这是一篇来自已证抗体库的有关brown rat Grin1的综述,是根据104篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Grin1 抗体。
Grin1 同义词: GluN1; NMDAR1; NR1

赛默飞世尔
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 图 2g
赛默飞世尔 Grin1抗体(Thermo, 32-0500)被用于被用于免疫印迹在小鼠样本上 (图 2g). J Neurochem (2017) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; brown rat; 图 3a
赛默飞世尔 Grin1抗体(Zymed, 320500)被用于被用于免疫印迹在brown rat样本上 (图 3a). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
  • 免疫印迹; 人类; 图 1
  • 免疫组化; 小鼠; 1:50; 图 3
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 Grin1抗体(生活技术, 32-0500)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1), 被用于免疫印迹在人类样本上 (图 1), 被用于免疫组化在小鼠样本上浓度为1:50 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 3). J Pathol (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔 Grin1抗体(Invitrogen, 32-0500)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 重组(1H13L3)
  • 抑制或激活实验; brown rat; 图 s2
赛默飞世尔 Grin1抗体(ThermoFisher, 700685)被用于被用于抑制或激活实验在brown rat样本上 (图 s2). Brain Res (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; brown rat; 1:5000
赛默飞世尔 Grin1抗体(Invitrogen, 32-0500)被用于被用于免疫印迹在brown rat样本上浓度为1:5000. Exp Neurol (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; 小鼠; 1:1500
赛默飞世尔 Grin1抗体(Invitrogen, MAb 54.1)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1500. J Neurosci (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Grin1抗体(Life Technolog., 32-0500)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci Res (2014) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; brown rat
赛默飞世尔 Grin1抗体(Zymed, 32-0500)被用于被用于免疫印迹在brown rat样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; brown rat; 图 2
赛默飞世尔 Grin1抗体(Invitrogen, 32-0500)被用于被用于免疫细胞化学在brown rat样本上 (图 2). J Biol Chem (2012) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3
赛默飞世尔 Grin1抗体(Invitrogen, 32-0500)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2011) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; brown rat; 图 5
赛默飞世尔 Grin1抗体(Zymed, 32-0500)被用于被用于免疫印迹在brown rat样本上 (图 5). Neurobiol Dis (2011) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; brown rat; 图 5
赛默飞世尔 Grin1抗体(Invitrogen, 32-0500)被用于被用于免疫印迹在brown rat样本上 (图 5). Neurobiol Dis (2011) ncbi
小鼠 单克隆(54.1)
  • 免疫组化-自由浮动切片; little skate; 1:1000; 图 3
赛默飞世尔 Grin1抗体(Invitrogen, 32-0500)被用于被用于免疫组化-自由浮动切片在little skate样本上浓度为1:1000 (图 3). J Exp Biol (2010) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; brown rat; 1:400; 图 4
赛默飞世尔 Grin1抗体(Zymed, 32-0500)被用于被用于免疫印迹在brown rat样本上浓度为1:400 (图 4). Eur J Neurosci (2010) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 人类
赛默飞世尔 Grin1抗体(Zymed, 54.1)被用于被用于免疫印迹在人类样本上. Prog Neuropsychopharmacol Biol Psychiatry (2003) ncbi
Synaptic Systems
小鼠 单克隆(M68)
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
Synaptic Systems Grin1抗体(Synaptic Systems, 114011)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6c). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
Synaptic Systems Grin1抗体(Synaptic Systems, 114011)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Neurosci (2016) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; 小鼠; 1:3000; 图 1c
Synaptic Systems Grin1抗体(Synaptic Systems, 114011)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1c). Science (2016) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; brown rat; 1:1000; 图 s3
Synaptic Systems Grin1抗体(Synaptic Systems, 114 011)被用于被用于免疫印迹在brown rat样本上浓度为1:1000 (图 s3). Mol Biol Cell (2015) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; 小鼠; 图 6
Synaptic Systems Grin1抗体(SYSY, M68)被用于被用于免疫印迹在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR2481(2))
  • 免疫印迹; brown rat; 1:2000; 图 5
艾博抗(上海)贸易有限公司 Grin1抗体(Abcam, ab109182)被用于被用于免疫印迹在brown rat样本上浓度为1:2000 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR2481(2))
  • 免疫印迹; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Grin1抗体(Epitomics, 2824-1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:250; 表 1
艾博抗(上海)贸易有限公司 Grin1抗体(Abcam, ab17345)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (表 1). Eur J Pharm Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; brown rat; 1:200; 图 5c
艾博抗(上海)贸易有限公司 Grin1抗体(Abcam, ab17345)被用于被用于免疫组化-冰冻切片在brown rat样本上浓度为1:200 (图 5c). Behav Brain Res (2016) ncbi
小鼠 单克隆(S308-48)
  • 免疫组化-冰冻切片; 人类; 1:250; 图 5
  • 免疫细胞化学; 人类; 1:250; 图 5
  • 免疫印迹; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司 Grin1抗体(abcam, ab134308)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:250 (图 5), 被用于免疫细胞化学在人类样本上浓度为1:250 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EPR2481(2))
  • 免疫印迹; 小鼠; 图 7
艾博抗(上海)贸易有限公司 Grin1抗体(Abcam, ab109182)被用于被用于免疫印迹在小鼠样本上 (图 7). J Neurosci (2015) ncbi
Alomone Labs
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 s2
Alomone Labs Grin1抗体(Alomone Labs, AGC-001)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s2). Diabetes (2016) ncbi
安迪生物R&D
小鼠 单克隆(R1JHL)
  • 免疫印迹; 小鼠; 1:1000; 图 s1d
