这是一篇来自已证抗体库的有关牛 MAPT的综述,是根据169篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MAPT 抗体。
MAPT 同义词: tau; microtubule-associated protein tau; PHF-tau; neurofibrillary tangle protein; paired helical filament-tau

赛默飞世尔
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:500; 图 s6e
赛默飞世尔 MAPT抗体(Thermo Fisher, MA5-12808)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s6e). Nature (2019) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 大鼠; 1:500; 图 1d1
赛默飞世尔 MAPT抗体(Invitrogen, MN1000)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1d1). Alzheimers Res Ther (2019) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:1000. elife (2019) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 小鼠; 图 1c
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫组化在小鼠样本上 (图 1c). Cell Rep (2018) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
赛默飞世尔 MAPT抗体(Thermo Fisher Scientific, HT7)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). Neurobiol Aging (2018) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 1a
  • 免疫印迹; 小鼠; 1:1000; 图 5g
赛默飞世尔 MAPT抗体(Thermo Fisher Scientific, HT7)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5g). Aging Cell (2018) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 8b
赛默飞世尔 MAPT抗体(Thermo Fisher, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8b). Cancer Res (2018) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(BT2)
  • 免疫印迹; 小鼠
  • 免疫印迹基因敲除验证; 人类; 1:1000; 表 1
  • 免疫细胞化学; 人类; 1:100; 表 2
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1010)被用于被用于免疫印迹在小鼠样本上, 被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (表 1) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (表 2). Mol Neurodegener (2017) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠
  • 免疫印迹基因敲除验证; 人类; 1:1000; 表 1
  • 免疫细胞化学; 人类; 1:100; 表 2
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫印迹在小鼠样本上, 被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (表 1) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (表 2). Mol Neurodegener (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 人类; 1:500; 图 1a
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1a). Cell Rep (2017) ncbi
小鼠 单克隆(HT7)
  • 酶联免疫吸附测定; 小鼠; 图 2a
赛默飞世尔 MAPT抗体(Thermo Fisher, HT7)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2a). Am J Pathol (2017) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 小鼠; 图 4c
  • 免疫印迹; 小鼠; 图 4a
赛默飞世尔 MAPT抗体(Thermo, MN1000)被用于被用于免疫组化在小鼠样本上 (图 4c) 和 被用于免疫印迹在小鼠样本上 (图 4a). Sci Rep (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 2A
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2A). Neurochem Res (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 5a
赛默飞世尔 MAPT抗体(Thermo Fisher Scientific, AHB0042)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Mol Neurosci (2017) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:1000; 图 3i
赛默飞世尔 MAPT抗体(Thermo, MN1000)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3i). Nat Commun (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛默飞世尔 MAPT抗体(Thermo, MA5-12805)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Nat Commun (2017) ncbi
小鼠 单克隆(BT2)
  • 酶联免疫吸附测定; 小鼠; 图 4a
赛默飞世尔 MAPT抗体(Fisher Scientific, MN1010)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 4a). Cell Death Dis (2017) ncbi
小鼠 单克隆(T46)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 1:1000; 图 1b
赛默飞世尔 MAPT抗体(Thermo Fisher, 13-6400)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Sci Rep (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2e
赛默飞世尔 MAPT抗体(生活技术, AHB0042)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2e). J Alzheimers Dis (2017) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 0.2 ug/ml; 图 1b
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫印迹在人类样本上浓度为0.2 ug/ml (图 1b). Aging Cell (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:5000; 图 4b
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4b). Exp Mol Med (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:2000; 图 7a
赛默飞世尔 MAPT抗体(Thermo Fisher, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a). Acta Neuropathol (2017) ncbi
小鼠 单克隆(HT7)
  • 免疫细胞化学; 人类; 图 s2a
  • 免疫印迹; 人类; 图 s1
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫细胞化学在人类样本上 (图 s2a) 和 被用于免疫印迹在人类样本上 (图 s1). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(T46)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 1b
赛默飞世尔 MAPT抗体(Thermofisher, T46)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 1b). PLoS ONE (2016) ncbi
小鼠 单克隆(HT7)
  • 酶联免疫吸附测定; 人类
赛默飞世尔 MAPT抗体(生活技术, MN 1000B)被用于被用于酶联免疫吸附测定在人类样本上. J Neurosci (2016) ncbi
小鼠 单克隆(T46)
  • 免疫细胞化学; 大鼠; 1:100; 图 4b
赛默飞世尔 MAPT抗体(Thermofisher, 13-6400)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4b). J Chem Neuroanat (2017) ncbi
小鼠 单克隆(T46)
  • 免疫细胞化学; 人类; 1:200; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 2e
赛默飞世尔 MAPT抗体(Invitrogen, 136400)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). J Neuroinflammation (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫印迹在小鼠样本上. Brain (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 4b
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 4b). PLoS ONE (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1a
赛默飞世尔 MAPT抗体(Invitrogen, Tau-5)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1a). PLoS ONE (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫细胞化学; 人类; 1:1000; 图 3d
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3d). Exp Neurol (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学基因敲除验证; 小鼠; 图 3
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫细胞化学基因敲除验证在小鼠样本上 (图 3) 和 被用于免疫细胞化学在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 3d
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上 (图 3d). J Biol Chem (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2016) ncbi
小鼠 单克隆(S.125.0)
  • 免疫细胞化学; 人类; 1:300; 图 5b
赛默飞世尔 MAPT抗体(Pierce, MA5-15108)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 5b). Neurotoxicology (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 大鼠; 1:1000; 图 7
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(S.125.0)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 2d
赛默飞世尔 MAPT抗体(Thermo Fisher, MA5-15108)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 2d). Sci Rep (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 小鼠; 1:300; 图 3c
  • 免疫印迹; 小鼠; 1:200; 图 3a
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3c) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 3a). Biol Psychiatry (2017) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Dis Model Mech (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1a
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 1c
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1a), 被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 1c). Cell Rep (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-自由浮动切片; 小鼠; 1:250; 图 5a
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 5a
  • 免疫印迹; 小鼠; 1:2000; 图 5b
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000B)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250 (图 5a), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5b). Autophagy (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:3000; 图 6
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 6). Mol Neurodegener (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 s3
赛默飞世尔 MAPT抗体(生活技术, AHB0042)被用于被用于免疫印迹在人类样本上 (图 s3). Mol Neurodegener (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫印迹在人类样本上 (图 2). Mol Neurodegener (2016) ncbi
小鼠 单克隆(HT7)
