这是一篇来自已证抗体库的有关狗 AKT1的综述,是根据1152篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合AKT1 抗体。
AKT1 同义词: RAC-alpha serine/threonine-protein kinase

圣克鲁斯生物技术
小鼠 单克隆(11E6)
  • 免疫印迹; 小鼠; 1:500; 图 6a
圣克鲁斯生物技术 AKT1抗体(Santa Cruz, sc-81433)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 人类; 1:1000; 图 3d
圣克鲁斯生物技术 AKT1抗体(Santa Cruz, sc-81434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Am J Transl Res (2017) ncbi
小鼠 单克隆(5c10)
  • 其他; 大鼠; 图 1
圣克鲁斯生物技术 AKT1抗体(Santa Cruz, sc-81434)被用于被用于其他在大鼠样本上 (图 1). Sci Rep (2017) ncbi
小鼠 单克隆(11E6)
  • 其他; 大鼠; 图 1
圣克鲁斯生物技术 AKT1抗体(Santa Cruz, sc-81433)被用于被用于其他在大鼠样本上 (图 1). Sci Rep (2017) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 AKT1抗体(Santa Cruz, sc-81433)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 AKT1抗体(Santa Cruz, sc-81434)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Cell Death Dis (2016) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术 AKT1抗体(Santa Cruz, 11E6)被用于被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2016) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术 AKT1抗体(Santa Cruz, sc-81433)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(7)
  • 免疫印迹; 大鼠; 图 8a
圣克鲁斯生物技术 AKT1抗体(Santa Cruz, sc-135829)被用于被用于免疫印迹在大鼠样本上 (图 8a). Int J Mol Med (2016) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 AKT1抗体(Santa Cruz Biotechnology, sc-81434)被用于被用于免疫印迹在大鼠样本上浓度为1:500. World J Gastroenterol (2014) ncbi
Enzo Life Sciences
小鼠 单克隆(5c10)
  • 免疫印迹; 人类; 图 2
Enzo Life Sciences AKT1抗体(Enzo Life Sciences, 5c10)被用于被用于免疫印迹在人类样本上 (图 2). Oncol Rep (2015) ncbi
赛信通(上海)生物试剂有限公司
兔 多克隆
  • 免疫印迹; 人类; 图 10a
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signaling technologies, 9271)被用于被用于免疫印迹在人类样本上 (图 10a). Front Genet (2019) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6h
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6h). Cancer Discov (2019) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Int J Biol Sci (2019) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 9271S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Nat Commun (2019) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s2i
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 s2i) 和 被用于免疫印迹在小鼠样本上 (图 2e). Science (2019) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4c
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4c). Science (2019) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). EMBO Mol Med (2019) ncbi
兔 单克隆(D9E)
  • 流式细胞仪; 人类; 图 1d
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于流式细胞仪在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上 (图 1c). Front Immunol (2019) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 6s1c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6s1c). elife (2019) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 7b). Cell (2019) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 3f
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3f). Sci Rep (2019) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Neurobiol Dis (2019) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:4000; 图 s1e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 s1e). Science (2019) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 s2b
  • 免疫印迹; 人类; 1:2000; 图 s2a
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s2b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 s2a). J Cell Sci (2019) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2l
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 2l). Theranostics (2019) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6i
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6i). Aging Cell (2019) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6b). elife (2019) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 9271)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Death Dis (2019) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Nat Commun (2019) ncbi
兔 多克隆
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于. Cell (2019) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2b
  • 免疫印迹; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 7c). J Clin Invest (2019) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 2d
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). elife (2019) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 s1d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s1d). Science (2018) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上 (图 6b). Cell Rep (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2019) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s6f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 s6f). Cell Rep (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 3b, 4f, 5f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b, 4f, 5f). Br J Pharmacol (2019) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在人类样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 2d). Oncogene (2019) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s4c, s7c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s4c, s7c). Cell (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Nat Commun (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 s7f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s7f). Science (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 6c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6c). Cancer Sci (2019) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3e, 4e
  • 免疫印迹; 大鼠; 图 1d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3e, 4e) 和 被用于免疫印迹在大鼠样本上 (图 1d). Sci Rep (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). Front Aging Neurosci (2018) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:800; 图 s6a
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signaling, 9271)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 s6a). Nat Commun (2018) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s1b
  • 免疫印迹; 人类; 图 s1c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1b) 和 被用于免疫印迹在人类样本上 (图 s1c). Science (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 s10d, s10g
  • 免疫印迹; 小鼠; 图 s10c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 s10d, s10g) 和 被用于免疫印迹在小鼠样本上 (图 s10c). Science (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 AKT1抗体(cst, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 8a). J Exp Med (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5b). Blood (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 3e). Cell Metab (2019) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 3c). Cell Rep (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 7c). J Clin Invest (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 6c). J Autoimmun (2018) ncbi
兔 单克隆(D9E)
  • 流式细胞仪; 小鼠; 1:50; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(eBiosciences, D9E)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 6a). J Exp Med (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Immunity (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). EMBO J (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 8c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271s)被用于被用于免疫印迹在小鼠样本上 (图 8c). J Cell Mol Med (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4b). Cell Physiol Biochem (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s4c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271s)被用于被用于免疫印迹在小鼠样本上 (图 s4c). PLoS Biol (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 s1b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 s1b). Autophagy (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nature (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 2d). Proc Natl Acad Sci U S A (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2a, s8h, s14e, s15f
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2a, s8h, s14e, s15f) 和 被用于免疫印迹在人类样本上 (图 4f). Nat Med (2018) ncbi
兔 多克隆
  • 流式细胞仪; 小鼠; 1:100-1:200; 图 s4d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于流式细胞仪在小鼠样本上浓度为1:100-1:200 (图 s4d). Cell Stem Cell (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3a). J Exp Med (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3a). FASEB J (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Biosci Rep (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:2000; 图 4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 4b). EMBO J (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 3f
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3f). J Biol Chem (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3c). Cell Death Dis (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3a). Nat Commun (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 5c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5c). J Exp Med (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 s2f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s2f). Science (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 6f). Cell (2018) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 图 4d
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4d) 和 被用于免疫印迹在人类样本上 (图 1d). J Exp Clin Cancer Res (2018) ncbi
兔 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3e). J Clin Invest (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Science (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 9d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 9d). J Cell Biol (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 s7a). Biol Open (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 5b). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 图 7b
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7b) 和 被用于免疫印迹在人类样本上 (图 3b). Cell (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s2d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s2d). Nature (2018) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上 (图 3a). Immunol Cell Biol (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 s7d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 s7d). Proc Natl Acad Sci U S A (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 6e). Oncogene (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1c). Cell (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 3b). Cell (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s3f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3f). Nature (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3h, 3i
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 3h, 3i). J Exp Med (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在人类样本上 (图 2b). Cell (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 6c). Neurobiol Dis (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Nat Commun (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s1j
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s1j). Cell (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 1a). Immunity (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). Cell Death Dis (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 7b). J Virol (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 2a). Cancer Res (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1d). Oncotarget (2017) ncbi
兔 单克隆(D9E)
  • 流式细胞仪; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). J Lipid Res (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 5a). Immunity (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1f). Autophagy (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2e). Nature (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2a). Mol Neurobiol (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060L)被用于被用于免疫印迹在人类样本上 (图 2c). Breast Cancer Res Treat (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). J Endocrinol (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 s4a). Mol Biol Cell (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:3000; 图 4g
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4g). Diabetes (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 4). Cell Biol Int (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s10c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s10c). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 5m
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 5m). Endocrinology (2018) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Sci Transl Med (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Nat Med (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7c). Neuropharmacology (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Nutr Biochem (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5a). Inflammation (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 7b). Clin Cancer Res (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3d). Oncogene (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6h
  • 免疫印迹; 小鼠; 1:1000; 图 6h
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6h) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6h). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 13e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 13e). J Clin Invest (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2b
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 3d). Sci Transl Med (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4a, 4b
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在小鼠样本上 (图 4a, 4b) 和 被用于免疫印迹在人类样本上 (图 4b). Oncogene (2018) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠; 图 s5c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上 (图 s5c). Science (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Oncogene (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). DNA Cell Biol (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 9c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 9c). J Virol (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s5g
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s5g). J Clin Invest (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s10a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在小鼠样本上 (图 s10a). Sci Rep (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3). Physiol Rep (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Oncol (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Cell Biol (2017) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6a). Nat Commun (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 40602)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 9271)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3). Hum Mol Genet (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3a). Biochem Biophys Res Commun (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2f). Cancer Res (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Exp Neurol (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). EMBO J (2017) ncbi
兔 多克隆
  • 免疫印迹; 狗; 图 s3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在狗样本上 (图 s3a). Oncogene (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Oncol Rep (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 4h
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4h). Nat Commun (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 s5f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s5f). Nat Commun (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 5c). Sci Adv (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s10m
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在小鼠样本上 (图 s10m). Nature (2017) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 4060)被用于被用于免疫组化在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上 (图 1e). Mol Neurobiol (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1d
  • 免疫印迹; 小鼠; 图 1j
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 1j). Nature (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 9271)被用于被用于免疫印迹在人类样本上 (图 1e). J Immunol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
兔 单克隆(D9E)
  • 免疫组化; 斑马鱼; 图 3s1g
  • 免疫印迹; 斑马鱼; 图 3s1e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化在斑马鱼样本上 (图 3s1g) 和 被用于免疫印迹在斑马鱼样本上 (图 3s1e). elife (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 5c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5c). J Clin Endocrinol Metab (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). Mol Neurobiol (2018) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:50; 图 5b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 5b). J Cell Biol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 5c). Cell Immunol (2017) ncbi
兔 多克隆
  • 免疫印迹; 猪; 图 5b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signal, 9271)被用于被用于免疫印迹在猪样本上 (图 5b). Oncotarget (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 果蝇; 图 1j
  • 免疫印迹; 人类; 图 1k
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在果蝇样本上 (图 1j) 和 被用于免疫印迹在人类样本上 (图 1k). Cell (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1a). Cancer Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Exp Ther Med (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Breast Cancer (Dove Med Press) (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 4b). elife (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 2). Neoplasia (2017) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c) 和 被用于免疫印迹在小鼠样本上 (图 4a). J Cell Biochem (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271 S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Sci Rep (2017) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 小鼠; 1:200; 图 s4a
  • 免疫印迹; 小鼠; 1:1000; 图 2d, 2h
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d, 2h). Nat Commun (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 3A
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3A). Oncol Lett (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Immunol Res (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060s)被用于被用于免疫印迹在小鼠样本上 (图 6f). Oncogene (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Nat Commun (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:500; 图 7b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7b). elife (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6a). Cancer Med (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3c). Mol Ther Nucleic Acids (2017) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 图 7g
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7g) 和 被用于免疫印迹在小鼠样本上 (图 5a). Sci Rep (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3b). Nature (2017) ncbi
兔 单克隆(D9E)
  • 免疫组化; 人类; 图 5l
  • 免疫组化; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化在人类样本上 (图 5l) 和 被用于免疫组化在小鼠样本上 (图 7b). J Clin Invest (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2a, 3b, 3c, 4a
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s7f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2a, 3b, 3c, 4a) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s7f). Mol Cell (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1b). Sci Rep (2017) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4c
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4c) 和 被用于免疫印迹在小鼠样本上 (图 4b). PLoS ONE (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 4060)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Death Dis (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3b
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 4c). Sci Signal (2017) ncbi
兔 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 9271)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 4060)被用于被用于免疫印迹在人类样本上 (图 5d). Cell Res (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1d). J Biol Chem (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 13b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 13b). J Clin Invest (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s6). Metabolism (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 7a). Biochem Pharmacol (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2017) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 人类; 图 s1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫细胞化学在人类样本上 (图 s1). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 EV4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 EV4a). EMBO Mol Med (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 2a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2a). Int J Oncol (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signalling, 4060)被用于被用于免疫印迹在人类样本上 (图 1f). Cancer Lett (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Biosci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3a
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 4a). J Biol Chem (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Theranostics (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3a). Sci Rep (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Cancer Res (2017) ncbi
兔 单克隆(D9E)
  • 流式细胞仪; 小鼠; 图 5e
  • 免疫印迹; 小鼠; 1:2000; 图 3f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于流式细胞仪在小鼠样本上 (图 5e) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3f). J Immunol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS ONE (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Muscle Res Cell Motil (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 7a). Sci Rep (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:2000; 图 4A
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 4A). Int J Mol Med (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s9e
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s9e) 和 被用于免疫印迹在人类样本上 (图 1a). Nature (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s9a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s9a). Nature (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 6g
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6g). FASEB J (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3a). PLoS Pathog (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 1h
