这是一篇来自已证抗体库的有关鸡 HSP90AA1的综述,是根据124篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合HSP90AA1 抗体。
Enzo Life Sciences
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
Enzo Life Sciences HSP90AA1抗体(Enzo, ADI-SPA-830)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). elife (2019) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠; 1:1000; 图 s6a
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, SPA-830)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6a). Nat Commun (2018) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠; 1:4000; 图 9a
Enzo Life Sciences HSP90AA1抗体(Enzo, AC88)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 9a). Nat Commun (2017) ncbi
大鼠 单克隆(9D2)
  • 免疫印迹; 人类; 图 4f
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, ADI-SPA-840-F)被用于被用于免疫印迹在人类样本上 (图 4f). Oncogene (2017) ncbi
大鼠 单克隆(16F1)
  • 流式细胞仪; 人类; 图 2
Enzo Life Sciences HSP90AA1抗体(Enzo life sciences, I6F1)被用于被用于流式细胞仪在人类样本上 (图 2). J Leukoc Biol (2017) ncbi
大鼠 单克隆(9D2)
  • 流式细胞仪; 人类; 图 2
Enzo Life Sciences HSP90AA1抗体(Enzo life sciences, 9D2)被用于被用于流式细胞仪在人类样本上 (图 2). J Leukoc Biol (2017) ncbi
大鼠 单克隆(2D12)
  • 流式细胞仪; 人类; 图 2
Enzo Life Sciences HSP90AA1抗体(Enzo life sciences, 2D12)被用于被用于流式细胞仪在人类样本上 (图 2). J Leukoc Biol (2017) ncbi
小鼠 单克隆(AC88)
  • 流式细胞仪; 人类; 图 2
Enzo Life Sciences HSP90AA1抗体(Enzo life sciences, AC88)被用于被用于流式细胞仪在人类样本上 (图 2). J Leukoc Biol (2017) ncbi
小鼠 单克隆(K3705)
  • 流式细胞仪; 人类; 图 2
Enzo Life Sciences HSP90AA1抗体(Enzo life sciences, K3705)被用于被用于流式细胞仪在人类样本上 (图 2). J Leukoc Biol (2017) ncbi
大鼠 单克隆(9D2)
  • 免疫印迹; 人类; 图 1f
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, ADI-SPA-840-F)被用于被用于免疫印迹在人类样本上 (图 1f). BMC Cancer (2017) ncbi
大鼠 单克隆(2D12)
  • 免疫沉淀; 人类; 图 2c
  • 免疫印迹; 人类; 图 2a
Enzo Life Sciences HSP90AA1抗体(Stressgen, ADI-SPA-845-D)被用于被用于免疫沉淀在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2017) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 1:2000; 图 sf10a
Enzo Life Sciences HSP90AA1抗体(Stratagene, ADI-SPA-830D)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 sf10a). Nat Commun (2016) ncbi
大鼠 单克隆(9D2)
  • 免疫沉淀; 人类; 图 6b
Enzo Life Sciences HSP90AA1抗体(Assay Designs, ADI-SPA-840)被用于被用于免疫沉淀在人类样本上 (图 6b). Sci Rep (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, ADI-SPA-830)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Oncotarget (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 大鼠; 图 6d
Enzo Life Sciences HSP90AA1抗体(Enzo, ADI-SPA-830-D)被用于被用于免疫印迹在大鼠样本上 (图 6d). Biochem J (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠; 图 5
Enzo Life Sciences HSP90AA1抗体(Enzo, AC88)被用于被用于免疫印迹在小鼠样本上 (图 5). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠; 1:1000; 图 3
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, AC88)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). J Neurosci (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 图 1
Enzo Life Sciences HSP90AA1抗体(Enzo, ADI-SPA-830)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫沉淀; 人类; 图 3
Enzo Life Sciences HSP90AA1抗体(Enzo, AC88)被用于被用于免疫沉淀在人类样本上 (图 3). Mol Cancer Ther (2016) ncbi
大鼠 单克隆(2D12)
  • 免疫沉淀; 人类; 图 3
Enzo Life Sciences HSP90AA1抗体(Enzo, 2D12)被用于被用于免疫沉淀在人类样本上 (图 3). Mol Cancer Ther (2016) ncbi
大鼠 单克隆(9D2)
  • 免疫细胞化学; 鸡; 1:100; 图 3
Enzo Life Sciences HSP90AA1抗体(Enzo, ADI-SPA-840)被用于被用于免疫细胞化学在鸡样本上浓度为1:100 (图 3). Br Poult Sci (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 图 5
Enzo Life Sciences HSP90AA1抗体(Enzo, SPA-830)被用于被用于免疫印迹在人类样本上 (图 5). Front Pharmacol (2016) ncbi
大鼠 单克隆(9D2)
  • 免疫组化-石蜡切片; 鸡; 1:50; 图 3
Enzo Life Sciences HSP90AA1抗体(Enzo, ADI-SPA-840)被用于被用于免疫组化-石蜡切片在鸡样本上浓度为1:50 (图 3). J Vet Sci (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 1:500; 表 1
  • 免疫印迹; 小鼠; 1:500; 表 1
Enzo Life Sciences HSP90AA1抗体(Assay Designs, AC88)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (表 1). Front Cell Neurosci (2015) ncbi
大鼠 单克隆(16F1)
  • 免疫印迹; 拟南芥; 1:2000; 图 5
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, AD1-SPA-835-F)被用于被用于免疫印迹在拟南芥样本上浓度为1:2000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(AC88)
  • 流式细胞仪; 小鼠; 图 1
Enzo Life Sciences HSP90AA1抗体(Enzo, AC88)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int J Oncol (2016) ncbi
大鼠 单克隆(9D2)
  • 免疫沉淀; 人类; 图 8
  • 免疫印迹; 人类; 图 7
Enzo Life Sciences HSP90AA1抗体(Stressgen, SPA-840)被用于被用于免疫沉淀在人类样本上 (图 8) 和 被用于免疫印迹在人类样本上 (图 7). Biochem Pharmacol (2016) ncbi
大鼠 单克隆(16F1)
  • 免疫印迹; 小鼠; 图 2
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, 16F1)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(9D2)
  • 免疫印迹; 人类; 图 2
Enzo Life Sciences HSP90AA1抗体(Enzo, ADISPA-840)被用于被用于免疫印迹在人类样本上 (图 2). Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(K3705)
  • 免疫印迹; 大鼠
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, K3705)被用于被用于免疫印迹在大鼠样本上. Front Pharmacol (2015) ncbi
大鼠 单克隆(9D2)
  • 免疫印迹; 小鼠; 1:1000; 图 5
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, ADI-SPA-840HRP)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Br J Pharmacol (2015) ncbi
小鼠 单克隆(K3705)
  • 免疫印迹; 小鼠
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, SPA-842)被用于被用于免疫印迹在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(2D12)
  • 免疫沉淀; 小鼠; 图 7
  • 免疫印迹; 小鼠; 图 5
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 图 10
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, SPA-845)被用于被用于免疫沉淀在小鼠样本上 (图 7), 被用于免疫印迹在小鼠样本上 (图 5), 被用于免疫沉淀在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 10). Eur J Immunol (2015) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠; 图 5
