalgat M, Millard P, Mao F, Leung W, et al. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem. 1999;47:1179-88 pubmed
  1302. Yvon A, Wadsworth P, Jordan M. Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol Biol Cell. 1999;10:947-59 pubmed
  1303. Koester S, Schlossman S, Zhang C, Decker S, Bolton W. APO2.7 defines a shared apoptotic-necrotic pathway in a breast tumor hypoxia model. Cytometry. 1998;33:324-32 pubmed
  1304. Hime G, Saint R. Zygotic expression of the pebble locus is required for cytokinesis during the postblastoderm mitoses of Drosophila. Development. 1992;114:165-71 pubmed