这是一篇来自已证抗体库的有关牛 Ⅲ型β微管蛋白 (TUBB3) 的综述,是根据123篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ⅲ型β微管蛋白 抗体。
Ⅲ型β微管蛋白 同义词: TUBB4

艾博抗(上海)贸易有限公司
小鼠 单克隆(2G10)
  • 免疫组化; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1a). Acta Neuropathol (2021) ncbi
小鼠 单克隆(2G10)
  • 免疫组化; 人类; 1:200; 图 s3-1c
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s3-1c). elife (2020) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:1000; 图 5d
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 5d). J Neuroinflammation (2020) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 人类; 图 1c
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫细胞化学在人类样本上 (图 1c). Cell Rep (2020) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 小鼠; 1:300; 图 1c
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 1c). Mol Med Rep (2020) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 人类; 图 s5b
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫细胞化学在人类样本上 (图 s5b). Cell (2018) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:100; 表 1
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (表 1). Oncol Lett (2017) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 小鼠; 1:400; 图 7a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 7a). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(2G10)
  • 免疫组化; 小鼠; 图 3A
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫组化在小鼠样本上 (图 3A). Peerj (2017) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 st15
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 st15). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(2G10)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 6j
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 6j). Ann Neurol (2017) ncbi
小鼠 单克隆(2G10)
  • 免疫印迹; 大鼠; 1:100
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫印迹在大鼠样本上浓度为1:100. J Gen Physiol (2017) ncbi
小鼠 单克隆(2G10)
  • 免疫印迹; 人类; 图 9c
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫印迹在人类样本上 (图 9c). Oncotarget (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:100
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, 7751)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100. Mol Med Rep (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Brain (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, 7751)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). J Neuroinflammation (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; 小鼠; 图 4f
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, TU-20)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4f). J Virol (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:1000; 图 2
  • 免疫印迹; 大鼠; 图 s5
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, TU-20)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 s5). Stem Cells Dev (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:500; 图 7
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(2G10)
  • 免疫组化; 人类; 1:500; 图 7a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫组化在人类样本上浓度为1:500 (图 7a). Biol Open (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, AB7751)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 小鼠; 1:200
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Mol Neurobiol (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:1000
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. Neurochem Int (2013) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化; 人类; 1:1000
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫组化在人类样本上浓度为1:1000. Stem Cells Dev (2013) ncbi
赛默飞世尔
小鼠 单克隆(2G10-TB3)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 9a
赛默飞世尔Ⅲ型β微管蛋白抗体(Invitrogen, 14-4510-80)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 9a). Nat Commun (2021) ncbi
小鼠 单克隆(AA10)
  • 免疫细胞化学; 小鼠; 图 1i
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Fisher, 480011)被用于被用于免疫细胞化学在小鼠样本上 (图 1i). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(2G10)
  • 免疫组化-冰冻切片; 人类; 1:2000; 图 4f
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 3g
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermofisher, MA1-118)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:2000 (图 4f) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 3g). Nat Commun (2020) ncbi
小鼠 单克隆(2G10)
  • 免疫组化-冰冻切片; domestic rabbit; 1:100; 图 4e
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Scientific, MA1118)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:100 (图 4e). Invest Ophthalmol Vis Sci (2017) ncbi
小鼠 单克隆(2G10-TB3)
  • 免疫组化; 小鼠; 1:250; 图 2d
赛默飞世尔Ⅲ型β微管蛋白抗体(eBioscience, 50-4510)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 2d). J Cell Sci (2017) ncbi
小鼠 单克隆(AA10)
  • 免疫细胞化学; 人类; 1:1000; 图 4d
赛默飞世尔Ⅲ型β微管蛋白抗体(Novex, 480011)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4d). Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
赛默飞世尔Ⅲ型β微管蛋白抗体(ThermoFisher Scientific, PA5-16863)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 人类; 1:100; 图 5e
赛默飞世尔Ⅲ型β微管蛋白抗体(eBioscience, 2G10)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5e). Stem Cells Transl Med (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Scientific, PA1-16947)被用于. Chem Pharm Bull (Tokyo) (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Fisher Scientific, PA1-41331)被用于. Mol Med (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Scientific, PA1-16947)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(AA10)
  • 免疫印迹; 小鼠; 1:5000