安迪生物R&D Grin1抗体(R&D Systems, PPS011B)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1d). Nat Commun (2016) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化; brown rat; 1:100; 图 5
  • 免疫印迹; brown rat; 图 6
西格玛奥德里奇 Grin1抗体(Sigma-Aldrich, SAB4501301)被用于被用于免疫组化在brown rat样本上浓度为1:100 (图 5) 和 被用于免疫印迹在brown rat样本上 (图 6). Chem Biol Interact (2018) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Grin1抗体(Cell Signaling, 5704)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Brain (2019) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Grin1抗体(Cell Signaling Technology, D65B7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). J Neurosci (2018) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 图 4I
赛信通(上海)生物试剂有限公司 Grin1抗体(Cell Signaling, D65B7)被用于被用于免疫印迹在小鼠样本上 (图 4I). elife (2017) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫细胞化学; 小鼠; 图 1g
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司 Grin1抗体(Cell Signaling, 5704)被用于被用于免疫细胞化学在小鼠样本上 (图 1g) 和 被用于免疫印迹在小鼠样本上 (图 1h). Exp Neurol (2017) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 1:2000; 图 7b
赛信通(上海)生物试剂有限公司 Grin1抗体(Cell signaling, 5704S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7b). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; brown rat; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Grin1抗体(Cell Signaling, 5704)被用于被用于免疫印迹在brown rat样本上浓度为1:1000 (图 7a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Grin1抗体(Cell signaling, 3381)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Int J Neuropsychopharmacol (2016) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 1:500; 图 5
赛信通(上海)生物试剂有限公司 Grin1抗体(Cell Signaling Technology, D65B7)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Anesthesiology (2015) ncbi
默克密理博中国
domestic rabbit 单克隆(1.17.2.6)
  • 免疫印迹; 小鼠; 图 s1i
默克密理博中国 Grin1抗体(Millipore, AB9864)被用于被用于免疫印迹在小鼠样本上 (图 s1i). Science (2019) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
默克密理博中国 Grin1抗体(Millipore, MAB363)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). J Neurochem (2018) ncbi
domestic rabbit 单克隆(1.17.2.6)
  • 免疫细胞化学; 人类; 1:1000; 图 s4a
默克密理博中国 Grin1抗体(Millipore, AB9864)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s4a). Cell Rep (2017) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; brown rat; 1:200; 图 5a
默克密理博中国 Grin1抗体(Millipore, 54.1)被用于被用于免疫印迹在brown rat样本上浓度为1:200 (图 5a). Mol Neurobiol (2018) ncbi
小鼠 单克隆(R1JHL)
  • 免疫印迹; 小鼠; 图 2c
默克密理博中国 Grin1抗体(Millipore, MAB1586)被用于被用于免疫印迹在小鼠样本上 (图 2c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(1.17.2.6)
  • 免疫沉淀; brown rat; 1:1000; 图 5d
  • 免疫组化; brown rat; 1:1000; 图 4g
  • 免疫印迹; brown rat; 1:1000; 图 3a
默克密理博中国 Grin1抗体(Millipore, 1.17.2.6)被用于被用于免疫沉淀在brown rat样本上浓度为1:1000 (图 5d), 被用于免疫组化在brown rat样本上浓度为1:1000 (图 4g) 和 被用于免疫印迹在brown rat样本上浓度为1:1000 (图 3a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(1.17.2.6)
  • 免疫印迹; brown rat; 1:2000; 图 6a
默克密理博中国 Grin1抗体(Millipore, AB9864)被用于被用于免疫印迹在brown rat样本上浓度为1:2000 (图 6a). J Neurosci (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
默克密理博中国 Grin1抗体(EMD Millipore, MAB363)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). PLoS ONE (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; brown rat; 图 2a
  • 免疫印迹; brown rat; 图 2c
默克密理博中国 Grin1抗体(Millipore, MAB363)被用于被用于免疫细胞化学在brown rat样本上 (图 2a) 和 被用于免疫印迹在brown rat样本上 (图 2c). J Alzheimers Dis (2016) ncbi
domestic rabbit 单克隆(1.17.2.6)
  • 免疫印迹; 小鼠; 1:500
默克密理博中国 Grin1抗体(Millipore, AB9864)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Nat Commun (2016) ncbi
domestic rabbit 单克隆(1.17.2.6)
  • 免疫印迹; 小鼠; 1:500; 图 3
默克密理博中国 Grin1抗体(Millipore, AB9864)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). Eur Neuropsychopharmacol (2016) ncbi
domestic rabbit 单克隆(1.17.2.6)
  • 抑制或激活实验; brown rat; 图 1
默克密理博中国 Grin1抗体(Merck Millipore, AB9864)被用于被用于抑制或激活实验在brown rat样本上 (图 1). Brain Res (2016) ncbi
domestic rabbit 单克隆(1.17.2.6)
  • 免疫印迹; 小鼠; 1:500; 图 6a
默克密理博中国 Grin1抗体(Millipore, AB9864)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). EMBO Mol Med (2015) ncbi
小鼠 单克隆(R1JHL)
  • 免疫印迹; 小鼠; 图 4
默克密理博中国 Grin1抗体(Merk-Millipore, MAB1586)被用于被用于免疫印迹在小鼠样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:3000; 图 5
默克密理博中国 Grin1抗体(Millipore, MAB363)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 5). Int J Neuropsychopharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 6
默克密理博中国 Grin1抗体(Millipore, ABN88)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 6). Int J Neuropsychopharmacol (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; brown rat; 图 3c
默克密理博中国 Grin1抗体(Chemicon International, MAB363)被用于被用于免疫印迹在brown rat样本上 (图 3c). Neural Dev (2015) ncbi
小鼠 单克隆
  • 免疫印迹; brown rat; 1:1000; 图 2
默克密理博中国 Grin1抗体(Millipore, 05-432)被用于被用于免疫印迹在brown rat样本上浓度为1:1000 (图 2). Neuroscience (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; brown rat; 1:5
默克密理博中国 Grin1抗体(EMD Millipore, MAB363)被用于被用于免疫印迹在brown rat样本上浓度为1:5. Neuroscience (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; 小鼠
