这是一篇来自已证抗体库的有关鸡 MAPT的综述,是根据19篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MAPT 抗体。
赛默飞世尔
小鼠 单克隆(T46)
  • 免疫印迹; fruit fly ; 1:1000; 图 3g
赛默飞世尔 MAPT抗体(Invitrogen, 13-6400)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 3g). Nat Commun (2021) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 小鼠; 图 4a
赛默飞世尔 MAPT抗体(Thermo Fisher Scientific, 13-6400)被用于被用于免疫印迹在小鼠样本上 (图 4a). Cell (2021) ncbi
小鼠 单克隆(T46)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 1:1000; 图 1b
赛默飞世尔 MAPT抗体(Thermo Fisher, 13-6400)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Sci Rep (2017) ncbi
小鼠 单克隆(T46)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 1b
赛默飞世尔 MAPT抗体(Thermofisher, T46)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 1b). PLoS ONE (2016) ncbi
小鼠 单克隆(T46)
  • 免疫细胞化学; 大鼠; 1:100; 图 4b
赛默飞世尔 MAPT抗体(Thermofisher, 13-6400)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4b). J Chem Neuroanat (2017) ncbi
小鼠 单克隆(T46)
  • 免疫细胞化学; 人类; 1:200; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 2e
赛默飞世尔 MAPT抗体(Invitrogen, 136400)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). J Neuroinflammation (2016) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛默飞世尔 MAPT抗体(Invitrogen, T46)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Brain (2016) ncbi
小鼠 单克隆(T46)
  • 免疫组化; 人类; 1:500; 图 6
  • 免疫印迹; 人类; 图 2
赛默飞世尔 MAPT抗体(Thermo Scientific, T46)被用于被用于免疫组化在人类样本上浓度为1:500 (图 6) 和 被用于免疫印迹在人类样本上 (图 2). Acta Neuropathol (2016) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 人类
赛默飞世尔 MAPT抗体(Invitrogen, 13-6400)被用于被用于免疫印迹在人类样本上. Chem Biol (2015) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 MAPT抗体(Zymed, T46)被用于被用于免疫印迹在人类样本上浓度为1:1000. Brain Pathol (2016) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 MAPT抗体(Invitrogen, 13-6400)被用于被用于免疫印迹在人类样本上 (图 1). Cell Mol Life Sci (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(Tau-2)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 MAPT抗体(Sigma-Aldrich, T5530)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Front Aging Neurosci (2022) ncbi
小鼠 单克隆(Tau-2)
  • 免疫印迹; 小鼠; 1:1000; 图 s2d
西格玛奥德里奇 MAPT抗体(Sigma-Aldrich, T5530)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2d). J Neurochem (2022) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3l
西格玛奥德里奇 MAPT抗体(Sigma-Aldrich, T6402)被用于被用于免疫细胞化学在人类样本上 (图 3l). Nat Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2c
西格玛奥德里奇 MAPT抗体(Sigma, T6402)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). J Alzheimers Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 7
西格玛奥德里奇 MAPT抗体(Sigma, T-6402)被用于被用于免疫细胞化学在小鼠样本上 (图 7). Acta Neuropathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:750; 图 3e
西格玛奥德里奇 MAPT抗体(Sigma, T-6402)被用于被用于免疫组化在大鼠样本上浓度为1:750 (图 3e). Acta Biomater (2016) ncbi
小鼠 单克隆(Tau-2)
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇 MAPT抗体(Sigma-Aldrich, T5530)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Neurodegener (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100
西格玛奥德里奇 MAPT抗体(Sigma-Aldrich, T6402)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Methods Mol Biol (2016) ncbi
文章列表
  1. Kasica N, Zhou X, Jester H, Holland C, Ryazanov A, Forshaw T, et al. Homozygous knockout of eEF2K alleviates cognitive deficits in APP/PS1 Alzheimer's disease model mice independent of brain amyloid β pathology. Front Aging Neurosci. 2022;14:959326 pubmed 出版商