赛默飞世尔Ⅲ型β微管蛋白抗体(生活技术, 480011)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo, RB-9249-PO)被用于. Hum Mol Genet (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Scientific Pierce Antibodies, PA1-16947)被用于被用于免疫印迹在人类样本上. Cereb Cortex (2016) ncbi
小鼠 单克隆(AA10)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔Ⅲ型β微管蛋白抗体(Novex, 480011)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Oxid Med Cell Longev (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(2G10)
  • 免疫细胞化学; 大鼠; 1:1000
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz Biotechnology, sc-80005)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. Oxid Med Cell Longev (2014) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 大鼠; 1:550
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz, sc-80005)被用于被用于免疫细胞化学在大鼠样本上浓度为1:550. Cell Mol Neurobiol (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T5076)被用于被用于免疫组化在小鼠样本上浓度为1:400. Development (2021) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 人类; 1:1000; 图 1c, 1f
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1c, 1f). Endocrinology (2021) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T5076)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1a). Front Cell Neurosci (2021) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:500; 图 s13c
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T5076-200UL)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s13c). Nat Cell Biol (2021) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 小鼠; 1:750; 图 8u
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T5076)被用于被用于免疫组化在小鼠样本上浓度为1:750 (图 8u). BMC Biol (2021) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 小鼠; 1:10,000; 图 2b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma Aldrich, T8660)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2b). elife (2021) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 小鼠; 1:5000; 图 3c
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T5076)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3c). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 小鼠; 1:300; 图 3a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T 8660)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3a). Front Immunol (2020) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000; 图 3b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3b). Dis Model Mech (2020) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 人类; 1:5000; 图 7b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T-8660)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7b). Nat Commun (2020) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; African green monkey; 1:1000; 图 6a
  • 免疫细胞化学; 猕猴; 1:1000; 图 6a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:1000 (图 6a) 和 被用于免疫细胞化学在猕猴样本上浓度为1:1000 (图 6a). Cells (2020) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 人类; 1:500; 图 ev5b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫组化在人类样本上浓度为1:500 (图 ev5b). EMBO Mol Med (2020) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 图 2a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上 (图 2a). J Neuroinflammation (2020) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). Glia (2019) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:200; 图 s2
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s2). PLoS Pathog (2018) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:3000; 图 4c
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:3000 (图 4c). Nat Commun (2018) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:300; 图 s4c
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 s4c). Nat Neurosci (2018) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000; 图 3b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3b). Stem Cell Res (2018) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:500; 图 6e
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6e). Cell (2018) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b). J Neurosci (2017) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000; 表 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 1). Stem Cell Res (2017) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3d
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3d). Stem Cell Reports (2017) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 图 5e
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在人类样本上 (图 5e). Stem Cell Res (2017) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1a
  • 免疫印迹; 小鼠; 1:2000; 图 6a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, SDL.3D10)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a). J Cell Sci (2017) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:300; 图 s1h
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 s1h). Cell Rep (2017) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). PLoS Genet (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 小鼠; 1:1000; 表 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). elife (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-冰冻切片; African green monkey; 1:250; 图 4
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:250 (图 4). Biomed Res Int (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:2000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:2000. Mol Ther (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:500; 图 3a