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1h). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). FASEB J (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 6e). J Cell Biol (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271 s)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Sci Rep (2017) ncbi
兔 单克隆(D9E)
  • 免疫组化; 大鼠; 1:40; 图 7c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化在大鼠样本上浓度为1:40 (图 7c). Sci Rep (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 12A
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 12A). EBioMedicine (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). Proc Natl Acad Sci U S A (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 9e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 9e). J Cell Biol (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 s7a). Sci Rep (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1b). FEBS Lett (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 4a). Autophagy (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5a). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). Mol Metab (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Oncol Lett (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2a). Exp Ther Med (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫组化; 猪; 1:100; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫组化在猪样本上浓度为1:100 (图 6a). PLoS ONE (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5d, 5e,5f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5d, 5e,5f). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Breast Cancer Res (2017) ncbi
兔 单克隆(D9E)
  • 流式细胞仪; 人类; 1:200; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 3). Integr Biol (Camb) (2017) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 人类; 1:500; 图 4
  • 免疫印迹; 人类; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). J Biol Chem (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3a). Mol Biol Cell (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Am J Physiol Cell Physiol (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3c,3d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 3c,3d). FEBS Open Bio (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2c). J Exp Med (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 s7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s7a). J Clin Invest (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2017) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 小鼠; 1:500; 图 5a
  • 免疫印迹; 小鼠; 1:3000; 图 7e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 7e). Nat Commun (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:100; 图 3b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3b). J Nutr Biochem (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 7c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7c). Oncogene (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 5d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5d). Nat Immunol (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Neuroinflammation (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 9d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9d). J Neurosci (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5c). Stem Cell Reports (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). PLoS ONE (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060s)被用于被用于免疫印迹在小鼠样本上 (图 s4a). PLoS Genet (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 1b). J Biol Chem (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上 (图 6b). Mol Cell Biol (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). Cardiovasc Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 4d). Oncogene (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5h
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5h). Nat Med (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). J Clin Invest (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Biol Chem (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:2000; 图 7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 7a). Appl Physiol Nutr Metab (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 s2b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s2b). Mol Carcinog (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 s2d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 s2d). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Exp Gerontol (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; common platanna; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在common platanna样本上 (图 4a). FEBS Lett (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 表 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 3). Mol Cell Biochem (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1b). J Cell Physiol (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 6e). JCI Insight (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 2f
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在大鼠样本上 (图 2f) 和 被用于免疫印迹在小鼠样本上 (图 2e). Hum Mol Genet (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Oncotarget (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6a). J Cancer (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上. Circ Res (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2b). Cell Physiol Biochem (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 3a). J Immunol (2017) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
  • 免疫细胞化学; 小鼠; 1:200; 图 s7c
  • 免疫印迹; 小鼠; 1:1000; 图 s5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f), 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s7c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5a). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 图 6b
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫细胞化学在人类样本上 (图 6b) 和 被用于免疫印迹在人类样本上 (图 6a). J Exp Clin Cancer Res (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s3b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060P)被用于被用于免疫印迹在小鼠样本上 (图 s3b). Cell (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 1f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1f). J Allergy Clin Immunol (2017) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上 (图 3d). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2c). Mol Med Rep (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 s5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s5a). Front Mol Neurosci (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2b). J Biol Chem (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:3000; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271-S)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 6a). Oncogene (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d-f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d-f). J Lipid Res (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4i
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4i). JCI Insight (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 6d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060L)被用于被用于免疫印迹在大鼠样本上 (图 6d). J Neurosci (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 7). Neuroendocrinology (2018) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s4a,s4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a,s4b). Gastroenterology (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). Int J Nanomedicine (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Adv (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 8h
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, D9E)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8h). elife (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 7a). Int J Mol Med (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2a, 2b, 2c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2a, 2b, 2c). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Front Immunol (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 图 6d
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6d) 和 被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Mol Neurobiol (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 仓鼠; 图 1b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在仓鼠样本上 (图 1b). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 9271S)被用于被用于免疫印迹在人类样本上 (图 2c). Nat Chem Biol (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6a). Diabetes (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1c). Oncogenesis (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1b). J Clin Invest (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3b). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). elife (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 图 6d
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Cell Signal (2017) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1c). Nat Neurosci (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Immunol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2g
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2g). Front Physiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4b). Neoplasia (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 5a). Int J Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Mol Cell Proteomics (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 2). J Biol Chem (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 3d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3d). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 9271)被用于被用于免疫组化-石蜡切片在人类样本上. Respir Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 4e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signalling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4e). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 4c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上 (图 4c). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 9c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 9c). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 7), 被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 1). elife (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Sci (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3b). Nat Immunol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Nat Genet (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s1b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060X)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1b). Oncogenesis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 6b). J Cell Mol Med (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Toxicol Appl Pharmacol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3). Cell Discov (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s23
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s23) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3a). Am J Pathol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cell Commun Signal (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s7c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7c). Nat Cell Biol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Austin J Med Oncol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 中国人仓鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在中国人仓鼠样本上 (图 2). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 2). Lipids Health Dis (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6i
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6i). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 6c). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 斑马鱼; 1:2000; 图 1f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在斑马鱼样本上浓度为1:2000 (图 1f). Development (2016) ncbi
兔 单克隆(D9E)
  • 流式细胞仪; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于流式细胞仪在小鼠样本上 (图 7c). J Immunol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:25; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:25 (图 3). Mol Vis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 4b). Int J Oncol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 s5b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s5b). Stem Cell Reports (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271L)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Biol Chem (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s2). Nucleic Acids Res (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). BMC Cancer (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:250; 图 s7e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271S)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 s7e). Nature (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 狗; 图 6a
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 4060)被用于被用于免疫印迹在狗样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 9f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 9f). Glia (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1500; 图 4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4b). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3, s3
赛信通(上海)生物试剂有限公司 AKT1抗体(NEB (Hitchin, UK), 4060S)被用于被用于免疫印迹在人类样本上 (图 3, s3). Br J Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 5d). Oncogene (2017) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7h
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, D9E)被用于被用于免疫印迹在小鼠样本上 (图 7h). Cell Mol Immunol (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271s)被用于被用于免疫印迹在大鼠样本上 (图 4a). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4.a, b, c
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4.a, b, c). EJNMMI Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3a). Exp Mol Med (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a, 6d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6a, 6d). J Exp Clin Cancer Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3c). Biol Reprod (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上 (图 1). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3f). Cell Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, CST-4060)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5A
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 5A). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 人类; 图 4c,4d
  • 免疫印迹; 人类; 1:1000; 图 5,6
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7e
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫细胞化学在人类样本上 (图 4c,4d), 被用于免疫印迹在人类样本上浓度为1:1000 (图 5,6) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7e). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上 (图 2). Physiol Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Cancer Chemother Pharmacol (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠; 1:50; 图 s2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s2). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5c). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 4060S)被用于被用于免疫印迹在人类样本上 (图 2). Oncoimmunology (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncol Lett (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 9271S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 4e). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 人类; 图 4a
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫细胞化学在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 1d). Biochim Biophys Acta (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 9271S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). Brain Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 4). Stem Cell Reports (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4b). Nucleic Acids Res (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 5e
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5e). Gut (2017) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 7d). J Clin Invest (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). J Proteomics (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2i
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2i). Antioxid Redox Signal (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 1c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在大鼠样本上 (图 1c). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060s)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060 s)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Braz J Med Biol Res (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Nat Med (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化; 人类; 图 s1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化在人类样本上 (图 s1). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 s3). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060S)被用于被用于免疫印迹在人类样本上 (图 s4a). Nature (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4f). Oncogene (2017) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 小鼠; 1:200; 图 14
  • 免疫印迹; 小鼠; 1:4000; 图 13
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 14) 和 被用于免疫印迹在小鼠样本上浓度为1:4000 (图 13). Histochem Cell Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Alzheimers Dement (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 3d). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 S11
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 S11). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠; 1:100; 图 5c
  • 免疫印迹; 人类; 1:3000; 图 1e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5c) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 1e). Cell Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E XP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6A
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6A). Front Pharmacol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s4). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, D9E)被用于被用于免疫印迹在小鼠样本上 (图 7). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4c). Am J Physiol Heart Circ Physiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1a). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1). J Immunol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1). Skelet Muscle (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化; 大鼠; 图 7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling Technology, 4060)被用于被用于免疫组化在大鼠样本上 (图 7a). J Cell Sci (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, D9E)被用于被用于免疫印迹在人类样本上 (图 4). Open Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 5). Nat Cell Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 9271S)被用于被用于免疫印迹在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1a). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5c). Carcinogenesis (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2f). Diabetes (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2f). Diabetes (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 4060P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Front Cell Infect Microbiol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Front Physiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 st2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 st2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 7). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s1h
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1h). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4a). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5). Stem Cell Reports (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 s10b
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4,060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10b). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Cell Signal (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2). Aging (Albany NY) (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 6). Neuroscience (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 6e). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). J Am Heart Assoc (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Diabetologia (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 斑马鱼; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在斑马鱼样本上 (图 6). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 4). BMC Complement Altern Med (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Mol Med Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫细胞化学在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 1). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Endocrinol Metab (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3). Mol Metab (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 4060P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化; 果蝇; 1:800; 图 s3c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫组化在果蝇样本上浓度为1:800 (图 s3c). Mol Psychiatry (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Int J Obes (Lond) (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 5). J Cancer (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Exp Ther Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5c). Nat Struct Mol Biol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Front Cell Neurosci (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; African green monkey; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在African green monkey样本上 (图 3). Traffic (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 果蝇; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在果蝇样本上浓度为1:1000 (图 2a). PLoS Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 5c). Cell Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在小鼠样本上 (图 4f). MBio (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 4060)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 `1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 `1). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 4060B)被用于被用于免疫印迹在人类样本上 (图 2). Biol Open (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Oncogenesis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060P)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2). J Clin Invest (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Genes Cancer (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 仓鼠; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在仓鼠样本上 (图 3a). Cell Signal (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Exp Med (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1). Oncogenesis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 7). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 5a). FASEB J (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Oncol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 流式细胞仪; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于流式细胞仪在小鼠样本上 (图 5). Nat Immunol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5). J Clin Invest (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s1). BMC Cancer (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 斑马鱼; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(cell Signaling Tech, 9271)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 2). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 4060S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4). EMBO Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4). Nat Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Cell Death Differ (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signal, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 6). Mol Cancer Ther (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Int J Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 表 s2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 s2). Exp Cell Res (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Acta Neuropathol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3g