默克密理博中国 Grin1抗体(Millipore, MAB363)被用于被用于免疫细胞化学在小鼠样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:500
默克密理博中国 Grin1抗体(Millipore, MAB363)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Neurosci (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫组化-自由浮动切片; brown rat; 1:100
默克密理博中国 Grin1抗体(Millipore, MAB363)被用于被用于免疫组化-自由浮动切片在brown rat样本上浓度为1:100. J Comp Neurol (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; 人类; 1:500
默克密理博中国 Grin1抗体(Millipore, MAB363)被用于被用于免疫细胞化学在人类样本上浓度为1:500. PLoS ONE (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 2
默克密理博中国 Grin1抗体(Millipore, 05-C432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆
  • 免疫印迹; brown rat; 1:500; 图 3
默克密理博中国 Grin1抗体(Millipore, 05-432)被用于被用于免疫印迹在brown rat样本上浓度为1:500 (图 3). Alcohol Clin Exp Res (2015) ncbi
domestic rabbit 单克隆(1.17.2.6)
  • 免疫印迹; 小鼠
默克密理博中国 Grin1抗体(Millipore, AB 9864)被用于被用于免疫印迹在小鼠样本上. Nitric Oxide (2015) ncbi
小鼠 单克隆(R1JHL)
  • 免疫沉淀; 小鼠; 图 9
  • 免疫组化; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 6
默克密理博中国 Grin1抗体(Merck-Millipore, MAB1586)被用于被用于免疫沉淀在小鼠样本上 (图 9), 被用于免疫组化在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 6). Antioxid Redox Signal (2015) ncbi
domestic rabbit 单克隆(1.17.2.6)
  • 免疫印迹; 小鼠; 图 6
默克密理博中国 Grin1抗体(Merck-Millipore, AB9864)被用于被用于免疫印迹在小鼠样本上 (图 6). Antioxid Redox Signal (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:10,000; 图 1e
默克密理博中国 Grin1抗体(Millipore, MAB363)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1e). Neuroscience (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s5
默克密理博中国 Grin1抗体(Upstate Biotechnology, 05-4320)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Med (2014) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:500; 图 5
默克密理博中国 Grin1抗体(EMD Millipore, MAB363)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). J Neurosci (2014) ncbi
domestic rabbit 单克隆(1.17.2.6)
  • 免疫细胞化学; brown rat; 1:1000
  • 免疫印迹; brown rat; 1:1000
默克密理博中国 Grin1抗体(Millipore, AB9864)被用于被用于免疫细胞化学在brown rat样本上浓度为1:1000 和 被用于免疫印迹在brown rat样本上浓度为1:1000. Ann Neurol (2015) ncbi
小鼠 单克隆
  • 免疫沉淀; 小鼠; 10 ug
  • 免疫印迹; 小鼠
默克密理博中国 Grin1抗体(Millipore, 05-432)被用于被用于免疫沉淀在小鼠样本上浓度为10 ug 和 被用于免疫印迹在小鼠样本上. Front Cell Neurosci (2014) ncbi
小鼠 单克隆(54.1)
  • 免疫组化-冰冻切片; brown rat
默克密理博中国 Grin1抗体(Millipore, MAB363)被用于被用于免疫组化-冰冻切片在brown rat样本上. J Comp Neurol (2014) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; brown rat
默克密理博中国 Grin1抗体(Millipore, MAB363)被用于被用于免疫印迹在brown rat样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; 人类; 1:500
默克密理博中国 Grin1抗体(EMD Millipore, MAB363)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Thromb Res (2014) ncbi
domestic rabbit 单克隆(1.17.2.6)
  • 免疫印迹; brown rat; 1:1000
默克密理博中国 Grin1抗体(Millipore, AB9864)被用于被用于免疫印迹在brown rat样本上浓度为1:1000. Neurochem Int (2013) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠
默克密理博中国 Grin1抗体(Millipore, 05-432)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 非洲爪蛙; 1:500
默克密理博中国 Grin1抗体(Millipore, MAB363)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:500. J Neurosci (2013) ncbi
小鼠 单克隆
  • 免疫印迹; brown rat; 1:500; 图 1
默克密理博中国 Grin1抗体(Millipore, 05-432)被用于被用于免疫印迹在brown rat样本上浓度为1:500 (图 1). Mol Psychiatry (2014) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; 小鼠; 1:200
默克密理博中国 Grin1抗体(Millipore, MAB363)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. PLoS Comput Biol (2013) ncbi
小鼠 单克隆
  • 免疫印迹; brown rat; 1:1000
默克密理博中国 Grin1抗体(Millipore, 05-432)被用于被用于免疫印迹在brown rat样本上浓度为1:1000. Eur J Neurosci (2013) ncbi
小鼠 单克隆(R1JHL)
  • 免疫印迹; 小鼠; 1:500
默克密理博中国 Grin1抗体(Millipore, MAB1586)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Neurosci (2013) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠; 1:500
默克密理博中国 Grin1抗体(Millipore, 05-432)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:500. J Comp Neurol (2013) ncbi
domestic rabbit 单克隆(1.17.2.6)
  • 免疫印迹; 小鼠; 1:1000; 图 7
默克密理博中国 Grin1抗体(Millipore, AB9864)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Psychopharmacology (Berl) (2012) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; brown rat; 1:10
  • 免疫印迹; brown rat; 1:1000
默克密理博中国 Grin1抗体(Millipore, MAB363)被用于被用于免疫细胞化学在brown rat样本上浓度为1:10 和 被用于免疫印迹在brown rat样本上浓度为1:1000. J Comp Neurol (2010) ncbi
小鼠 单克隆(54.1)
  • 免疫组化-冰冻切片; brown rat; 1:200
默克密理博中国 Grin1抗体(Calbiochem, MAB-363)被用于被用于免疫组化-冰冻切片在brown rat样本上浓度为1:200. J Comp Neurol (2008) ncbi
碧迪BD
小鼠 单克隆(54.1)
  • 免疫组化-冰冻切片; Lumbriculus variegatus; 1:33; 图 7c
碧迪BD Grin1抗体(BD Biosciences, 556308)被用于被用于免疫组化-冰冻切片在Lumbriculus variegatus样本上浓度为1:33 (图 7c). J Comp Neurol (2020) ncbi
小鼠 单克隆(54.1)
  • 免疫组化; 小鼠; 图 4b
碧迪BD Grin1抗体(BD Pharmingen, 556308)被用于被用于免疫组化在小鼠样本上 (图 4b). elife (2017) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; 小鼠; 图 7a
碧迪BD Grin1抗体(BD, 55630878)被用于被用于免疫细胞化学在小鼠样本上 (图 7a). Sci Rep (2017) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:1000; 图 2