  • 抑制或激活实验; 人类; 图 3
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于抑制或激活实验在人类样本上 (图 3). Ann Neurol (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫组化基因敲除验证; 人类; 图 2
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫组化基因敲除验证在人类样本上 (图 2) 和 被用于免疫组化-石蜡切片在人类样本上 (图 2). Brain Pathol (2017) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
赛默飞世尔 MAPT抗体(Thermo Fisher, MN1000)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5). Brain Pathol (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 人类; 1:600; 图 4
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫细胞化学在人类样本上浓度为1:600 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Cell Sci (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 表 1
  • 免疫印迹; 小鼠; 1:500; 表 1
赛默飞世尔 MAPT抗体(Biosource International, AHB0042)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (表 1). J Neuropathol Exp Neurol (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上 (图 2). F1000Res (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:10,000; 图 3f
赛默飞世尔 MAPT抗体(Invitrogen, Tau-5)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3f). Nat Commun (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:2000; 图 4
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:2000; 图 1
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Dev Dyn (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上 (图 1). Life Sci (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1
赛默飞世尔 MAPT抗体(Thermo Scientifi, HT7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1). Neurobiol Learn Mem (2016) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛默飞世尔 MAPT抗体(Invitrogen, T46)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Brain (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000; 表 1
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛默飞世尔 MAPT抗体(Thermo Fisher, TAU-5)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 图 s2
赛默飞世尔 MAPT抗体(ThermoFisher, HT7)被用于被用于免疫印迹在人类样本上 (图 s2). Mol Neurobiol (2017) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔 MAPT抗体(Pierce, HT7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Neuroscience (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上 (图 3). Pharmacol Res (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Brain (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 猫; 1:1000; 图 4
赛默飞世尔 MAPT抗体(生活技术, TAU-5)被用于被用于免疫印迹在猫样本上浓度为1:1000 (图 4). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:5000; 图 5
赛默飞世尔 MAPT抗体(Invitrogen, ahb0042)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). J Neuroinflammation (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1 mg/ml; 图 10
赛默飞世尔 MAPT抗体(生活技术, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1 mg/ml (图 10). Brain Res (2016) ncbi
小鼠 单克隆(T46)
  • 免疫组化; 人类; 1:500; 图 6
  • 免疫印迹; 人类; 图 2
赛默飞世尔 MAPT抗体(Thermo Scientific, T46)被用于被用于免疫组化在人类样本上浓度为1:500 (图 6) 和 被用于免疫印迹在人类样本上 (图 2). Acta Neuropathol (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:3000; 图 5
赛默飞世尔 MAPT抗体(Thermo Fisher Scientific, MN1000)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5). J Neurosci (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:5000; 图 3
赛默飞世尔 MAPT抗体(ThermoScientific, HT7)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). Acta Neuropathol (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 小鼠; 1:500; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 5
赛默飞世尔 MAPT抗体(Thermo Fisher Scientific, MN1000)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Nat Neurosci (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫沉淀; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔 MAPT抗体(生活技术, AHB0042)被用于被用于免疫沉淀在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Nat Med (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-自由浮动切片; 小鼠; 图 2
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2). Nat Med (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类
赛默飞世尔 MAPT抗体(生活技术, AHB0042)被用于被用于免疫印迹在人类样本上. Cell Mol Neurobiol (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurochem (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:200; 图 3
赛默飞世尔 MAPT抗体(Thermo, HT-7)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3). Mol Psychiatry (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫细胞化学; 小鼠; 1:500; 图 1,2,3
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1,2,3). Front Neurosci (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:5000; 图 1
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:3000
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于免疫印迹在人类样本上浓度为1:3000. Mol Neurobiol (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫印迹在小鼠样本上 (图 4). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类
赛默飞世尔 MAPT抗体(生活技术, AHB0042)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(BT2)
  • 酶联免疫吸附测定; 人类
赛默飞世尔 MAPT抗体(Thermo Scientific, BT2)被用于被用于酶联免疫吸附测定在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(HT7)
  • 酶联免疫吸附测定; 人类; 1-2.5 ug/ml
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于酶联免疫吸附测定在人类样本上浓度为1-2.5 ug/ml. PLoS ONE (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Neurodegener (2015) ncbi
小鼠 单克隆(BT2)
  • 酶联免疫吸附测定; 人类; 图 7
赛默飞世尔 MAPT抗体(Thermo Scientific, BT2)被用于被用于酶联免疫吸附测定在人类样本上 (图 7). Mol Neurodegener (2015) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 人类
赛默飞世尔 MAPT抗体(Invitrogen, 13-6400)被用于被用于免疫印迹在人类样本上. Chem Biol (2015) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 MAPT抗体(Zymed, T46)被用于被用于免疫印迹在人类样本上浓度为1:1000. Brain Pathol (2016) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 MAPT抗体(Thermo, MN1000)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Curr Gene Ther (2014) ncbi
小鼠 单克隆(T46)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 MAPT抗体(Invitrogen, 13-6400)被用于被用于免疫印迹在人类样本上 (图 1). Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-石蜡切片; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:200
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:200. Neurobiol Aging (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 MAPT抗体(Thermo Scientific Pierce, MN1000)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔 MAPT抗体(Invitrogen, TAU5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Neurodegener (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠
赛默飞世尔 MAPT抗体(Pierce, MN1000)被用于被用于免疫印迹在小鼠样本上. Mol Neurodegener (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫细胞化学; 人类; 1:500; 图 6
  • 免疫印迹; 人类; 1:2500; 图 4
赛默飞世尔 MAPT抗体(Thermo (Pierce), HT7)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:2500 (图 4). J Biol Chem (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:5000
赛默飞世尔 MAPT抗体(Thermo, HT7)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:5000. J Alzheimers Dis (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 MAPT抗体(Invitrogen, Tau5)被用于被用于免疫印迹在小鼠样本上 (图 2). Front Aging Neurosci (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:20000
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:20000. J Neurosci (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于免疫印迹在人类样本上 (图 4). J Alzheimers Dis (2015) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类
赛默飞世尔 MAPT抗体(Thermo Scientific Pierce, MN1000)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 小鼠; 1:3000
赛默飞世尔 MAPT抗体(生活技术, tau-5)被用于被用于免疫组化在小鼠样本上浓度为1:3000. Ann Neurol (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Nat Med (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫印迹在小鼠样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Neurosci (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类