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3g). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3). Hepatology (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). J Alzheimers Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 流式细胞仪; 人类; 1:5; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 5315)被用于被用于流式细胞仪在人类样本上浓度为1:5 (图 5). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 1d). Cell Death Differ (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上. Science (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 7a). Endocrinology (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4c). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6). BMC Cancer (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060s)被用于被用于免疫印迹在小鼠样本上 (图 4). Stem Cell Reports (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上. J Exp Med (2016) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 2
  • 免疫印迹; 人类; 图 s11
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2) 和 被用于免疫印迹在人类样本上 (图 s11). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 7). Life Sci (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:100; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 4). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 2a). Mol Endocrinol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Neural Plast (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5f). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s5). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncol Lett (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s10b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10b). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, D9E)被用于被用于免疫印迹在小鼠样本上 (图 7e). Diabetes (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 7a). Stem Cells (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 3c). Biochim Biophys Acta (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 3). Cell Commun Signal (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2e). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 1
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, cst-4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Cell Biol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2500; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling technologies, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 4). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, D9E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫细胞化学在小鼠样本上 (图 6). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). elife (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 4060)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cancer Res (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Stem Cells Int (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(cell Signaling Tech, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, cs-9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). EMBO Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signalling, #9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Cell Mol Gastroenterol Hepatol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Cancer Res (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1s3j
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1s3j). elife (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 5d). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Biosci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 5). Dis Model Mech (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, CST4060P)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 4). Mol Med Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠; 图 st1
  • 免疫印迹; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上 (图 st1) 和 被用于免疫印迹在小鼠样本上 (图 st1). Liver Int (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6e). Arthritis Rheumatol (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, D9E)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6). Dis Model Mech (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3c). Exp Hematol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 仓鼠; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在仓鼠样本上 (图 3a). J Neurochem (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Development (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Int J Oncol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Clin Cancer Res (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 6e). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 5). J Cell Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). J Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Brain Behav (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4b). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, cs9271s)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6d). Development (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, D9E)被用于被用于免疫印迹在小鼠样本上 (图 s2). Science (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4). Cell Cycle (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271S)被用于被用于免疫印迹在小鼠样本上 (图 3). Stem Cell Reports (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Oncol Lett (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3E
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3E). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s2b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 s2b). Sci Adv (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 7). Biochem Pharmacol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 9
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9). Biochem Pharmacol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1). Biochem Biophys Res Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:100; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5). Genes Dev (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3h). J Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 S3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 S3). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Cancer Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 狗; 图 1d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在狗样本上 (图 1d). BMC Genomics (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 狗; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060P)被用于被用于免疫印迹在狗样本上浓度为1:2000 (图 5). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 4). BMC Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). J Exp Med (2015) ncbi
兔 单克隆(D9E)
  • 流式细胞仪; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于流式细胞仪在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7e). J Natl Cancer Inst (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在大鼠样本上 (图 5). Physiol Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5). Front Oncol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:100; 图 s7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 s7). Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Neuroscience (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 6). Sci Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4b
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 4b) 和 被用于免疫印迹在小鼠样本上 (图 2). Oncotarget (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上. Redox Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cancer Sci (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncoscience (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology., 9271)被用于被用于免疫印迹在小鼠样本上 (图 1a). J Biol Chem (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 s2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s2). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上. Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 1). Biochim Biophys Acta (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠; 1:100; 图 8e-h
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 4060 s)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 8e-h). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 s14b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s14b). J Biol Chem (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). PLoS Pathog (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 3
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 5). Cell Death Differ (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3). Aging Cell (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 11
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 11). Anticancer Agents Med Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 6c). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4b). Exp Cell Res (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 1). Glycobiology (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3). Genes Dev (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上. Development (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2a
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 2b). Oncogenesis (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 S2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 S2). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4c). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 6). Sci Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Diagn Pathol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 3). Redox Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上 (图 2). J Nutr (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 6). Autophagy (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7b). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s7d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling technologies, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7d). Nat Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 7a). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1i
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1i). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:4000; 图 s3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 s3). Mol Brain (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000. Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 5). Eur Neuropsychopharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 5e). BMC Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 s2). Skelet Muscle (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3c). BMC Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 4b). Int J Hematol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Exp Neurol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上 (图 3a). Cell Mol Neurobiol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3a). J Biol Chem (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). J Biol Chem (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1a). Neuroendocrinology (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1a). Leukemia (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1). Drug Des Devel Ther (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 6g
赛信通(上海)生物试剂有限公司 AKT1抗体(CellSignalingTechnology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 6g). Int J Obes (Lond) (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:300
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:300. FASEB J (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 6b). BMC Cancer (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signal, D9E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Diagn Pathol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 狗; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在狗样本上浓度为1:1000 (图 6a). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). J Cell Sci (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3). Cancer Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Stem Cell Reports (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 4a). Mol Med Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). J Neurooncol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000. Mol Brain (2015) ncbi
兔 多克隆
  • 免疫印迹; African green monkey; 1:500; 图 6b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在African green monkey样本上浓度为1:500 (图 6b). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s8c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8c). Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s8
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 s8). Sci Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
兔 多克隆
  • 其他; 小鼠; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于其他在小鼠样本上浓度为1:1000 (图 s1). Front Microbiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上. Eur Neuropsychopharmacol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 e7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在人类样本上 (图 e7a). Nature (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000. Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 9a
赛信通(上海)生物试剂有限公司 AKT1抗体(New England Biolabs, 9271)被用于被用于免疫印迹在小鼠样本上 (图 9a). FASEB J (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 S3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上 (图 S3). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 人类; 图 s6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫细胞化学在人类样本上 (图 s6). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上. J Cell Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; scFv; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling Technology, 9271)被用于被用于免疫印迹在scFv样本上 (图 3). Clin Exp Immunol (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:80; 图 s1a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:80 (图 s1a). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Mol Oncol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 4a). Mar Drugs (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Cancer Biol Ther (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). BMC Complement Altern Med (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060X)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Exp Cell Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1c
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell SignalinG, 9271)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1c) 和 被用于免疫印迹在小鼠样本上 (图 1b). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060P)被用于被用于免疫印迹在人类样本上. Clin Transl Gastroenterol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上. J Biomed Sci (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:2000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, #4060)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. Int J Neuropsychopharmacol (2015) ncbi
兔 单克隆(D9E)
  • 流式细胞仪; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, D9E)被用于被用于流式细胞仪在小鼠样本上 (图 3h). J Immunol (2015) ncbi
兔 多克隆
  • 免疫组化-自由浮动切片; 大鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫组化-自由浮动切片在大鼠样本上. Free Radic Biol Med (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Nat Immunol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2.e
赛信通(上海)生物试剂有限公司 AKT1抗体(CellSignaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2.e). Nat Cell Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 4060)被用于被用于免疫印迹在人类样本上 (图 3). EMBO J (2015) ncbi
兔 单克隆(D9E)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 5315)被用于被用于流式细胞仪在小鼠样本上. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 5). Int J Mol Med (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling Technologies, 4060)被用于被用于免疫印迹在小鼠样本上. Cardiovasc Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在人类样本上 (图 2). J Biomed Sci (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). J Cell Sci (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化; 人类; 图 2c
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫组化在人类样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 1d). EMBO Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-冰冻切片; 斑马鱼; 1:50; 图 9
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:50 (图 9). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell-Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7). PLoS Pathog (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Mol Neurodegener (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060L)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 s9
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Cell Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 9271)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1). EBioMedicine (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271s)被用于被用于免疫印迹在人类样本上浓度为1:1000. Am J Physiol Endocrinol Metab (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3). MAbs (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 5). EMBO Mol Med (2015) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 人类; 1:50; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 6). Am J Physiol Regul Integr Comp Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4b). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling Technology, 9271)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2a,2b,3a-c,3e
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 9271)被用于被用于免疫印迹在人类样本上 (图 2a,2b,3a-c,3e). Mol Cancer (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 5). Am J Physiol Renal Physiol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:500. Biochim Biophys Acta (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060s)被用于被用于免疫印迹在大鼠样本上 (图 3). Int J Mol Med (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 1b). Mol Cell Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化; 狗; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化在狗样本上 (图 4). PLoS Genet (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:250
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:250. Biochim Biophys Acta (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:200; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Nat Med (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 4060s)被用于被用于免疫印迹在人类样本上 (图 1). Int J Mol Med (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060P)被用于被用于免疫印迹在小鼠样本上 (图 4). Biochim Biophys Acta (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 1b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Carcinogenesis (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在大鼠样本上 (图 5). Mar Drugs (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图  4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图  4). J Mol Cell Cardiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 5). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Exp Neurol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cell Death Dis (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1500; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060P)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 6). Cancer Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫细胞化学在人类样本上. Toxicol Lett (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5). J Neurotrauma (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1). FASEB J (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 2). Biochem Biophys Res Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上. Muscle Nerve (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 8
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 猪; 图 10
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271S)被用于被用于免疫印迹在猪样本上 (图 10). Am J Physiol Heart Circ Physiol (2015) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s10
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s10). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. J Cell Sci (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 2d). Am J Pathol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Int J Mol Sci (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271L)被用于被用于免疫印迹在大鼠样本上 (图 7a). FEBS J (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology., 9271)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上 (图 1). J Transl Med (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 7). Gastroenterology (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 0.071 ug/ml; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为0.071 ug/ml (图 4). Endocrinology (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上. Breast Cancer Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上. Mol Cell Endocrinol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 f5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 f5). Oncotarget (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, D9E)被用于被用于免疫印迹在人类样本上. Acta Neuropathol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 s8