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 图 10
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, SPA-830)被用于被用于免疫印迹在小鼠样本上 (图 5), 被用于免疫沉淀在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 10). Eur J Immunol (2015) ncbi
大鼠 单克隆(16F1)
  • 免疫组化-自由浮动切片; fruit fly ; 1:100; 图 3
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, ADI-SPA-835)被用于被用于免疫组化-自由浮动切片在fruit fly 样本上浓度为1:100 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 1:1000; 图 5
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, API-SPA-830)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(AC88)
  • 流式细胞仪; 人类
Enzo Life Sciences HSP90AA1抗体(Stressgen, ADI-SPA-830)被用于被用于流式细胞仪在人类样本上. Cancer Res (2015) ncbi
小鼠 单克隆(K3705)
  • 免疫印迹; 人类; 图 s3
Enzo Life Sciences HSP90AA1抗体(Enzo, K3705)被用于被用于免疫印迹在人类样本上 (图 s3). Cell Death Dis (2015) ncbi
大鼠 单克隆(9D2)
  • 免疫印迹; 人类; 1:2000
Enzo Life Sciences HSP90AA1抗体(Enzo, ADI-SPA-840)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nat Med (2015) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠
Enzo Life Sciences HSP90AA1抗体(Stressgen, SPA-830)被用于被用于免疫印迹在小鼠样本上. Oncogene (2015) ncbi
大鼠 单克隆(9D2)
  • 免疫印迹; 大肠杆菌; 图 2
Enzo Life Sciences HSP90AA1抗体(Stressgen, SPA-840)被用于被用于免疫印迹在大肠杆菌样本上 (图 2). Biochemistry (2015) ncbi
小鼠 单克隆(AC88)
  • 流式细胞仪; 人类; 1:100
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, ADI-SPA-830)被用于被用于流式细胞仪在人类样本上浓度为1:100. Biochem Pharmacol (2015) ncbi
大鼠 单克隆(16F1)
  • 免疫印迹; Garra rufa
Enzo Life Sciences HSP90AA1抗体(StressGen, SPA-835)被用于被用于免疫印迹在Garra rufa样本上. Redox Biol (2014) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠
Enzo Life Sciences HSP90AA1抗体(Stressgen, SPA-830)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 鸡
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, AC88)被用于被用于免疫印迹在鸡样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(16F1)
  • 免疫印迹; 小鼠
Enzo Life Sciences HSP90AA1抗体(Stressgen, SPA835)被用于被用于免疫印迹在小鼠样本上. J Neuroinflammation (2014) ncbi
小鼠 单克隆(AC88)
  • 免疫沉淀; 人类; 图 6
  • 免疫印迹; 人类; 图 6
Enzo Life Sciences HSP90AA1抗体(Stressgen, SPA830)被用于被用于免疫沉淀在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). Blood (2014) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, ADI-SPA-830)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2013) ncbi
大鼠 单克隆(2D12)
  • 免疫印迹; 人类
Enzo Life Sciences HSP90AA1抗体(Enzolifesciences, ADI-SPA-845)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
大鼠 单克隆(16F1)
  • 免疫印迹; 人类
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, 16F1)被用于被用于免疫印迹在人类样本上. J Card Fail (2012) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 1:1000
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, AC88)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Stress Chaperones (2012) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 大鼠
Enzo Life Sciences HSP90AA1抗体(Enzo Life Sciences, AC88)被用于被用于免疫印迹在大鼠样本上. J Biol Chem (2012) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(D7A)
  • 免疫印迹; 小鼠; 1:500; 图 1f
艾博抗(上海)贸易有限公司 HSP90AA1抗体(Abcam, ab59459)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1f). Nat Commun (2021) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 HSP90AA1抗体(abcam, ab13492)被用于被用于免疫印迹在小鼠样本上 (图 5c). Cancer Discov (2020) ncbi
小鼠 单克隆(AC88)
  • 免疫组化; 小鼠; 1:100; 图 s6h
艾博抗(上海)贸易有限公司 HSP90AA1抗体(Abcam, ab13492)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s6h). Cell (2017) ncbi
小鼠 单克隆(AC88)
  • 流式细胞仪; 人类; 1:50; 图 3
艾博抗(上海)贸易有限公司 HSP90AA1抗体(ABCAM, ab13492)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3). Methods Mol Biol (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 HSP90AA1抗体(Abcam, ab13492)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Oncotarget (2016) ncbi
小鼠 单克隆(D7A)
  • 免疫细胞化学; 人类; 图 5c
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 HSP90AA1抗体(Abcam, ab59459)被用于被用于免疫细胞化学在人类样本上 (图 5c) 和 被用于免疫印迹在人类样本上 (图 5a). FASEB J (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫沉淀; 人类; 图 2a
艾博抗(上海)贸易有限公司 HSP90AA1抗体(Abcam, ab13492)被用于被用于免疫沉淀在人类样本上 (图 2a). FASEB J (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 1:100; 图 3b
艾博抗(上海)贸易有限公司 HSP90AA1抗体(Abcam, ab13492)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3b). Mol Med Rep (2015) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 HSP90AA1抗体(Abcam, ab13492)被用于被用于免疫印迹在小鼠样本上. Proteomics (2014) ncbi
Novus Biologicals
小鼠 单克隆(AC88)
  • 流式细胞仪; 小鼠; 图 4b
Novus Biologicals HSP90AA1抗体(Novus, AC88)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Adv Sci (Weinh) (2020) ncbi
西格玛奥德里奇
小鼠 单克隆(AC-16)
  • 免疫印迹; 大鼠; 1:1000; 图 8
西格玛奥德里奇 HSP90AA1抗体(Sigma, H1775)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-16)
  • 免疫印迹; 大鼠; 图 6
西格玛奥德里奇 HSP90AA1抗体(Sigma-Aldrich, H1775)被用于被用于免疫印迹在大鼠样本上 (图 6). J Biophotonics (2015) ncbi
碧迪BD
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:5000; 图 3f
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3f). Genome Biol (2021) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:10,000; 图 2g
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2g). elife (2020) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:5000; 图 1c
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1c). PLoS Genet (2020) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:1000; 图 3b