赛默飞世尔 MAPT抗体(Thermo Scientific, MN1000)被用于被用于免疫印迹在人类样本上. Eur J Neurosci (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 MAPT抗体(NeoMarkers, tau-5)被用于被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(HT7)
  • 免疫沉淀; 小鼠
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于免疫沉淀在小鼠样本上, 被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:4000
赛默飞世尔 MAPT抗体(Thermo Fisher Scientific, Tau-5)被用于被用于免疫印迹在小鼠样本上浓度为1:4000. Eur J Neurosci (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-自由浮动切片; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 MAPT抗体(Thermo Fisher Scientific, HT7)被用于被用于免疫组化-自由浮动切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Am J Pathol (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫组化-冰冻切片在小鼠样本上. Age (Dordr) (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 MAPT抗体(Invitrogen, #AHB0042)被用于被用于免疫印迹在小鼠样本上 (图 6). Neurobiol Aging (2013) ncbi
小鼠 单克隆(HT7)
  • 免疫组化-冰冻切片; 小鼠; 1:300
  • 免疫细胞化学; 小鼠; 1:300
  • 免疫组化; 小鼠; 1:300
赛默飞世尔 MAPT抗体(Thermo-Fisher Pierce, MN-100)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300, 被用于免疫细胞化学在小鼠样本上浓度为1:300 和 被用于免疫组化在小鼠样本上浓度为1:300. Neurobiol Aging (2013) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 小鼠
赛默飞世尔 MAPT抗体(Thermo, MN1000)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:200; 图 2
赛默飞世尔 MAPT抗体(Lab Vision, MS-247-P0)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2). Neurochem Res (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000
  • 免疫组化; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 MAPT抗体(Thermo Scientific, Tau-5)被用于被用于免疫印迹在大鼠样本上浓度为1:1000, 被用于免疫组化在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Exp Neurol (2014) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类; 1:40000
  • 免疫印迹; 小鼠; 1:40,000; 表 1
赛默飞世尔 MAPT抗体(Thermo Scientific, HT7)被用于被用于免疫印迹在人类样本上浓度为1:40000 和 被用于免疫印迹在小鼠样本上浓度为1:40,000 (表 1). Neurobiol Aging (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛默飞世尔 MAPT抗体(BioSource, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Age (Dordr) (2013) ncbi
小鼠 单克隆(HT7)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 MAPT抗体(ThermoScientific, MN1000)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 MAPT抗体(Invitrogen, Tau-5)被用于被用于免疫印迹在小鼠样本上 (图 3). FEBS Lett (2012) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 大鼠; 1:2000
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫组化在大鼠样本上浓度为1:2000. Toxicol Sci (2012) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 MAPT抗体(BIOSOURCE, Tau-5)被用于被用于免疫印迹在小鼠样本上 (图 1). J Biol Chem (2012) ncbi
小鼠 单克隆(HT7)
  • 免疫印迹; 人类
赛默飞世尔 MAPT抗体(Pierce, MN1000)被用于被用于免疫印迹在人类样本上. PLoS ONE (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫组化在小鼠样本上 (图 3). BMC Neurosci (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 MAPT抗体(BioSource, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Neurosci Res (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:500; 图 2
赛默飞世尔 MAPT抗体(Invitrogen, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Eur J Neurosci (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:500; 图 3
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). PLoS ONE (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 5
  • 免疫印迹; 大鼠; 1:2000; 图 4
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 5) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 4). Neurol Sci (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Neurosci Res (2010) ncbi
小鼠 单克隆(Tau-5)
  • 酶联免疫吸附测定; 人类; 图 1a
赛默飞世尔 MAPT抗体(Biosource International, Tau-5)被用于被用于酶联免疫吸附测定在人类样本上 (图 1a). Neurobiol Aging (2011) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛默飞世尔 MAPT抗体(Biosource, tau-5)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Biosci Biotechnol Biochem (2009) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 MAPT抗体(Biosource, tau-5)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Life Sci (2009) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 MAPT抗体(Biosource, tau-5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Toxicology (2009) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 大鼠; 1:200
赛默飞世尔 MAPT抗体(NeoMarkers, MS247P)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. J Neural Eng (2008) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛默飞世尔 MAPT抗体(Biosource, tau-5)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Food Chem Toxicol (2008) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 MAPT抗体(Invitrogen, TAU- 5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Neurosci Lett (2008) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛默飞世尔 MAPT抗体(Biosource, Tau-5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Cell Mol Med (2008) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:5000
赛默飞世尔 MAPT抗体(BioSource/Invitrogen, tau-5)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Br J Pharmacol (2007) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-冰冻切片; 人类; 1:500
  • 免疫印迹; 人类; 1:500
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 和 被用于免疫印迹在人类样本上浓度为1:500. Nucleic Acids Res (2007) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 MAPT抗体(Biosource, AHB0042)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Cell Biol (2007) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛默飞世尔 MAPT抗体(Biosource, tau-5)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Neuroscience (2007) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-石蜡切片; 人类; 1:10,000; 表 1
  • 免疫印迹; 人类; 1:10,000; 表 1
赛默飞世尔 MAPT抗体(Biosource, Tau-5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10,000 (表 1) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (表 1). Am J Pathol (2006) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠
赛默飞世尔 MAPT抗体(Biosource, TAU-5)被用于被用于免疫印迹在小鼠样本上. J Neural Transm (Vienna) (2006) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 MAPT抗体(BioSource, Tau-5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Proc Natl Acad Sci U S A (2005) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠
赛默飞世尔 MAPT抗体(BioSource, tau-5)被用于被用于免疫印迹在大鼠样本上. Biochem Biophys Res Commun (2002) ncbi
艾博抗(上海)贸易有限公司
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2c
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab64193)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2c). Neurobiol Dis (2019) ncbi
小鼠 单克隆(Tau-5)
  • 免疫沉淀; 人类; 图 4b
艾博抗(上海)贸易有限公司 MAPT抗体(AbCam, ab80579)被用于被用于免疫沉淀在人类样本上 (图 4b). elife (2019) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab64193)被用于被用于免疫印迹在小鼠样本上 (图 2c). Biochem Biophys Res Commun (2018) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 表 1
  • 免疫细胞化学; 人类; 1:50; 表 2
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, Tau5)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (表 1), 被用于免疫细胞化学在人类样本上浓度为1:50 (表 2) 和 被用于免疫印迹在小鼠样本上. Mol Neurodegener (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 小鼠; 1:250; 图 2a
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 2a). J Immunol Methods (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 大鼠; 图 1f
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫细胞化学在大鼠样本上 (图 1f). Mol Cell Neurosci (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab64193)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). EMBO Mol Med (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 大鼠; 1:100; 图 4d
  • 免疫印迹; 大鼠; 1:500; 图 4e
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4d) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 4e). Sci Rep (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 人类; 图 3
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫组化在人类样本上 (图 3). Aging Cell (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 人类; 1:100; 图 4