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s8). PLoS Pathog (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling TECHNOLOGY, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Sci Signal (2015) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫细胞化学在小鼠样本上 (图 4). J Lipid Res (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cancer Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 8). Oncotarget (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2). Aging Cell (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 5). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2f). Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271S)被用于被用于免疫印迹在大鼠样本上 (图 4). Cell Physiol Biochem (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Cell Death Differ (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:150
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150. Endocrinology (2015) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 人类; 1:400
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫细胞化学在人类样本上浓度为1:400. Mol Syst Biol (2015) ncbi
兔 多克隆
  • reverse phase protein lysate microarray; 人类; 表 s2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271L)被用于被用于reverse phase protein lysate microarray在人类样本上 (表 s2). Mol Syst Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Endocrinology (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Biol Cell (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 表 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 3). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Development (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠; 1:1000; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). J Clin Invest (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000. Biochem Pharmacol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s21
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 s21). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 7a
  • 免疫印迹; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上 (图 7a) 和 被用于免疫印迹在小鼠样本上 (图 7b). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neurobiol Dis (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3c
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Mol Med Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上. Leukemia (2015) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 小鼠; 1:50; 图 6c
  • 免疫细胞化学; 人类; 1:50; 图 6d, 6e
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060 L)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 6c), 被用于免疫细胞化学在人类样本上浓度为1:50 (图 6d, 6e) 和 被用于免疫印迹在人类样本上. Sci Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Med Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1). Sci Signal (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Cell (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060L)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在人类样本上. J Cell Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 0.5 ug/ml; 图 4b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为0.5 ug/ml (图 4b). Sci Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Mol Biol Cell (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 2). Pigment Cell Melanoma Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1). Exp Mol Med (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Sci Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a,b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4a,b). Onco Targets Ther (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 7). Tissue Eng Part A (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 斑马鱼; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在斑马鱼样本上 (图 4a). FASEB J (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, #4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2). Cell Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, #9271)被用于被用于免疫印迹在人类样本上浓度为1:500. Br J Pharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271S)被用于被用于免疫印迹在人类样本上. Int J Mol Med (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, #4060)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Aging Cell (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 斑马鱼; 1:200
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:200. Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 9271S)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060P)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 4a). Am J Physiol Endocrinol Metab (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 7). Rejuvenation Res (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:50
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 大鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在大鼠样本上. Prostate (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 9271)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000. Arthritis Rheumatol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060L)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3c). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signalling, 9271)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上. J Diabetes (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Endocrinology (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cst, 9271)被用于被用于免疫印迹在小鼠样本上. J Proteome Res (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1). Breast Cancer Res (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 人类; 图 9
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 9). Mol Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Nat Cell Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化; 人类; 1:100
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫组化在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6). Development (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上. J Clin Invest (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Immunol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s12
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s12). Antioxid Redox Signal (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 5A
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上 (图 5A). J Appl Physiol (1985) (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 7c
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signaling, 9271)被用于被用于免疫印迹在大鼠样本上 (图 7c). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上. Neurobiol Learn Mem (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 s3a). Mol Biol Cell (2015) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 人类; 1:100
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Stem Cells (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncotarget (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-冰冻切片; 小鼠; 1:200
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Biotechnology, 4060)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 2
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Br J Cancer (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:500; 图 12
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 12). J Appl Toxicol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060P)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上. Int J Mol Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上. Diabetes (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:200; 图 5
  • 免疫印迹; 人类; 1:200; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫组化在人类样本上浓度为1:200 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 4). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2g
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 2g) 和 被用于免疫印迹在小鼠样本上 (图 3d). Nat Med (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3d
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 2g). Nat Med (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Dev Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:750
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:750. Ann Anat (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 s4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s4). J Cell Sci (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 猕猴; 图 s1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在猕猴样本上 (图 s1). FASEB J (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上. J Proteomics (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Neuroscience (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上 (图 s1). Mol Cell (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在大鼠样本上. Peptides (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 40605)被用于被用于免疫印迹在小鼠样本上. Mol Cell Endocrinol (2015) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 人类; 1:50
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling technology, 9271)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50. Exp Eye Res (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 8a). Free Radic Biol Med (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2014) ncbi
兔 多克隆
  • 流式细胞仪; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271S)被用于被用于流式细胞仪在人类样本上 (图 6). Invest New Drugs (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 仓鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在仓鼠样本上. Front Cell Infect Microbiol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 s7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271s)被用于被用于免疫印迹在小鼠样本上 (图 s7). Cell Death Dis (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Nat Commun (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上. FEBS Open Bio (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Mol Neurobiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3). Proteomics (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. FASEB J (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上 (图 5). J Med Chem (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 4). Proc Natl Acad Sci U S A (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:3000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在大鼠样本上浓度为1:3000. Neurochem Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Physiol Rep (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). elife (2014) ncbi
兔 多克隆
  • 免疫印迹; scFv; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling Technology, 9271L)被用于被用于免疫印迹在scFv样本上浓度为1:1000. BMC Neurosci (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上. J Mol Endocrinol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上. J Cancer Res Clin Oncol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化; 人类; 1:50
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, D9E)被用于被用于免疫组化在人类样本上浓度为1:50. Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上. J Korean Med Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 3, 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 3, 4). Mol Cancer Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:2000. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Psychiatry (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 12000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在大鼠样本上浓度为12000. Behav Brain Res (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上. Genesis (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在大鼠样本上. Biochem Biophys Res Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060s)被用于被用于免疫印迹在人类样本上. Neurobiol Aging (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上. Physiol Rep (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271S)被用于被用于免疫细胞化学在人类样本上. Cancer Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 9271)被用于被用于免疫印迹在人类样本上. BMC Cancer (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Metab (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 4). J Thorac Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上. Proteomics (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上. BMC Nephrol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Mol Cancer Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上. Evid Based Complement Alternat Med (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Oncogene (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Stem Cells Dev (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Bioenerg Biomembr (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上. Molecules (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. J Leukoc Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 4060)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在大鼠样本上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:300; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 2). Skelet Muscle (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 4060)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(cell Signaling, 4060)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Oncotarget (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 s3b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s3b). Proc Natl Acad Sci U S A (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neurobiol Aging (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3a). Genes Dev (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling technology, 4060)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:4000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在人类样本上浓度为1:4000. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000. Tissue Eng Part A (2014) ncbi
兔 单克隆(D9E)
  • 流式细胞仪; 人类; 1:100
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于流式细胞仪在人类样本上浓度为1:100. Tissue Eng Part A (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上. Pharmacol Res (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Signal (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Development (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cancer Biol Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Tech, 9271)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signaling, 4060S)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2014) ncbi
兔 多克隆
  • 免疫印迹; 乌颊鱼; 1:200
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在乌颊鱼样本上浓度为1:200. Gen Comp Endocrinol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS Genet (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1a). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Int J Biochem Cell Biol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 4). Nature (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 兔; 1:2,000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在兔样本上浓度为1:2,000. Stem Cells Dev (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. Biochem J (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:2000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. Exp Gerontol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上. Eur J Immunol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上. Toxicol Pathol (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上. Brain Res (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:50
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, D9E)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Clin Cancer Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Renal Physiol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(cst, D9E)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 9271)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a, b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 4a, b). Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Cancer Ther (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000. Int J Cancer (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Biotechnology, 9271S)被用于被用于免疫印迹在人类样本上. Biochem Pharmacol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nanomedicine (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在大鼠样本上. Am J Physiol Heart Circ Physiol (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 4060)被用于被用于免疫组化-石蜡切片在人类样本上. Neuro Oncol (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上. FEBS Lett (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上. Int J Dev Neurosci (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Nutr Biochem (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:2000. Sci Signal (2014) ncbi
兔 多克隆
  • 免疫印迹; 狗
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在狗样本上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. Carcinogenesis (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3, 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3, 5). Am J Physiol Endocrinol Metab (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化; 人类; 1:2000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化在人类样本上浓度为1:2000. Scand J Med Sci Sports (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500. Stem Cell Rev (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5, 7
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 5, 7). J Cell Sci (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, D9E)被用于被用于免疫组化在小鼠样本上浓度为1:50. Stem Cells (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2500
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2500. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上. Cancer Discov (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
兔 多克隆
  • proximity ligation assay; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于proximity ligation assay在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1). Tumour Biol (2014) ncbi
兔 单克隆(D9E)
  • 流式细胞仪; 人类; 图 5a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于流式细胞仪在人类样本上 (图 5a). J Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3). Autophagy (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 9271)被用于被用于免疫印迹在人类样本上. Int J Biochem Cell Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4). Biochemistry (2013) ncbi
兔 单克隆(D9E)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. Aging Cell (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫组化在人类样本上. Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling Technology, 9271)被用于被用于免疫印迹在人类样本上. J Physiol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Exp Cell Res (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; African green monkey
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在African green monkey样本上. J Cell Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6a). J Biol Chem (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Diabetes (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:10000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:10000. Diabetes (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Nat Med (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neurobiol Dis (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫细胞化学在小鼠样本上 (图 3). BMC Biol (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000. Phytother Res (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000. FASEB J (2014) ncbi
兔 多克隆
  • 免疫组化; 人类
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫组化在人类样本上 和 被用于免疫印迹在人类样本上 (图 4). Cancer Res (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 1g). PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:50
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1抗体(cell signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 4a). Int J Cancer (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Endocrinology (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Food Chem (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271L)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上. Diabetes (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 5). Int J Obes (Lond) (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2b). PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4). Mol Carcinog (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1,000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1,000. J Comp Neurol (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technologie, 4060)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Oncogenesis (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上. Kidney Int (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在小鼠样本上. Mol Cancer Ther (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:200
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Biochem J (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Invest Ophthalmol Vis Sci (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(CST, 9271)被用于被用于免疫印迹在大鼠样本上. Diabetes (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Oncogene (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Brain Res (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Cell Death Dis (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signal, 9271)被用于被用于免疫印迹在人类样本上. J Cell Mol Med (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Cell Biochem Funct (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 4). J Biol Chem (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2). Genes Dev (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 s3d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 s3d). J Physiol (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在人类样本上 (图 5). Biochem J (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上. J Physiol (2013) ncbi
兔 单克隆(D9E)
  • 免疫组化-冰冻切片; 小鼠; 1:50
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 和 被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2,000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2,000. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). FASEB J (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 4d). Proc Natl Acad Sci U S A (2012) ncbi
兔 单克隆(D9E)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271s)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000. FEBS Lett (2013) ncbi
兔 多克隆
  • 免疫印迹; 仓鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在仓鼠样本上. Mol Cell Biol (2013) ncbi
兔 多克隆
  • 免疫细胞化学; 狗
  • 免疫印迹; 狗