碧迪BD HSP90AA1抗体(BD Biosciences, 68)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). elife (2020) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:4000; 图 6c
碧迪BD HSP90AA1抗体(BD-Biosciences, 610419)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 6c). Cell Death Dis (2020) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:1000; 图 2d
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Nat Commun (2019) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 3d
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在人类样本上 (图 3d). Mol Cell (2019) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 1d
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 1d). Cell (2019) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 1f
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 1f). Curr Biol (2019) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 s11c
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 s11c). Science (2018) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:2500; 图 2j
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 2j). Nat Commun (2018) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:4000; 图 3b
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 3b). Nat Commun (2018) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 s5h
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在小鼠样本上 (图 s5h). Nat Methods (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 大鼠; 图 1d
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在大鼠样本上 (图 1d). Sci Rep (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:5000; 图 1b
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1b). Biochemistry (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:1000; 图 6b
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). BMC Pulm Med (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 1c
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Clin Invest (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 6b
碧迪BD HSP90AA1抗体(BD, 610419)被用于被用于免疫印迹在小鼠样本上 (图 6b). Mol Cell Biol (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 1b
碧迪BD HSP90AA1抗体(BD Bioscience, 610418)被用于被用于免疫印迹在人类样本上 (图 1b). Oncogene (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 s6c
碧迪BD HSP90AA1抗体(BD Transduction Lab, 610419)被用于被用于免疫印迹在人类样本上 (图 s6c). Nature (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 大鼠; 1:2000; 图 7c
碧迪BD HSP90AA1抗体(BD Transduction, 610418)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 7c). J Cell Physiol (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:5000; 图 s2a
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s2a). Nat Commun (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 犬; 1:500; 图 3
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在犬样本上浓度为1:500 (图 3). Int J Hyperthermia (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 2k
碧迪BD HSP90AA1抗体(BD Transduction, 610419)被用于被用于免疫印迹在小鼠样本上 (图 2k). Cell Cycle (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 3
碧迪BD HSP90AA1抗体(BD Transduction Labs, 610419)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS Genet (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 9h
  • 免疫印迹; 大鼠; 图 3a
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在小鼠样本上 (图 9h) 和 被用于免疫印迹在大鼠样本上 (图 3a). Sci Rep (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:1000; 图 7f
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7f). Nat Commun (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 4h
碧迪BD HSP90AA1抗体(BD, 68/Hsp90)被用于被用于免疫印迹在人类样本上 (图 4h). Science (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 2
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cell Biol (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 5e
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在人类样本上 (图 5e). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 3
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在人类样本上 (图 3). IUBMB Life (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 其他; 人类; 图 st1
碧迪BD HSP90AA1抗体(BD, 68)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 4
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在小鼠样本上 (图 4). Cancer Discov (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 1
碧迪BD HSP90AA1抗体(BD Biosciences, 68/Hsp90)被用于被用于免疫印迹在小鼠样本上 (图 1). J Immunol (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:1000; 图 3
碧迪BD HSP90AA1抗体(BD Transduction Labs, 68)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 2
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 2). Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:5000; 图 3a
碧迪BD HSP90AA1抗体(BD, 610418)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3a). Mol Brain (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 2
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 2). Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:500; 图 4f
碧迪BD HSP90AA1抗体(BD, 610419)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4f). PLoS ONE (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 1
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 2
碧迪BD HSP90AA1抗体(BD Transduction laboratories, 610419)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 5
碧迪BD HSP90AA1抗体(BD Transduction Laboratorie, 610419)被用于被用于免疫印迹在小鼠样本上 (图 5). Genes Dev (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 鸡; 1:1000
碧迪BD HSP90AA1抗体(BD Bioscience, 610418)被用于被用于免疫印迹在鸡样本上浓度为1:1000. Biosci Biotechnol Biochem (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 s6