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 大鼠; 1:1000; 图 8
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). PLoS ONE (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化-石蜡切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 MAPT抗体(abcam, ab80579)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). PLoS ONE (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:800; 图 3
  • 免疫印迹; 小鼠; 1:800; 图 3
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:800 (图 3). Neuropharmacology (2016) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 人类; 1:5000; 图 7
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7). Nat Commun (2015) ncbi
兔 多克隆
  • 酶联免疫吸附测定; 人类; 1:1000; 图 2h
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab64193)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:1000 (图 2h). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab64193)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Free Radic Biol Med (2015) ncbi
小鼠 单克隆(Tau-5)
  • 酶联免疫吸附测定; 人类; 图 2a,b
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于酶联免疫吸附测定在人类样本上 (图 2a,b). Int J Mol Epidemiol Genet (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab64193)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Cell Death Dis (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:800; 图 1
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 1). J Alzheimers Dis (2014) ncbi
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 1:2000
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, ab80579)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Biol Chem (2013) ncbi
小鼠 单克隆(Tau-5)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 MAPT抗体(Abcam, Tau5)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上 (图 2a). Mol Psychiatry (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(Tau-5)
  • 免疫印迹; 小鼠; 图 5b
圣克鲁斯生物技术 MAPT抗体(SantaCruz, SC-58860)被用于被用于免疫印迹在小鼠样本上 (图 5b). Neurobiol Aging (2017) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 MAPT抗体(Santa Cruz, sc-58860)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Mol Neurodegener (2015) ncbi
小鼠 单克隆(Tau-5)
  • 免疫组化; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:100
圣克鲁斯生物技术 MAPT抗体(Santa Cruz Biotechnology, Tau-5)被用于被用于免疫组化在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:100. J Neurosci (2015) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(Tau46)
  • 免疫组化; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell Signaling, 4019)被用于被用于免疫组化在小鼠样本上 (图 2a). J Clin Invest (2018) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 大鼠; 图 3b
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell Signaling, 4019)被用于被用于免疫印迹在大鼠样本上 (图 3b). J Biol Chem (2018) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell Signaling, 4019P)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Neural Regen Res (2016) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell Signaling Technology, 4019)被用于被用于免疫印迹在小鼠样本上 (图 6). Eneuro (2016) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell Signal, 4019)被用于被用于免疫印迹在人类样本上. Stem Cell Reports (2015) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell Signaling Technology, 4019)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Neurodegener (2015) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell signaling, 4019)被用于被用于免疫印迹在小鼠样本上 (图 1). Aging Cell (2015) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell Signaling, 4019)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). BMC Genomics (2015) ncbi
小鼠 单克隆(Tau46)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAPT抗体(Cell Signaling Technology, 4019S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2016) ncbi
默克密理博中国
小鼠 单克隆(Tau-5)
  • 免疫细胞化学; 大鼠; 1:500
默克密理博中国 MAPT抗体(Calbiochem, Tau-5)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. Biochim Biophys Acta (2015) ncbi
文章列表
  1. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt S, Vieira Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;: pubmed 出版商
  2. Ghosh A, Torraville S, Mukherjee B, Walling S, Martin G, Harley C, et al. An experimental model of Braak's pretangle proposal for the origin of Alzheimer's disease: the role of locus coeruleus in early symptom development. Alzheimers Res Ther. 2019;11:59 pubmed 出版商
  3. Chang H, Di T, Wang Y, Zeng X, Li G, Wan Q, et al. Seipin deletion in mice enhances phosphorylation and aggregation of tau protein through reduced neuronal PPARγ and insulin resistance. Neurobiol Dis. 2019;127:350-361 pubmed 出版商
  4. Silva M, Ferguson F, Cai Q, Donovan K, Nandi G, Patnaik D, et al. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. elife. 2019;8: pubmed 出版商
  5. Merezhko M, Brunello C, Yan X, Vihinen H, Jokitalo E, Uronen R, et al. Secretion of Tau via an Unconventional Non-vesicular Mechanism. Cell Rep. 2018;25:2027-2035.e4 pubmed 出版商
  6. Liu D, Lu H, Stein E, Zhou Z, Yang Y, Mattson M. Brain regional synchronous activity predicts tauopathy in 3×TgAD mice. Neurobiol Aging. 2018;70:160-169 pubmed 出版商
  7. Baglietto Vargas D, Prieto G, Limon A, Forner S, Rodriguez Ortiz C, Ikemura K, et al. Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer's disease. Aging Cell. 2018;17:e12791 pubmed 出版商
  8. Quaranta V, Rainer C, Nielsen S, Raymant M, Ahmed M, Engle D, et al. Macrophage-Derived Granulin Drives Resistance to Immune Checkpoint Inhibition in Metastatic Pancreatic Cancer. Cancer Res. 2018;78:4253-4269 pubmed 出版商
  9. Li H, Ren Y, Mao K, Hua F, Yang Y, Wei N, et al. FTO is involved in Alzheimer's disease by targeting TSC1-mTOR-Tau signaling. Biochem Biophys Res Commun. 2018;498:234-239 pubmed 出版商
  10. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  11. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau D, Zavala E, et al. NAD+ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018;115:E1876-E1885 pubmed 出版商
  12. Ercan E, Eid S, Weber C, Kowalski A, Bichmann M, Behrendt A, et al. A validated antibody panel for the characterization of tau post-translational modifications. Mol Neurodegener. 2017;12:87 pubmed 出版商
  13. Gasparotto J, Girardi C, Somensi N, Ribeiro C, Moreira J, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226-244 pubmed 出版商
  14. Yadirgi G, Stickings P, Rajagopal S, Liu Y, Sesardic D. Immuno-detection of cleaved SNAP-25 from differentiated mouse embryonic stem cells provides a sensitive assay for determination of botulinum A toxin and antitoxin potency. J Immunol Methods. 2017;451:90-99 pubmed 出版商
  15. Tseng J, Xie L, Song S, Xie Y, Allen L, Ajit D, et al. The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology. Cell Rep. 2017;20:2169-2183 pubmed 出版商
  16. Wang H, Lee K, Pei Z, Khan A, Bakshi K, Burns L. PTI-125 binds and reverses an altered conformation of filamin A to reduce Alzheimer's disease pathogenesis. Neurobiol Aging. 2017;55:99-114 pubmed 出版商
  17. Nobuhara C, DeVos S, Commins C, Wegmann S, Moore B, Roe A, et al. Tau Antibody Targeting Pathological Species Blocks Neuronal Uptake and Interneuron Propagation of Tau in Vitro. Am J Pathol. 2017;187:1399-1412 pubmed 出版商
  18. Li J, Barrero C, Merali S, Pratico D. Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer's phenotype. Sci Rep. 2017;7:46002 pubmed 出版商
  19. Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R, et al. Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice. Neurochem Res. 2017;42:2326-2335 pubmed 出版商
  20. Maphis N, Jiang S, Binder J, Wright C, Gopalan B, Lamb B, et al. Whole Genome Expression Analysis in a Mouse Model of Tauopathy Identifies MECP2 as a Possible Regulator of Tau Pathology. Front Mol Neurosci. 2017;10:69 pubmed 出版商