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫细胞化学在狗样本上 和 被用于免疫印迹在狗样本上. J Biol Chem (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上. Biochem J (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在大鼠样本上. J Appl Physiol (1985) (2012) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncogene (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271S)被用于被用于免疫印迹在小鼠样本上. Eur J Immunol (2011) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2011) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 5). Leukemia (2011) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 7a). Cell Death Differ (2010) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. J Endocrinol (2010) ncbi
碧迪BD
小鼠 单克隆(55/PKBa/Akt)
  • 流式细胞仪; 小鼠; 图 8b
碧迪BD AKT1抗体(BD Pharmigen, 55/PKBa/AKT)被用于被用于流式细胞仪在小鼠样本上 (图 8b). PLoS Pathog (2018) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 流式细胞仪; 人类; 图 1
碧迪BD AKT1抗体(BD Biosciences, 560049)被用于被用于流式细胞仪在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 流式细胞仪; 人类
碧迪BD AKT1抗体(BD Biosciences, 560049)被用于被用于流式细胞仪在人类样本上. Trans Am Ophthalmol Soc (2014) ncbi
默克密理博中国
小鼠 单克隆(11E6)
  • 免疫印迹; 大鼠; 1:1000; 图 2e
默克密理博中国 AKT1抗体(Millipore, 05-669)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2e). Front Behav Neurosci (2015) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 人类; 表 s3
默克密理博中国 AKT1抗体(Millipore, 11E6)被用于被用于免疫印迹在人类样本上 (表 s3). Cell Death Dis (2015) ncbi
小鼠 单克隆(11E6)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
默克密理博中国 AKT1抗体(Upstate, 11E6)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
文章列表
  1. Kaur S, Nag A, Gangenahalli G, Sharma K. Peroxisome Proliferator Activated Receptor Gamma Sensitizes Non-small Cell Lung Carcinoma to Gamma Irradiation Induced Apoptosis. Front Genet. 2019;10:554 pubmed 出版商
  2. Zhang J, Lee Y, Dang F, Gan W, Menon A, Katon J, et al. PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discov. 2019;: pubmed 出版商
  3. Wang H, Huang F, Zhang Z, Wang P, Luo Y, Li H, et al. Feedback Activation of SGK3 and AKT Contributes to Rapamycin Resistance by Reactivating mTORC1/4EBP1 Axis via TSC2 in Breast Cancer. Int J Biol Sci. 2019;15:929-941 pubmed 出版商
  4. Pietila M, Sahgal P, Peuhu E, Jäntti N, Paatero I, Närvä E, et al. SORLA regulates endosomal trafficking and oncogenic fitness of HER2. Nat Commun. 2019;10:2340 pubmed 出版商
  5. Lee Y, Chen M, Lee J, Zhang J, Lin S, Fu T, et al. Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science. 2019;364: pubmed 出版商
  6. Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, et al. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;: pubmed 出版商
  7. Thauland T, Pellerin L, Ohgami R, Bacchetta R, Butte M. Case Study: Mechanism for Increased Follicular Helper T Cell Development in Activated PI3K Delta Syndrome. Front Immunol. 2019;10:753 pubmed 出版商
  8. Sommars M, Ramachandran K, Senagolage M, Futtner C, Germain D, Allred A, et al. Dynamic repression by BCL6 controls the genome-wide liver response to fasting and steatosis. elife. 2019;8: pubmed 出版商
  9. Hancock M, Meyer R, Mistry M, Khetani R, Wagschal A, Shin T, et al. Insulin Receptor Associates with Promoters Genome-wide and Regulates Gene Expression. Cell. 2019;177:722-736.e22 pubmed 出版商
  10. Tsai C, Tsai C, Yi J, Kao H, Huang Y, Wang C, et al. Activin A regulates the epidermal growth factor receptor promoter by activating the PI3K/SP1 pathway in oral squamous cell carcinoma cells. Sci Rep. 2019;9:5197 pubmed 出版商
  11. Chang H, Di T, Wang Y, Zeng X, Li G, Wan Q, et al. Seipin deletion in mice enhances phosphorylation and aggregation of tau protein through reduced neuronal PPARγ and insulin resistance. Neurobiol Dis. 2019;127:350-361 pubmed 出版商
  12. Castel P, Cheng A, Cuevas Navarro A, Everman D, Papageorge A, Simanshu D, et al. RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science. 2019;363:1226-1230 pubmed 出版商
  13. Zhang S, Liu W, Yang Y, Sun K, Li S, Xu H, et al. Tmem30a Deficiency in endothelial cells impairs cell proliferation and angiogenesis. J Cell Sci. 2019;: pubmed 出版商
  14. Cao J, Zhao M, Liu J, Zhang X, Pei Y, Wang J, et al. RACK1 Promotes Self-Renewal and Chemoresistance of Cancer Stem Cells in Human Hepatocellular Carcinoma through Stabilizing Nanog. Theranostics. 2019;9:811-828 pubmed 出版商
  15. Teissier T, Quersin V, Gnemmi V, Daroux M, Howsam M, Delguste F, et al. Knockout of receptor for advanced glycation end-products attenuates age-related renal lesions. Aging Cell. 2019;18:e12850 pubmed 出版商
  16. Yambire K, Fernández Mosquera L, Steinfeld R, Mühle C, Ikonen E, Milosevic I, et al. Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases. elife. 2019;8: pubmed 出版商
  17. Majumdar T, Sharma S, Kumar M, Hussain M, Chauhan N, Kalia I, et al. Tryptophan-kynurenine pathway attenuates β-catenin-dependent pro-parasitic role of STING-TICAM2-IRF3-IDO1 signalosome in Toxoplasma gondii infection. Cell Death Dis. 2019;10:161 pubmed 出版商
  18. Mathieu J, Detraux D, Kuppers D, Wang Y, Cavanaugh C, Sidhu S, et al. Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency. Nat Commun. 2019;10:632 pubmed 出版商
  19. Yin C, Zhu B, Zhang T, Liu T, Chen S, Liu Y, et al. Pharmacological Targeting of STK19 Inhibits Oncogenic NRAS-Driven Melanomagenesis. Cell. 2019;176:1113-1127.e16 pubmed 出版商
  20. Wang W, Shen T, Dong B, Creighton C, Meng Y, Zhou W, et al. MAPK4 overexpression promotes tumor progression via noncanonical activation of AKT/mTOR signaling. J Clin Invest. 2019;: pubmed 出版商
  21. Shen B, Vardy K, Hughes P, Tasdogan A, Zhao Z, Yue R, et al. Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. elife. 2019;8: pubmed 出版商
  22. Ruscetti M, Leibold J, Bott M, Fennell M, Kulick A, Salgado N, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science. 2018;362:1416-1422 pubmed 出版商
  23. Barros Silva J, Linn D, Steiner I, Guo G, Ali A, Pakula H, et al. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep. 2018;25:3504-3518.e6 pubmed 出版商
  24. Turowec J, Lau E, Wang X, Brown K, Fellouse F, Jawanda K, et al. Functional genomic characterization of a synthetic anti-HER3 antibody reveals a role for ubiquitination by RNF41 in the anti-proliferative response. J Biol Chem. 2019;294:1396-1409 pubmed 出版商
  25. Schaffer T, Smith J, Cook E, Phan T, Margolis S. PKCε Inhibits Neuronal Dendritic Spine Development through Dual Phosphorylation of Ephexin5. Cell Rep. 2018;25:2470-2483.e8 pubmed 出版商
  26. Zhou X, Zhang R, Zou Z, Shen X, Xie T, Xu C, et al. Hypoglycaemic effects of glimepiride in sulfonylurea receptor 1 deficient rat. Br J Pharmacol. 2019;176:478-490 pubmed 出版商
  27. Zhao H, Martin E, Matalkah F, Shah N, Ivanov A, Ruppert J, et al. Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis. Oncogene. 2019;38:2275-2290 pubmed 出版商
  28. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  29. Wang F, Meng M, Mo B, Yang Y, Ji Y, Huang P, et al. Crosstalks between mTORC1 and mTORC2 variagate cytokine signaling to control NK maturation and effector function. Nat Commun. 2018;9:4874 pubmed 出版商
  30. Bigenzahn J, Collu G, Kartnig F, Pieraks M, Vladimer G, Heinz L, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018;362:1171-1177 pubmed 出版商
  31. Liang C, Ma Y, Yong L, Yang C, Wang P, Liu X, et al. Y-box binding protein-1 promotes tumorigenesis and progression via the epidermal growth factor receptor/AKT pathway in spinal chordoma. Cancer Sci. 2019;110:166-179 pubmed 出版商
  32. Hakuno D, Kimura M, Ito S, Satoh J, Nakashima Y, Horie T, et al. Hepatokine α1-Microglobulin Signaling Exacerbates Inflammation and Disturbs Fibrotic Repair in Mouse Myocardial Infarction. Sci Rep. 2018;8:16749 pubmed 出版商
  33. Jensen I, Winborn C, Fosdick M, Shao P, Tremblay M, Shan Q, et al. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathog. 2018;14:e1007405 pubmed 出版商
  34. Nie S, Tan Y, Zhang Z, Chen G, Xiong J, Hu D, et al. Bilateral Implantation of Shear Stress Modifier in ApoE Knockout Mouse Induces Cognitive Impairment and Tau Abnormalities. Front Aging Neurosci. 2018;10:303 pubmed 出版商
  35. Mu L, Tu Z, Miao L, Ruan H, Kang N, Hei Y, et al. A phosphatidylinositol 4,5-bisphosphate redistribution-based sensing mechanism initiates a phagocytosis programing. Nat Commun. 2018;9:4259 pubmed 出版商
  36. Park J, Lee J, Sheu K, Wang L, Balanis N, Nguyen K, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 2018;362:91-95 pubmed 出版商
  37. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362: pubmed 出版商
  38. Chen S, Yun F, Yao Y, Cao M, Zhang Y, Wang J, et al. USP38 critically promotes asthmatic pathogenesis by stabilizing JunB protein. J Exp Med. 2018;215:2850-2867 pubmed 出版商
  39. Chorzalska A, Morgan J, Ahsan N, Treaba D, Olszewski A, Petersen M, et al. Bone marrow-specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis. Blood. 2018;: pubmed 出版商
  40. Son S, Park S, Lee H, Siddiqi F, Lee J, Menzies F, et al. Leucine Signals to mTORC1 via Its Metabolite Acetyl-Coenzyme A. Cell Metab. 2019;29:192-201.e7 pubmed 出版商
  41. Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;9:3630 pubmed 出版商
  42. Wang X, Li Q, Liu C, Hall P, Jiang J, Katchis C, et al. Lin28 Signaling Supports Mammalian PNS and CNS Axon Regeneration. Cell Rep. 2018;24:2540-2552.e6 pubmed 出版商
  43. Song K, Kim J, Lee Y, Bae H, Lee H, Woo S, et al. Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance. J Clin Invest. 2018;128:4098-4114 pubmed 出版商
  44. Lu D, Song J, Sun Y, Qi F, Liu L, Jin Y, et al. Mutations of deubiquitinase OTUD1 are associated with autoimmune disorders. J Autoimmun. 2018;94:156-165 pubmed 出版商
  45. Deason K, Troutman T, Jain A, Challa D, Mandraju R, Brewer T, et al. BCAP links IL-1R to the PI3K-mTOR pathway and regulates pathogenic Th17 cell differentiation. J Exp Med. 2018;215:2413-2428 pubmed 出版商
  46. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  47. Muller T, Braud S, Jüttner R, Voigt B, Paulick K, Sheean M, et al. Neuregulin 3 promotes excitatory synapse formation on hippocampal interneurons. EMBO J. 2018;37: pubmed 出版商
  48. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  49. Xie H, Wang Y, Zhang H, Fan Q, Dai D, Zhuang L, et al. Tubular epithelial C1orf54 mediates protection and recovery from acute kidney injury. J Cell Mol Med. 2018;22:4985-4996 pubmed 出版商
  50. Beyer S, Schwalm S, Pfeilschifter J, Huwiler A. Renal Mesangial Cells Isolated from Sphingosine Kinase 2 Transgenic Mice Show Reduced Proliferation and are More Sensitive to Stress-Induced Apoptosis. Cell Physiol Biochem. 2018;47:2522-2533 pubmed 出版商
  51. Matesanz N, Nikolic I, Leiva M, Pulgarín Alfaro M, Santamans A, Bernardo E, et al. p38α blocks brown adipose tissue thermogenesis through p38δ inhibition. PLoS Biol. 2018;16:e2004455 pubmed 出版商
  52. Wang W, Xia Z, Farre J, Subramani S. TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis. Autophagy. 2018;14:1574-1585 pubmed 出版商
  53. Rapino F, Delaunay S, Rambow F, Zhou Z, Tharun L, de Tullio P, et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature. 2018;558:605-609 pubmed 出版商
  54. Li R, Sahu S, Schachner M. Phenelzine, a small organic compound mimicking the functions of cell adhesion molecule L1, promotes functional recovery after mouse spinal cord injury. Restor Neurol Neurosci. 2018;36:469-483 pubmed 出版商
  55. Fan P, Narzisi G, Jayaprakash A, Venturini E, Robine N, Smibert P, et al. YES1 amplification is a mechanism of acquired resistance to EGFR inhibitors identified by transposon mutagenesis and clinical genomics. Proc Natl Acad Sci U S A. 2018;115:E6030-E6038 pubmed 出版商
  56. Ruess D, Heynen G, Ciecielski K, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24:954-960 pubmed 出版商
  57. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  58. Mitchell K, Barreyro L, Todorova T, Taylor S, Antony Debré I, Narayanagari S, et al. IL1RAP potentiates multiple oncogenic signaling pathways in AML. J Exp Med. 2018;215:1709-1727 pubmed 出版商
  59. Khalifeh Soltani A, Gupta D, Ha A, Podolsky M, Datta R, Atabai K. The Mfge8-α8β1-PTEN pathway regulates airway smooth muscle contraction in allergic inflammation. FASEB J. 2018;:fj201800109R pubmed 出版商
  60. Wang X, Du C, He X, Deng X, He Y, Zhou X. MiR-4463 inhibits the migration of human aortic smooth muscle cells by AMOT. Biosci Rep. 2018;38: pubmed 出版商
  61. Rajgor D, Sanderson T, Amici M, Collingridge G, Hanley J. NMDAR-dependent Argonaute 2 phosphorylation regulates miRNA activity and dendritic spine plasticity. EMBO J. 2018;37: pubmed 出版商
  62. Li H, Zhang P, Zhang Q, Li C, Zou W, Chang Z, et al. WWP2 is a physiological ubiquitin ligase for phosphatase and tensin homolog (PTEN) in mice. J Biol Chem. 2018;293:8886-8899 pubmed 出版商
  63. Salomè M, Magee A, Yalla K, Chaudhury S, Sarrou E, Carmody R, et al. A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis. 2018;9:443 pubmed 出版商
  64. Mirzamohammadi F, Kozlova A, Papaioannou G, Paltrinieri E, Ayturk U, Kobayashi T. Distinct molecular pathways mediate Mycn and Myc-regulated miR-17-92 microRNA action in Feingold syndrome mouse models. Nat Commun. 2018;9:1352 pubmed 出版商
  65. Chiang A, Fowler S, Savjani R, Hilsenbeck S, Wallace C, Cirrito J, et al. Combination anti-Aβ treatment maximizes cognitive recovery and rebalances mTOR signaling in APP mice. J Exp Med. 2018;215:1349-1364 pubmed 出版商
  66. Muhar M, Ebert A, Neumann T, Umkehrer C, Jude J, Wieshofer C, et al. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science. 2018;360:800-805 pubmed 出版商
  67. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  68. Zheng C, Wang J, Lin M, Zhang P, Liu L, Lin J, et al. CDK5RAP3 suppresses Wnt/β-catenin signaling by inhibiting AKT phosphorylation in gastric cancer. J Exp Clin Cancer Res. 2018;37:59 pubmed 出版商
  69. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  70. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  71. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920-926 pubmed 出版商
  72. Yurchenko M, Skjesol A, Ryan L, Richard G, Kandasamy R, Wang N, et al. SLAMF1 is required for TLR4-mediated TRAM-TRIF-dependent signaling in human macrophages. J Cell Biol. 2018;217:1411-1429 pubmed 出版商
  73. Patra D, DeLassus E, Mueller J, Abou Ezzi G, Sandell L. Site-1 protease regulates skeletal stem cell population and osteogenic differentiation in mice. Biol Open. 2018;7: pubmed 出版商
  74. Nan H, Han L, Ma J, Yang C, Su R, He J. STX3 represses the stability of the tumor suppressor PTEN to activate the PI3K-Akt-mTOR signaling and promotes the growth of breast cancer cells. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1684-1692 pubmed 出版商
  75. Janes M, Zhang J, Li L, Hansen R, Peters U, Guo X, et al. Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor. Cell. 2018;172:578-589.e17 pubmed 出版商
  76. Shen Q, Zhang Q, Shi Y, Shi Q, Jiang Y, Gu Y, et al. Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature. 2018;554:123-127 pubmed 出版商
  77. Saunders B, Rudnicka C, Filipovska A, Davies S, Ward N, Hricova J, et al. Shining LIGHT on the metabolic role of the cytokine TNFSF14 and the implications on hepatic IL-6 production. Immunol Cell Biol. 2018;96:41-53 pubmed 出版商
  78. Souma T, Thomson B, Heinen S, Carota I, Yamaguchi S, Onay T, et al. Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proc Natl Acad Sci U S A. 2018;115:1298-1303 pubmed 出版商
  79. Shen L, Qu X, Li H, Xu C, Wei M, Wang Q, et al. NDRG2 facilitates colorectal cancer differentiation through the regulation of Skp2-p21/p27 axis. Oncogene. 2018;37:1759-1774 pubmed 出版商
  80. Ambrogio C, Köhler J, Zhou Z, Wang H, Paranal R, Li J, et al. KRAS Dimerization Impacts MEK Inhibitor Sensitivity and Oncogenic Activity of Mutant KRAS. Cell. 2018;172:857-868.e15 pubmed 出版商
  81. Bekkering S, Arts R, Novakovic B, Kourtzelis I, van der Heijden C, Li Y, et al. Metabolic Induction of Trained Immunity through the Mevalonate Pathway. Cell. 2018;172:135-146.e9 pubmed 出版商
  82. Frattini V, Pagnotta S, Tala -, Fan J, Russo M, Lee S, et al. A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature. 2018;553:222-227 pubmed 出版商
  83. Khalil S, Delehanty L, Grado S, Holy M, White Z, Freeman K, et al. Iron modulation of erythropoiesis is associated with Scribble-mediated control of the erythropoietin receptor. J Exp Med. 2018;215:661-679 pubmed 出版商
  84. Barrow A, Edeling M, Trifonov V, Luo J, Goyal P, Bohl B, et al. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor. Cell. 2018;172:534-548.e19 pubmed 出版商
  85. Ka M, Kim W. ANKRD11 associated with intellectual disability and autism regulates dendrite differentiation via the BDNF/TrkB signaling pathway. Neurobiol Dis. 2018;111:138-152 pubmed 出版商
  86. Wang J, Ye Q, Cao Y, Guo Y, Huang X, Mi W, et al. Snail determines the therapeutic response to mTOR kinase inhibitors by transcriptional repression of 4E-BP1. Nat Commun. 2017;8:2207 pubmed 出版商
  87. Rajbhandari P, Thomas B, Feng A, Hong C, Wang J, Vergnes L, et al. IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell. 2018;172:218-233.e17 pubmed 出版商
  88. Coelho M, de Carné Trécesson S, Rana S, Zecchin D, Moore C, Molina Arcas M, et al. Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity. 2017;47:1083-1099.e6 pubmed 出版商
  89. Galan A, Jmaeff S, Barcelona P, Brahimi F, Sarunic M, Saragovi H. In retinitis pigmentosa TrkC.T1-dependent vectorial Erk activity upregulates glial TNF-α, causing selective neuronal death. Cell Death Dis. 2017;8:3222 pubmed 出版商
  90. Turkington H, Juozapaitis M, Tsolakos N, Corrales Aguilar E, Schwemmle M, Hale B. Unexpected Functional Divergence of Bat Influenza Virus NS1 Proteins. J Virol. 2018;92: pubmed 出版商
  91. Yu R, Longo J, van Leeuwen J, Mullen P, Ba Alawi W, Haibe Kains B, et al. Statin-Induced Cancer Cell Death Can Be Mechanistically Uncoupled from Prenylation of RAS Family Proteins. Cancer Res. 2018;78:1347-1357 pubmed 出版商
  92. Cho M, Lee J, Shin M, Kim H, Choi Y, Rho S, et al. TSC-22 inhibits CSF-1R function and induces apoptosis in cervical cancer. Oncotarget. 2017;8:97990-98003 pubmed 出版商
  93. Kim M, Morales L, Baek M, Slaga T, DiGiovanni J, Kim D. UVB-induced nuclear translocation of TC-PTP by AKT/14-3-3? axis inhibits keratinocyte survival and proliferation. Oncotarget. 2017;8:90674-90692 pubmed 出版商
  94. Muro R, Nitta T, Nakano K, Okamura T, Takayanagi H, Suzuki H. γδTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. J Clin Invest. 2018;128:415-426 pubmed 出版商
  95. Sun H, Krauss R, Chang J, Teng B. PCSK9 deficiency reduces atherosclerosis, apolipoprotein B secretion, and endothelial dysfunction. J Lipid Res. 2018;59:207-223 pubmed 出版商
  96. Kishore M, Cheung K, Fu H, Bonacina F, Wang G, Coe D, et al. Regulatory T Cell Migration Is Dependent on Glucokinase-Mediated Glycolysis. Immunity. 2017;47:875-889.e10 pubmed 出版商
  97. Ni Z, HE J, Wu Y, Hu C, Dai X, Yan X, et al. AKT-mediated phosphorylation of ATG4B impairs mitochondrial activity and enhances the Warburg effect in hepatocellular carcinoma cells. Autophagy. 2018;14:685-701 pubmed 出版商
  98. Schafer S, Viswanathan S, Widjaja A, Lim W, Moreno Moral A, Delaughter D, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552:110-115 pubmed 出版商
  99. Urbanska M, Gozdz A, Macias M, Cymerman I, Liszewska E, Kondratiuk I, et al. GSK3β Controls mTOR and Prosurvival Signaling in Neurons. Mol Neurobiol. 2018;55:6050-6062 pubmed 出版商
  100. Bostner J, Alayev A, Berman A, Fornander T, Nordenskjold B, Holz M, et al. Raptor localization predicts prognosis and tamoxifen response in estrogen receptor-positive breast cancer. Breast Cancer Res Treat. 2018;168:17-27 pubmed 出版商
  101. Ameen G, Mora S. Cbl downregulation increases RBP4 expression in adipocytes of female mice. J Endocrinol. 2018;236:29-41 pubmed 出版商
  102. Redka D, Gutschow M, Grinstein S, Canton J. Differential ability of proinflammatory and anti-inflammatory macrophages to perform macropinocytosis. Mol Biol Cell. 2018;29:53-65 pubmed 出版商
  103. Meng Z, Tao W, Sun J, Wang Q, Mi L, Lin J. Uncoupling Exercise Bioenergetics From Systemic Metabolic Homeostasis by Conditional Inactivation of Baf60 in Skeletal Muscle. Diabetes. 2018;67:85-97 pubmed 出版商
  104. Zhang R, Li J, Yan X, Jin K, Li W, Xu J, et al. SODD promotes glucose uptake of colorectal cancer cells via AKT pathway. Cell Biol Int. 2017;: pubmed 出版商
  105. Kang H, Kumar D, Liao G, Lichti Kaiser K, Gerrish K, Liao X, et al. GLIS3 is indispensable for TSH/TSHR-dependent thyroid hormone biosynthesis and follicular cell proliferation. J Clin Invest. 2017;127:4326-4337 pubmed 出版商
  106. Xue X, Bredell B, Anderson E, Martin A, Mays C, Nagao Kitamoto H, et al. Quantitative proteomics identifies STEAP4 as a critical regulator of mitochondrial dysfunction linking inflammation and colon cancer. Proc Natl Acad Sci U S A. 2017;114:E9608-E9617 pubmed 出版商
  107. Frey J, Kim S, Li Z, Wolfgang M, Riddle R. β-Catenin Directs Long-Chain Fatty Acid Catabolism in the Osteoblasts of Male Mice. Endocrinology. 2018;159:272-284 pubmed 出版商
  108. Thaler S, Schmidt M, Roβwag S, Thiede G, Schad A, Sleeman J. Proteasome inhibitors prevent bi-directional HER2/estrogen-receptor cross-talk leading to cell death in endocrine and lapatinib-resistant HER2+/ER+ breast cancer cells. Oncotarget. 2017;8:72281-72301 pubmed 出版商
  109. Zeng L, Kang R, Zhu S, Wang X, Cao L, Wang H, et al. ALK is a therapeutic target for lethal sepsis. Sci Transl Med. 2017;9: pubmed 出版商
  110. Mai W, Gosa L, Daniëls V, Ta L, Tsang J, Higgins B, et al. Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nat Med. 2017;23:1342-1351 pubmed 出版商
  111. Xie Z, Enkhjargal B, Wu L, Zhou K, Sun C, Hu X, et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142-151 pubmed 出版商
  112. Bagarolli R, Tobar N, Oliveira A, Araújo T, Carvalho B, Rocha G, et al. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem. 2017;50:16-25 pubmed 出版商
  113. Wang N, Li J, Zhao T, Li S, Shen C, Li D, et al. FGF-21 Plays a Crucial Role in the Glucose Uptake of Activated Monocytes. Inflammation. 2018;41:73-80 pubmed 出版商