碧迪BD HSP90AA1抗体(BD, 610418)被用于被用于免疫印迹在人类样本上 (图 s6). Nature (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD Transduction Labs, 610418)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 4
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS Pathog (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:1000; 图 7
碧迪BD HSP90AA1抗体(BD Transduction laboratories, 610418)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Eur J Pharmacol (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD Transduction, 610419)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在人类样本上. Proteomics (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:3000; 图 2
碧迪BD HSP90AA1抗体(BD, 610419)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2). Nat Cell Biol (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 7f
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 7f). PLoS ONE (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上. Antimicrob Agents Chemother (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD, 610419)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 大鼠; 1:1000
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Lab Invest (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:3000
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在人类样本上浓度为1:3000. PLoS Genet (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:2000; 图 1a
碧迪BD HSP90AA1抗体(BD Transduction lab, 610419)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nat Cell Biol (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 大鼠; 图 s3
碧迪BD HSP90AA1抗体(BD Transduction, 610418)被用于被用于免疫印迹在大鼠样本上 (图 s3). Nat Neurosci (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠
碧迪BD HSP90AA1抗体(BD Transduction laboratories, 610418)被用于被用于免疫印迹在小鼠样本上. Physiol Rep (2013) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:3000
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在小鼠样本上浓度为1:3000. FASEB J (2013) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:1000; 图 7
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Mol Pharmacol (2013) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 4
碧迪BD HSP90AA1抗体(BD Transduction, 610419)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 5
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在人类样本上 (图 5). Nat Immunol (2011) ncbi
文章列表
  1. Shin S, Zhou H, He C, Wei Y, Wang Y, Shingu T, et al. Qki activates Srebp2-mediated cholesterol biosynthesis for maintenance of eye lens transparency. Nat Commun. 2021;12:3005 pubmed 出版商
  2. Li L, Ugalde A, Scheele C, Dieter S, Nagel R, Ma J, et al. A comprehensive enhancer screen identifies TRAM2 as a key and novel mediator of YAP oncogenesis. Genome Biol. 2021;22:54 pubmed 出版商
  3. Ow J, Cadez M, Zafer G, Foo J, Li H, Ghosh S, et al. Remodeling of whole-body lipid metabolism and a diabetic-like phenotype caused by loss of CDK1 and hepatocyte division. elife. 2020;9: pubmed 出版商
  4. Dewhurst M, Ow J, Zafer G, Van Hul N, Wollmann H, Bisteau X, et al. Loss of hepatocyte cell division leads to liver inflammation and fibrosis. PLoS Genet. 2020;16:e1009084 pubmed 出版商
  5. Wang H, Radomska H, Phelps M, Iorns E, Tsui R, Denis A, et al. Replication Study: Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. elife. 2020;9: pubmed 出版商
  6. Bekeschus S, Clemen R, Nießner F, Sagwal S, Freund E, Schmidt A. Medical Gas Plasma Jet Technology Targets Murine Melanoma in an Immunogenic Fashion. Adv Sci (Weinh). 2020;7:1903438 pubmed 出版商
  7. Wu Y, Chou T, Young L, Hsieh F, Pan H, Mo S, et al. Tumor suppressor death-associated protein kinase 1 inhibits necroptosis by p38 MAPK activation. Cell Death Dis. 2020;11:305 pubmed 出版商
  8. Klotz R, Thomas A, Teng T, Han S, Iriondo O, Li L, et al. Circulating Tumor Cells Exhibit Metastatic Tropism and Reveal Brain Metastasis Drivers. Cancer Discov. 2020;10:86-103 pubmed 出版商
  9. Nakamura Y, Dryanovski D, Kimura Y, Jackson S, Woods A, Yasui Y, et al. Cocaine-induced endocannabinoid signaling mediated by sigma-1 receptors and extracellular vesicle secretion. elife. 2019;8: pubmed 出版商
  10. Matsumoto S, Yamamichi T, Shinzawa K, Kasahara Y, Nojima S, Kodama T, et al. GREB1 induced by Wnt signaling promotes development of hepatoblastoma by suppressing TGFβ signaling. Nat Commun. 2019;10:3882 pubmed 出版商
  11. Chino H, Hatta T, Natsume T, Mizushima N. Intrinsically Disordered Protein TEX264 Mediates ER-phagy. Mol Cell. 2019;74:909-921.e6 pubmed 出版商
  12. Jachimowicz R, Beleggia F, Isensee J, Velpula B, Goergens J, Bustos M, et al. UBQLN4 Represses Homologous Recombination and Is Overexpressed in Aggressive Tumors. Cell. 2019;176:505-519.e22 pubmed 出版商
  13. Rausch V, Bostrom J, Park J, Bravo I, Feng Y, Hay D, et al. The Hippo Pathway Regulates Caveolae Expression and Mediates Flow Response via Caveolae. Curr Biol. 2019;29:242-255.e6 pubmed 出版商
  14. Bigenzahn J, Collu G, Kartnig F, Pieraks M, Vladimer G, Heinz L, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018;362:1171-1177 pubmed 出版商
  15. Yao F, Zhou Z, Kim J, Hang Q, Xiao Z, Ton B, et al. SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity. Nat Commun. 2018;9:2269 pubmed 出版商
  16. Sevin M, Kubovcakova L, Pernet N, Causse S, Vitte F, Villeval J, et al. HSP27 is a partner of JAK2-STAT5 and a potential therapeutic target in myelofibrosis. Nat Commun. 2018;9:1431 pubmed 出版商