  • 免疫印迹; 小鼠; 1:500; 图 3b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 3b). Development (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:4000; 表 2
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:4000 (表 2). Stem Cell Res (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:4000; 图 1e
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:4000 (图 1e). Stem Cell Res (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-石蜡切片; 小鼠; 图 3
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). J Mol Psychiatry (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-石蜡切片; 犬; 1:1000; 图 2
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:1000 (图 2). Brain Behav (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000; 图 1
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s8a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma Aldrich, T8660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s8a). Nat Commun (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:500; 图 6f
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6f). Mol Med Rep (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-冰冻切片; common marmoset; 1:250; 图 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-冰冻切片在common marmoset样本上浓度为1:250 (图 1). Neurosci Res (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:400; 图 1a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich,, T8660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1a). BMC Biol (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 人类; 1:400; 图 3b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在人类样本上浓度为1:400 (图 3b). Methods Mol Biol (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; African green monkey; 1:250; 图 1i
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫组化在African green monkey样本上浓度为1:250 (图 1i). Sci Rep (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 大鼠; 1:400; 图 7h
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在大鼠样本上浓度为1:400 (图 7h). Acta Biomater (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000; 图 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). Basic Res Cardiol (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:200; 表 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (表 1). Exp Eye Res (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:3000; 图 s2
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:3000 (图 s2). Cell Death Dis (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; giant panda; 1:100; 图 3
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在giant panda样本上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 大鼠; 1:200
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T-8660)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. Cell J (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:400; 表 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (表 1). Cell Transplant (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:200; 图 1h
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1h). PLoS ONE (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; common marmoset; 1:400; 图 3
  • 免疫组化; common marmoset; 1:600; 图 3
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在common marmoset样本上浓度为1:400 (图 3) 和 被用于免疫组化在common marmoset样本上浓度为1:600 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000; 图 s6
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s6) 和 被用于免疫印迹在人类样本上浓度为1:1000. BMC Genomics (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上. Methods Mol Biol (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 小鼠; 1:1000; 图 s3
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 大鼠; 1:1000; 图 S2
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 S2). PLoS ONE (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1b). Nat Commun (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:5000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:5000. Transl Psychiatry (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 小鼠; 1:500; 图 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1). Stem Cells Dev (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 大鼠; 1:20000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫印迹在大鼠样本上浓度为1:20000. J Neurosci (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:400
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:400. J Vis Exp (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:400
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:400. Stem Cells Transl Med (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:400; 图 4c
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 4c). Mol Neurobiol (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Comp Neurol (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:500
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:500. J Neurosci Methods (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Stem Cells Dev (2014) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 犬
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在犬样本上. Methods Mol Biol (2013) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-石蜡切片; 小鼠; 1:200
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, SDL.3D10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Comp Neurol (2013) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 人类