  114. Zhao Z, Jia Q, Wu M, Xie X, Wang Y, Song G, et al. Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits Growth and Metastasis of Osteosarcoma through GSK3β Inactivation-Mediated Repression of the Hedgehog/Gli1 Pathway. Clin Cancer Res. 2018;24:130-144 pubmed 出版商
  115. Tarjus A, Maase M, Jeggle P, Martínez Martínez E, Fassot C, Loufrani L, et al. The endothelial ?ENaC contributes to vascular endothelial function in vivo. PLoS ONE. 2017;12:e0185319 pubmed 出版商
  116. Zhang F, Virshup D, Cheong J. Oncogenic RAS-induced CK1α drives nuclear FOXO proteolysis. Oncogene. 2018;37:363-376 pubmed 出版商
  117. Xu Y, Wang Y, Yao A, Xu Z, Dou H, Shen S, et al. Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway. Sci Rep. 2017;7:11776 pubmed 出版商
  118. Kim J, Park D, Bae H, Park D, Kim D, Lee C, et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. J Clin Invest. 2017;127:3877-3896 pubmed 出版商
  119. Hwangbo C, Wu J, Papangeli I, Adachi T, Sharma B, Park S, et al. Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects. Sci Transl Med. 2017;9: pubmed 出版商
  120. Comiskey D, Jacob A, Sanford B, Montes M, Goodwin A, Steiner H, et al. A novel mouse model of rhabdomyosarcoma underscores the dichotomy of MDM2-ALT1 function in vivo. Oncogene. 2018;37:95-106 pubmed 出版商
  121. Zhao F, Franco H, Rodriguez K, Brown P, Tsai M, Tsai S, et al. Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science. 2017;357:717-720 pubmed 出版商
  122. Simond A, Rao T, Zuo D, Zhao J, Muller W. ErbB2-positive mammary tumors can escape PI3K-p110α loss through downregulation of the Pten tumor suppressor. Oncogene. 2017;36:6059-6066 pubmed 出版商
  123. Liu X, Zhou X, Xu H, He Z, Shi X, Wu S. SLC34A2 Regulates the Proliferation, Migration, and Invasion of Human Osteosarcoma Cells Through PTEN/PI3K/AKT Signaling. DNA Cell Biol. 2017;36:775-780 pubmed 出版商
  124. Peterson J, Lin B, Shin J, Phelan P, Tsichlis P, Schwob J, et al. Replication of JC Virus DNA in the G144 Oligodendrocyte Cell Line Is Dependent Upon Akt. J Virol. 2017;91: pubmed 出版商
  125. Chang S, Kohlgruber A, Mizoguchi F, Michelet X, Wolf B, Wei K, et al. Stromal cell cadherin-11 regulates adipose tissue inflammation and diabetes. J Clin Invest. 2017;127:3300-3312 pubmed 出版商
  126. Ogura H, Nagatake Kobayashi Y, Adachi J, Tomonaga T, Fujita N, Katayama R. TKI-addicted ROS1-rearranged cells are destined to survival or death by the intensity of ROS1 kinase activity. Sci Rep. 2017;7:5519 pubmed 出版商
  127. Guilford B, Parson J, Grote C, Vick S, Ryals J, Wright D. Increased FNDC5 is associated with insulin resistance in high fat-fed mice. Physiol Rep. 2017;5: pubmed 出版商
  128. Baumann C, Ullrich A, Torka R. GAS6-expressing and self-sustaining cancer cells in 3D spheroids activate the PDK-RSK-mTOR pathway for survival and drug resistance. Mol Oncol. 2017;11:1430-1447 pubmed 出版商
  129. Guo J, Jayaprakash P, Dan J, Wise P, Jang G, Liang C, et al. PRAS40 Connects Microenvironmental Stress Signaling to Exosome-Mediated Secretion. Mol Cell Biol. 2017;37: pubmed 出版商
  130. Laviolette L, Mermoud J, Calvo I, Olson N, Boukhali M, Steinlein O, et al. Negative regulation of EGFR signalling by the human folliculin tumour suppressor protein. Nat Commun. 2017;8:15866 pubmed 出版商
  131. Patel N, Garikapati K, Pandita R, Singh D, Pandita T, Bhadra U, et al. miR-15a/miR-16 down-regulates BMI1, impacting Ub-H2A mediated DNA repair and breast cancer cell sensitivity to doxorubicin. Sci Rep. 2017;7:4263 pubmed 出版商
  132. Mamo T, Wittern A, Kleppa M, Bohnenpoll T, Weiss A, Kispert A. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Hum Mol Genet. 2017;26:3553-3563 pubmed 出版商
  133. Wei X, Guo L, Liu Y, Zhou S, Liu Y, Dou X, et al. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes. Biochem Biophys Res Commun. 2017;491:814-820 pubmed 出版商
  134. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  135. Oblinger J, Burns S, Huang J, Pan L, Ren Y, Shen R, et al. Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation. Exp Neurol. 2018;299:299-307 pubmed 出版商
  136. Pereira R, Tadinada S, Zasadny F, Oliveira K, Pires K, Olvera A, et al. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J. 2017;36:2126-2145 pubmed 出版商
  137. Zhang K, Myllymäki S, Gao P, Devarajan R, Kytölä V, Nykter M, et al. Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-Class integrins to promote EMT. Oncogene. 2017;36:5681-5694 pubmed 出版商
  138. Wang B, Gu Q, Li J. DOC-2/DAB2 interactive protein regulates proliferation and mobility of nasopharyngeal carcinoma cells by targeting PI3K/Akt pathway. Oncol Rep. 2017;38:317-324 pubmed 出版商
  139. Shi Y, Ping Y, Zhou W, He Z, Chen C, Bian B, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 2017;8:15080 pubmed 出版商
  140. Sinha S, Thomas D, Chan S, Gao Y, Brunen D, Torabi D, et al. Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data. Nat Commun. 2017;8:15580 pubmed 出版商
  141. Miyamoto T, Lo P, Saichi N, Ueda K, Hirata M, Tanikawa C, et al. Argininosuccinate synthase 1 is an intrinsic Akt repressor transactivated by p53. Sci Adv. 2017;3:e1603204 pubmed 出版商
  142. Zhao Y, Xie Z, Lin J, Liu P. MiR-144-3p inhibits cell proliferation and induces apoptosis in multiple myeloma by targeting c-Met. Am J Transl Res. 2017;9:2437-2446 pubmed
  143. Tsuda T, Takefuji M, Wettschureck N, Kotani K, Morimoto R, Okumura T, et al. Corticotropin releasing hormone receptor 2 exacerbates chronic cardiac dysfunction. J Exp Med. 2017;214:1877-1888 pubmed 出版商
  144. Mendoza A, Fang V, Chen C, Serasinghe M, Verma A, Muller J, et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature. 2017;546:158-161 pubmed 出版商
  145. Hossain M, Oomura Y, Katafuchi T. Glucose Can Epigenetically Alter the Gene Expression of Neurotrophic Factors in the Murine Brain Cells. Mol Neurobiol. 2018;55:3408-3425 pubmed 出版商
  146. Wang B, Jie Z, Joo D, Ordureau A, Liu P, Gan W, et al. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature. 2017;545:365-369 pubmed 出版商
  147. Ventura E, Weller M, Burghardt I. Cutting Edge: ERK1 Mediates the Autocrine Positive Feedback Loop of TGF-? and Furin in Glioma-Initiating Cells. J Immunol. 2017;198:4569-4574 pubmed 出版商
  148. Hu L, Liang S, Chen H, Lv T, Wu J, Chen D, et al. ΔNp63α is a common inhibitory target in oncogenic PI3K/Ras/Her2-induced cell motility and tumor metastasis. Proc Natl Acad Sci U S A. 2017;114:E3964-E3973 pubmed 出版商
  149. Gong B, Shen W, Xiao W, Meng Y, Meng A, Jia S. The Sec14-like phosphatidylinositol transfer proteins Sec14l3/SEC14L2 act as GTPase proteins to mediate Wnt/Ca2+ signaling. elife. 2017;6: pubmed 出版商
  150. Kapil S, Sharma B, Patil M, Elattar S, Yuan J, Hou S, et al. The cell polarity protein Scrib functions as a tumor suppressor in liver cancer. Oncotarget. 2017;8:26515-26531 pubmed 出版商
  151. Krag T, Ruiz Ruiz C, Vissing J. Glycogen Synthesis in Glycogenin 1-Deficient Patients: A Role for Glycogenin 2 in Muscle. J Clin Endocrinol Metab. 2017;102:2690-2700 pubmed 出版商
  152. Arcego D, Toniazzo A, Krolow R, Lampert C, Berlitz C, Dos Santos Garcia E, et al. Impact of High-Fat Diet and Early Stress on Depressive-Like Behavior and Hippocampal Plasticity in Adult Male Rats. Mol Neurobiol. 2018;55:2740-2753 pubmed 出版商
  153. Riemer P, Rydenfelt M, Marks M, van Eunen K, Thedieck K, Herrmann B, et al. Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. J Cell Biol. 2017;216:1567-1577 pubmed 出版商
  154. Zhou X, Packialakshmi B, Xiao Y, Nurmukhambetova S, Lees J. Progression of experimental autoimmune encephalomyelitis is associated with up-regulation of major sodium transporters in the mouse kidney cortex under a normal salt diet. Cell Immunol. 2017;317:18-25 pubmed 出版商
  155. Cai C, Qian L, Jiang S, Sun Y, Wang Q, Ma D, et al. Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs. Oncotarget. 2017;8:34911-34922 pubmed 出版商
  156. Tawo R, Pokrzywa W, Kevei E, Akyuz M, Balaji V, Adrian S, et al. The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover. Cell. 2017;169:470-482.e13 pubmed 出版商
  157. Vaishnavi A, Schubert L, Rix U, Marek L, Le A, Keysar S, et al. EGFR Mediates Responses to Small-Molecule Drugs Targeting Oncogenic Fusion Kinases. Cancer Res. 2017;77:3551-3563 pubmed 出版商
  158. Kim D, Ko H, Park G, Hur D, Kim Y, Yang J. Vandetanib and ADAM inhibitors synergistically attenuate the pathological migration of EBV-infected retinal pigment epithelial cells by regulating the VEGF-mediated MAPK pathway. Exp Ther Med. 2017;13:1415-1425 pubmed 出版商
  159. Yang X, Qi L, Lin F, Ou Z. The role of the chemokine receptor XCR1 in breast cancer cells. Breast Cancer (Dove Med Press). 2017;9:227-236 pubmed 出版商
  160. Zhang X, Spiegelman N, Nelson O, Jing H, Lin H. SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. elife. 2017;6: pubmed 出版商
  161. Xiao Z, Gaertner S, Morresi Hauf A, Genzel R, Duell T, Ullrich A, et al. Metformin Triggers Autophagy to Attenuate Drug-Induced Apoptosis in NSCLC Cells, with Minor Effects on Tumors of Diabetic Patients. Neoplasia. 2017;19:385-395 pubmed 出版商
  162. Xiao Y, Yang Z, Wu Q, Jiang X, Yuan Y, Chang W, et al. Cucurbitacin B Protects Against Pressure Overload Induced Cardiac Hypertrophy. J Cell Biochem. 2017;118:3899-3910 pubmed 出版商
  163. Yan X, Zhu Z, Xu S, Yang L, Liao X, Zheng M, et al. MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Sci Rep. 2017;7:45915 pubmed 出版商
  164. Ahmed S, Macara I. The Par3 polarity protein is an exocyst receptor essential for mammary cell survival. Nat Commun. 2017;8:14867 pubmed 出版商
  165. Guo Q, He J, Shen F, Zhang W, Yang X, Zhang C, et al. TCN, an AKT inhibitor, exhibits potent antitumor activity and enhances radiosensitivity in hypoxic esophageal squamous cell carcinoma in vitro and in vivo. Oncol Lett. 2017;13:949-954 pubmed 出版商
  166. Zhang X, Fan J, Wang S, Li Y, Wang Y, Li S, et al. Targeting CD47 and Autophagy Elicited Enhanced Antitumor Effects in Non-Small Cell Lung Cancer. Cancer Immunol Res. 2017;5:363-375 pubmed 出版商
  167. He W, Wang C, Mu R, Liang P, Huang Z, Zhang J, et al. MiR-21 is required for anti-tumor immune response in mice: an implication for its bi-directional roles. Oncogene. 2017;36:4212-4223 pubmed 出版商
  168. Cai W, Sakaguchi M, Kleinridders A, Gonzalez Del Pino G, Dreyfuss J, O Neill B, et al. Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression. Nat Commun. 2017;8:14892 pubmed 出版商
  169. Xiong G, Hindi S, Mann A, Gallot Y, Bohnert K, Cavener D, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. elife. 2017;6: pubmed 出版商
  170. Liu S, Gao G, Yan D, Chen X, Yao X, Guo S, et al. Effects of miR-145-5p through NRAS on the cell proliferation, apoptosis, migration, and invasion in melanoma by inhibiting MAPK and PI3K/AKT pathways. Cancer Med. 2017;6:819-833 pubmed 出版商
  171. Lei L, Chen C, Zhao J, Wang H, Guo M, Zhou Y, et al. Targeted Expression of miR-7 Operated by TTF-1 Promoter Inhibited the Growth of Human Lung Cancer through the NDUFA4 Pathway. Mol Ther Nucleic Acids. 2017;6:183-197 pubmed 出版商
  172. Lee H, Kim M, Baek M, Morales L, Jang I, Slaga T, et al. Targeted disruption of TC-PTP in the proliferative compartment augments STAT3 and AKT signaling and skin tumor development. Sci Rep. 2017;7:45077 pubmed 出版商
  173. Lu X, Horner J, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543:728-732 pubmed 出版商
  174. Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284-1302 pubmed 出版商
  175. Gupta A, Anjomani Virmouni S, Koundouros N, Dimitriadi M, Choo Wing R, Valle A, et al. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation. Mol Cell. 2017;65:999-1013.e7 pubmed 出版商
  176. Merhi A, Delree P, Marini A. The metabolic waste ammonium regulates mTORC2 and mTORC1 signaling. Sci Rep. 2017;7:44602 pubmed 出版商
  177. Panigrahi S, Manterola M, Wolgemuth D. Meiotic failure in cyclin A1-deficient mouse spermatocytes triggers apoptosis through intrinsic and extrinsic signaling pathways and 14-3-3 proteins. PLoS ONE. 2017;12:e0173926 pubmed 出版商
  178. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  179. CAROMILE L, Dortche K, Rahman M, Grant C, Stoddard C, Ferrer F, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10: pubmed 出版商
  180. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  181. Su S, Liao J, Liu J, Huang D, He C, Chen F, et al. Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer. Cell Res. 2017;27:461-482 pubmed 出版商
  182. Jacobs B, McNally R, Kim K, Blanco R, Privett R, You J, et al. Identification of mechanically regulated phosphorylation sites on tuberin (TSC2) that control mechanistic target of rapamycin (mTOR) signaling. J Biol Chem. 2017;292:6987-6997 pubmed 出版商
  183. Koyama Y, Wang P, Liang S, Iwaisako K, Liu X, Xu J, et al. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest. 2017;127:1254-1270 pubmed 出版商
  184. Dogan A, Demirci S, Apdik H, Bayrak O, Gulluoglu S, Tuysuz E, et al. A new hope for obesity management: Boron inhibits adipogenesis in progenitor cells through the Wnt/β-catenin pathway. Metabolism. 2017;69:130-142 pubmed 出版商
  185. Samuel S, Ghosh S, Majeed Y, Arunachalam G, Emara M, Ding H, et al. Metformin represses glucose starvation induced autophagic response in microvascular endothelial cells and promotes cell death. Biochem Pharmacol. 2017;132:118-132 pubmed 出版商
  186. Eppler F, Quast T, Kolanus W. Dynamin2 controls Rap1 activation and integrin clustering in human T lymphocyte adhesion. PLoS ONE. 2017;12:e0172443 pubmed 出版商
  187. Loo L, Bougen Zhukov N, Tan W. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments. Sci Rep. 2017;7:43541 pubmed 出版商
  188. Hammers D, Merscham Banda M, Hsiao J, ENGST S, Hartman J, Sweeney H. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. 2017;9:531-544 pubmed 出版商
  189. Koenen A, Babendreyer A, Schumacher J, Pasqualon T, Schwarz N, Seifert A, et al. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion. PLoS ONE. 2017;12:e0173486 pubmed 出版商
  190. Sato M, Kawana K, Adachi K, Fujimoto A, Yoshida M, Nakamura H, et al. Targeting glutamine metabolism and the focal adhesion kinase additively inhibits the mammalian target of the rapamycin pathway in spheroid cancer stem-like properties of ovarian clear cell carcinoma in vitro. Int J Oncol. 2017;50:1431-1438 pubmed 出版商
  191. Li K, Mo C, Gong D, Chen Y, Huang Z, Li Y, et al. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of β-catenin. Cancer Lett. 2017;400:194-202 pubmed 出版商
  192. Deying W, Feng G, Shumei L, Hui Z, Ming L, Hongqing W. CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells. Biosci Rep. 2017;37: pubmed 出版商
  193. Obeid S, Wankell M, Charrez B, Sternberg J, Kreuter R, Esmaili S, et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J Biol Chem. 2017;292:6569-6582 pubmed 出版商
  194. Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, et al. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics. 2017;7:664-676 pubmed 出版商
  195. Møller A, Kampmann U, Hedegaard J, Thorsen K, Nordentoft I, Vendelbo M, et al. Altered gene expression and repressed markers of autophagy in skeletal muscle of insulin resistant patients with type 2 diabetes. Sci Rep. 2017;7:43775 pubmed 出版商
  196. Lal S, Cheung E, Zarei M, Preet R, Chand S, Mambelli Lisboa N, et al. CRISPR Knockout of the HuR Gene Causes a Xenograft Lethal Phenotype. Mol Cancer Res. 2017;15:696-707 pubmed 出版商
  197. Hwang I, Park C, Harrison K, Kehrl J. Normal Thymocyte Egress, T Cell Trafficking, and CD4+ T Cell Homeostasis Require Interactions between RGS Proteins and Gαi2. J Immunol. 2017;198:2721-2734 pubmed 出版商
  198. Pan X, Wang Y, Lübke T, Hinek A, Pshezhetsky A. Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings. PLoS ONE. 2017;12:e0172854 pubmed 出版商
  199. Gueffier M, Zintz J, Lambert K, Finan A, Aimond F, Chakouri N, et al. The TRPM4 channel is functionally important for the beneficial cardiac remodeling induced by endurance training. J Muscle Res Cell Motil. 2017;38:3-16 pubmed 出版商
  200. Sethna F, Feng W, Ding Q, ROBISON A, Feng Y, Wang H. Enhanced expression of ADCY1 underlies aberrant neuronal signalling and behaviour in a syndromic autism model. Nat Commun. 2017;8:14359 pubmed 出版商
  201. Dong Q, Li J, Wu Q, Zhao N, Qian C, Ding D, et al. Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice. Sci Rep. 2017;7:42678 pubmed 出版商
  202. Wang N, Yao F, Li K, Zhang L, Yin G, Du M, et al. Fisetin regulates astrocyte migration and proliferation in vitro. Int J Mol Med. 2017;39:783-790 pubmed 出版商
  203. Peng M, Yin N, Li M. SZT2 dictates GATOR control of mTORC1 signalling. Nature. 2017;543:433-437 pubmed 出版商
  204. Compagno M, Wang Q, Pighi C, Cheong T, Meng F, Poggio T, et al. Phosphatidylinositol 3-kinase δ blockade increases genomic instability in B cells. Nature. 2017;542:489-493 pubmed 出版商
  205. Qian Q, Liu Q, Zhou D, Pan H, Liu Z, He F, et al. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway. FASEB J. 2017;31:2104-2113 pubmed 出版商
  206. Ganesan R, Hos N, Gutierrez S, Fischer J, Stepek J, Daglidu E, et al. Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathog. 2017;13:e1006227 pubmed 出版商
  207. Xu W, Li B, Guan X, Chung S, Wang Y, Yip Y, et al. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nat Commun. 2017;8:14399 pubmed 出版商
  208. Yang G, Zhao Z, Qin T, Wang D, Chen L, Xiang R, et al. TNFSF15 inhibits VEGF-stimulated vascular hyperpermeability by inducing VEGFR2 dephosphorylation. FASEB J. 2017;31:2001-2012 pubmed 出版商
  209. Qiao A, Jin X, Pang J, Moskophidis D, Mivechi N. The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis. J Cell Biol. 2017;216:723-741 pubmed 出版商
  210. Dong Q, Fu L, Zhao Y, Tan S, Wang E. Derlin-1 overexpression confers poor prognosis in muscle invasive bladder cancer and contributes to chemoresistance and invasion through PI3K/AKT and ERK/MMP signaling. Oncotarget. 2017;8:17059-17069 pubmed 出版商
  211. Kocic G, Veljkovic A, Kocic H, Colic M, Mihajlović D, Tomovic K, et al. Depurinized milk downregulates rat thymus MyD88/Akt/p38 function, NF-κB-mediated inflammation, caspase-1 activity but not the endonuclease pathway: in vitro/in vivo study. Sci Rep. 2017;7:41971 pubmed 出版商
  212. Zhu Y, Takayama T, Wang B, Kent A, Zhang M, Binder B, et al. Restenosis Inhibition and Re-differentiation of TGFβ/Smad3-activated Smooth Muscle Cells by Resveratrol. Sci Rep. 2017;7:41916 pubmed 出版商
  213. Shen C, Zhou J, Wang X, Yu X, Liang C, Liu B, et al. Angiotensin-II-induced Muscle Wasting is Mediated by 25-Hydroxycholesterol via GSK3? Signaling Pathway. EBioMedicine. 2017;16:238-250 pubmed 出版商
  214. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  215. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  216. Yang H, Ju F, Guo X, Ma S, Wang L, Cheng B, et al. RNA-binding protein RBM3 prevents NO-induced apoptosis in human neuroblastoma cells by modulating p38 signaling and miR-143. Sci Rep. 2017;7:41738 pubmed 出版商
  217. Pergola C, Schubert K, Pace S, Ziereisen J, Nikels F, Scherer O, et al. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy. Sci Rep. 2017;7:41434 pubmed 出版商
  218. Sugg K, Korn M, Sarver D, Markworth J, Mendias C. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy. FEBS Lett. 2017;591:801-809 pubmed 出版商
  219. Kissing S, Rudnik S, Damme M, Lüllmann Rauch R, Ichihara A, Kornak U, et al. Disruption of the vacuolar-type H+-ATPase complex in liver causes MTORC1-independent accumulation of autophagic vacuoles and lysosomes. Autophagy. 2017;13:670-685 pubmed 出版商
  220. Liu J, Wang H, Gu J, Deng T, Yuan Z, Hu B, et al. BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy. 2017;13:739-753 pubmed 出版商
  221. Cederquist C, Lentucci C, Martinez Calejman C, Hayashi V, Orofino J, GUERTIN D, et al. Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue. Mol Metab. 2017;6:125-137 pubmed 出版商
  222. Chen B, Tan Y, Liang Y, Li Y, Chen L, Wu S, et al. Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells. Oncol Lett. 2017;13:423-428 pubmed 出版商
  223. Sheng L, Mao X, Yu Q, Yu D. Effect of the PI3K/AKT signaling pathway on hypoxia-induced proliferation and differentiation of bone marrow-derived mesenchymal stem cells. Exp Ther Med. 2017;13:55-62 pubmed 出版商
  224. Villar V, Nguyen T, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124 pubmed 出版商
  225. Guo J, Kim N, Cui X. Inhibition of Fatty Acid Synthase Reduces Blastocyst Hatching through Regulation of the AKT Pathway in Pigs. PLoS ONE. 2017;12:e0170624 pubmed 出版商
  226. Kanuri B, Kanshana J, Rebello S, Pathak P, Gupta A, Gayen J, et al. Altered glucose and lipid homeostasis in liver and adipose tissue pre-dispose inducible NOS knockout mice to insulin resistance. Sci Rep. 2017;7:41009 pubmed 出版商
  227. Barcus C, O Leary K, Brockman J, Rugowski D, Liu Y, Garcia N, et al. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res. 2017;19:9 pubmed 出版商
  228. Ertsås H, Nolan G, Labarge M, Lorens J. Microsphere cytometry to interrogate microenvironment-dependent cell signaling. Integr Biol (Camb). 2017;9:123-134 pubmed 出版商
  229. Yoo S, Latifkar A, Cerione R, Antonyak M. Cool-associated Tyrosine-phosphorylated Protein 1 Is Required for the Anchorage-independent Growth of Cervical Carcinoma Cells by Binding Paxillin and Promoting AKT Activation. J Biol Chem. 2017;292:3947-3957 pubmed 出版商
  230. Chaudhari A, Gupta R, Patel S, Velingkaar N, Kondratov R. Cryptochromes regulate IGF-1 production and signaling through control of JAK2-dependent STAT5B phosphorylation. Mol Biol Cell. 2017;28:834-842 pubmed 出版商
  231. Gross S, Rotwein P. Quantification of growth factor signaling and pathway cross talk by live-cell imaging. Am J Physiol Cell Physiol. 2017;312:C328-C340 pubmed 出版商
  232. Cao H, Yu S, Chen D, Jing C, Wang Z, Ma R, et al. Liver X receptor agonist T0901317 reverses resistance of A549 human lung cancer cells to EGFR-TKI treatment. FEBS Open Bio. 2017;7:35-43 pubmed 出版商
  233. Mescher M, Jeong P, Knapp S, Rübsam M, Saynisch M, Kranen M, et al. The epidermal polarity protein Par3 is a non-cell autonomous suppressor of malignant melanoma. J Exp Med. 2017;214:339-358 pubmed 出版商