  17. Hsieh W, Hsu T, Chang Y, Lai M. IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nat Commun. 2018;9:463 pubmed 出版商
  18. Lüningschrör P, Binotti B, Dombert B, Heimann P, Pérez Lara A, Slotta C, et al. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun. 2017;8:678 pubmed 出版商
  19. Jiang X, Bao Y, Liu H, Kou X, Zhang Z, Sun F, et al. VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene. 2017;36:6850-6862 pubmed 出版商
  20. Bzowska M, Nogieć A, Bania K, Zygmunt M, Zarebski M, Dobrucki J, et al. Involvement of cell surface 90 kDa heat shock protein (HSP90) in pattern recognition by human monocyte-derived macrophages. J Leukoc Biol. 2017;102:763-774 pubmed 出版商
  21. Rogers Z, McFarland C, Winters I, Naranjo S, Chuang C, Petrov D, et al. A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo. Nat Methods. 2017;14:737-742 pubmed 出版商
  22. Rippe C, Zhu B, Krawczyk K, Bavel E, Albinsson S, Sjölund J, et al. Hypertension reduces soluble guanylyl cyclase expression in the mouse aorta via the Notch signaling pathway. Sci Rep. 2017;7:1334 pubmed 出版商
  23. Melville Z, Hernández Ochoa E, Pratt S, Liu Y, Pierce A, Wilder P, et al. The Activation of Protein Kinase A by the Calcium-Binding Protein S100A1 Is Independent of Cyclic AMP. Biochemistry. 2017;56:2328-2337 pubmed 出版商
  24. de la Mare J, Jurgens T, Edkins A. Extracellular Hsp90 and TGFβ regulate adhesion, migration and anchorage independent growth in a paired colon cancer cell line model. BMC Cancer. 2017;17:202 pubmed 出版商
  25. Shizu R, Osabe M, Perera L, Moore R, Sueyoshi T, Negishi M. Phosphorylated Nuclear Receptor CAR Forms a Homodimer To Repress Its Constitutive Activity for Ligand Activation. Mol Cell Biol. 2017;37: pubmed 出版商
  26. Stefanowicz D, Ullah J, Lee K, Shaheen F, Olumese E, Fishbane N, et al. Epigenetic modifying enzyme expression in asthmatic airway epithelial cells and fibroblasts. BMC Pulm Med. 2017;17:24 pubmed 出版商
  27. Stein S, Lemos V, Xu P, Demagny H, Wang X, Ryu D, et al. Impaired SUMOylation of nuclear receptor LRH-1 promotes nonalcoholic fatty liver disease. J Clin Invest. 2017;127:583-592 pubmed 出版商
  28. Nagaraj R, Sharpley M, Chi F, Braas D, Zhou Y, Kim R, et al. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation. Cell. 2017;168:210-223.e11 pubmed 出版商
  29. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  30. Zhao B, Hu W, Kumar S, Gonyo P, Rana U, Liu Z, et al. The Nogo-B receptor promotes Ras plasma membrane localization and activation. Oncogene. 2017;36:3406-3416 pubmed 出版商
  31. Chen C, Zhuang Y, Chen X, Chen X, Li D, Fan Y, et al. Hsp90 N- and C-terminal double inhibition synergistically suppresses Bcr-Abl-positive human leukemia cells. Oncotarget. 2017;8:10025-10036 pubmed 出版商
  32. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2017;541:228-232 pubmed 出版商
  33. Grossi M, Bhattachariya A, Nordström I, Turczynska K, Svensson D, Albinsson S, et al. Pyk2 inhibition promotes contractile differentiation in arterial smooth muscle. J Cell Physiol. 2017;232:3088-3102 pubmed 出版商
  34. Oh E, Kim J, Kim J, Kim S, Lee J, Hong S, et al. NQO1 inhibits proteasome-mediated degradation of HIF-1α. Nat Commun. 2016;7:13593 pubmed 出版商
  35. Huang Z, Zhou X, He Y, Ke X, Wen Y, Zou F, et al. Hyperthermia enhances 17-DMAG efficacy in hepatocellular carcinoma cells with aggravated DNA damage and impaired G2/M transition. Sci Rep. 2016;6:38072 pubmed 出版商
  36. Chaudhury A, Cheema S, Fachini J, Kongchan N, Lu G, Simon L, et al. CELF1 is a central node in post-transcriptional regulatory programmes underlying EMT. Nat Commun. 2016;7:13362 pubmed 出版商
  37. Keshri G, Gupta A, Yadav A, Sharma S, Singh S. Photobiomodulation with Pulsed and Continuous Wave Near-Infrared Laser (810 nm, Al-Ga-As) Augments Dermal Wound Healing in Immunosuppressed Rats. PLoS ONE. 2016;11:e0166705 pubmed 出版商
  38. Graner A, Hellwinkel J, Lencioni A, Madsen H, Harland T, Marchando P, et al. HSP90 inhibitors in the context of heat shock and the unfolded protein response: effects on a primary canine pulmonary adenocarcinoma cell line. Int J Hyperthermia. 2017;33:303-317 pubmed 出版商
  39. Adachi E, Sakai K, Nishiuchi T, Imamura R, Sato H, Matsumoto K. Different growth and metastatic phenotypes associated with a cell-intrinsic change of Met in metastatic melanoma. Oncotarget. 2016;7:70779-70793 pubmed 出版商
  40. Dias M, Martins V, Hajj G. Stress-Inducible Protein 1 (STI1): Extracellular Vesicle Analysis and Quantification. Methods Mol Biol. 2016;1459:161-74 pubmed 出版商
  41. Jayapal S, Ang H, Wang C, Bisteau X, Caldez M, Xuan G, et al. Cyclin A2 regulates erythrocyte morphology and numbers. Cell Cycle. 2016;15:3070-3081 pubmed
  42. Diril M, Bisteau X, Kitagawa M, Caldez M, Wee S, Gunaratne J, et al. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint. PLoS Genet. 2016;12:e1006310 pubmed 出版商
  43. Krawczyk K, Ekman M, Rippe C, Grossi M, Nilsson B, Albinsson S, et al. Assessing the contribution of thrombospondin-4 induction and ATF6? activation to endoplasmic reticulum expansion and phenotypic modulation in bladder outlet obstruction. Sci Rep. 2016;6:32449 pubmed 出版商
  44. Bartlett J, Trivedi P, Yeung P, Kienesberger P, Pulinilkunnil T. Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy. Biochem J. 2016;473:3769-3789 pubmed