碧迪BD Grin1抗体(BD Biosciences, 556308)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:1000; 图 s3
碧迪BD Grin1抗体(BD Biosciences, 54.1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; brown rat; 1:1000; 图 s2
  • 免疫印迹; 小鼠; 图 s4
碧迪BD Grin1抗体(BD Pharmigen, 556308)被用于被用于免疫印迹在brown rat样本上浓度为1:1000 (图 s2) 和 被用于免疫印迹在小鼠样本上 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 2c
碧迪BD Grin1抗体(BD Pharmingen, 556308)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 2c). Nat Commun (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 图 2
碧迪BD Grin1抗体(BD, 556308)被用于被用于免疫印迹在小鼠样本上 (图 2). Nature (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫沉淀; brown rat; 图 4
碧迪BD Grin1抗体(BD Pharmingen, 556308)被用于被用于免疫沉淀在brown rat样本上 (图 4). Nat Neurosci (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫沉淀; 小鼠; 1:500; 图 4
  • 免疫细胞化学; 小鼠; 1:500; 图 1
  • 免疫印迹; 小鼠; 1:500
碧迪BD Grin1抗体(BD Pharmingen, 556308)被用于被用于免疫沉淀在小鼠样本上浓度为1:500 (图 4), 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500. Front Cell Neurosci (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:1000; 图 1
碧迪BD Grin1抗体(BD Pharmingen, 556308)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 图 4
碧迪BD Grin1抗体(BD Transduction Laboratories, 556308)被用于被用于免疫印迹在小鼠样本上 (图 4). J Neurosci (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫组化; brown rat; 1:400
  • 免疫印迹; brown rat; 1:750; 图 1c
碧迪BD Grin1抗体(PharMingen, 556308)被用于被用于免疫组化在brown rat样本上浓度为1:400 和 被用于免疫印迹在brown rat样本上浓度为1:750 (图 1c). Front Behav Neurosci (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
  • 免疫印迹; 小鼠; 1:1000
碧迪BD Grin1抗体(BD Biosciences, 556308)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 和 被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:4000; 图 2
碧迪BD Grin1抗体(BD Pharmingen, 556308)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 2). Front Pharmacol (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD Grin1抗体(BD Pharmingen, 556308)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Cereb Cortex (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫组化; western mosquitofish; 图 6
碧迪BD Grin1抗体(BD Biosciences, 556308)被用于被用于免疫组化在western mosquitofish样本上 (图 6). Front Neural Circuits (2014) ncbi
小鼠 单克隆(54.1)
  • 免疫组化; 小鼠; 1:50
碧迪BD Grin1抗体(BD Biosciences, 556308)被用于被用于免疫组化在小鼠样本上浓度为1:50. J Comp Neurol (2014) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; brown rat
碧迪BD Grin1抗体(BD Biosciences, 54.1)被用于被用于免疫印迹在brown rat样本上. J Neurosci (2013) ncbi
Neuromab
小鼠 单克隆(N308/48)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
Neuromab Grin1抗体(NeuroMab Facility, 75/272)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). elife (2019) ncbi
小鼠 单克隆(N308/48)
  • 免疫印迹; 小鼠; 1:500; 图 5c
Neuromab Grin1抗体(NeuroMab, 75-272)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5c). Nat Neurosci (2018) ncbi
小鼠 单克隆(N308/48)
  • 免疫印迹; 小鼠; 图 6
Neuromab Grin1抗体(NeuroMab, N308/48)被用于被用于免疫印迹在小鼠样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(N308/48)
  • 免疫印迹; 小鼠; 图 7
Neuromab Grin1抗体(UC Davis/NIH NeuroMab Facility, 73-272)被用于被用于免疫印迹在小鼠样本上 (图 7). Neuropharmacology (2016) ncbi
小鼠 单克隆(N308/48)
  • 免疫组化; brown rat; 5 ug/ml; 图 7a
Neuromab Grin1抗体(UC Davis/NIH NeuroMab facility, 75-272)被用于被用于免疫组化在brown rat样本上浓度为5 ug/ml (图 7a). PLoS ONE (2015) ncbi
小鼠 单克隆(N308/48)
  • 免疫组化; 小鼠; 1:500
Neuromab Grin1抗体(NeuroMab, 75-272)被用于被用于免疫组化在小鼠样本上浓度为1:500. Mol Vis (2014) ncbi
小鼠 单克隆(N308/48)
  • 免疫印迹; 人类; 1:300; 图 1
Neuromab Grin1抗体(NeuroMab, N308/48)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 1). Nat Commun (2014) ncbi
文章列表
  1. Lybrand Z, Martinez Acosta V, Zoran M. Coupled sensory interneurons mediate escape neural circuit processing in an aquatic annelid worm, Lumbriculus variegatus. J Comp Neurol. 2020;528:468-480 pubmed 出版商
  2. Koster K, Francesconi W, Berton F, Alahmadi S, Srinivas R, Yoshii A. Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model. elife. 2019;8: pubmed 出版商
  3. Zheng Y, Liu A, Wang Z, Cao Q, Wang W, Lin L, et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain. 2019;142:787-807 pubmed 出版商
  4. Awasthi A, Ramachandran B, Ahmed S, Benito E, Shinoda Y, Nitzan N, et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science. 2019;363: pubmed 出版商
  5. Nesterov S, Skorobogatova Y, Panteleeva A, Pavlik L, Mikheeva I, Yaguzhinsky L, et al. NMDA and GABA receptor presence in rat heart mitochondria. Chem Biol Interact. 2018;291:40-46 pubmed 出版商
  6. Wang W, Rein B, Zhang F, Tan T, Zhong P, Qin L, et al. Chemogenetic Activation of Prefrontal Cortex Rescues Synaptic and Behavioral Deficits in a Mouse Model of 16p11.2 Deletion Syndrome. J Neurosci. 2018;38:5939-5948 pubmed 出版商
  7. Lautz J, Brown E, Williams VanSchoiack A, Smith S. Synaptic activity induces input-specific rearrangements in a targeted synaptic protein interaction network. J Neurochem. 2018;146:540-559 pubmed 出版商
  8. Qin L, Ma K, Wang Z, Hu Z, Matas E, Wei J, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564-575 pubmed 出版商