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫印迹在人类样本上. Am J Physiol Renal Physiol (2013) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Cytotherapy (2013) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 人类; 1:1000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫组化在人类样本上浓度为1:1000. Mol Brain (2013) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在小鼠样本上. EMBO J (2013) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类
  • 免疫组化; 人类
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫组化在人类样本上. Acta Neurobiol Exp (Wars) (2013) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1,000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1,000. Stem Cells Transl Med (2012) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; African green monkey; 1:200
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在African green monkey样本上浓度为1:200. J Comp Neurol (2011) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-冰冻切片; 小鼠; 1:250
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250. J Comp Neurol (2010) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 1:1000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Comp Neurol (2009) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 大鼠; 1:200
  • 免疫印迹; 大鼠; 1:200
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在大鼠样本上浓度为1:200 和 被用于免疫印迹在大鼠样本上浓度为1:200. J Comp Neurol (2009) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 小鼠; 1:6000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化在小鼠样本上浓度为1:6000. J Comp Neurol (2009) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T8660)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 大鼠; 1:200
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T8660)被用于被用于免疫组化在大鼠样本上浓度为1:200. J Comp Neurol (2007) ncbi
文章列表
  1. Zhao J, Lu W, Ren Y, Fu Y, Martens Y, Shue F, et al. Apolipoprotein E regulates lipid metabolism and α-synuclein pathology in human iPSC-derived cerebral organoids. Acta Neuropathol. 2021;142:807-825 pubmed 出版商
  2. Ichinose M, Suzuki N, Wang T, Kobayashi H, Vrbanac L, Ng J, et al. The BMP antagonist gremlin 1 contributes to the development of cortical excitatory neurons, motor balance and fear responses. Development. 2021;148: pubmed 出版商
  3. Keen K, Petersen A, Figueroa A, Fordyce B, Shin J, Yadav R, et al. Physiological Characterization and Transcriptomic Properties of GnRH Neurons Derived From Human Stem Cells. Endocrinology. 2021;162: pubmed 出版商
  4. Mehboob R, Marchenkova A, van den Maagdenberg A, Nistri A. Overexpressed Na V 1.7 Channels Confer Hyperexcitability to in vitro Trigeminal Sensory Neurons of Ca V 2.1 Mutant Hemiplegic Migraine Mice. Front Cell Neurosci. 2021;15:640709 pubmed 出版商
  5. Truong D, Phlairaharn T, Eßwein B, Gruber C, Tümen D, Baligács E, et al. Non-invasive and high-throughput interrogation of exon-specific isoform expression. Nat Cell Biol. 2021;23:652-663 pubmed 出版商
  6. Ofek S, Wiszniak S, Kagan S, Tondl M, Schwarz Q, Kalcheim C. Notch signaling is a critical initiator of roof plate formation as revealed by the use of RNA profiling of the dorsal neural tube. BMC Biol. 2021;19:84 pubmed 出版商
  7. Courtland J, Bradshaw T, Waitt G, Soderblom E, Ho T, Rajab A, et al. Genetic disruption of WASHC4 drives endo-lysosomal dysfunction and cognitive-movement impairments in mice and humans. elife. 2021;10: pubmed 出版商
  8. Ferreira N, Gonçalves N, Jan A, Jensen N, van der Laan A, Mohseni S, et al. Trans-synaptic spreading of alpha-synuclein pathology through sensory afferents leads to sensory nerve degeneration and neuropathic pain. Acta Neuropathol Commun. 2021;9:31 pubmed 出版商
  9. Deshpande D, Agarwal N, Fleming T, Gaveriaux Ruff C, Klose C, Tappe Theodor A, et al. Loss of POMC-mediated antinociception contributes to painful diabetic neuropathy. Nat Commun. 2021;12:426 pubmed 出版商
  10. Roth J, Muench K, Asokan A, Mallett V, Gai H, Verma Y, et al. 16p11.2 microdeletion imparts transcriptional alterations in human iPSC-derived models of early neural development. elife. 2020;9: pubmed 出版商
  11. Wiemann S, Reinhard J, Reinehr S, Cibir Z, Joachim S, Faissner A. Loss of the Extracellular Matrix Molecule Tenascin-C Leads to Absence of Reactive Gliosis and Promotes Anti-inflammatory Cytokine Expression in an Autoimmune Glaucoma Mouse Model. Front Immunol. 2020;11:566279 pubmed 出版商
  12. Schuster S, Heuten E, Velic A, Admard J, Synofzik M, Ossowski S, et al. CHIP mutations affect the heat shock response differently in human fibroblasts and iPSC-derived neurons. Dis Model Mech. 2020;13: pubmed 出版商
  13. Gao J, Wu Y, He D, Zhu X, Li H, Liu H, et al. Anti-aging effects of Ribes meyeri anthocyanins on neural stem cells and aging mice. Aging (Albany NY). 2020;12:17738-17753 pubmed 出版商
  14. Silva M, Nandi G, Tentarelli S, Gurrell I, Jamier T, Lucente D, et al. Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun. 2020;11:3258 pubmed 出版商
  15. Stauske M, Rodriguez Polo I, Haas W, Knorr D, Borchert T, Streckfuss Bömeke K, et al. Non-Human Primate iPSC Generation, Cultivation, and Cardiac Differentiation under Chemically Defined Conditions. Cells. 2020;9: pubmed 出版商
  16. Di Matteo F, Pipicelli F, Kyrousi C, Tovecci I, Penna E, Crispino M, et al. Cystatin B is essential for proliferation and interneuron migration in individuals with EPM1 epilepsy. EMBO Mol Med. 2020;12:e11419 pubmed 出版商
  17. Mecha M, Yanguas Casás N, Feliú A, Mestre L, Carrillo Salinas F, Riecken K, et al. Involvement of Wnt7a in the role of M2c microglia in neural stem cell oligodendrogenesis. J Neuroinflammation. 2020;17:88 pubmed 出版商