  2. Kasica N, Zhou X, Yang Q, Wang X, Yang W, Zimmermann H, et al. Antagonists targeting eEF2 kinase rescue multiple aspects of pathophysiology in Alzheimer's disease model mice. J Neurochem. 2022;160:524-539 pubmed 出版商
  3. Subramanian M, Hyeon S, Das T, Suh Y, Kim Y, Lee J, et al. UBE4B, a microRNA-9 target gene, promotes autophagy-mediated Tau degradation. Nat Commun. 2021;12:3291 pubmed 出版商
  4. Shin M, Vázquez Rosa E, Koh Y, Dhar M, Chaubey K, Cintrón Pérez C, et al. Reducing acetylated tau is neuroprotective in brain injury. Cell. 2021;184:2715-2732.e23 pubmed 出版商
  5. Wang C, Najm R, Xu Q, Jeong D, Walker D, Balestra M, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med. 2018;24:647-657 pubmed 出版商
  6. Trzeciakiewicz H, Tseng J, Wander C, Madden V, Tripathy A, Yuan C, et al. A Dual Pathogenic Mechanism Links Tau Acetylation to Sporadic Tauopathy. Sci Rep. 2017;7:44102 pubmed 出版商
  7. Li Y, Li Z, Jin T, Wang Z, Zhao P. Tau Pathology Promotes the Reorganization of the Extracellular Matrix and Inhibits the Formation of Perineuronal Nets by Regulating the Expression and the Distribution of Hyaluronic Acid Synthases. J Alzheimers Dis. 2017;57:395-409 pubmed 出版商
  8. Hwang A, Trzeciakiewicz H, Friedmann D, Yuan C, Marmorstein R, Lee V, et al. Conserved Lysine Acetylation within the Microtubule-Binding Domain Regulates MAP2/Tau Family Members. PLoS ONE. 2016;11:e0168913 pubmed 出版商
  9. Atasoy İ, Dursun E, Gezen Ak D, Metin Armağan D, Ozturk M, Yilmazer S. Both secreted and the cellular levels of BDNF attenuated due to tau hyperphosphorylation in primary cultures of cortical neurons. J Chem Neuroanat. 2017;80:19-26 pubmed 出版商
  10. López de Maturana R, Lang V, Zubiarrain A, Sousa A, Vázquez N, Gorostidi A, et al. Mutations in LRRK2 impair NF-κB pathway in iPSC-derived neurons. J Neuroinflammation. 2016;13:295 pubmed
  11. Yadav P, Selvaraj B, Bender F, Behringer M, Moradi M, Sivadasan R, et al. Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling. Acta Neuropathol. 2016;132:93-110 pubmed 出版商
  12. Collazos Castro J, García Rama C, Alves Sampaio A. Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers. Acta Biomater. 2016;35:42-56 pubmed 出版商
  13. Peng Y, Kim M, Hullinger R, O Riordan K, Burger C, Pehar M, et al. Improved proteostasis in the secretory pathway rescues Alzheimer's disease in the mouse. Brain. 2016;139:937-52 pubmed 出版商
  14. Taniguchi Watanabe S, Arai T, Kametani F, Nonaka T, Masuda Suzukake M, Tarutani A, et al. Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau. Acta Neuropathol. 2016;131:267-280 pubmed 出版商
  15. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  16. Corbel C, Zhang B, Le Parc A, Baratte B, Colas P, Couturier C, et al. Tamoxifen inhibits CDK5 kinase activity by interacting with p35/p25 and modulates the pattern of tau phosphorylation. Chem Biol. 2015;22:472-482 pubmed 出版商
  17. Takeuchi R, Toyoshima Y, Tada M, Tanaka H, Shimizu H, Shiga A, et al. Globular Glial Mixed Four Repeat Tau and TDP-43 Proteinopathy with Motor Neuron Disease and Frontotemporal Dementia. Brain Pathol. 2016;26:82-94 pubmed 出版商
  18. Melis V, Zabke C, Stamer K, Magbagbeolu M, Schwab K, Marschall P, et al. Different pathways of molecular pathophysiology underlie cognitive and motor tauopathy phenotypes in transgenic models for Alzheimer's disease and frontotemporal lobar degeneration. Cell Mol Life Sci. 2015;72:2199-222 pubmed 出版商
  19. Denton K, Xu C, Li X. Modeling Axonal Phenotypes with Human Pluripotent Stem Cells. Methods Mol Biol. 2016;1353:309-21 pubmed 出版商