  9. Wang Y, Figueiredo D, Sun X, Dong Z, Chen W, Cui W, et al. Controlling of glutamate release by neuregulin3 via inhibiting the assembly of the SNARE complex. Proc Natl Acad Sci U S A. 2018;115:2508-2513 pubmed 出版商
  10. Tseng J, Xie L, Song S, Xie Y, Allen L, Ajit D, et al. The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology. Cell Rep. 2017;20:2169-2183 pubmed 出版商
  11. Martenson J, Yamasaki T, Chaudhury N, Albrecht D, Tomita S. Assembly rules for GABAA receptor complexes in the brain. elife. 2017;6: pubmed 出版商
  12. Xu J, Kurup P, Nairn A, Lombroso P. Synaptic NMDA Receptor Activation Induces Ubiquitination and Degradation of STEP61. Mol Neurobiol. 2018;55:3096-3111 pubmed 出版商
  13. Frank R, Zhu F, Komiyama N, Grant S. Hierarchical organization and genetically separable subfamilies of PSD95 postsynaptic supercomplexes. J Neurochem. 2017;142:504-511 pubmed 出版商
  14. Barad Z, Grattan D, Leitch B. NMDA Receptor Expression in the Thalamus of the Stargazer Model of Absence Epilepsy. Sci Rep. 2017;7:42926 pubmed 出版商
  15. Kim J, Ko A, Hyun H, Min S, Kim J. PDI regulates seizure activity via NMDA receptor redox in rats. Sci Rep. 2017;7:42491 pubmed 出版商
  16. Niu Y, Dai Z, Liu W, Zhang C, Yang Y, Guo Z, et al. Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory. elife. 2017;6: pubmed 出版商
  17. Bodrikov V, Pauschert A, Kochlamazashvili G, Stuermer C. Reggie-1 and reggie-2 (flotillins) participate in Rab11a-dependent cargo trafficking, spine synapse formation and LTP-related AMPA receptor (GluA1) surface exposure in mouse hippocampal neurons. Exp Neurol. 2017;289:31-45 pubmed 出版商
  18. Li W, Liu M, Deng S, Liu Y, Shang L, Ding J, et al. ASIC1a regulates insular long-term depression and is required for the extinction of conditioned taste aversion. Nat Commun. 2016;7:13770 pubmed 出版商
  19. Le H, Ahn B, Lee H, Shin A, Chae S, Lee S, et al. Disruption of Ninjurin1 Leads to Repetitive and Anxiety-Like Behaviors in Mice. Mol Neurobiol. 2017;54:7353-7368 pubmed 出版商
  20. McQuail J, Beas B, Kelly K, Simpson K, Frazier C, Setlow B, et al. NR2A-Containing NMDARs in the Prefrontal Cortex Are Required for Working Memory and Associated with Age-Related Cognitive Decline. J Neurosci. 2016;36:12537-12548 pubmed
  21. Qi X, Zhang K, Xu T, Yamaki V, Wei Z, Huang M, et al. Sex Differences in Long-Term Potentiation at Temporoammonic-CA1 Synapses: Potential Implications for Memory Consolidation. PLoS ONE. 2016;11:e0165891 pubmed 出版商
  22. Van Hummel A, Bi M, Ippati S, van der Hoven J, Volkerling A, Lee W, et al. No Overt Deficits in Aged Tau-Deficient C57Bl/6.Mapttm1(EGFP)Kit GFP Knockin Mice. PLoS ONE. 2016;11:e0163236 pubmed 出版商
  23. Li Y, Chang L, Song Y, Gao X, Roselli F, Liu J, et al. Astrocytic GluN2A and GluN2B Oppose the Synaptotoxic Effects of Amyloid-?1-40 in Hippocampal Cells. J Alzheimers Dis. 2016;54:135-48 pubmed 出版商
  24. Lie E, Ko J, Choi S, Roh J, Cho Y, Noh R, et al. SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion. Nat Commun. 2016;7:12328 pubmed 出版商
  25. Sierra Valdez F, Ruiz Suárez J, Delint Ramirez I. Pentobarbital modifies the lipid raft-protein interaction: A first clue about the anesthesia mechanism on NMDA and GABAA receptors. Biochim Biophys Acta. 2016;1858:2603-2610 pubmed 出版商
  26. Pan B, Huang X, Deng C. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats. Sci Rep. 2016;6:30040 pubmed 出版商
  27. Roshanravan H, Kim E, Dryer S. NMDA Receptors as Potential Therapeutic Targets in Diabetic Nephropathy: Increased Renal NMDA Receptor Subunit Expression in Akita Mice and Reduced Nephropathy Following Sustained Treatment With Memantine or MK-801. Diabetes. 2016;65:3139-50 pubmed 出版商
  28. Shen J, Wang R, He Z, Huang H, He X, Zhou J, et al. NMDA receptors participate in the progression of diabetic kidney disease by decreasing Cdc42-GTP activation in podocytes. J Pathol. 2016;240:149-60 pubmed 出版商
  29. Bosch C, Muhaisen A, Pujadas L, Soriano E, MARTINEZ A. Reelin Exerts Structural, Biochemical and Transcriptional Regulation Over Presynaptic and Postsynaptic Elements in the Adult Hippocampus. Front Cell Neurosci. 2016;10:138 pubmed 出版商
  30. Sun X, Li L, Liu F, Huang Z, Bean J, Jiao H, et al. Lrp4 in astrocytes modulates glutamatergic transmission. Nat Neurosci. 2016;19:1010-8 pubmed 出版商
  31. Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun. 2016;7: pubmed 出版商
  32. Reinhard J, Kriz A, Galic M, Angliker N, Rajalu M, Vogt K, et al. The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory. Nat Commun. 2016;7:11613 pubmed 出版商
  33. Traunmüller L, Gomez A, Nguyen T, Scheiffele P. Control of neuronal synapse specification by a highly dedicated alternative splicing program. Science. 2016;352:982-6 pubmed 出版商
  34. Frank R, Komiyama N, Ryan T, Zhu F, O Dell T, Grant S. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264 pubmed 出版商