  21. Zhang Z, Obianyo O, Dall E, Du Y, Fu H, Liu X, et al. Inhibition of delta-secretase improves cognitive functions in mouse models of Alzheimer's disease. Nat Commun. 2017;8:14740 pubmed 出版商
  22. Croft C, Wade M, Kurbatskaya K, Mastrandreas P, Hughes M, Phillips E, et al. Membrane association and release of wild-type and pathological tau from organotypic brain slice cultures. Cell Death Dis. 2017;8:e2671 pubmed 出版商
  23. Loss O, Stephenson F. Developmental changes in trak-mediated mitochondrial transport in neurons. Mol Cell Neurosci. 2017;80:134-147 pubmed 出版商
  24. Trzeciakiewicz H, Tseng J, Wander C, Madden V, Tripathy A, Yuan C, et al. A Dual Pathogenic Mechanism Links Tau Acetylation to Sporadic Tauopathy. Sci Rep. 2017;7:44102 pubmed 出版商
  25. Li Y, Li Z, Jin T, Wang Z, Zhao P. Tau Pathology Promotes the Reorganization of the Extracellular Matrix and Inhibits the Formation of Perineuronal Nets by Regulating the Expression and the Distribution of Hyaluronic Acid Synthases. J Alzheimers Dis. 2017;57:395-409 pubmed 出版商
  26. Bodea L, Evans H, Van der Jeugd A, Ittner L, Delerue F, Kril J, et al. Accelerated aging exacerbates a pre-existing pathology in a tau transgenic mouse model. Aging Cell. 2017;16:377-386 pubmed 出版商
  27. Shin S, Kim J, Lee J, Son Y, Lee M, Kim H, et al. Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitro. Exp Mol Med. 2017;49:e287 pubmed 出版商
  28. Takahashi H, Klein Z, Bhagat S, Kaufman A, Kostylev M, Ikezu T, et al. Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol. 2017;133:785-807 pubmed 出版商
  29. McEwan W, Falcon B, Vaysburd M, Clift D, Oblak A, Ghetti B, et al. Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation. Proc Natl Acad Sci U S A. 2017;114:574-579 pubmed 出版商
  30. Hwang A, Trzeciakiewicz H, Friedmann D, Yuan C, Marmorstein R, Lee V, et al. Conserved Lysine Acetylation within the Microtubule-Binding Domain Regulates MAP2/Tau Family Members. PLoS ONE. 2016;11:e0168913 pubmed 出版商
  31. Liu W, Zhao L, Blackman B, Parmar M, Wong M, Woo T, et al. Vectored Intracerebral Immunization with the Anti-Tau Monoclonal Antibody PHF1 Markedly Reduces Tau Pathology in Mutant Tau Transgenic Mice. J Neurosci. 2016;36:12425-12435 pubmed
  32. Atasoy İ, Dursun E, Gezen Ak D, Metin Armağan D, Ozturk M, Yilmazer S. Both secreted and the cellular levels of BDNF attenuated due to tau hyperphosphorylation in primary cultures of cortical neurons. J Chem Neuroanat. 2017;80:19-26 pubmed 出版商
  33. López de Maturana R, Lang V, Zubiarrain A, Sousa A, Vázquez N, Gorostidi A, et al. Mutations in LRRK2 impair NF-κB pathway in iPSC-derived neurons. J Neuroinflammation. 2016;13:295 pubmed
  34. Yang S, Lee D, Shin J, Lee S, Baek S, Kim J, et al. Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice. EMBO Mol Med. 2017;9:61-77 pubmed 出版商
  35. Laurent C, Dorothee G, Hunot S, Martin E, Monnet Y, Duchamp M, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain. 2017;140:184-200 pubmed 出版商
  36. Van Hummel A, Bi M, Ippati S, van der Hoven J, Volkerling A, Lee W, et al. No Overt Deficits in Aged Tau-Deficient C57Bl/6.Mapttm1(EGFP)Kit GFP Knockin Mice. PLoS ONE. 2016;11:e0163236 pubmed 出版商
  37. Sadick J, Boutin M, Hoffman Kim D, Darling E. Protein characterization of intracellular target-sorted, formalin-fixed cell subpopulations. Sci Rep. 2016;6:33999 pubmed 出版商
  38. Soo Hoo L, Banna C, Radeke C, Sharma N, Albertolle M, Low S, et al. The SNARE Protein Syntaxin 3 Confers Specificity for Polarized Axonal Trafficking in Neurons. PLoS ONE. 2016;11:e0163671 pubmed 出版商
  39. Kuan W, Bennett N, He X, Skepper J, Martynyuk N, Wijeyekoon R, et al. ?-Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function. Exp Neurol. 2016;285:72-81 pubmed 出版商
  40. Mansuroglu Z, Benhelli Mokrani H, Marcato V, Sultan A, Violet M, Chauderlier A, et al. Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin. Sci Rep. 2016;6:33047 pubmed 出版商
  41. Yoshitake J, Soeda Y, Ida T, Sumioka A, Yoshikawa M, Matsushita K, et al. Modification of Tau by 8-Nitroguanosine 3',5'-Cyclic Monophosphate (8-Nitro-cGMP): EFFECTS OF NITRIC OXIDE-LINKED CHEMICAL MODIFICATION ON TAU AGGREGATION. J Biol Chem. 2016;291:22714-22720 pubmed
  42. Begum A, Aguilar J, Elias L, Hong Y. Silver nanoparticles exhibit coating and dose-dependent neurotoxicity in glutamatergic neurons derived from human embryonic stem cells. Neurotoxicology. 2016;57:45-53 pubmed 出版商
  43. Steffen J, Krohn M, Paarmann K, Schwitlick C, Brüning T, Marreiros R, et al. Revisiting rodent models: Octodon degus as Alzheimer's disease model?. Acta Neuropathol Commun. 2016;4:91 pubmed 出版商
  44. Fujita K, Motoki K, Tagawa K, Chen X, Hama H, Nakajima K, et al. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer's disease. Sci Rep. 2016;6:31895 pubmed 出版商
  45. di Meco A, Li J, Blass B, Abou Gharbia M, Lauretti E, Praticò D. 12/15-Lipoxygenase Inhibition Reverses Cognitive Impairment, Brain Amyloidosis, and Tau Pathology by Stimulating Autophagy in Aged Triple Transgenic Mice. Biol Psychiatry. 2017;81:92-100 pubmed 出版商
  46. Kim H, Lee K, Kim A, Choi M, Choi K, Kang M, et al. A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition. Dis Model Mech. 2016;9:839-48 pubmed 出版商
  47. Zhao Y, Song J, Ma X, Zhang B, Li D, Pang H. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression. Neural Regen Res. 2016;11:944-50 pubmed 出版商
  48. Lee S, Le Pichon C, Adolfsson O, Gafner V, Pihlgren M, Lin H, et al. Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement. Cell Rep. 2016;16:1690-1700 pubmed 出版商
  49. Ayyadevara S, Balasubramaniam M, Parcon P, Barger S, Griffin W, Alla R, et al. Proteins that mediate protein aggregation and cytotoxicity distinguish Alzheimer's hippocampus from normal controls. Aging Cell. 2016;15:924-39 pubmed 出版商
  50. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed 出版商
  51. CARTAGENA C, Mountney A, Hwang H, Swiercz A, Rammelkamp Z, Boutte A, et al. Subacute Changes in Cleavage Processing of Amyloid Precursor Protein and Tau following Penetrating Traumatic Brain Injury. PLoS ONE. 2016;11:e0158576 pubmed 出版商
  52. Pajares M, Jiménez Moreno N, García Yagüe A, Escoll M, De Ceballos M, Van Leuven F, et al. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy. 2016;12:1902-1916 pubmed
  53. Velázquez R, Shaw D, Caccamo A, Oddo S. Pim1 inhibition as a novel therapeutic strategy for Alzheimer's disease. Mol Neurodegener. 2016;11:52 pubmed 出版商
  54. Sohn P, Tracy T, Son H, Zhou Y, Leite R, Miller B, et al. Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment. Mol Neurodegener. 2016;11:47 pubmed 出版商
  55. Takeda S, Commins C, DeVos S, Nobuhara C, Wegmann S, Roe A, et al. Seed-competent high-molecular-weight tau species accumulates in the cerebrospinal fluid of Alzheimer's disease mouse model and human patients. Ann Neurol. 2016;80:355-67 pubmed 出版商
  56. Fernández Nogales M, Santos Galindo M, Merchán Rubira J, Hoozemans J, Rábano A, Ferrer I, et al. Tau-positive nuclear indentations in P301S tauopathy mice. Brain Pathol. 2017;27:314-322 pubmed 出版商
  57. Yin Y, Gao D, Wang Y, Wang Z, Wang X, Ye J, et al. Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling. Proc Natl Acad Sci U S A. 2016;113:E3773-81 pubmed 出版商
  58. Yin Y, Wang Y, Gao D, Ye J, Wang X, Fang L, et al. Accumulation of human full-length tau induces degradation of nicotinic acetylcholine receptor α4 via activating calpain-2. Sci Rep. 2016;6:27283 pubmed 出版商