  45. Aryal B, Rotllan N, Araldi E, Ramírez C, He S, Chousterman B, et al. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nat Commun. 2016;7:12313 pubmed 出版商
  46. Hogg S, Newbold A, Vervoort S, Cluse L, Martin B, Gregory G, et al. BET Inhibition Induces Apoptosis in Aggressive B-Cell Lymphoma via Epigenetic Regulation of BCL-2 Family Members. Mol Cancer Ther. 2016;15:2030-41 pubmed 出版商
  47. Pinet S, Bessette B, Vedrenne N, Lacroix A, Richard L, Jauberteau M, et al. TrkB-containing exosomes promote the transfer of glioblastoma aggressiveness to YKL-40-inactivated glioblastoma cells. Oncotarget. 2016;7:50349-50364 pubmed 出版商
  48. Kruger L, O Malley H, Hull J, Kleeman A, Patino G, Isom L. ?1-C121W Is Down But Not Out: Epilepsy-Associated Scn1b-C121W Results in a Deleterious Gain-of-Function. J Neurosci. 2016;36:6213-24 pubmed 出版商
  49. Tribollet V, Barenton B, Kroiss A, Vincent S, Zhang L, Forcet C, et al. miR-135a Inhibits the Invasion of Cancer Cells via Suppression of ERR?. PLoS ONE. 2016;11:e0156445 pubmed 出版商
  50. Huang K, Chen Z, Jiang Y, Akare S, Kolber Simonds D, Condon K, et al. Apratoxin A Shows Novel Pancreas-Targeting Activity through the Binding of Sec 61. Mol Cancer Ther. 2016;15:1208-16 pubmed 出版商
  51. Galloway A, Saveliev A, Łukasiak S, Hodson D, Bolland D, Balmanno K, et al. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence. Science. 2016;352:453-9 pubmed 出版商
  52. Okumura F, Uematsu K, Byrne S, Hirano M, Joo Okumura A, Nishikimi A, et al. Parallel Regulation of von Hippel-Lindau Disease by pVHL-Mediated Degradation of B-Myb and Hypoxia-Inducible Factor ?. Mol Cell Biol. 2016;36:1803-17 pubmed 出版商
  53. Zhang X, Qian Z, Zhu H, Tang S, Wu D, Zhang M, et al. HSP90 gene expression induced by aspirin is associated with damage remission in a chicken myocardial cell culture exposed to heat stress. Br Poult Sci. 2016;57:462-73 pubmed 出版商
  54. Lee J, Kuo C, Tsai S, Cheng S, Chen S, Chan H, et al. Inhibition of HDAC3- and HDAC6-Promoted Survivin Expression Plays an Important Role in SAHA-Induced Autophagy and Viability Reduction in Breast Cancer Cells. Front Pharmacol. 2016;7:81 pubmed 出版商
  55. Zhang X, Zhu H, Qian Z, Tang S, Wu D, Kemper N, et al. The association of Hsp90 expression induced by aspirin with anti-stress damage in chicken myocardial cells. J Vet Sci. 2016;17:35-44 pubmed 出版商
  56. Bigenzahn J, Fauster A, Rebsamen M, Kandasamy R, Scorzoni S, Vladimer G, et al. An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client. Mol Cell Proteomics. 2016;15:1139-50 pubmed
  57. Bober J, Olsnes S, Kostas M, Bogacz M, Zakrzewska M, Otlewski J. Identification of new FGF1 binding partners-Implications for its intracellular function. IUBMB Life. 2016;68:242-51 pubmed 出版商
  58. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  59. Piedrahita D, Castro Álvarez J, Boudreau R, Villegas Lanau A, Kosik K, Gallego Gómez J, et al. β-Secretase 1's Targeting Reduces Hyperphosphorilated Tau, Implying Autophagy Actors in 3xTg-AD Mice. Front Cell Neurosci. 2015;9:498 pubmed 出版商
  60. Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M. HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun. 2016;7:10269 pubmed 出版商
  61. Roundhill E, Turnbull D, Burchill S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. FASEB J. 2016;30:1712-23 pubmed 出版商
  62. MikyÅ¡ková R, Å tÄ›pánek I, Indrová M, Bieblová J, Šímová J, Truxová I, et al. Dendritic cells pulsed with tumor cells killed by high hydrostatic pressure induce strong immune responses and display therapeutic effects both in murine TC-1 and TRAMP-C2 tumors when combined with docetaxel chemotherapy. Int J Oncol. 2016;48:953-64 pubmed 出版商
  63. Dimitrova N, Gocheva V, Bhutkar A, Resnick R, Jong R, Miller K, et al. Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development. Cancer Discov. 2016;6:188-201 pubmed 出版商
  64. Moriwaki K, Farias Luz N, Balaji S, De Rosa M, O Donnell C, Gough P, et al. The Mitochondrial Phosphatase PGAM5 Is Dispensable for Necroptosis but Promotes Inflammasome Activation in Macrophages. J Immunol. 2016;196:407-15 pubmed 出版商
  65. Seidel C, Schnekenburger M, Mazumder A, Teiten M, Kirsch G, Dicato M, et al. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol. 2016;99:31-52 pubmed 出版商
  66. Robles Oteiza C, Taylor S, Yates T, Cicchini M, Lauderback B, Cashman C, et al. Recombinase-based conditional and reversible gene regulation via XTR alleles. Nat Commun. 2015;6:8783 pubmed 出版商
  67. Amlie Wolf A, Ryvkin P, Tong R, Dragomir I, Suh E, Xu Y, et al. Transcriptomic Changes Due to Cytoplasmic TDP-43 Expression Reveal Dysregulation of Histone Transcripts and Nuclear Chromatin. PLoS ONE. 2015;10:e0141836 pubmed 出版商
  68. Joshi A, Barabutis N, Birmpas C, Dimitropoulou C, Thangjam G, Cherian Shaw M, et al. Histone deacetylase inhibitors prevent pulmonary endothelial hyperpermeability and acute lung injury by regulating heat shock protein 90 function. Am J Physiol Lung Cell Mol Physiol. 2015;309:L1410-9 pubmed 出版商
  69. Ho D, Kim H, Kim J, Sim H, Ahn H, Kim J, et al. Leucine-Rich Repeat Kinase 2 (LRRK2) phosphorylates p53 and induces p21(WAF1/CIP1) expression. Mol Brain. 2015;8:54 pubmed 出版商
  70. Ashford A, Dunkley T, Cockerill M, Rowlinson R, Baak L, Gallo R, et al. Identification of DYRK1B as a substrate of ERK1/2 and characterisation of the kinase activity of DYRK1B mutants from cancer and metabolic syndrome. Cell Mol Life Sci. 2016;73:883-900 pubmed 出版商