  35. Vingtdeux V, Chang E, Frattini S, Zhao H, Chandakkar P, Adrien L, et al. CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice. Sci Rep. 2016;6:24250 pubmed 出版商
  36. Zhu X, Liu X, Sun S, Zhuang H, Yang J, Henkemeyer M, et al. Ephrin-B3 coordinates timed axon targeting and amygdala spinogenesis for innate fear behaviour. Nat Commun. 2016;7:11096 pubmed 出版商
  37. Li M, Corbelli A, Watanabe S, Armelloni S, Ikehata M, Parazzi V, et al. Three-dimensional podocyte-endothelial cell co-cultures: Assembly, validation, and application to drug testing and intercellular signaling studies. Eur J Pharm Sci. 2016;86:1-12 pubmed 出版商
  38. Mei Y, Monteiro P, Zhou Y, Kim J, Gao X, Fu Z, et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature. 2016;530:481-4 pubmed 出版商
  39. Weilinger N, Lohman A, Rakai B, Ma E, Bialecki J, Maslieieva V, et al. Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat Neurosci. 2016;19:432-42 pubmed 出版商
  40. Blanco E, Galeano P, Palomino A, Pavón F, Rivera P, Serrano A, et al. Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus. Eur Neuropsychopharmacol. 2016;26:477-92 pubmed 出版商
  41. Wang Z, Fan J, Wang J, Li Y, Duan D, Du G, et al. Chronic cerebral hypoperfusion induces long-lasting cognitive deficits accompanied by long-term hippocampal silent synapses increase in rats. Behav Brain Res. 2016;301:243-52 pubmed 出版商
  42. Würdemann T, Kersten M, Tokay T, Guli X, Kober M, Rohde M, et al. Stereotactic injection of cerebrospinal fluid from anti-NMDA receptor encephalitis into rat dentate gyrus impairs NMDA receptor function. Brain Res. 2016;1633:10-18 pubmed 出版商
  43. Moraga Amaro R, González H, Ugalde V, Donoso Ramos J, Quintana Donoso D, Lara M, et al. Dopamine receptor D5 deficiency results in a selective reduction of hippocampal NMDA receptor subunit NR2B expression and impaired memory. Neuropharmacology. 2016;103:222-35 pubmed 出版商
  44. Brai E, Marathe S, Astori S, Fredj N, Perry E, Lamy C, et al. Notch1 Regulates Hippocampal Plasticity Through Interaction with the Reelin Pathway, Glutamatergic Transmission and CREB Signaling. Front Cell Neurosci. 2015;9:447 pubmed 出版商
  45. Valenza M, Chen J, Di Paolo E, Ruozi B, Belletti D, Ferrari Bardile C, et al. Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntington's disease mice. EMBO Mol Med. 2015;7:1547-64 pubmed 出版商
  46. Zhang P, Fu W, Fu A, Ip N. S-nitrosylation-dependent proteasomal degradation restrains Cdk5 activity to regulate hippocampal synaptic strength. Nat Commun. 2015;6:8665 pubmed 出版商
  47. Mayanagi T, Yasuda H, Sobue K. PSD-Zip70 Deficiency Causes Prefrontal Hypofunction Associated with Glutamatergic Synapse Maturation Defects by Dysregulation of Rap2 Activity. J Neurosci. 2015;35:14327-40 pubmed 出版商
  48. Rodríguez Muñoz M, Cortés Montero E, Pozo Rodrigálvarez A, Sánchez Blázquez P, Garzón Niño J. The ON:OFF switch, σ1R-HINT1 protein, controls GPCR-NMDA receptor cross-regulation: implications in neurological disorders. Oncotarget. 2015;6:35458-77 pubmed 出版商
  49. Posa L, Accarie A, Noble F, Marie N. Methadone Reverses Analgesic Tolerance Induced by Morphine Pretreatment. Int J Neuropsychopharmacol. 2016;19: pubmed 出版商
  50. Corbel C, Hernandez I, Wu B, Kosik K. Developmental attenuation of N-methyl-D-aspartate receptor subunit expression by microRNAs. Neural Dev. 2015;10:20 pubmed 出版商
  51. Forrest C, McNair K, Pisar M, Khalil O, Darlington L, Stone T. Altered hippocampal plasticity by prenatal kynurenine administration, kynurenine-3-monoxygenase (KMO) deletion or galantamine. Neuroscience. 2015;310:91-105 pubmed 出版商
  52. Liu S, Mi W, Li Q, Zhang M, Han P, Hu S, et al. Spinal IL-33/ST2 Signaling Contributes to Neuropathic Pain via Neuronal CaMKII-CREB and Astroglial JAK2-STAT3 Cascades in Mice. Anesthesiology. 2015;123:1154-69 pubmed 出版商
  53. Li M, Yang S, Xing B, Ferguson B, Gulchina Y, Li Y, et al. LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment. Exp Neurol. 2015;273:190-201 pubmed 出版商
  54. Farley M, Swulius M, Waxham M. Electron tomographic structure and protein composition of isolated rat cerebellar, hippocampal and cortical postsynaptic densities. Neuroscience. 2015;304:286-301 pubmed 出版商
  55. SÅ‚oniecka M, Le Roux S, Boman P, Byström B, Zhou Q, Danielson P. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ. PLoS ONE. 2015;10:e0134157 pubmed 出版商
  56. Hsu W, Chung H, Wu C, Wu H, Lee Y, Chen E, et al. Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors and Metabotropic Glutamate Receptors. J Biol Chem. 2015;290:20748-60 pubmed 出版商
  57. Grüter T, Wiescholleck V, Dubovyk V, Aliane V, Manahan Vaughan D. Altered neuronal excitability underlies impaired hippocampal function in an animal model of psychosis. Front Behav Neurosci. 2015;9:117 pubmed 出版商
  58. Ferreira J, Schmidt J, Rio P, Águas R, Rooyakkers A, Li K, et al. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome. J Neurosci. 2015;35:8462-79 pubmed 出版商