  59. Wang H, Wang R, Carrera I, Xu S, Lakshmana M. TFEB Overexpression in the P301S Model of Tauopathy Mitigates Increased PHF1 Levels and Lipofuscin Puncta and Rescues Memory Deficits. Eneuro. 2016;3: pubmed 出版商
  60. Cabrera J, Lucas J. MAP2 Splicing is Altered in Huntington's Disease. Brain Pathol. 2017;27:181-189 pubmed 出版商
  61. Yan X, Nykänen N, Brunello C, Haapasalo A, Hiltunen M, Uronen R, et al. FRMD4A-cytohesin signaling modulates the cellular release of tau. J Cell Sci. 2016;129:2003-15 pubmed 出版商
  62. Krishnan V, White Z, McMahon C, Hodgetts S, Fitzgerald M, Shavlakadze T, et al. A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice. J Neuropathol Exp Neurol. 2016;75:464-78 pubmed 出版商
  63. Connell J, Allison R, Reid E. Quantitative Gait Analysis Using a Motorized Treadmill System Sensitively Detects Motor Abnormalities in Mice Expressing ATPase Defective Spastin. PLoS ONE. 2016;11:e0152413 pubmed 出版商
  64. Ortuno D, Carlisle H, Miller S. Does inactivation of USP14 enhance degradation of proteasomal substrates that are associated with neurodegenerative diseases?. F1000Res. 2016;5:137 pubmed 出版商
  65. Choi W, de Poot S, Lee J, Kim J, Han D, Kim Y, et al. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat Commun. 2016;7:10963 pubmed 出版商
  66. Gorsky M, Burnouf S, Dols J, Mandelkow E, Partridge L. Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo. Sci Rep. 2016;6:22685 pubmed 出版商
  67. Gurdziel K, Vogt K, Walton K, Schneider G, Gumucio D. Transcriptome of the inner circular smooth muscle of the developing mouse intestine: Evidence for regulation of visceral smooth muscle genes by the hedgehog target gene, cJun. Dev Dyn. 2016;245:614-26 pubmed 出版商
  68. Urnukhsaikhan E, Cho H, Mishig Ochir T, Seo Y, Park J. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci. 2016;151:130-138 pubmed 出版商
  69. Van der Jeugd A, Vermaercke B, Halliday G, Staufenbiel M, Götz J. Impulsivity, decreased social exploration, and executive dysfunction in a mouse model of frontotemporal dementia. Neurobiol Learn Mem. 2016;130:34-43 pubmed 出版商
  70. Jiang T, Zhang Y, Chen Q, Gao Q, Zhu X, Zhou J, et al. TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology. 2016;105:196-206 pubmed 出版商
  71. Peng Y, Kim M, Hullinger R, O Riordan K, Burger C, Pehar M, et al. Improved proteostasis in the secretory pathway rescues Alzheimer's disease in the mouse. Brain. 2016;139:937-52 pubmed 出版商
  72. Piedrahita D, Castro Álvarez J, Boudreau R, Villegas Lanau A, Kosik K, Gallego Gómez J, et al. β-Secretase 1's Targeting Reduces Hyperphosphorilated Tau, Implying Autophagy Actors in 3xTg-AD Mice. Front Cell Neurosci. 2015;9:498 pubmed 出版商
  73. García Ayllón M, Botella López A, Cuchillo Ibañez I, Rábano A, Andreasen N, Blennow K, et al. HNK-1 Carrier Glycoproteins Are Decreased in the Alzheimer's Disease Brain. Mol Neurobiol. 2017;54:188-199 pubmed 出版商
  74. Platt T, Beckett T, Kohler K, Niedowicz D, Murphy M. Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease. Neuroscience. 2016;315:162-74 pubmed 出版商
  75. Kailainathan S, Piers T, Yi J, Choi S, Fahey M, Borger E, et al. Activation of a synapse weakening pathway by human Val66 but not Met66 pro-brain-derived neurotrophic factor (proBDNF). Pharmacol Res. 2016;104:97-107 pubmed 出版商
  76. Müller Schiffmann A, Herring A, Abdel Hafiz L, Chepkova A, Schäble S, Wedel D, et al. Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain. 2016;139:509-25 pubmed 出版商
  77. Chambers J, Tokuda T, Uchida K, Ishii R, Tatebe H, Takahashi E, et al. The domestic cat as a natural animal model of Alzheimer's disease. Acta Neuropathol Commun. 2015;3:78 pubmed 出版商
  78. Schwab A, Ebert A. Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinson's Disease-Related LRRK2 G2019S Mutation. Stem Cell Reports. 2015;5:1039-1052 pubmed 出版商
  79. Gyoneva S, Kim D, Katsumoto A, Kokiko Cochran O, Lamb B, Ransohoff R. Ccr2 deletion dissociates cavity size and tau pathology after mild traumatic brain injury. J Neuroinflammation. 2015;12:228 pubmed 出版商
  80. Puvenna V, Engeler M, Banjara M, Brennan C, Schreiber P, Dadas A, et al. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy. Brain Res. 2016;1630:225-40 pubmed 出版商
  81. Taniguchi Watanabe S, Arai T, Kametani F, Nonaka T, Masuda Suzukake M, Tarutani A, et al. Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau. Acta Neuropathol. 2016;131:267-280 pubmed 出版商
  82. Chauhan S, Ahmed Z, Bradfute S, Arko Mensah J, Mandell M, Won Choi S, et al. Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nat Commun. 2015;6:8620 pubmed 出版商
  83. Caccamo A, Branca C, Talboom J, Shaw D, Turner D, Ma L, et al. Reducing Ribosomal Protein S6 Kinase 1 Expression Improves Spatial Memory and Synaptic Plasticity in a Mouse Model of Alzheimer's Disease. J Neurosci. 2015;35:14042-56 pubmed 出版商
  84. Takeda S, Wegmann S, Cho H, DeVos S, Commins C, Roe A, et al. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nat Commun. 2015;6:8490 pubmed 出版商
  85. Covarrubias Pinto A, Moll P, Solís Maldonado M, Acuña A, Riveros A, Miró M, et al. Beyond the redox imbalance: Oxidative stress contributes to an impaired GLUT3 modulation in Huntington's disease. Free Radic Biol Med. 2015;89:1085-96 pubmed 出版商
  86. Wagner J, Krauss S, Shi S, Ryazanov S, Steffen J, Miklitz C, et al. Reducing tau aggregates with anle138b delays disease progression in a mouse model of tauopathies. Acta Neuropathol. 2015;130:619-31 pubmed 出版商
  87. Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci. 2015;18:1584-93 pubmed 出版商
  88. Min S, Chen X, Tracy T, Li Y, Zhou Y, Wang C, et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med. 2015;21:1154-62 pubmed 出版商
  89. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  90. Lauretti E, Praticò D. Glucose deprivation increases tau phosphorylation via P38 mitogen-activated protein kinase. Aging Cell. 2015;14:1067-74 pubmed 出版商
  91. de Paula C, Santiago F, de Oliveira A, Oliveira F, Almeida M, Carrettiero D. The Co-chaperone BAG2 Mediates Cold-Induced Accumulation of Phosphorylated Tau in SH-SY5Y Cells. Cell Mol Neurobiol. 2016;36:593-602 pubmed 出版商
  92. Zajkowski T, Nieznanska H, Nieznanski K. Stabilization of microtubular cytoskeleton protects neurons from toxicity of N-terminal fragment of cytosolic prion protein. Biochim Biophys Acta. 2015;1853:2228-39 pubmed 出版商
  93. Sun L, Ban T, Liu C, Chen Q, Wang X, Yan M, et al. Activation of Cdk5/p25 and tau phosphorylation following chronic brain hypoperfusion in rats involves microRNA-195 down-regulation. J Neurochem. 2015;134:1139-51 pubmed 出版商
  94. Tan X, Xue Y, Ma T, Wang X, Li J, Lan L, et al. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol Neurodegener. 2015;10:24 pubmed 出版商
  95. Di Meco A, Joshi Y, Lauretti E, Praticò D. Maternal dexamethasone exposure ameliorates cognition and tau pathology in the offspring of triple transgenic AD mice. Mol Psychiatry. 2016;21:403-10 pubmed 出版商
  96. Brelstaff J, Ossola B, Neher J, Klingstedt T, Nilsson K, Goedert M, et al. The fluorescent pentameric oligothiophene pFTAA identifies filamentous tau in live neurons cultured from adult P301S tau mice. Front Neurosci. 2015;9:184 pubmed 出版商
  97. Sheik Mohideen S, Yamasaki Y, Omata Y, Tsuda L, Yoshiike Y. Nontoxic singlet oxygen generator as a therapeutic candidate for treating tauopathies. Sci Rep. 2015;5:10821 pubmed 出版商
  98. Guerreiro P, Gerhardt E, Lopes da Fonseca T, Bähr M, Outeiro T, Eckermann K. LRRK2 Promotes Tau Accumulation, Aggregation and Release. Mol Neurobiol. 2016;53:3124-3135 pubmed 出版商