  18. Fares M, Cochet Bernoin M, Gonzalez G, Montero Menei C, Blanchet O, Benchoua A, et al. Pathological modeling of TBEV infection reveals differential innate immune responses in human neurons and astrocytes that correlate with their susceptibility to infection. J Neuroinflammation. 2020;17:76 pubmed 出版商
  19. Ballabio C, Anderle M, Gianesello M, Lago C, Miele E, Cardano M, et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun. 2020;11:583 pubmed 出版商
  20. Nickolls A, Lee M, Espinoza D, Szczot M, Lam R, Wang Q, et al. Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells. Cell Rep. 2020;30:932-946.e7 pubmed 出版商
  21. Zhu Q, Zhang N, Hu N, Jiang R, Lu H, Xuan A, et al. Neural stem cell transplantation improves learning and memory by protecting cholinergic neurons and restoring synaptic impairment in an amyloid precursor protein/presenilin 1 transgenic mouse model of Alzheimer's disease. Mol Med Rep. 2020;21:1172-1180 pubmed 出版商
  22. Düsedau H, Kleveman J, Figueiredo C, Biswas A, Steffen J, Kliche S, et al. p75NTR regulates brain mononuclear cell function and neuronal structure in Toxoplasma infection-induced neuroinflammation. Glia. 2019;67:193-211 pubmed 出版商
  23. Tseligka E, Sobo K, Stoppini L, Cagno V, Abdul F, Piuz I, et al. A VP1 mutation acquired during an enterovirus 71 disseminated infection confers heparan sulfate binding ability and modulates ex vivo tropism. PLoS Pathog. 2018;14:e1007190 pubmed 出版商
  24. Xiao D, Liu X, Zhang M, Zou M, Deng Q, Sun D, et al. Direct reprogramming of fibroblasts into neural stem cells by single non-neural progenitor transcription factor Ptf1a. Nat Commun. 2018;9:2865 pubmed 出版商
  25. Karow M, Camp J, Falk S, Gerber T, Pataskar A, Gac Santel M, et al. Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nat Neurosci. 2018;21:932-940 pubmed 出版商
  26. Wu M, Liu S, Gao Y, Bai H, Machairaki V, Li G, et al. Conditional gene knockout and reconstitution in human iPSCs with an inducible Cas9 system. Stem Cell Res. 2018;29:6-14 pubmed 出版商
  27. Aneichyk T, Hendriks W, Yadav R, Shin D, Gao D, Vaine C, et al. Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly. Cell. 2018;172:897-909.e21 pubmed 出版商
  28. de la Torre Ubieta L, Stein J, Won H, Opland C, Liang D, Lu D, et al. The Dynamic Landscape of Open Chromatin during Human Cortical Neurogenesis. Cell. 2018;172:289-304.e18 pubmed 出版商
  29. Smith R, Huang Y, Tian T, Vojtasova D, Mesalles Naranjo O, Pollard S, et al. The Transcription Factor Foxg1 Promotes Optic Fissure Closure in the Mouse by Suppressing Wnt8b in the Nasal Optic Stalk. J Neurosci. 2017;37:7975-7993 pubmed 出版商
  30. Liu S, Ye Z, Gao Y, He C, Williams D, MOLITERNO A, et al. Generation of human iPSCs from an essential thrombocythemia patient carrying a V501L mutation in the MPL gene. Stem Cell Res. 2017;18:57-59 pubmed 出版商
  31. Bryukhovetskiy I, Lyakhova I, Mischenko P, Milkina E, Zaitsev S, Khotimchenko Y, et al. Alkaloids of fascaplysin are effective conventional chemotherapeutic drugs, inhibiting the proliferation of C6 glioma cells and causing their death in vitro. Oncol Lett. 2017;13:738-746 pubmed 出版商
  32. Shan M, Lin S, Li S, Du Y, Zhao H, Hong H, et al. TIR-Domain-Containing Adapter-Inducing Interferon-? (TRIF) Is Essential for MPTP-Induced Dopaminergic Neuroprotection via Microglial Cell M1/M2 Modulation. Front Cell Neurosci. 2017;11:35 pubmed 出版商
  33. Bartlett R, Sluyter V, Watson D, Sluyter R, Yerbury J. P2X7 antagonism using Brilliant Blue G reduces body weight loss and prolongs survival in female SOD1G93A amyotrophic lateral sclerosis mice. Peerj. 2017;5:e3064 pubmed 出版商
  34. Itakura G, Kawabata S, Ando M, Nishiyama Y, Sugai K, Ozaki M, et al. Fail-Safe System against Potential Tumorigenicity after Transplantation of iPSC Derivatives. Stem Cell Reports. 2017;8:673-684 pubmed 出版商
  35. Arioka Y, Ito H, Hirata A, Semi K, Yamada Y, Seishima M. Behavior of leucine-rich repeat-containing G-protein coupled receptor 5-expressing cells in the reprogramming process. Stem Cell Res. 2017;20:1-9 pubmed 出版商
  36. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  37. Zhou C, Robert M, Kapoulea V, Lei F, Stagner A, Jakobiec F, et al. Sustained Subconjunctival Delivery of Infliximab Protects the Cornea and Retina Following Alkali Burn to the Eye. Invest Ophthalmol Vis Sci. 2017;58:96-105 pubmed 出版商
  38. Yoshitomi Y, Ikeda T, Saito H, Yoshitake Y, Ishigaki Y, Hatta T, et al. JunB regulates angiogenesis and neurovascular parallel alignment in mouse embryonic skin. J Cell Sci. 2017;130:916-926 pubmed 出版商
  39. Behm M, Wahlstedt H, Widmark A, Eriksson M, Ohman M. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J Cell Sci. 2017;130:745-753 pubmed 出版商
  40. Hosoya M, Fujioka M, Sone T, Okamoto S, Akamatsu W, Ukai H, et al. Cochlear Cell Modeling Using Disease-Specific iPSCs Unveils a Degenerative Phenotype and Suggests Treatments for Congenital Progressive Hearing Loss. Cell Rep. 2017;18:68-81 pubmed 出版商
  41. Kemp K, Cerminara N, Hares K, Redondo J, Cook A, Haynes H, et al. Cytokine therapy-mediated neuroprotection in a Friedreich's ataxia mouse model. Ann Neurol. 2017;81:212-226 pubmed 出版商
  42. Wang S, Jacquemyn J, Murru S, Martinelli P, Barth E, Langer T, et al. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying. PLoS Genet. 2016;12:e1006463 pubmed 出版商