  59. Stensrud M, Sogn C, Gundersen V. Immunogold characteristics of VGLUT3-positive GABAergic nerve terminals suggest corelease of glutamate. J Comp Neurol. 2015;523:2698-713 pubmed 出版商
  60. Atkin G, Moore S, Lu Y, Nelson R, Tipper N, Rajpal G, et al. Loss of F-box only protein 2 (Fbxo2) disrupts levels and localization of select NMDA receptor subunits, and promotes aberrant synaptic connectivity. J Neurosci. 2015;35:6165-78 pubmed 出版商
  61. Balsara R, Dang A, Donahue D, Snow T, Castellino F. Conantokin-G attenuates detrimental effects of NMDAR hyperactivity in an ischemic rat model of stroke. PLoS ONE. 2015;10:e0122840 pubmed 出版商
  62. Ramberger M, Peschl P, Schanda K, Irschick R, Höftberger R, Deisenhammer F, et al. Comparison of diagnostic accuracy of microscopy and flow cytometry in evaluating N-methyl-D-aspartate receptor antibodies in serum using a live cell-based assay. PLoS ONE. 2015;10:e0122037 pubmed 出版商
  63. Matsuno H, Ohi K, Hashimoto R, Yamamori H, Yasuda Y, Fujimoto M, et al. A naturally occurring null variant of the NMDA type glutamate receptor NR3B subunit is a risk factor of schizophrenia. PLoS ONE. 2015;10:e0116319 pubmed 出版商
  64. McGuier N, Padula A, Mulholland P, Chandler L. Homer2 deletion alters dendritic spine morphology but not alcohol-associated adaptations in GluN2B-containing N-methyl-D-aspartate receptors in the nucleus accumbens. Front Pharmacol. 2015;6:28 pubmed 出版商
  65. Van Skike C, Diaz Granados J, Matthews D. Chronic intermittent ethanol exposure produces persistent anxiety in adolescent and adult rats. Alcohol Clin Exp Res. 2015;39:262-71 pubmed 出版商
  66. Sceniak M, Lang M, Enomoto A, James Howell C, Hermes D, Katz D. Mechanisms of Functional Hypoconnectivity in the Medial Prefrontal Cortex of Mecp2 Null Mice. Cereb Cortex. 2016;26:1938-1956 pubmed 出版商
  67. Kundu S, Pushpakumar S, Sen U. MMP-9- and NMDA receptor-mediated mechanism of diabetic renovascular remodeling and kidney dysfunction: hydrogen sulfide is a key modulator. Nitric Oxide. 2015;46:172-85 pubmed 出版商
  68. Lo S, Wang Y, Weber M, Larson J, Scearce Levie K, Sheng M. Caspase-3 deficiency results in disrupted synaptic homeostasis and impaired attention control. J Neurosci. 2015;35:2118-32 pubmed 出版商
  69. Garcia Alvarez G, Lu B, Yap K, Wong L, Thevathasan J, Lim L, et al. STIM2 regulates PKA-dependent phosphorylation and trafficking of AMPARs. Mol Biol Cell. 2015;26:1141-59 pubmed 出版商
  70. Rodríguez Muñoz M, Sánchez Blázquez P, Herrero Labrador R, Martínez Murillo R, Merlos M, Vela J, et al. The σ1 receptor engages the redox-regulated HINT1 protein to bring opioid analgesia under NMDA receptor negative control. Antioxid Redox Signal. 2015;22:799-818 pubmed 出版商
  71. Darvas M, Palmiter R. Specific contributions of N-methyl-D-aspartate receptors in the dorsal striatum to cognitive flexibility. Neuroscience. 2015;284:934-42 pubmed 出版商
  72. Gascon E, Lynch K, Ruan H, Almeida S, Verheyden J, Seeley W, et al. Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med. 2014;20:1444-51 pubmed 出版商
  73. Zhang J, Hu M, Teng Z, Tang Y, Chen C. Synaptic and cognitive improvements by inhibition of 2-AG metabolism are through upregulation of microRNA-188-3p in a mouse model of Alzheimer's disease. J Neurosci. 2014;34:14919-33 pubmed 出版商
  74. Peng X, Hughes E, Moscato E, Parsons T, Dalmau J, Balice Gordon R. Cellular plasticity induced by anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis antibodies. Ann Neurol. 2015;77:381-98 pubmed 出版商
  75. Grau C, Arató K, Fernández Fernández J, Valderrama A, Sindreu C, Fillat C, et al. DYRK1A-mediated phosphorylation of GluN2A at Ser(1048) regulates the surface expression and channel activity of GluN1/GluN2A receptors. Front Cell Neurosci. 2014;8:331 pubmed 出版商
  76. de Andrade G, Kunzelman L, Merrill M, Fuerst P. Developmentally dynamic colocalization patterns of DSCAM with adhesion and synaptic proteins in the mouse retina. Mol Vis. 2014;20:1422-33 pubmed
  77. Maraschi A, Ciammola A, Folci A, Sassone F, Ronzitti G, Cappelletti G, et al. Parkin regulates kainate receptors by interacting with the GluK2 subunit. Nat Commun. 2014;5:5182 pubmed 出版商
  78. Abazyan S, Yang E, Abazyan B, Xia M, Yang C, Rojas C, et al. Mutant disrupted-in-schizophrenia 1 in astrocytes: focus on glutamate metabolism. J Neurosci Res. 2014;92:1659-68 pubmed 出版商
  79. Rubio M, Fukazawa Y, Kamasawa N, Clarkson C, Molnar E, Shigemoto R. Target- and input-dependent organization of AMPA and NMDA receptors in synaptic connections of the cochlear nucleus. J Comp Neurol. 2014;522:4023-42 pubmed 出版商
  80. Serrano Velez J, Rodriguez Alvarado M, Torres Vazquez I, Fraser S, Yasumura T, Vanderpool K, et al. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons. Front Neural Circuits. 2014;8:66 pubmed 出版商