  99. Petrov D, Pedrós I, Artiach G, Sureda F, Barroso E, Pallas M, et al. High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents. Biochim Biophys Acta. 2015;1852:1687-99 pubmed 出版商
  100. De Zio D, Molinari F, Rizza S, Gatta L, Ciotti M, Salvatore A, et al. Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth. Cell Mol Life Sci. 2015;72:4173-91 pubmed 出版商
  101. Sankaranarayanan S, Barten D, Vana L, Devidze N, Yang L, Cadelina G, et al. Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models. PLoS ONE. 2015;10:e0125614 pubmed 出版商
  102. Song L, Lu S, Ouyang X, Melchor J, Lee J, Terracina G, et al. Analysis of tau post-translational modifications in rTg4510 mice, a model of tau pathology. Mol Neurodegener. 2015;10:14 pubmed 出版商
  103. Miller N, Feng Z, Edens B, Yang B, Shi H, Sze C, et al. Non-aggregating tau phosphorylation by cyclin-dependent kinase 5 contributes to motor neuron degeneration in spinal muscular atrophy. J Neurosci. 2015;35:6038-50 pubmed 出版商
  104. Corbel C, Zhang B, Le Parc A, Baratte B, Colas P, Couturier C, et al. Tamoxifen inhibits CDK5 kinase activity by interacting with p35/p25 and modulates the pattern of tau phosphorylation. Chem Biol. 2015;22:472-482 pubmed 出版商
  105. Takeuchi R, Toyoshima Y, Tada M, Tanaka H, Shimizu H, Shiga A, et al. Globular Glial Mixed Four Repeat Tau and TDP-43 Proteinopathy with Motor Neuron Disease and Frontotemporal Dementia. Brain Pathol. 2016;26:82-94 pubmed 出版商
  106. Hossini A, Megges M, Prigione A, Lichtner B, Toliat M, Wruck W, et al. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics. 2015;16:84 pubmed 出版商
  107. Xu H, Rösler T, Carlsson T, de Andrade A, Fiala O, Höllerhage M, et al. Tau silencing by siRNA in the P301S mouse model of tauopathy. Curr Gene Ther. 2014;14:343-51 pubmed
  108. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  109. Melis V, Zabke C, Stamer K, Magbagbeolu M, Schwab K, Marschall P, et al. Different pathways of molecular pathophysiology underlie cognitive and motor tauopathy phenotypes in transgenic models for Alzheimer's disease and frontotemporal lobar degeneration. Cell Mol Life Sci. 2015;72:2199-222 pubmed 出版商
  110. Lauretti E, di Meco A, Chu J, Praticò D. Modulation of AD neuropathology and memory impairments by the isoprostane F2α is mediated by the thromboxane receptor. Neurobiol Aging. 2015;36:812-20 pubmed 出版商
  111. Höllerhage M, Deck R, de Andrade A, Respondek G, Xu H, Rösler T, et al. Piericidin A aggravates Tau pathology in P301S transgenic mice. PLoS ONE. 2014;9:e113557 pubmed 出版商
  112. Ohia Nwoko O, Montazari S, Lau Y, Eriksen J. Long-term treadmill exercise attenuates tau pathology in P301S tau transgenic mice. Mol Neurodegener. 2014;9:54 pubmed 出版商
  113. Hu X, Li X, Zhao M, Gottesdiener A, Luo W, Paul S. Tau pathogenesis is promoted by Aβ1-42 but not Aβ1-40. Mol Neurodegener. 2014;9:52 pubmed 出版商
  114. Falcon B, Cavallini A, Angers R, Glover S, Murray T, Barnham L, et al. Conformation determines the seeding potencies of native and recombinant Tau aggregates. J Biol Chem. 2015;290:1049-65 pubmed 出版商
  115. Saidi L, Polydoro M, Kay K, Sanchez L, Mandelkow E, Hyman B, et al. Carboxy terminus heat shock protein 70 interacting protein reduces tau-associated degenerative changes. J Alzheimers Dis. 2015;44:937-47 pubmed 出版商
  116. Castro Alvarez J, Uribe Arias S, Kosik K, Cardona Gómez G. Long- and short-term CDK5 knockdown prevents spatial memory dysfunction and tau pathology of triple transgenic Alzheimer's mice. Front Aging Neurosci. 2014;6:243 pubmed 出版商
  117. Lee S, Xu G, Jay T, Bhatta S, Kim K, Jung S, et al. Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway. J Neurosci. 2014;34:12538-46 pubmed 出版商
  118. Dunn H, Ager R, Baglietto Vargas D, Cheng D, Kitazawa M, Cribbs D, et al. Restoration of lipoxin A4 signaling reduces Alzheimer's disease-like pathology in the 3xTg-AD mouse model. J Alzheimers Dis. 2015;43:893-903 pubmed 出版商
  119. Zhou Y, Hayashi I, Wong J, Tugusheva K, Renger J, Zerbinatti C. Intracellular clusterin interacts with brain isoforms of the bridging integrator 1 and with the microtubule-associated protein Tau in Alzheimer's disease. PLoS ONE. 2014;9:e103187 pubmed 出版商
  120. Gheyara A, Ponnusamy R, Djukic B, Craft R, Ho K, Guo W, et al. Tau reduction prevents disease in a mouse model of Dravet syndrome. Ann Neurol. 2014;76:443-56 pubmed 出版商
  121. Fernández Nogales M, Cabrera J, Santos Galindo M, Hoozemans J, Ferrer I, Rozemuller A, et al. Huntington's disease is a four-repeat tauopathy with tau nuclear rods. Nat Med. 2014;20:881-5 pubmed 出版商
  122. Richens J, Vere K, Light R, Soria D, Garibaldi J, Smith A, et al. Practical detection of a definitive biomarker panel for Alzheimer's disease; comparisons between matched plasma and cerebrospinal fluid. Int J Mol Epidemiol Genet. 2014;5:53-70 pubmed
  123. Pedr s I, Petrov D, Allgaier M, Sureda F, Barroso E, Beas Zarate C, et al. Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer's disease. Biochim Biophys Acta. 2014;1842:1556-66 pubmed 出版商
  124. Shilling D, Müller M, Takano H, Mak D, Abel T, Coulter D, et al. Suppression of InsP3 receptor-mediated Ca2+ signaling alleviates mutant presenilin-linked familial Alzheimer's disease pathogenesis. J Neurosci. 2014;34:6910-23 pubmed 出版商
  125. Yang S, Xia C, Li S, Du L, Zhang L, Hu Y. Mitochondrial dysfunction driven by the LRRK2-mediated pathway is associated with loss of Purkinje cells and motor coordination deficits in diabetic rat model. Cell Death Dis. 2014;5:e1217 pubmed 出版商
  126. Maurin H, Lechat B, Borghgraef P, Devijver H, Jaworski T, Van Leuven F. Terminal hypothermic Tau.P301L mice have increased Tau phosphorylation independently of glycogen synthase kinase 3?/?. Eur J Neurosci. 2014;40:2442-53 pubmed 出版商
  127. Liu X, Zhou J, Abid M, Yan H, Huang H, Wan L, et al. Berberine attenuates axonal transport impairment and axonopathy induced by Calyculin A in N2a cells. PLoS ONE. 2014;9:e93974 pubmed 出版商
  128. Liu C, Götz J. Profiling murine tau with 0N, 1N and 2N isoform-specific antibodies in brain and peripheral organs reveals distinct subcellular localization, with the 1N isoform being enriched in the nucleus. PLoS ONE. 2013;8:e84849 pubmed 出版商
  129. Borghgraef P, Menuet C, Theunis C, Louis J, Devijver H, Maurin H, et al. Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau.P301L mice. PLoS ONE. 2013;8:e84442 pubmed 出版商
  130. Notter T, Panzanelli P, PFISTER S, Mircsof D, Fritschy J. A protocol for concurrent high-quality immunohistochemical and biochemical analyses in adult mouse central nervous system. Eur J Neurosci. 2014;39:165-75 pubmed 出版商
  131. Medeiros R, Castello N, Cheng D, Kitazawa M, Baglietto Vargas D, Green K, et al. ?7 Nicotinic receptor agonist enhances cognition in aged 3xTg-AD mice with robust plaques and tangles. Am J Pathol. 2014;184:520-9 pubmed 出版商
  132. Tan M, Yu J, Jiang T, Zhu X, Guan H, Tan L. IL12/23 p40 inhibition ameliorates Alzheimer's disease-associated neuropathology and spatial memory in SAMP8 mice. J Alzheimers Dis. 2014;38:633-46 pubmed 出版商
  133. Manich G, del Valle J, Cabezón I, Camins A, Pallas M, Pelegri C, et al. Presence of a neo-epitope and absence of amyloid beta and tau protein in degenerative hippocampal granules of aged mice. Age (Dordr). 2014;36:151-65 pubmed 出版商