  43. Wolfes A, Ahmed S, Awasthi A, Stahlberg M, Rajput A, Magruder D, et al. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol. 2017;149:149-170 pubmed 出版商
  44. McKenzie C, D Avino P. Investigating cytokinesis failure as a strategy in cancer therapy. Oncotarget. 2016;7:87323-87341 pubmed 出版商
  45. Bassett E, Tokarew N, Allemano E, Mazerolle C, Morin K, Mears A, et al. Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. elife. 2016;5: pubmed 出版商
  46. Kunzler A, Zeidán Chuliá F, Gasparotto J, Girardi C, Klafke K, Petiz L, et al. Changes in Cell Cycle and Up-Regulation of Neuronal Markers During SH-SY5Y Neurodifferentiation by Retinoic Acid are Mediated by Reactive Species Production and Oxidative Stress. Mol Neurobiol. 2017;54:6903-6916 pubmed 出版商
  47. Bryukhovetskiy I, Dyuizen I, Shevchenko V, Bryukhovetskiy A, Mischenko P, Milkina E, et al. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep. 2016;14:4511-4520 pubmed 出版商
  48. Xing H, Lim Y, Chong J, Lee J, Aarsland D, Ballard C, et al. Increased phosphorylation of collapsin response mediator protein-2 at Thr514 correlates with ?-amyloid burden and synaptic deficits in Lewy body dementias. Mol Brain. 2016;9:84 pubmed 出版商
  49. Bryukhovetskiy I, Manzhulo I, Mischenko P, Milkina E, Dyuizen I, Bryukhovetskiy A, et al. Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncol Lett. 2016;12:1721-1728 pubmed
  50. Mao S, Li X, Wang J, Ding X, Zhang C, Li L. miR-17-92 facilitates neuronal differentiation of transplanted neural stem/precursor cells under neuroinflammatory conditions. J Neuroinflammation. 2016;13:208 pubmed 出版商
  51. Shivkumar M, Lawler C, Milho R, Stevenson P. Herpes Simplex Virus 1 Interaction with Myeloid Cells In Vivo. J Virol. 2016;90:8661-72 pubmed 出版商
  52. Hosoya M, Fujioka M, Okano H, Ogawa K. Distinct Expression Pattern of a Deafness Gene, KIAA1199, in a Primate Cochlea. Biomed Res Int. 2016;2016:1781894 pubmed 出版商
  53. Osman E, Washington C, Kaifer K, Mazzasette C, Patitucci T, Florea K, et al. Optimization of Morpholino Antisense Oligonucleotides Targeting the Intronic Repressor Element1 in Spinal Muscular Atrophy. Mol Ther. 2016;24:1592-601 pubmed 出版商
  54. Huang Z, Hu J, Pan J, Wang Y, Hu G, Zhou J, et al. YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation. Development. 2016;143:2398-409 pubmed 出版商
  55. Hansen S, Borland H, Hasholt L, Tumer Z, Nielsen J, Rasmussen M, et al. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.B11. Stem Cell Res. 2016;16:589-92 pubmed 出版商
  56. Hansen S, Borland H, Hasholt L, Tumer Z, Nielsen J, Rasmussen M, et al. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.A11. Stem Cell Res. 2016;16:553-6 pubmed 出版商
  57. Folmsbee S, Wilcox D, Tyberghein K, De Bleser P, Tourtellotte W, van Hengel J, et al. ?T-catenin in restricted brain cell types and its potential connection to autism. J Mol Psychiatry. 2016;4:2 pubmed 出版商
  58. Lin S, Gou G, Hsia C, Ho C, Huang K, Wu Y, et al. Simulated Microgravity Disrupts Cytoskeleton Organization and Increases Apoptosis of Rat Neural Crest Stem Cells Via Upregulating CXCR4 Expression and RhoA-ROCK1-p38 MAPK-p53 Signaling. Stem Cells Dev. 2016;25:1172-93 pubmed 出版商
  59. Spitzbarth I, Lempp C, Kegler K, Ulrich R, Kalkuhl A, Deschl U, et al. Immunohistochemical and transcriptome analyses indicate complex breakdown of axonal transport mechanisms in canine distemper leukoencephalitis. Brain Behav. 2016;6:e00472 pubmed 出版商
  60. Momcilovic O, Sivapatham R, Oron T, Meyer M, Mooney S, Rao M, et al. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations. PLoS ONE. 2016;11:e0154890 pubmed 出版商
  61. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  62. Zhang N, Chen B, Wang W, Chen C, Kang J, Deng S, et al. Isolation, characterization and multi-lineage differentiation of stem cells from human exfoliated deciduous teeth. Mol Med Rep. 2016;14:95-102 pubmed 出版商
  63. Hosoya M, Fujioka M, Kobayashi R, Okano H, Ogawa K. Overlapping expression of anion exchangers in the cochlea of a non-human primate suggests functional compensation. Neurosci Res. 2016;110:1-10 pubmed 出版商
  64. Navarra A, Musto A, Gargiulo A, Petrosino G, Pierantoni G, Fusco A, et al. Hmga2 is necessary for Otx2-dependent exit of embryonic stem cells from the pluripotent ground state. BMC Biol. 2016;14:24 pubmed 出版商
  65. Meng G, Poon A, Liu S, Rancourt D. An Effective and Reliable Xeno-free Cryopreservation Protocol for Single Human Pluripotent Stem Cells. Methods Mol Biol. 2016;1516:47-56 pubmed 出版商
  66. Hosoya M, Fujioka M, Ogawa K, Okano H. Distinct Expression Patterns Of Causative Genes Responsible For Hereditary Progressive Hearing Loss In Non-Human Primate Cochlea. Sci Rep. 2016;6:22250 pubmed 出版商
  67. Collazos Castro J, García Rama C, Alves Sampaio A. Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers. Acta Biomater. 2016;35:42-56 pubmed 出版商
  68. Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies F, et al. Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun. 2016;7:10533 pubmed 出版商
  69. Heeren A, He N, de Souza A, Goercharn Ramlal A, van Iperen L, Roost M, et al. On the development of extragonadal and gonadal human germ cells. Biol Open. 2016;5:185-94 pubmed 出版商