  81. Fernandes J, Vieira M, Carreto L, Santos M, Duarte C, Carvalho A, et al. In vitro ischemia triggers a transcriptional response to down-regulate synaptic proteins in hippocampal neurons. PLoS ONE. 2014;9:e99958 pubmed 出版商
  82. Lee S, Sharma M, S dhof T, Shen J. Synaptic function of nicastrin in hippocampal neurons. Proc Natl Acad Sci U S A. 2014;111:8973-8 pubmed 出版商
  83. Kennard J, Guevremont D, Mason Parker S, Abraham W, Williams J. Redistribution of ionotropic glutamate receptors detected by laser microdissection of the rat dentate gyrus 48 h following LTP induction in vivo. PLoS ONE. 2014;9:e92972 pubmed 出版商
  84. Marques Lopes J, Van Kempen T, Waters E, Pickel V, Iadecola C, Milner T. Slow-pressor angiotensin II hypertension and concomitant dendritic NMDA receptor trafficking in estrogen receptor ?-containing neurons of the mouse hypothalamic paraventricular nucleus are sex and age dependent. J Comp Neurol. 2014;522:3075-90 pubmed 出版商
  85. Kalev Zylinska M, Green T, Morel Kopp M, Sun P, Park Y, Lasham A, et al. N-methyl-D-aspartate receptors amplify activation and aggregation of human platelets. Thromb Res. 2014;133:837-47 pubmed 出版商
  86. Savignac H, Corona G, Mills H, Chen L, Spencer J, Tzortzis G, et al. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem Int. 2013;63:756-64 pubmed 出版商
  87. Trotter J, Lee G, Kazdoba T, Crowell B, Domogauer J, Mahoney H, et al. Dab1 is required for synaptic plasticity and associative learning. J Neurosci. 2013;33:15652-68 pubmed 出版商
  88. Kazi R, Gan Q, Talukder I, Markowitz M, Salussolia C, Wollmuth L. Asynchronous movements prior to pore opening in NMDA receptors. J Neurosci. 2013;33:12052-66 pubmed 出版商
  89. Wei J, Yuen E, Liu W, Li X, Zhong P, Karatsoreos I, et al. Estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and cognition. Mol Psychiatry. 2014;19:588-98 pubmed 出版商
  90. Busse B, Smith S. Automated analysis of a diverse synapse population. PLoS Comput Biol. 2013;9:e1002976 pubmed 出版商
  91. Gupta S, Hillman B, Prakash A, Ugale R, Stairs D, Dravid S. Effect of D-cycloserine in conjunction with fear extinction training on extracellular signal-regulated kinase activation in the medial prefrontal cortex and amygdala in rat. Eur J Neurosci. 2013;37:1811-22 pubmed 出版商
  92. Murata Y, Constantine Paton M. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci. 2013;33:5040-52 pubmed 出版商
  93. Abrahao K, Ariwodola O, Butler T, Rau A, Skelly M, Carter E, et al. Locomotor sensitization to ethanol impairs NMDA receptor-dependent synaptic plasticity in the nucleus accumbens and increases ethanol self-administration. J Neurosci. 2013;33:4834-42 pubmed 出版商
  94. Kopeikina K, Polydoro M, Tai H, Yaeger E, Carlson G, Pitstick R, et al. Synaptic alterations in the rTg4510 mouse model of tauopathy. J Comp Neurol. 2013;521:1334-53 pubmed 出版商
  95. She K, Ferreira J, Carvalho A, Craig A. Glutamate binding to the GluN2B subunit controls surface trafficking of N-methyl-D-aspartate (NMDA) receptors. J Biol Chem. 2012;287:27432-45 pubmed 出版商
  96. She K, Craig A. NMDA receptors mediate synaptic competition in culture. PLoS ONE. 2011;6:e24423 pubmed 出版商
  97. Blanco E, Bilbao A, Luque Rojas M, Palomino A, Bermudez Silva F, Suarez J, et al. Attenuation of cocaine-induced conditioned locomotion is associated with altered expression of hippocampal glutamate receptors in mice lacking LPA1 receptors. Psychopharmacology (Berl). 2012;220:27-42 pubmed 出版商
  98. Gibbs S, Chattopadhyaya B, Desgent S, Awad P, Clerk Lamalice O, Levesque M, et al. Long-term consequences of a prolonged febrile seizure in a dual pathology model. Neurobiol Dis. 2011;43:312-21 pubmed 出版商
  99. Kennard J, Barmanray R, Sampurno S, Ozturk E, Reid C, Paradiso L, et al. Stargazin and AMPA receptor membrane expression is increased in the somatosensory cortex of Genetic Absence Epilepsy Rats from Strasbourg. Neurobiol Dis. 2011;42:48-54 pubmed 出版商
  100. Swulius M, Kubota Y, Forest A, Waxham M. Structure and composition of the postsynaptic density during development. J Comp Neurol. 2010;518:4243-60 pubmed 出版商
  101. Zhang Z, Bodznick D. The importance of N-methyl-D-aspartate (NMDA) receptors in subtraction of electrosensory reafference in the dorsal nucleus of skates. J Exp Biol. 2010;213:2700-9 pubmed 出版商
  102. Ouardouz M, Lema P, Awad P, Di Cristo G, Carmant L. N-methyl-D-aspartate, hyperpolarization-activated cation current (Ih) and gamma-aminobutyric acid conductances govern the risk of epileptogenesis following febrile seizures in rat hippocampus. Eur J Neurosci. 2010;31:1252-60 pubmed 出版商
  103. Tse Y, Lai C, Lai S, Liu J, Yung K, Shum D, et al. Developmental expression of NMDA and AMPA receptor subunits in vestibular nuclear neurons that encode gravity-related horizontal orientations. J Comp Neurol. 2008;508:343-64 pubmed 出版商
  104. Thompson P, Egbufoama S, Vawter M. SNAP-25 reduction in the hippocampus of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:411-7 pubmed