  71. Hussein M, Shrestha E, Ouimet M, Barrett T, Leone S, Moore K, et al. LXR-Mediated ABCA1 Expression and Function Are Modulated by High Glucose and PRMT2. PLoS ONE. 2015;10:e0135218 pubmed 出版商
  72. Krawczyk K, Yao Mattisson I, Ekman M, Oskolkov N, Grantinge R, Kotowska D, et al. Myocardin Family Members Drive Formation of Caveolae. PLoS ONE. 2015;10:e0133931 pubmed 出版商
  73. Gurt I, Artsi H, Cohen Kfir E, Hamdani G, Ben Shalom G, Feinstein B, et al. The Sirt1 Activators SRT2183 and SRT3025 Inhibit RANKL-Induced Osteoclastogenesis in Bone Marrow-Derived Macrophages and Down-Regulate Sirt3 in Sirt1 Null Cells. PLoS ONE. 2015;10:e0134391 pubmed 出版商
  74. Winsauer P, Filipeanu C, Weed P, Sutton J. Hormonal status and age differentially affect tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ(9)-THC) on learning in female rats. Front Pharmacol. 2015;6:133 pubmed 出版商
  75. Chiou S, Winters I, Wang J, Naranjo S, Dudgeon C, Tamburini F, et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev. 2015;29:1576-85 pubmed 出版商
  76. Ueda S, Kokaji Y, Simizu S, Honda K, Yoshino K, Kamisoyama H, et al. Chicken heat shock protein HSPB1 increases and interacts with αB-crystallin in aged skeletal muscle. Biosci Biotechnol Biochem. 2015;79:1867-75 pubmed 出版商
  77. Zeng X, Wang H, Bai F, Zhou X, Li S, Ren L, et al. Identification of matrine as a promising novel drug for hepatic steatosis and glucose intolerance with HSP72 as an upstream target. Br J Pharmacol. 2015;172:4303-18 pubmed 出版商
  78. Cheng W, Ainiwaer A, Xiao L, Cao Q, Wu G, Yang Y, et al. Role of the novel HSP90 inhibitor AUY922 in hepatocellular carcinoma: Potential for therapy. Mol Med Rep. 2015;12:2451-6 pubmed 出版商
  79. Saito K, Kukita K, Kutomi G, Okuya K, Asanuma H, Tabeya T, et al. Heat shock protein 90 associates with Toll-like receptors 7/9 and mediates self-nucleic acid recognition in SLE. Eur J Immunol. 2015;45:2028-41 pubmed 出版商
  80. Pearce M, Spartz E, Hong W, Luo L, Kopito R. Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain. Nat Commun. 2015;6:6768 pubmed 出版商
  81. Lee A, Kranzusch P, Cate J. eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature. 2015;522:111-4 pubmed 出版商
  82. Clark P, Kim R, Pober J, Kluger M. Tumor necrosis factor disrupts claudin-5 endothelial tight junction barriers in two distinct NF-κB-dependent phases. PLoS ONE. 2015;10:e0120075 pubmed 出版商
  83. Carnesecchi J, Malbouyres M, de Mets R, Balland M, Beauchef G, Vié K, et al. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30. PLoS ONE. 2015;10:e0120672 pubmed 出版商
  84. Dudek Perić A, Ferreira G, Muchowicz A, Wouters J, Prada N, Martin S, et al. Antitumor immunity triggered by melphalan is potentiated by melanoma cell surface-associated calreticulin. Cancer Res. 2015;75:1603-14 pubmed 出版商
  85. Hodgson A, Wier E, Fu K, Sun X, Yu H, Zheng W, et al. Metalloprotease NleC suppresses host NF-κB/inflammatory responses by cleaving p65 and interfering with the p65/RPS3 interaction. PLoS Pathog. 2015;11:e1004705 pubmed 出版商
  86. Morlé A, Garrido C, Micheau O. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion. Cell Death Dis. 2015;6:e1633 pubmed 出版商
  87. Riebold M, Kozany C, Freiburger L, Sattler M, Buchfelder M, Hausch F, et al. A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease. Nat Med. 2015;21:276-80 pubmed 出版商
  88. Gong J, Weng D, Eguchi T, Murshid A, Sherman M, Song B, et al. Targeting the hsp70 gene delays mammary tumor initiation and inhibits tumor cell metastasis. Oncogene. 2015;34:5460-71 pubmed 出版商
  89. Zeng J, Ekman M, Grossi M, Svensson D, Nilsson B, Jiang C, et al. Vasopressin-induced mouse urethral contraction is modulated by caveolin-1. Eur J Pharmacol. 2015;750:59-65 pubmed 出版商
  90. Liu W, Landgraf R. Phosphorylated and unphosphorylated serine 13 of CDC37 stabilize distinct interactions between its client and HSP90 binding domains. Biochemistry. 2015;54:1493-504 pubmed 出版商
  91. Ohno M, Kanayama T, Moore R, Ray M, Negishi M. The roles of co-chaperone CCRP/DNAJC7 in Cyp2b10 gene activation and steatosis development in mouse livers. PLoS ONE. 2014;9:e115663 pubmed 出版商
  92. Martin S, Dudek Perić A, Maes H, Garg A, Gabrysiak M, Demirsoy S, et al. Concurrent MEK and autophagy inhibition is required to restore cell death associated danger-signalling in Vemurafenib-resistant melanoma cells. Biochem Pharmacol. 2015;93:290-304 pubmed 出版商
  93. Oksala N, Ekmekçi F, Ozsoy E, Kirankaya S, Kokkola T, Emecen G, et al. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress. Redox Biol. 2014;3:25-8 pubmed 出版商
  94. Moutaoufik M, El Fatimy R, Nassour H, Gareau C, Lang J, Tanguay R, et al. UVC-induced stress granules in mammalian cells. PLoS ONE. 2014;9:e112742 pubmed 出版商
  95. Ohoka N, Nagai K, Hattori T, Okuhira K, Shibata N, Cho N, et al. Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin-proteasome pathway. Cell Death Dis. 2014;5:e1513 pubmed 出版商
  96. Cubeñas Potts C, Srikumar T, Lee C, Osula O, Subramonian D, Zhang X, et al. Identification of SUMO-2/3-modified proteins associated with mitotic chromosomes. Proteomics. 2015;15:763-72 pubmed 出版商
  97. Gupta A, Keshri G, Yadav A, Gola S, Chauhan S, Salhan A, et al. Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. J Biophotonics. 2015;8:489-501 pubmed 出版商