  70. Malan D, Zhang M, Stallmeyer B, Müller J, Fleischmann B, Schulze Bahr E, et al. Human iPS cell model of type 3 long QT syndrome recapitulates drug-based phenotype correction. Basic Res Cardiol. 2016;111:14 pubmed 出版商
  71. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  72. Kawabata S, Takano M, Numasawa Kuroiwa Y, Itakura G, Kobayashi Y, Nishiyama Y, et al. Grafted Human iPS Cell-Derived Oligodendrocyte Precursor Cells Contribute to Robust Remyelination of Demyelinated Axons after Spinal Cord Injury. Stem Cell Reports. 2016;6:1-8 pubmed 出版商
  73. Fokina A, Chechenova M, Karginov A, Ter Avanesyan M, Agaphonov M. Genetic Evidence for the Role of the Vacuole in Supplying Secretory Organelles with Ca2+ in Hansenula polymorpha. PLoS ONE. 2015;10:e0145915 pubmed 出版商
  74. Oliveira L, Falomir Lockhart L, Botelho M, Lin K, Wales P, Koch J, et al. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells. Cell Death Dis. 2015;6:e1994 pubmed 出版商
  75. Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells. Stem Cells Transl Med. 2016;5:117-28 pubmed 出版商
  76. Prescott H, Manning C, Gardner A, Ritchie W, Pizzi R, Girling S, et al. Giant Panda (Ailuropoda melanoleuca) Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells. PLoS ONE. 2015;10:e0138840 pubmed 出版商
  77. Han Y, Wang Z, Bae E. Synthesis of the Proposed Structure of Damaurone D and Evaluation of Its Anti-inflammatory Activity. Chem Pharm Bull (Tokyo). 2015;63:907-12 pubmed 出版商
  78. Mohammadi A, Attari F, Babapour V, Hassani S, Masoudi N, Shahverdi A, et al. Generation of Rat Embryonic Germ Cells via Inhibition of TGFß and MEK Pathways. Cell J. 2015;17:288-95 pubmed
  79. Huang X, Hu Q, Braun G, Pallaoro A, Morales D, ZASADZINSKI J, et al. Light-activated RNA interference in human embryonic stem cells. Biomaterials. 2015;63:70-9 pubmed 出版商
  80. Terzic D, Maxon J, Krevitt L, DiBartolomeo C, Goyal T, Low W, et al. Directed Differentiation of Oligodendrocyte Progenitor Cells From Mouse Induced Pluripotent Stem Cells. Cell Transplant. 2016;25:411-24 pubmed 出版商
  81. Deleyrolle L, Sabourin J, Rothhut B, Fujita H, Guichet P, Teigell M, et al. OCAM regulates embryonic spinal cord stem cell proliferation by modulating ErbB2 receptor. PLoS ONE. 2015;10:e0122337 pubmed 出版商
  82. Ding Y, Xu Y, Shuai X, Shi X, Chen X, Huang W, et al. Reg3? Overexpression Protects Pancreatic ? Cells from Cytokine-Induced Damage and Improves Islet Transplant Outcome. Mol Med. 2015;20:548-558 pubmed 出版商
  83. Debowski K, Warthemann R, Lentes J, Salinas Riester G, Dressel R, Langenstroth D, et al. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach. PLoS ONE. 2015;10:e0118424 pubmed 出版商
  84. Hossini A, Megges M, Prigione A, Lichtner B, Toliat M, Wruck W, et al. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics. 2015;16:84 pubmed 出版商
  85. Kim S, Ka S, Lee Y, Park B, Fei X, Jung J, et al. The new 4-O-methylhonokiol analog GS12021 inhibits inflammation and macrophage chemotaxis: role of AMP-activated protein kinase α activation. PLoS ONE. 2015;10:e0117120 pubmed 出版商
  86. Feeney S, McGrath M, Sriratana A, Gehrig S, Lynch G, D Arcy C, et al. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1). PLoS ONE. 2015;10:e0117665 pubmed 出版商
  87. Arel Dubeau A, Longpré F, Bournival J, Tremblay C, Demers Lamarche J, Haskova P, et al. Cucurbitacin E has neuroprotective properties and autophagic modulating activities on dopaminergic neurons. Oxid Med Cell Longev. 2014;2014:425496 pubmed 出版商
  88. Sivapatham R, Zeng X. Generation and Characterization of Patient-Specific Induced Pluripotent Stem Cell for Disease Modeling. Methods Mol Biol. 2016;1353:25-44 pubmed 出版商
  89. Lim A, Shin K, Zhao C, Kawano S, Beachy P. Spatially restricted Hedgehog signalling regulates HGF-induced branching of the adult prostate. Nat Cell Biol. 2014;16:1135-45 pubmed 出版商
  90. Scholze A, Foo L, Mulinyawe S, Barres B. BMP signaling in astrocytes downregulates EGFR to modulate survival and maturation. PLoS ONE. 2014;9:e110668 pubmed 出版商
  91. Cottle D, Ursino G, Ip S, Jones L, DiTommaso T, Hacking D, et al. Fetal inhibition of inflammation improves disease phenotypes in harlequin ichthyosis. Hum Mol Genet. 2015;24:436-49 pubmed 出版商
  92. Ye T, Ip J, Fu A, Ip N. Cdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex. Nat Commun. 2014;5:4826 pubmed 出版商
  93. Wang J, Shamah S, Sun A, Waldman I, Haggarty S, Perlis R. Label-free, live optical imaging of reprogrammed bipolar disorder patient-derived cells reveals a functional correlate of lithium responsiveness. Transl Psychiatry. 2014;4:e428 pubmed 出版商
  94. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed 出版商
  95. Kawase S, Kuwako K, Imai T, Renault Mihara F, Yaguchi K, Itohara S, et al. Regulatory factor X transcription factors control Musashi1 transcription in mouse neural stem/progenitor cells. Stem Cells Dev. 2014;23:2250-61 pubmed 出版商
  96. Kehoe L, Bellone C, De Roo M, Zandueta A, Dey P, Pérez Otaño I, et al. GluN3A promotes dendritic spine pruning and destabilization during postnatal development. J Neurosci. 2014;34:9213-21 pubmed 出版商
  97. Ganz J, Arie I, Buch S, Zur T, Barhum Y, Pour S, et al. Dopaminergic-like neurons derived from oral mucosa stem cells by developmental cues improve symptoms in the hemi-parkinsonian rat model. PLoS ONE. 2014;9:e100445 pubmed 出版商