  234. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  235. Kang Y, Balter B, Csizmadia E, Haas B, Sharma H, Bronson R, et al. Contribution of classical end-joining to PTEN inactivation in p53-mediated glioblastoma formation and drug-resistant survival. Nat Commun. 2017;8:14013 pubmed 出版商
  236. Yue F, Bi P, Wang C, Shan T, Nie Y, Ratliff T, et al. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat Commun. 2017;8:14328 pubmed 出版商
  237. Granato M, Rizzello C, Gilardini Montani M, Cuomo L, Vitillo M, Santarelli R, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem. 2017;41:124-136 pubmed 出版商
  238. Worrall C, Suleymanova N, Crudden C, Trocoli Drakensjö I, Candrea E, Nedelcu D, et al. Unbalancing p53/Mdm2/IGF-1R axis by Mdm2 activation restrains the IGF-1-dependent invasive phenotype of skin melanoma. Oncogene. 2017;36:3274-3286 pubmed 出版商
  239. Dror E, Dalmas E, Meier D, Wueest S, Thévenet J, Thienel C, et al. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol. 2017;18:283-292 pubmed 出版商
  240. Merckx E, Albertini G, Paterka M, Jensen C, Albrecht P, Dietrich M, et al. Absence of system xc- on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis. J Neuroinflammation. 2017;14:9 pubmed 出版商
  241. Hussain R, Macklin W. Integrin-Linked Kinase (ILK) Deletion Disrupts Oligodendrocyte Development by Altering Cell Cycle. J Neurosci. 2017;37:397-412 pubmed 出版商
  242. Huang S, Mao J, Ding K, Zhou Y, Zeng X, Yang W, et al. Polysaccharides from Ganoderma lucidum Promote Cognitive Function and Neural Progenitor Proliferation in Mouse Model of Alzheimer's Disease. Stem Cell Reports. 2017;8:84-94 pubmed 出版商
  243. Decourtye L, Mire E, Clemessy M, Heurtier V, Ledent T, Robinson I, et al. IGF-1 Induces GHRH Neuronal Axon Elongation during Early Postnatal Life in Mice. PLoS ONE. 2017;12:e0170083 pubmed 出版商
  244. Jiang C, Diao F, Sang Y, Xu N, Zhu R, Wang X, et al. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet. 2017;13:e1006535 pubmed 出版商
  245. Muranen T, Iwanicki M, Curry N, Hwang J, DuBois C, Coloff J, et al. Starved epithelial cells uptake extracellular matrix for survival. Nat Commun. 2017;8:13989 pubmed 出版商
  246. Rahman A, Haugh J. Kinetic Modeling and Analysis of the Akt/Mechanistic Target of Rapamycin Complex 1 (mTORC1) Signaling Axis Reveals Cooperative, Feedforward Regulation. J Biol Chem. 2017;292:2866-2872 pubmed 出版商
  247. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  248. Wu Q, Ma Y, Ruan C, Yang Y, Liu X, Ge Q, et al. Loss of osteoglycin promotes angiogenesis in limb ischaemia mouse models via modulation of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 signalling pathway. Cardiovasc Res. 2017;113:70-80 pubmed 出版商
  249. Zhao B, Hu W, Kumar S, Gonyo P, Rana U, Liu Z, et al. The Nogo-B receptor promotes Ras plasma membrane localization and activation. Oncogene. 2017;36:3406-3416 pubmed 出版商
  250. Oller J, Méndez Barbero N, Ruiz E, Villahoz S, Renard M, Canelas L, et al. Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome. Nat Med. 2017;23:200-212 pubmed 出版商
  251. Hirai M, Arita Y, McGlade C, Lee K, Chen J, Evans S. Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation. J Clin Invest. 2017;127:569-582 pubmed 出版商
  252. Hichino A, Okamoto M, Taga S, Akizuki R, Endo S, Matsunaga T, et al. Down-regulation of Claudin-2 Expression and Proliferation by Epigenetic Inhibitors in Human Lung Adenocarcinoma A549 Cells. J Biol Chem. 2017;292:2411-2421 pubmed 出版商
  253. Hu N, Chang H, Du B, Zhang Q, Arfat Y, Dang K, et al. Tetramethylpyrazine ameliorated disuse-induced gastrocnemius muscle atrophy in hindlimb unloading rats through suppression of Ca2+/ROS-mediated apoptosis. Appl Physiol Nutr Metab. 2017;42:117-127 pubmed 出版商
  254. Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel E. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog. 2017;56:1515-1525 pubmed 出版商
  255. Tam K, Dalal K, Hsing M, Cheng C, Khosravi S, Yenki P, et al. Androgen receptor transcriptionally regulates semaphorin 3C in a GATA2-dependent manner. Oncotarget. 2017;8:9617-9633 pubmed 出版商
  256. Reynolds L, Dickens B, Green B, Marsit C, Pearson K. Using neonatal skin to study the developmental programming of aging. Exp Gerontol. 2017;94:93-98 pubmed 出版商
  257. Krycer J, Fazakerley D, Cater R, C Thomas K, Naghiloo S, Burchfield J, et al. The amino acid transporter, SLC1A3, is plasma membrane-localised in adipocytes and its activity is insensitive to insulin. FEBS Lett. 2017;591:322-330 pubmed 出版商
  258. Sivagurunathan S, Palanisamy K, Arunachalam J, Chidambaram S. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway. Mol Cell Biochem. 2017;427:145-156 pubmed 出版商
  259. Grossi M, Bhattachariya A, Nordström I, Turczynska K, Svensson D, Albinsson S, et al. Pyk2 inhibition promotes contractile differentiation in arterial smooth muscle. J Cell Physiol. 2017;232:3088-3102 pubmed 出版商
  260. Hammers D, Sleeper M, Forbes S, Coker C, Jirousek M, Zimmer M, et al. Disease-modifying effects of orally bioavailable NF-κB inhibitors in dystrophin-deficient muscle. JCI Insight. 2016;1:e90341 pubmed 出版商
  261. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  262. Jin F, Jiang K, Ji S, Wang L, Ni Z, Huang F, et al. Deficient TSC1/TSC2-complex suppression of SOX9-osteopontin-AKT signalling cascade constrains tumour growth in tuberous sclerosis complex. Hum Mol Genet. 2017;26:407-419 pubmed 出版商
  263. Ohtsuka T, Sakaguchi M, Yamamoto H, Tomida S, Takata K, Shien K, et al. Interaction of cytokeratin 19 head domain and HER2 in the cytoplasm leads to activation of HER2-Erk pathway. Sci Rep. 2016;6:39557 pubmed 出版商
  264. Fourneaux B, Chaire V, Lucchesi C, Karanian M, Pineau R, Laroche Clary A, et al. Dual inhibition of the PI3K/AKT/mTOR pathway suppresses the growth of leiomyosarcomas but leads to ERK activation through mTORC2: biological and clinical implications. Oncotarget. 2017;8:7878-7890 pubmed 出版商
  265. Vakana E, Pratt S, Blosser W, Dowless M, Simpson N, Yuan X, et al. LY3009120, a panRAF inhibitor, has significant anti-tumor activity in BRAF and KRAS mutant preclinical models of colorectal cancer. Oncotarget. 2017;8:9251-9266 pubmed 出版商
  266. Li Y, Buijs Gladdines J, Canté Barrett K, Stubbs A, Vroegindeweij E, Smits W, et al. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study. PLoS Med. 2016;13:e1002200 pubmed 出版商
  267. Wymant J, Hiscox S, Westwell A, Urbé S, Clague M, Jones A. The Role of BCA2 in the Endocytic Trafficking of EGFR and Significance as a Prognostic Biomarker in Cancer. J Cancer. 2016;7:2388-2407 pubmed
  268. Yu Z, Mouillesseaux K, Kushner E, Bautch V. Tumor-Derived Factors and Reduced p53 Promote Endothelial Cell Centrosome Over-Duplication. PLoS ONE. 2016;11:e0168334 pubmed 出版商
  269. Ganta V, Choi M, Kutateladze A, Annex B. VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease. Circ Res. 2017;120:282-295 pubmed 出版商
  270. Yang J, Savvatis K, Kang J, Fan P, Zhong H, Schwartz K, et al. Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat Commun. 2016;7:13710 pubmed 出版商
  271. Zhang H, Wang W, Ren L, Zhao X, Wang Z, Zhuang D, et al. The mTORC2/Akt/NFκB Pathway-Mediated Activation of TRPC6 Participates in Adriamycin-Induced Podocyte Apoptosis. Cell Physiol Biochem. 2016;40:1079-1093 pubmed
  272. Hess N, Jiang S, Li X, Guan Y, Tapping R. TLR10 Is a B Cell Intrinsic Suppressor of Adaptive Immune Responses. J Immunol. 2017;198:699-707 pubmed 出版商
  273. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  274. Ramratnam M, Salama G, Sharma R, Wang D, Smith S, Banerjee S, et al. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization. PLoS ONE. 2016;11:e0167681 pubmed 出版商
  275. Mukhopadhyay C, Triplett A, Bargar T, HECKMAN C, Wagner K, Naramura M. Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A. 2016;113:E8228-E8237 pubmed 出版商
  276. Tanouchi A, Taniuchi K, Furihata M, Naganuma S, Dabanaka K, Kimura M, et al. CCDC88A, a prognostic factor for human pancreatic cancers, promotes the motility and invasiveness of pancreatic cancer cells. J Exp Clin Cancer Res. 2016;35:190 pubmed
  277. Li J, Casteels T, Frogne T, Ingvorsen C, Honore C, Courtney M, et al. Artemisinins Target GABAA Receptor Signaling and Impair ? Cell Identity. Cell. 2017;168:86-100.e15 pubmed 出版商
  278. Naeem A, Tommasi C, Cole C, Brown S, Zhu Y, Way B, et al. A mechanistic target of rapamycin complex 1/2 (mTORC1)/V-Akt murine thymoma viral oncogene homolog 1 (AKT1)/cathepsin H axis controls filaggrin expression and processing in skin, a novel mechanism for skin barrier disruption in patients with atopic d. J Allergy Clin Immunol. 2017;139:1228-1241 pubmed 出版商
  279. Weyandt J, Carney J, Pavlisko E, Xu M, Counter C. Isoform-Specific Effects of Wild-Type Ras Genes on Carcinogen-Induced Lung Tumorigenesis in Mice. PLoS ONE. 2016;11:e0167205 pubmed 出版商
  280. Yan H, Gao Y, Zhang Y. Inhibition of JNK suppresses autophagy and attenuates insulin resistance in a rat model of nonalcoholic fatty liver disease. Mol Med Rep. 2017;15:180-186 pubmed 出版商
  281. Grabinski T, Kanaan N. Novel Non-phosphorylated Serine 9/21 GSK3?/? Antibodies: Expanding the Tools for Studying GSK3 Regulation. Front Mol Neurosci. 2016;9:123 pubmed
  282. Battram A, Durrant T, Agbani E, Heesom K, Paul D, Piatt R, et al. The Phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) Binder Rasa3 Regulates Phosphoinositide 3-kinase (PI3K)-dependent Integrin αIIbβ3 Outside-in Signaling. J Biol Chem. 2017;292:1691-1704 pubmed 出版商
  283. Mueller A, van Velthoven C, Fukumoto K, Cheung T, Rando T. Intronic polyadenylation of PDGFR? in resident stem cells attenuates muscle fibrosis. Nature. 2016;540:276-279 pubmed 出版商
  284. Torgersen M, Klokk T, Kavaliauskiene S, Klose C, Simons K, Skotland T, et al. The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget. 2016;7:86871-86888 pubmed 出版商
  285. Liu W, Huang K, Lu M, Huang H, Chen C, Cheng Y, et al. TGF-β upregulates the translation of USP15 via the PI3K/AKT pathway to promote p53 stability. Oncogene. 2017;36:2715-2723 pubmed 出版商
  286. Kariolis M, Miao Y, Diep A, Nash S, Olcina M, Jiang D, et al. Inhibition of the GAS6/AXL pathway augments the efficacy of chemotherapies. J Clin Invest. 2017;127:183-198 pubmed 出版商
  287. Langhi C, Arias N, Rajamoorthi A, Basta J, Lee R, Baldán A. Therapeutic silencing of fat-specific protein 27 improves glycemic control in mouse models of obesity and insulin resistance. J Lipid Res. 2017;58:81-91 pubmed 出版商
  288. Wang X, Cao Q, Yu L, Shi H, Xue B, Shi H. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. JCI Insight. 2016;1:e87748 pubmed 出版商
  289. Pearson Leary J, McNay E. Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory. J Neurosci. 2016;36:11851-11864 pubmed
  290. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  291. Kim H, Kim M, Park Y, Park I, Kim T, Yang S, et al. Prostaglandin E2 Activates YAP and a Positive-Signaling Loop to Promote Colon Regeneration After Colitis but Also Carcinogenesis in Mice. Gastroenterology. 2017;152:616-630 pubmed 出版商
  292. Shi D, Liu Y, Xi R, Zou W, Wu L, Zhang Z, et al. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells. Int J Nanomedicine. 2016;11:5823-5835 pubmed
  293. Vidimar V, Gius D, Chakravarti D, Bulun S, Wei J, Kim J. Dysfunctional MnSOD leads to redox dysregulation and activation of prosurvival AKT signaling in uterine leiomyomas. Sci Adv. 2016;2:e1601132 pubmed
  294. Moyle L, Blanc E, Jaka O, Prueller J, Banerji C, Tedesco F, et al. Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy. elife. 2016;5: pubmed 出版商
  295. Kong Q, Zhang H, Zhao T, Zhang W, Yan M, Dong X, et al. Tangshen formula attenuates hepatic steatosis by inhibiting hepatic lipogenesis and augmenting fatty acid oxidation in db/db mice. Int J Mol Med. 2016;38:1715-1726 pubmed 出版商
  296. Park J, Lee C, Kim H, Kim D, Son J, Ko E, et al. Suppression of the metastatic spread of breast cancer by DN10764 (AZD7762)-mediated inhibition of AXL signaling. Oncotarget. 2016;7:83308-83318 pubmed 出版商
  297. Pandey R, Mehrotra S, Sharma S, Gudde R, Sundar S, Shaha C. Leishmania donovani-Induced Increase in Macrophage Bcl-2 Favors Parasite Survival. Front Immunol. 2016;7:456 pubmed
  298. Sikander M, Hafeez B, Malik S, Alsayari A, Halaweish F, Yallapu M, et al. Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. Sci Rep. 2016;6:36594 pubmed 出版商
  299. Chruvattil R, Banerjee S, Nath S, Machhi J, Kharkwal G, Yadav M, et al. Dexamethasone Alters the Appetite Regulation via Induction of Hypothalamic Insulin Resistance in Rat Brain. Mol Neurobiol. 2017;54:7483-7496 pubmed 出版商
  300. Han C, Juncadella I, Kinchen J, Buckley M, Klibanov A, Dryden K, et al. Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation. Nature. 2016;539:570-574 pubmed 出版商
  301. Spencer Smith R, Koide A, Zhou Y, Eguchi R, Sha F, Gajwani P, et al. Inhibition of RAS function through targeting an allosteric regulatory site. Nat Chem Biol. 2017;13:62-68 pubmed 出版商
  302. Cieniewicz A, Kirchner T, Hinke S, Nanjunda R, D AQUINO K, Boayke K, et al. Novel Monoclonal Antibody Is an Allosteric Insulin Receptor Antagonist That Induces Insulin Resistance. Diabetes. 2017;66:206-217 pubmed 出版商
  303. Sheen M, Marotti J, Allegrezza M, Rutkowski M, Conejo Garcia J, Fiering S. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis. 2016;5:e267 pubmed 出版商
  304. Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N, Offermanns S. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest. 2016;126:4527-4536 pubmed 出版商
  305. Fan Y, Wang N, Rocchi A, Zhang W, Vassar R, Zhou Y, et al. Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy. 2017;13:41-56 pubmed 出版商
  306. Alekhina O, Marchese A. ?-Arrestin1 and Signal-transducing Adaptor Molecule 1 (STAM1) Cooperate to Promote Focal Adhesion Kinase Autophosphorylation and Chemotaxis via the Chemokine Receptor CXCR4. J Biol Chem. 2016;291:26083-26097 pubmed
  307. Li R, Xu J, Fu C, Zhang J, Zheng Y, Jia H, et al. Regulation of mTORC1 by lysosomal calcium and calmodulin. elife. 2016;5: pubmed 出版商
  308. Hau A, Leivo M, Gilder A, Hu J, Gonias S, Hansel D. mTORC2 activation is regulated by the urokinase receptor (uPAR) in bladder cancer. Cell Signal. 2017;29:96-106 pubmed 出版商
  309. Goebbels S, Wieser G, Pieper A, Spitzer S, Weege B, Yan K, et al. A neuronal PI(3,4,5)P3-dependent program of oligodendrocyte precursor recruitment and myelination. Nat Neurosci. 2017;20:10-15 pubmed 出版商
  310. Zhao J, Chen C, Guo M, Tao Y, Cui P, Zhou Y, et al. MicroRNA-7 Deficiency Ameliorates the Pathologies of Acute Lung Injury through Elevating KLF4. Front Immunol. 2016;7:389 pubmed
  311. Di Cataldo V, Geloen A, Langlois J, Chauveau F, Thézé B, Hubert V, et al. Exercise Does Not Protect against Peripheral and Central Effects of a High Cholesterol Diet Given Ad libitum in Old ApoE-/- Mice. Front Physiol. 2016;7:453 pubmed
  312. Zhang Q, Zhang Y, Parsels J, Lohse I, Lawrence T, Pasca di Magliano M, et al. Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation. Neoplasia. 2016;18:666-673 pubmed 出版商
  313. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  314. Sanchez T, Zhang G, Li J, Dai L, Mirshahidi S, Wall N, et al. Immunoseroproteomic Profiling in African American Men with Prostate Cancer: Evidence for an Autoantibody Response to Glycolysis and Plasminogen-Associated Proteins. Mol Cell Proteomics. 2016;15:3564-3580 pubmed
  315. Hinds T, Burns K, Hosick P, McBeth L, Nestor Kalinoski A, Drummond H, et al. Biliverdin Reductase A Attenuates Hepatic Steatosis by Inhibition of Glycogen Synthase Kinase (GSK) 3? Phosphorylation of Serine 73 of Peroxisome Proliferator-activated Receptor (PPAR) ?. J Biol Chem. 2016;291:25179-25191 pubmed
  316. Kimura T, Nada S, Takegahara N, Okuno T, Nojima S, Kang S, et al. Polarization of M2 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals. Nat Commun. 2016;7:13130 pubmed 出版商
  317. Southworth T, Plumb J, Gupta V, Pearson J, Ramis I, Lehner M, et al. Anti-inflammatory potential of PI3K? and JAK inhibitors in asthma patients. Respir Res. 2016;17:124 pubmed
  318. Kubota N, Kubota T, Kajiwara E, Iwamura T, Kumagai H, Watanabe T, et al. Differential hepatic distribution of insulin receptor substrates causes selective insulin resistance in diabetes and obesity. Nat Commun. 2016;7:12977 pubmed 出版商
  319. Beauvais G, Bode N, Watson J, Wen H, Glenn K, Kawano H, et al. Disruption of Protein Processing in the Endoplasmic Reticulum of DYT1 Knock-in Mice Implicates Novel Pathways in Dystonia Pathogenesis. J Neurosci. 2016;36:10245-10256 pubmed
  320. Rodina A, Wang T, Yan P, Gomes E, Dunphy M, Pillarsetty N, et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature. 2016;538:397-401 pubmed 出版商
  321. Yong K, Li A, Ou W, Hong C, Zhao W, Wang F, et al. Targeting SALL4 by entinostat in lung cancer. Oncotarget. 2016;7:75425-75440 pubmed 出版商
  322. Cizmecioglu O, Ni J, Xie S, Zhao J, Roberts T. Rac1-mediated membrane raft localization of PI3K/p110? is required for its activation by GPCRs or PTEN loss. elife. 2016;5: pubmed 出版商
  323. Nonomiya Y, Noguchi K, Tanaka N, Kasagaki T, Katayama K, Sugimoto Y. Effect of AKT3 expression on MYC- and caspase-8-dependent apoptosis caused by polo-like kinase inhibitors in HCT 116 cells. Cancer Sci. 2016;107:1877-1887 pubmed 出版商
  324. Gerriets V, Kishton R, Johnson M, Cohen S, Siska P, Nichols A, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 2016;17:1459-1466 pubmed 出版商
  325. Broix L, Jagline H, Ivanova E, Schmucker S, Drouot N, Clayton Smith J, et al. Mutations in the HECT domain of NEDD4L lead to AKT-mTOR pathway deregulation and cause periventricular nodular heterotopia. Nat Genet. 2016;48:1349-1358 pubmed 出版商
  326. Little A, Sham D, Hristova M, Danyal K, Heppner D, Bauer R, et al. DUOX1 silencing in lung cancer promotes EMT, cancer stem cell characteristics and invasive properties. Oncogenesis. 2016;5:e261 pubmed 出版商
  327. Patel S, Trivedi G, Darie C, Clarkson B. The possible roles of B-cell novel protein-1 (BCNP1) in cellular signalling pathways and in cancer. J Cell Mol Med. 2017;21:456-466 pubmed 出版商
  328. Wei R, Lin S, Wu W, Chen L, Li C, Chen H, et al. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol Appl Pharmacol. 2016;311:88-98 pubmed 出版商
  329. Yuzugullu H, Von T, Thorpe L, Walker S, Roberts T, Frank D, et al. NTRK2 activation cooperates with PTEN deficiency in T-ALL through activation of both the PI3K-AKT and JAK-STAT3 pathways. Cell Discov. 2016;2:16030 pubmed 出版商
  330. Ang Z, Er J, Tan N, Lu J, Liou Y, Grosse J, et al. Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists. Sci Rep. 2016;6:34145 pubmed 出版商
  331. Boo H, Min H, Jang H, Yun H, Smith J, Jin Q, et al. The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells. Nat Commun. 2016;7:12961 pubmed 出版商
  332. Yang Z, Tsuchiya H, Zhang Y, Lee S, Liu C, Huang Y, et al. REV-ERB? Activates C/EBP Homologous Protein to Control Small Heterodimer Partner-Mediated Oscillation of Alcoholic Fatty Liver. Am J Pathol. 2016;186:2909-2920 pubmed 出版商
  333. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  334. Wang A, Cui M, Qu H, Di J, Wang Z, Xing J, et al. Induction of anti-EGFR immune response with mimotopes identified from a phage display peptide library by panitumumab. Oncotarget. 2016;7:75293-75306 pubmed 出版商
  335. Shamblott M, O Driscoll M, Gomez D, McGuire D. Neurogenin 3 is regulated by neurotrophic tyrosine kinase receptor type 2 (TRKB) signaling in the adult human exocrine pancreas. Cell Commun Signal. 2016;14:23 pubmed
  336. Krepler C, Xiao M, Samanta M, Vultur A, Chen H, Brafford P, et al. Targeting Notch enhances the efficacy of ERK inhibitors in BRAF-V600E melanoma. Oncotarget. 2016;7:71211-71222 pubmed 出版商
  337. Jansson D, Scotter E, Rustenhoven J, Coppieters N, Smyth L, Oldfield R, et al. Interferon-? blocks signalling through PDGFR? in human brain pericytes. J Neuroinflammation. 2016;13:249 pubmed
  338. Johnson R, Finger E, Olcina M, Vilalta M, Aguilera T, Miao Y, et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol. 2016;18:1078-1089 pubmed 出版商
  339. Mercado Pimentel M, Igarashi S, Dunn A, Behbahani M, Miller C, Read C, et al. The Novel Small Molecule Inhibitor, OSU-T315, Suppresses Vestibular Schwannoma and Meningioma Growth by Inhibiting PDK2 Function in the AKT Pathway Activation. Austin J Med Oncol. 2016;3: pubmed
  340. Hang Q, Isaji T, Hou S, Zhou Y, Fukuda T, Gu J. N-Glycosylation of integrin ?5 acts as a switch for EGFR-mediated complex formation of integrin ?5?1 to ?6?4. Sci Rep. 2016;6:33507 pubmed 出版商
  341. Christensen B, Nellemann B, Jørgensen J, Pedersen S, Jessen N. Erythropoietin does not activate erythropoietin receptor signaling or lipolytic pathways in human subcutaneous white adipose tissue in vivo. Lipids Health Dis. 2016;15:160 pubmed 出版商
  342. Nip H, Dar A, Saini S, Colden M, Varahram S, Chowdhary H, et al. Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer. Oncotarget. 2016;7:68371-68384 pubmed 出版商
  343. Rittig N, Bach E, Thomsen H, Pedersen S, Nielsen T, Jørgensen J, et al. Regulation of Lipolysis and Adipose Tissue Signaling during Acute Endotoxin-Induced Inflammation: A Human Randomized Crossover Trial. PLoS ONE. 2016;11:e0162167 pubmed 出版商
  344. Carbonneau M, M Gagné L, Lalonde M, Germain M, Motorina A, Guiot M, et al. The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nat Commun. 2016;7:12700 pubmed 出版商
  345. Shin M, Male I, Beane T, Villefranc J, Kok F, Zhu L, et al. Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors. Development. 2016;143:3785-3795 pubmed
  346. Wu Y, Ren D, Chen G. Siglec-E Negatively Regulates the Activation of TLR4 by Controlling Its Endocytosis. J Immunol. 2016;197:3336-3347 pubmed
  347. Fan L, Liu M, Guo M, Hu C, Yan Z, Chen J, et al. FAM122A, a new endogenous inhibitor of protein phosphatase 2A. Oncotarget. 2016;7:63887-63900 pubmed 出版商