  134. Ordóñez Gutiérrez L, Torres J, Gavin R, Anton M, Arroba Espinosa A, Espinosa J, et al. Cellular prion protein modulates ?-amyloid deposition in aged APP/PS1 transgenic mice. Neurobiol Aging. 2013;34:2793-804 pubmed 出版商
  135. Pristerà A, Saraulli D, Farioli Vecchioli S, Strimpakos G, Costanzi M, Di Certo M, et al. Impact of N-tau on adult hippocampal neurogenesis, anxiety, and memory. Neurobiol Aging. 2013;34:2551-63 pubmed 出版商
  136. Zhang X, Hernandez I, Rei D, Mair W, Laha J, Cornwell M, et al. Diaminothiazoles modify Tau phosphorylation and improve the tauopathy in mouse models. J Biol Chem. 2013;288:22042-56 pubmed 出版商
  137. Maurin H, Seymour C, Lechat B, Borghgraef P, Devijver H, Jaworski T, et al. Tauopathy differentially affects cell adhesion molecules in mouse brain: early down-regulation of nectin-3 in stratum lacunosum moleculare. PLoS ONE. 2013;8:e63589 pubmed 出版商
  138. Park Y, Ko J, Jang Y, Kwon Y. Activation of AMP-activated protein kinase alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells. Neurochem Res. 2013;38:1561-71 pubmed 出版商
  139. Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolen K, et al. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry. 2013;18:1225-34 pubmed 出版商
  140. Hebron M, Algarzae N, Lonskaya I, Moussa C. Fractalkine signaling and Tau hyper-phosphorylation are associated with autophagic alterations in lentiviral Tau and A?1-42 gene transfer models. Exp Neurol. 2014;251:127-38 pubmed 出版商
  141. Kohler C, Dinekov M, Götz J. Active glycogen synthase kinase-3 and tau pathology-related tyrosine phosphorylation in pR5 human tau transgenic mice. Neurobiol Aging. 2013;34:1369-79 pubmed 出版商
  142. Porquet D, Casadesus G, Bayod S, Vicente A, Canudas A, Vilaplana J, et al. Dietary resveratrol prevents Alzheimer's markers and increases life span in SAMP8. Age (Dordr). 2013;35:1851-65 pubmed 出版商
  143. Kopeikina K, Polydoro M, Tai H, Yaeger E, Carlson G, Pitstick R, et al. Synaptic alterations in the rTg4510 mouse model of tauopathy. J Comp Neurol. 2013;521:1334-53 pubmed 出版商
  144. Tian M, Zhu D, Xie W, Shi J. Central angiotensin II-induced Alzheimer-like tau phosphorylation in normal rat brains. FEBS Lett. 2012;586:3737-45 pubmed 出版商
  145. Karlsson O, Berg A, Lindström A, Hanrieder J, Arnerup G, Roman E, et al. Neonatal exposure to the cyanobacterial toxin BMAA induces changes in protein expression and neurodegeneration in adult hippocampus. Toxicol Sci. 2012;130:391-404 pubmed 出版商
  146. Sontag J, Nunbhakdi Craig V, White C, Halpain S, Sontag E. The protein phosphatase PP2A/B? binds to the microtubule-associated proteins Tau and MAP2 at a motif also recognized by the kinase Fyn: implications for tauopathies. J Biol Chem. 2012;287:14984-93 pubmed 出版商
  147. Maarouf C, Daugs I, Kokjohn T, Walker D, Hunter J, Kruchowsky J, et al. Alzheimer's disease and non-demented high pathology control nonagenarians: comparing and contrasting the biochemistry of cognitively successful aging. PLoS ONE. 2011;6:e27291 pubmed 出版商
  148. Kaul T, Credle J, Haggerty T, Oaks A, Masliah E, Sidhu A. Region-specific tauopathy and synucleinopathy in brain of the alpha-synuclein overexpressing mouse model of Parkinson's disease. BMC Neurosci. 2011;12:79 pubmed 出版商
  149. Maldonado H, Ramírez E, Utreras E, Pando M, Kettlun A, Chiong M, et al. Inhibition of cyclin-dependent kinase 5 but not of glycogen synthase kinase 3-β prevents neurite retraction and tau hyperphosphorylation caused by secretable products of human T-cell leukemia virus type I-infected lymphocytes. J Neurosci Res. 2011;89:1489-98 pubmed 出版商
  150. Haggerty T, Credle J, Rodriguez O, Wills J, Oaks A, Masliah E, et al. Hyperphosphorylated Tau in an ?-synuclein-overexpressing transgenic model of Parkinson's disease. Eur J Neurosci. 2011;33:1598-610 pubmed 出版商
  151. Wills J, Credle J, Haggerty T, Lee J, Oaks A, Sidhu A. Tauopathic changes in the striatum of A53T ?-synuclein mutant mouse model of Parkinson's disease. PLoS ONE. 2011;6:e17953 pubmed 出版商
  152. Nakajima T, Ochi S, Oda C, Ishii M, Ogawa K. Ischemic preconditioning attenuates of ischemia-induced degradation of spectrin and tau: implications for ischemic tolerance. Neurol Sci. 2011;32:229-39 pubmed 出版商
  153. Spatara M, Robinson A. Transgenic mouse and cell culture models demonstrate a lack of mechanistic connection between endoplasmic reticulum stress and tau dysfunction. J Neurosci Res. 2010;88:1951-61 pubmed 出版商
  154. Hall E, Lee S, Mairuae N, Simmons Z, Connor J. Expression of the HFE allelic variant H63D in SH-SY5Y cells affects tau phosphorylation at serine residues. Neurobiol Aging. 2011;32:1409-19 pubmed 出版商
  155. Kim H, Sul D, Lim J, Lee D, Joo S, Hwang K, et al. Delphinidin ameliorates beta-amyloid-induced neurotoxicity by inhibiting calcium influx and tau hyperphosphorylation. Biosci Biotechnol Biochem. 2009;73:1685-9 pubmed
  156. Sul D, Kim H, Lee D, Joo S, Hwang K, Park S. Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sci. 2009;84:257-62 pubmed 出版商
  157. Sul D, Kim H, Cho E, Lee M, Kim H, Jung W, et al. 2,3,7,8-TCDD neurotoxicity in neuroblastoma cells is caused by increased oxidative stress, intracellular calcium levels, and tau phosphorylation. Toxicology. 2009;255:65-71 pubmed 出版商
  158. Irons H, Cullen D, Shapiro N, Lambert N, Lee R, LaPlaca M. Three-dimensional neural constructs: a novel platform for neurophysiological investigation. J Neural Eng. 2008;5:333-41 pubmed 出版商
  159. Park S, Kim H, Cho E, Kwon B, Phark S, Hwang K, et al. Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem Toxicol. 2008;46:2881-7 pubmed 出版商
  160. Fukuzaki E, Takuma K, Himeno Y, Yoshida S, Funatsu Y, Kitahara Y, et al. Enhanced activity of hippocampal BACE1 in a mouse model of postmenopausal memory deficits. Neurosci Lett. 2008;433:141-5 pubmed 出版商
  161. Liu R, Zhou X, Tanila H, Bjorkdahl C, Wang J, Guan Z, et al. Phosphorylated PP2A (tyrosine 307) is associated with Alzheimer neurofibrillary pathology. J Cell Mol Med. 2008;12:241-57 pubmed 出版商
  162. Selenica M, Jensen H, Larsen A, Pedersen M, Helboe L, Leist M, et al. Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation. Br J Pharmacol. 2007;152:959-79 pubmed
  163. Bai Q, Garver J, Hukriede N, Burton E. Generation of a transgenic zebrafish model of Tauopathy using a novel promoter element derived from the zebrafish eno2 gene. Nucleic Acids Res. 2007;35:6501-16 pubmed
  164. Jossin Y, Goffinet A. Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth. Mol Cell Biol. 2007;27:7113-24 pubmed
  165. Park S, Tournell C, Sinjoanu R, Ferreira A. Caspase-3- and calpain-mediated tau cleavage are differentially prevented by estrogen and testosterone in beta-amyloid-treated hippocampal neurons. Neuroscience. 2007;144:119-27 pubmed
  166. Schindowski K, Bretteville A, Leroy K, Bégard S, Brion J, Hamdane M, et al. Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol. 2006;169:599-616 pubmed
  167. Yoshida S, Maeda M, Kaku S, Ikeya H, Yamada K, Nakaike S. Lithium inhibits stress-induced changes in tau phosphorylation in the mouse hippocampus. J Neural Transm (Vienna). 2006;113:1803-14 pubmed
  168. Lobsiger C, Garcia M, Ward C, Cleveland D. Altered axonal architecture by removal of the heavily phosphorylated neurofilament tail domains strongly slows superoxide dismutase 1 mutant-mediated ALS. Proc Natl Acad Sci U S A. 2005;102:10351-6 pubmed
  169. Kerokoski P, Suuronen T, Salminen A, Soininen H, Pirttila T. Cleavage of the cyclin-dependent kinase 5 activator p35 to p25 does not induce tau hyperphosphorylation. Biochem Biophys Res Commun. 2002;298:693-8 pubmed