  98. Karow M, Schichor C, Beckervordersandforth R, Berninger B. Lineage-reprogramming of pericyte-derived cells of the adult human brain into induced neurons. J Vis Exp. 2014;: pubmed 出版商
  99. Ferrer M, Corneo B, Davis J, Wan Q, Miyagishima K, King R, et al. A multiplex high-throughput gene expression assay to simultaneously detect disease and functional markers in induced pluripotent stem cell-derived retinal pigment epithelium. Stem Cells Transl Med. 2014;3:911-22 pubmed 出版商
  100. Li T, Yang D, Li J, Tang Y, Yang J, Le W. Critical role of Tet3 in neural progenitor cell maintenance and terminal differentiation. Mol Neurobiol. 2015;51:142-54 pubmed 出版商
  101. Sareen D, Gowing G, Sahabian A, Staggenborg K, Paradis R, Avalos P, et al. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J Comp Neurol. 2014;522:2707-28 pubmed 出版商
  102. Macdonald C, Unsworth C, Graham E. Enrichment of differentiated hNT neurons and subsequent analysis using flow-cytometry and xCELLigence sensing. J Neurosci Methods. 2014;227:47-56 pubmed 出版商
  103. Gao X, Zhang J, Zhang J, Zou H, Liu J. Identification of rat respiratory mucosa stem cells and comparison of the early neural differentiation potential with the bone marrow mesenchymal stem cells in vitro. Cell Mol Neurobiol. 2014;34:257-68 pubmed 出版商
  104. Momcilovic O, Liu Q, Swistowski A, Russo Tait T, Zhao Y, Rao M, et al. Genome wide profiling of dopaminergic neurons derived from human embryonic and induced pluripotent stem cells. Stem Cells Dev. 2014;23:406-20 pubmed 出版商
  105. Sha L, Wu X, Yao Y, Wen B, Feng J, Sha Z, et al. Notch signaling activation promotes seizure activity in temporal lobe epilepsy. Mol Neurobiol. 2014;49:633-44 pubmed 出版商
  106. Tobias I, Brooks C, Teichroeb J, Betts D. Derivation and culture of canine embryonic stem cells. Methods Mol Biol. 2013;1074:69-83 pubmed 出版商
  107. Yang W, Wang X, Duan C, Lu L, Yang H. Alpha-synuclein overexpression increases phospho-protein phosphatase 2A levels via formation of calmodulin/Src complex. Neurochem Int. 2013;63:180-94 pubmed 出版商
  108. Zeidán Chuliá F, Gelain D, Kolling E, Rybarczyk Filho J, Ambrosi P, Terra S, et al. Major components of energy drinks (caffeine, taurine, and guarana) exert cytotoxic effects on human neuronal SH-SY5Y cells by decreasing reactive oxygen species production. Oxid Med Cell Longev. 2013;2013:791795 pubmed 出版商
  109. Milman P, Woulfe J. Novel variant of neuronal intranuclear rodlet immunoreactive for 40 kDa huntingtin associated protein and ubiquitin in the mouse brain. J Comp Neurol. 2013;521:3832-46 pubmed 出版商
  110. Zhou X, Wang H, Burg M, Ferraris J. High NaCl-induced inhibition of PTG contributes to activation of NFAT5 through attenuation of the negative effect of SHP-1. Am J Physiol Renal Physiol. 2013;305:F362-9 pubmed 出版商
  111. Liu Q, Pedersen O, Peng J, Couture L, Rao M, Zeng X. Optimizing dopaminergic differentiation of pluripotent stem cells for the manufacture of dopaminergic neurons for transplantation. Cytotherapy. 2013;15:999-1010 pubmed 出版商
  112. Higurashi N, Uchida T, Lossin C, Misumi Y, Okada Y, Akamatsu W, et al. A human Dravet syndrome model from patient induced pluripotent stem cells. Mol Brain. 2013;6:19 pubmed 出版商
  113. Sparmann A, Xie Y, Verhoeven E, Vermeulen M, Lancini C, Gargiulo G, et al. The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation. EMBO J. 2013;32:1598-612 pubmed 出版商
  114. Ruzicka J, Romanyuk N, Hejcl A, Vetrik M, Hruby M, Cocks G, et al. Treating spinal cord injury in rats with a combination of human fetal neural stem cells and hydrogels modified with serotonin. Acta Neurobiol Exp (Wars). 2013;73:102-15 pubmed
  115. Shim J, Lee T, Shin D. Enrichment and characterization of human dermal stem/progenitor cells by intracellular granularity. Stem Cells Dev. 2013;22:1264-74 pubmed 出版商
  116. Liu Q, Spusta S, Mi R, Lassiter R, Stark M, Hoke A, et al. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med. 2012;1:266-78 pubmed 出版商
  117. Sawamoto K, Hirota Y, Alfaro Cervello C, Soriano Navarro M, He X, Hayakawa Yano Y, et al. Cellular composition and organization of the subventricular zone and rostral migratory stream in the adult and neonatal common marmoset brain. J Comp Neurol. 2011;519:690-713 pubmed 出版商
  118. Miller A, Treloar H, Greer C. Composition of the migratory mass during development of the olfactory nerve. J Comp Neurol. 2010;518:4825-41 pubmed 出版商
  119. Leonard B, Mastroeni D, Grover A, Liu Q, Yang K, Gao M, et al. Subventricular zone neural progenitors from rapid brain autopsies of elderly subjects with and without neurodegenerative disease. J Comp Neurol. 2009;515:269-94 pubmed 出版商
  120. Furmanski O, Gajavelli S, Lee J, Collado M, Jergova S, Sagen J. Combined extrinsic and intrinsic manipulations exert complementary neuronal enrichment in embryonic rat neural precursor cultures: an in vitro and in vivo analysis. J Comp Neurol. 2009;515:56-71 pubmed 出版商
  121. Komitova M, Zhu X, Serwanski D, Nishiyama A. NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone. J Comp Neurol. 2009;512:702-16 pubmed 出版商
  122. Yu T, Fotaki V, Mason J, Price D. Analysis of early ventral telencephalic defects in mice lacking functional Gli3 protein. J Comp Neurol. 2009;512:613-27 pubmed 出版商
  123. Berglöf E, af Bjerkén S, Stromberg I. Glial influence on nerve fiber formation from rat ventral mesencephalic organotypic tissue cultures. J Comp Neurol. 2007;501:431-42 pubmed