  98. Zhang P, Wei Y, Wang L, Debeb B, Yuan Y, Zhang J, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16:864-75 pubmed 出版商
  99. Lo Sasso G, Menzies K, Mottis A, Piersigilli A, Perino A, Yamamoto H, et al. SIRT2 deficiency modulates macrophage polarization and susceptibility to experimental colitis. PLoS ONE. 2014;9:e103573 pubmed 出版商
  100. Lo Sasso G, Ryu D, Mouchiroud L, Fernando S, Anderson C, Katsyuba E, et al. Loss of Sirt1 function improves intestinal anti-bacterial defense and protects from colitis-induced colorectal cancer. PLoS ONE. 2014;9:e102495 pubmed 出版商
  101. Yamauchi T, Nishiyama M, Moroishi T, Yumimoto K, Nakayama K. MDM2 mediates nonproteolytic polyubiquitylation of the DEAD-Box RNA helicase DDX24. Mol Cell Biol. 2014;34:3321-40 pubmed 出版商
  102. Tam A, Wadsworth S, Dorscheid D, Man S, Sin D. Estradiol increases mucus synthesis in bronchial epithelial cells. PLoS ONE. 2014;9:e100633 pubmed 出版商
  103. Ballana E, Badia R, Terradas G, Torres Torronteras J, Ruiz A, Pauls E, et al. SAMHD1 specifically affects the antiviral potency of thymidine analog HIV reverse transcriptase inhibitors. Antimicrob Agents Chemother. 2014;58:4804-13 pubmed 出版商
  104. Kitagawa K, Shibata K, Matsumoto A, Matsumoto M, Ohhata T, Nakayama K, et al. Fbw7 targets GATA3 through cyclin-dependent kinase 2-dependent proteolysis and contributes to regulation of T-cell development. Mol Cell Biol. 2014;34:2732-44 pubmed
  105. Moroishi T, Yamauchi T, Nishiyama M, Nakayama K. HERC2 targets the iron regulator FBXL5 for degradation and modulates iron metabolism. J Biol Chem. 2014;289:16430-41 pubmed 出版商
  106. Swärd K, Albinsson S, Rippe C. Arterial dysfunction but maintained systemic blood pressure in cavin-1-deficient mice. PLoS ONE. 2014;9:e92428 pubmed 出版商
  107. Blanc S, Ruggiero F, Birot A, Acloque H, Decimo D, Lerat E, et al. Subcellular localization of ENS-1/ERNI in chick embryonic stem cells. PLoS ONE. 2014;9:e92039 pubmed 出版商
  108. Niesman I, Schilling J, Shapiro L, Kellerhals S, Bonds J, Kleschevnikov A, et al. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J Neuroinflammation. 2014;11:39 pubmed 出版商
  109. Ekman M, Uvelius B, Albinsson S, Swärd K. HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition. Lab Invest. 2014;94:557-68 pubmed 出版商
  110. Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Zhang J, et al. miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet. 2014;10:e1004177 pubmed 出版商
  111. Piao H, Yuan Y, Wang M, Sun Y, Liang H, Ma L. ?-catenin acts as a tumour suppressor in E-cadherin-negative basal-like breast cancer by inhibiting NF-?B signalling. Nat Cell Biol. 2014;16:245-54 pubmed 出版商
  112. Fan X, Jin W, Lu J, Wang J, Wang Y. Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat Neurosci. 2014;17:471-80 pubmed 出版商
  113. Bots M, Verbrugge I, Martin B, Salmon J, Ghisi M, Baker A, et al. Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors. Blood. 2014;123:1341-52 pubmed 出版商
  114. Swärd K, Sadegh M, Mori M, Erjefalt J, Rippe C. Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/PTRF. Physiol Rep. 2013;1:e00008 pubmed 出版商
  115. Jockusch H, Holland A, Staunton L, Schmitt John T, Heimann P, Dowling P, et al. Pathoproteomics of testicular tissue deficient in the GARP component VPS54: the wobbler mouse model of globozoospermia. Proteomics. 2014;14:839-52 pubmed 出版商
  116. Mao R, Rubio V, Chen H, Bai L, Mansour O, Shi Z. OLA1 protects cells in heat shock by stabilizing HSP70. Cell Death Dis. 2013;4:e491 pubmed 出版商
  117. Danielson L, Park D, Rotllan N, Chamorro Jorganes A, Guijarro M, Fernandez Hernando C, et al. Cardiovascular dysregulation of miR-17-92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis. FASEB J. 2013;27:1460-7 pubmed 出版商
  118. Sarkar S, Brautigan D, Parsons S, Larner J. Androgen receptor degradation by the E3 ligase CHIP modulates mitotic arrest in prostate cancer cells. Oncogene. 2014;33:26-33 pubmed 出版商
  119. Krzysik Walker S, González Mariscal I, Scheibye Knudsen M, Indig F, Bernier M. The biarylpyrazole compound AM251 alters mitochondrial physiology via proteolytic degradation of ERR?. Mol Pharmacol. 2013;83:157-66 pubmed 出版商
  120. Middlekauff H, Vigna C, Verity M, Fonarow G, Horwich T, Hamilton M, et al. Abnormalities of calcium handling proteins in skeletal muscle mirror those of the heart in humans with heart failure: a shared mechanism?. J Card Fail. 2012;18:724-33 pubmed 出版商
  121. Takahashi A, Torigoe T, Tamura Y, Kanaseki T, Tsukahara T, Sasaki Y, et al. Heat shock enhances the expression of cytotoxic granule proteins and augments the activities of tumor-associated antigen-specific cytotoxic T lymphocytes. Cell Stress Chaperones. 2012;17:757-63 pubmed 出版商
  122. Diril M, Ratnacaram C, Padmakumar V, Du T, Wasser M, Coppola V, et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc Natl Acad Sci U S A. 2012;109:3826-31 pubmed 出版商
  123. Peng H, Morishima Y, Pratt W, Osawa Y. Modulation of heme/substrate binding cleft of neuronal nitric-oxide synthase (nNOS) regulates binding of Hsp90 and Hsp70 proteins and nNOS ubiquitination. J Biol Chem. 2012;287:1556-65 pubmed 出版商
  124. Wan F, Weaver A, Gao X, Bern M, Hardwidge P, Lenardo M. IKK? phosphorylation regulates RPS3 nuclear translocation and NF-?B function during infection with Escherichia coli strain O157:H7. Nat Immunol. 2011;12:335-43 pubmed 出版商