  348. Phatak N, Stankowska D, Krishnamoorthy R. Bcl-2, Bcl-xL, and p-AKT are involved in neuroprotective effects of transcription factor Brn3b in an ocular hypertension rat model of glaucoma. Mol Vis. 2016;22:1048-61 pubmed
  349. Caporali S, Alvino E, Lacal P, Levati L, Giurato G, Memoli D, et al. Targeting the PI3K/AKT/mTOR pathway overcomes the stimulating effect of dabrafenib on the invasive behavior of melanoma cells with acquired resistance to the BRAF inhibitor. Int J Oncol. 2016;49:1164-74 pubmed 出版商
  350. Josowitz R, Mulero Navarro S, Rodriguez N, Falce C, Cohen N, Ullian E, et al. Autonomous and Non-autonomous Defects Underlie Hypertrophic Cardiomyopathy in BRAF-Mutant hiPSC-Derived Cardiomyocytes. Stem Cell Reports. 2016;7:355-369 pubmed 出版商
  351. Woodall B, Woodall M, Luongo T, Grisanti L, Tilley D, Elrod J, et al. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy. J Biol Chem. 2016;291:21913-21924 pubmed
  352. Hong X, Liu W, Song R, Shah J, Feng X, Tsang C, et al. SOX9 is targeted for proteasomal degradation by the E3 ligase FBW7 in response to DNA damage. Nucleic Acids Res. 2016;44:8855-8869 pubmed
  353. Padhan N, Nordling T, Sundstrom M, Akerud P, Birgisson H, Nygren P, et al. High sensitivity isoelectric focusing to establish a signaling biomarker for the diagnosis of human colorectal cancer. BMC Cancer. 2016;16:683 pubmed 出版商
  354. Sun M, Cai J, Anderson R, Sun Y. Type I ? Phosphatidylinositol Phosphate 5-Kinase i5 Controls the Ubiquitination and Degradation of the Tumor Suppressor Mitogen-inducible Gene 6. J Biol Chem. 2016;291:21461-21473 pubmed
  355. Cunningham C, Li S, Vizeacoumar F, Bhanumathy K, Lee J, Parameswaran S, et al. Therapeutic relevance of the protein phosphatase 2A in cancer. Oncotarget. 2016;7:61544-61561 pubmed 出版商
  356. Vermeij W, Dollé M, Reiling E, Jaarsma D, Payan Gomez C, Bombardieri C, et al. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice. Nature. 2016;537:427-431 pubmed 出版商
  357. Lee J, Lee W, Seol M, Lee S, Kim D, Kim H, et al. Coupling of LETM1 up-regulation with oxidative phosphorylation and platelet-derived growth factor receptor signaling via YAP1 transactivation. Oncotarget. 2016;7:66728-66739 pubmed 出版商
  358. Greenwood E, Maisel S, Ebertz D, Russ A, Pandey R, SCHROEDER J. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration. Oncotarget. 2016;7:60776-60792 pubmed 出版商
  359. Szewczyk L, Brozko N, Nagalski A, Röckle I, Werneburg S, Hildebrandt H, et al. ST8SIA2 promotes oligodendrocyte differentiation and the integrity of myelin and axons. Glia. 2017;65:34-49 pubmed 出版商
  360. Efazat G, Novak M, Kaminskyy V, De Petris L, Kanter L, Juntti T, et al. Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget. 2016;7:60332-60347 pubmed 出版商
  361. Beale G, Haagensen E, Thomas H, Wang L, Revill C, Payne S, et al. Combined PI3K and CDK2 inhibition induces cell death and enhances in vivo antitumour activity in colorectal cancer. Br J Cancer. 2016;115:682-90 pubmed 出版商
  362. Chen R, Duan J, Li L, Ma Q, Sun Q, Ma J, et al. mTOR promotes pituitary tumor development through activation of PTTG1. Oncogene. 2017;36:979-988 pubmed 出版商
  363. Ratsimandresy R, Indramohan M, Dorfleutner A, Stehlik C. The AIM2 inflammasome is a central regulator of intestinal homeostasis through the IL-18/IL-22/STAT3 pathway. Cell Mol Immunol. 2017;14:127-142 pubmed 出版商
  364. Wang D, Mitchell E. Cognition and Synaptic-Plasticity Related Changes in Aged Rats Supplemented with 8- and 10-Carbon Medium Chain Triglycerides. PLoS ONE. 2016;11:e0160159 pubmed 出版商
  365. Maynard J, Emmas S, Blé F, Barjat H, Lawrie E, Hancox U, et al. The use of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) as a pathway-specific biomarker with AZD8186, a PI3K?/? inhibitor. EJNMMI Res. 2016;6:62 pubmed 出版商
  366. Yang J, Song T, Jo C, Park J, Lee H, Song I, et al. Differential regulation of the histone chaperone HIRA during muscle cell differentiation by a phosphorylation switch. Exp Mol Med. 2016;48:e252 pubmed 出版商
  367. Buta C, Benabou E, Lequoy M, Régnault H, Wendum D, Meratbene F, et al. Heregulin-1ß and HER3 in hepatocellular carcinoma: status and regulation by insulin. J Exp Clin Cancer Res. 2016;35:126 pubmed 出版商
  368. Nadeau Vallée M, Boudreault A, Leimert K, Hou X, Obari D, Madaan A, et al. Uterotonic Neuromedin U Receptor 2 and Its Ligands Are Upregulated by Inflammation in Mice and Humans, and Elicit Preterm Birth. Biol Reprod. 2016;95:72 pubmed
  369. Ogasawara R, Fujita S, Hornberger T, Kitaoka Y, Makanae Y, Nakazato K, et al. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep. 2016;6:31142 pubmed 出版商
  370. Tsai S, Rodriguez A, Dastidar S, Del Greco E, Carr K, Sitzmann J, et al. Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice. Cell Rep. 2016;16:1903-14 pubmed 出版商
  371. Oh B, Kim S, Lee Y, Hong H, Kim T, Kim S, et al. Twist1-induced epithelial-mesenchymal transition according to microsatellite instability status in colon cancer cells. Oncotarget. 2016;7:57066-57076 pubmed 出版商
  372. Di Franco S, Turdo A, Benfante A, Colorito M, Gaggianesi M, Apuzzo T, et al. ?Np63 drives metastasis in breast cancer cells via PI3K/CD44v6 axis. Oncotarget. 2016;7:54157-54173 pubmed 出版商
  373. Xi R, Pan S, Chen X, Hui B, Zhang L, Fu S, et al. HPV16 E6-E7 induces cancer stem-like cells phenotypes in esophageal squamous cell carcinoma through the activation of PI3K/Akt signaling pathway in vitro and in vivo. Oncotarget. 2016;7:57050-57065 pubmed 出版商
  374. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed 出版商
  375. Kawamoto E, Koshinaka K, Yoshimura T, Masuda H, Kawanaka K. Immobilization rapidly induces muscle insulin resistance together with the activation of MAPKs (JNK and p38) and impairment of AS160 phosphorylation. Physiol Rep. 2016;4: pubmed 出版商
  376. Fiedor E, Gregoraszczuk E. The molecular mechanism of action of superactive human leptin antagonist (SHLA) and quadruple leptin mutein Lan-2 on human ovarian epithelial cell lines. Cancer Chemother Pharmacol. 2016;78:611-22 pubmed 出版商
  377. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  378. Ladd B, Mazzola A, Bihani T, Lai Z, BRADFORD J, Collins M, et al. Effective combination therapies in preclinical endocrine resistant breast cancer models harboring ER mutations. Oncotarget. 2016;7:54120-54136 pubmed 出版商
  379. Wang Y, Wang Y, Li G. TRPC1/TRPC3 channels mediate lysophosphatidylcholine-induced apoptosis in cultured human coronary artery smooth muscles cells. Oncotarget. 2016;7:50937-50951 pubmed 出版商
  380. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed 出版商
  381. Franzese O, Palermo B, Di Donna C, Sperduti I, Ferraresi V, Stabile H, et al. Polyfunctional Melan-A-specific tumor-reactive CD8(+) T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS. Oncoimmunology. 2016;5:e1114203 pubmed 出版商
  382. Bai Y, Dong Z, Shang Q, Zhao H, Wang L, Guo C, et al. Pdcd4 Is Involved in the Formation of Stress Granule in Response to Oxidized Low-Density Lipoprotein or High-Fat Diet. PLoS ONE. 2016;11:e0159568 pubmed 出版商
  383. Fang F, Qin Y, Hao F, Li Q, Zhang W, Zhao C, et al. CD147 modulates androgen receptor activity through the Akt/Gsk-3?/?-catenin/AR pathway in prostate cancer cells. Oncol Lett. 2016;12:1124-1128 pubmed
  384. Bao H, Liu P, Jiang K, Zhang X, Xie L, Wang Z, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett. 2016;12:1058-1066 pubmed
  385. Lazzarini E, Balbi C, Altieri P, Pfeffer U, Gambini E, Canepa M, et al. The human amniotic fluid stem cell secretome effectively counteracts doxorubicin-induced cardiotoxicity. Sci Rep. 2016;6:29994 pubmed 出版商
  386. Metz H, Kargl J, Busch S, Kim K, Kurland B, Abberbock S, et al. Insulin receptor substrate-1 deficiency drives a proinflammatory phenotype in KRAS mutant lung adenocarcinoma. Proc Natl Acad Sci U S A. 2016;113:8795-800 pubmed 出版商
  387. Saisana M, Griffin S, May F. Importance of the type I insulin-like growth factor receptor in HER2, FGFR2 and MET-unamplified gastric cancer with and without Ras pathway activation. Oncotarget. 2016;7:54445-54462 pubmed 出版商
  388. Diez H, Benitez M, Fernandez S, Torres Aleman I, Garrido J, Wandosell F. Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation. Biochim Biophys Acta. 2016;1863:2574-2583 pubmed 出版商
  389. Ge X, Huang S, Gao H, Han Z, Chen F, Zhang S, et al. miR-21-5p alleviates leakage of injured brain microvascular endothelial barrier in vitro through suppressing inflammation and apoptosis. Brain Res. 2016;1650:31-40 pubmed 出版商
  390. Song M, Wang Y, Shang Z, Liu X, Xie D, Wang Q, et al. Bystander autophagy mediated by radiation-induced exosomal miR-7-5p in non-targeted human bronchial epithelial cells. Sci Rep. 2016;6:30165 pubmed 出版商
  391. Ma T, Fan B, Zhang C, Zhao H, Han C, Gao C, et al. Metabonomics applied in exploring the antitumour mechanism of physapubenolide on hepatocellular carcinoma cells by targeting glycolysis through the Akt-p53 pathway. Sci Rep. 2016;6:29926 pubmed 出版商
  392. Jang H, Lee G, Selby C, Lee G, Jeon Y, Lee J, et al. SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding. Nat Commun. 2016;7:12180 pubmed 出版商
  393. McClelland Descalzo D, Satoorian T, Walker L, Sparks N, Pulyanina P, zur Nieden N. Glucose-Induced Oxidative Stress Reduces Proliferation in Embryonic Stem Cells via FOXO3A/?-Catenin-Dependent Transcription of p21(cip1). Stem Cell Reports. 2016;7:55-68 pubmed 出版商
  394. Warner M, Bridge K, Hewitson J, Hodgkinson M, Heyam A, Massa B, et al. S6K2-mediated regulation of TRBP as a determinant of miRNA expression in human primary lymphatic endothelial cells. Nucleic Acids Res. 2016;44:9942-9955 pubmed
  395. Zhang Y, Velez Delgado A, Mathew E, Li D, Mendez F, Flannagan K, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66:124-136 pubmed 出版商
  396. Deblois G, Smith H, Tam I, Gravel S, Caron M, Savage P, et al. ERR? mediates metabolic adaptations driving lapatinib resistance in breast cancer. Nat Commun. 2016;7:12156 pubmed 出版商
  397. Kumari M, Wang X, Lantier L, Lyubetskaya A, Eguchi J, Kang S, et al. IRF3 promotes adipose inflammation and insulin resistance and represses browning. J Clin Invest. 2016;126:2839-54 pubmed 出版商
  398. Grassi M, Palma C, Thomé C, Lanfredi G, Poersch A, Faça V. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control. J Proteomics. 2017;151:2-11 pubmed 出版商
  399. Eid S, Boutary S, Braych K, Sabra R, Massaad C, Hamdy A, et al. mTORC2 Signaling Regulates Nox4-Induced Podocyte Depletion in Diabetes. Antioxid Redox Signal. 2016;25:703-719 pubmed
  400. Zhou Y, Wu Y, Qin Y, Liu L, Wan J, Zou L, et al. Ampelopsin Improves Insulin Resistance by Activating PPAR? and Subsequently Up-Regulating FGF21-AMPK Signaling Pathway. PLoS ONE. 2016;11:e0159191 pubmed 出版商
  401. Monica V, Lo Iacono M, Bracco E, Busso S, di Blasio L, Primo L, et al. Dasatinib modulates sensitivity to pemetrexed in malignant pleural mesothelioma cell lines. Oncotarget. 2016;7:76577-76589 pubmed 出版商
  402. Alver T, Lavelle T, Longva A, Øy G, Hovig E, Bøe S. MITF depletion elevates expression levels of ERBB3 receptor and its cognate ligand NRG1-beta in melanoma. Oncotarget. 2016;7:55128-55140 pubmed 出版商
  403. Wang C, Guo S, Wang J, Yan X, Farrelly M, Zhang Y, et al. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922. Oncotarget. 2016;7:49597-49610 pubmed 出版商
  404. Huang C, Lee C, Lin H, Chang J. Cathepsin S attenuates endosomal EGFR signalling: A mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors. Sci Rep. 2016;6:29256 pubmed 出版商
  405. Shen P, Chen M, He M, Chen L, Song Y, Xiao P, et al. Inhibition of ER?/ERK/P62 cascades induces "autophagic switch" in the estrogen receptor-positive breast cancer cells exposed to gemcitabine. Oncotarget. 2016;7:48501-48516 pubmed 出版商
  406. Li X, Chen Y, Wang L, Shang G, Zhang C, Zhao Z, et al. Quercetin alleviates pulmonary angiogenesis in a rat model of hepatopulmonary syndrome. Braz J Med Biol Res. 2016;49: pubmed 出版商
  407. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  408. Hatem R, El Botty R, Chateau Joubert S, Servely J, Labiod D, de Plater L, et al. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget. 2016;7:48206-48219 pubmed 出版商
  409. Xiao B, Chen D, Luo S, Hao W, Jing F, Liu T, et al. Extracellular translationally controlled tumor protein promotes colorectal cancer invasion and metastasis through Cdc42/JNK/ MMP9 signaling. Oncotarget. 2016;7:50057-50073 pubmed 出版商
  410. Petrova L, Gran C, Bjoras M, Doetsch P. Efficient and Reliable Production of Vectors for the Study of the Repair, Mutagenesis, and Phenotypic Consequences of Defined DNA Damage Lesions in Mammalian Cells. PLoS ONE. 2016;11:e0158581 pubmed 出版商
  411. Chen Y, LaMarche M, Chan H, Fekkes P, García Fortanet J, Acker M, et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature. 2016;535:148-52 pubmed
  412. Su Q, Zhang B, Zhang L, Dang T, Rowley D, Ittmann M, et al. Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene. 2017;36:618-627 pubmed 出版商
  413. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  414. Herring A, Münster Y, Akkaya T, Moghaddam S, Deinsberger K, Meyer J, et al. Kallikrein-8 inhibition attenuates Alzheimer's disease pathology in mice. Alzheimers Dement. 2016;12:1273-1287 pubmed 出版商
  415. Chakedis J, French R, Babicky M, Jaquish D, Mose E, Cheng P, et al. Characterization of RON protein isoforms in pancreatic cancer: implications for biology and therapeutics. Oncotarget. 2016;7:45959-45975 pubmed 出版商
  416. Gautheron J, Vucur M, Schneider A, Severi I, Roderburg C, Roy S, et al. The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nat Commun. 2016;7:11869 pubmed 出版商
  417. Kemper K, Krijgsman O, Kong X, Cornelissen Steijger P, Shahrabi A, Weeber F, et al. BRAF(V600E) Kinase Domain Duplication Identified in Therapy-Refractory Melanoma Patient-Derived Xenografts. Cell Rep. 2016;16:263-277 pubmed 出版商
  418. Wang Y, Hersheson J, López D, Hammer M, Liu Y, Lee K, et al. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. Cell Rep. 2016;16:79-91 pubmed 出版商
  419. Meinhardt G, Saleh L, Otti G, Haider S, Velicky P, Fiala C, et al. Wingless ligand 5a is a critical regulator of placental growth and survival. Sci Rep. 2016;6:28127 pubmed 出版商
  420. Liu C, Lin S, Hsu H, Yang S, Lin C, Yang M, et al. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells. Nat Commun. 2016;7:11798 pubmed 出版商
  421. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed 出版商
  422. Maugeri G, D Amico A, Reitano R, Magro G, Cavallaro S, Salomone S, et al. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol. 2016;7:139 pubmed 出版商
  423. Fagnocchi L, Cherubini A, Hatsuda H, Fasciani A, Mazzoleni S, Poli V, et al. A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity. Nat Commun. 2016;7:11903 pubmed 出版商
  424. Cui Y, Zhao J, Yi L, Jiang Y. microRNA-153 Targets mTORC2 Component Rictor to Inhibit Glioma Cells. PLoS ONE. 2016;11:e0156915 pubmed 出版商
  425. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  426. Li W, Jin D, Hata M, Takai S, Yamanishi K, Shen W, et al. Dysfunction of mitochondria and deformed gap junctions in the heart of IL-18-deficient mice. Am J Physiol Heart Circ Physiol. 2016;311:H313-25 pubmed 出版商
  427. Priego N, Arechederra M, Sequera C, Bragado P, Vázquez Carballo A, Gutierrez Uzquiza A, et al. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38? activation, while it impairs tumor growth through p38?-independent mechanisms. Oncotarget. 2016;7:45060-45078 pubmed 出版商
  428. Krag T, Pinós T, Nielsen T, Duran J, García Rocha M, Andreu A, et al. Differential glucose metabolism in mice and humans affected by McArdle disease. Am J Physiol Regul Integr Comp Physiol. 2016;311:R307-14 pubmed 出版商
  429. Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, et al. Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis. J Immunol. 2016;197:504-16 pubmed 出版商
  430. Tejada T, Tan L, Torres R, Calvert J, Lambert J, Zaidi M, et al. IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction. Proc Natl Acad Sci U S A. 2016;113:6949-54 pubmed 出版商
  431. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed 出版商
  432. Jeong A, Han S, Lee S, Su Park J, Lu Y, Yu S, et al. Patient derived mutation W257G of PPP2R1A enhances cancer cell migration through SRC-JNK-c-Jun pathway. Sci Rep. 2016;6:27391 pubmed 出版商
  433. Foltz S, Luan J, Call J, Patel A, Peissig K, Fortunato M, et al. Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy. Skelet Muscle. 2016;6:20 pubmed 出版商
  434. Fernandez Monreal M, Sánchez Castillo C, Esteban J. APPL1 gates long-term potentiation through its plekstrin homology domain. J Cell Sci. 2016;129:2793-803 pubmed 出版商
  435. Tzani I, Ivanov I, Andreev D, Dmitriev R, Dean K, Baranov P, et al. Systematic analysis of the PTEN 5' leader identifies a major AUU initiated proteoform. Open Biol. 2016;6: pubmed 出版商
  436. Leonard S, Kinsella G, Benetti E, Findlay J. Regulating the effects of GPR21, a novel target for type 2 diabetes. Sci Rep. 2016;6:27002 pubmed 出版商
  437. van Ree J, Nam H, Jeganathan K, Kanakkanthara A, van Deursen J. Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes. Nat Cell Biol. 2016;18:814-21 pubmed 出版商
  438. Park J, Kotani T, Konno T, Setiawan J, Kitamura Y, Imada S, et al. Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids. PLoS ONE. 2016;11:e0156334 pubmed 出版商
  439. Kwon H, Choi G, Ryu S, Kwon S, Kim S, Booth C, et al. Stepwise phosphorylation of p65 promotes NF-?B activation and NK cell responses during target cell recognition. Nat Commun. 2016;7:11686 pubmed 出版商
  440. Yang Z, Jiang Q, Chen S, Hu C, Shen H, Huang P, et al. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep. 2016;14:790-6 pubmed 出版商
  441. Sun F, Zhang Z, Tan E, Lim Z, Li Y, Wang X, et al. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice. Carcinogenesis. 2016;37:701-711 pubmed 出版商
  442. Vazirani R, Verma A, Sadacca L, Buckman M, Picatoste B, Beg M, et al. Disruption of Adipose Rab10-Dependent Insulin Signaling Causes Hepatic Insulin Resistance. Diabetes. 2016;65:1577-89 pubmed 出版商
  443. Zhang W, Wu M, Kim T, Jariwala R, Garvey W, Luo N, et al. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet-Induced Insulin Resistance. Diabetes. 2016;65:2380-91 pubmed 出版商
  444. He F, Wei L, Luo W, Liao Z, Li B, Zhou X, et al. Glutaredoxin 3 promotes nasopharyngeal carcinoma growth and metastasis via EGFR/Akt pathway and independent of ROS. Oncotarget. 2016;7:37000-37012 pubmed 出版商
  445. Kohler T, Scholz A, Kiachludis D, Hammerschmidt S. Induction of Central Host Signaling Kinases during Pneumococcal Infection of Human THP-1 Cells. Front Cell Infect Microbiol. 2016;6:48 pubmed 出版商
  446. Kessler S, Laggai S, Van Wonterg E, Gemperlein K, Muller R, Haybaeck J, et al. Transient Hepatic Overexpression of Insulin-Like Growth Factor 2 Induces Free Cholesterol and Lipid Droplet Formation. Front Physiol. 2016;7:147 pubmed 出版商
  447. Gharib M, Tao H, Fungwe T, Hajri T. Cluster Differentiating 36 (CD36) Deficiency Attenuates Obesity-Associated Oxidative Stress in the Heart. PLoS ONE. 2016;11:e0155611 pubmed 出版商
  448. Wang J, Hu K, Guo J, Cheng F, Lv J, Jiang W, et al. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK. Nat Commun. 2016;7:11363 pubmed 出版商
  449. Chan E, Shetty M, Sajikumar S, Chen C, Soong T, Wong B. ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer's disease mouse model. Sci Rep. 2016;6:26119 pubmed 出版商
  450. Huang D, Zhao C, Ju R, Kumar A, Tian G, Huang L, et al. VEGF-B inhibits hyperglycemia- and Macugen-induced retinal apoptosis. Sci Rep. 2016;6:26059 pubmed 出版商
  451. Wang K, Cao P, Wang H, Tang Z, Wang N, Wang J, et al. Chronic administration of Angelica sinensis polysaccharide effectively improves fatty liver and glucose homeostasis in high-fat diet-fed mice. Sci Rep. 2016;6:26229 pubmed 出版商
  452. Song X, Yao Z, Yang J, Zhang Z, Deng Y, Li M, et al. HCV core protein binds to gC1qR to induce A20 expression and inhibit cytokine production through MAPKs and NF-κB signaling pathways. Oncotarget. 2016;7:33796-808 pubmed 出版商
  453. Hein A, Post C, Sheinin Y, Lakshmanan I, Natarajan A, Enke C, et al. RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment. Oncogene. 2016;35:6319-6329 pubmed 出版商
  454. Rao E, Zhang Y, Li Q, Hao J, Egilmez N, Suttles J, et al. AMPK-dependent and independent effects of AICAR and compound C on T-cell responses. Oncotarget. 2016;7:33783-95 pubmed 出版商
  455. Hsieh M, Yang P, Wong L, Lee J. The AXL receptor tyrosine kinase is associated with adverse prognosis and distant metastasis in esophageal squamous cell carcinoma. Oncotarget. 2016;7:36956-36970 pubmed 出版商
  456. Itoh Y, Higuchi M, Oishi K, Kishi Y, Okazaki T, Sakai H, et al. PDK1-Akt pathway regulates radial neuronal migration and microtubules in the developing mouse neocortex. Proc Natl Acad Sci U S A. 2016;113:E2955-64 pubmed 出版商
  457. Ting W, Yang J, Kuo C, Xiao Z, Lu X, Yeh Y, et al. Environmental tobacco smoke increases autophagic effects but decreases longevity associated with Sirt-1 protein expression in young C57BL mice hearts. Oncotarget. 2016;7:39017-39025 pubmed 出版商
  458. Wang N, Dong B, Quan Y, Chen Q, Chu M, Xu J, et al. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status. Stem Cell Reports. 2016;6:668-678 pubmed 出版商
  459. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  460. Cieniewicz A, Cooper P, MCGEHEE J, Lingham R, Kihm A. Novel method demonstrates differential ligand activation and phosphatase-mediated deactivation of insulin receptor tyrosine-specific phosphorylation. Cell Signal. 2016;28:1037-47 pubmed 出版商
  461. Segatto I, Massarut S, Boyle R, Baldassarre G, Walker D, Belletti B. Preclinical validation of a novel compound targeting p70S6 kinase in breast cancer. Aging (Albany NY). 2016;8:958-76 pubmed 出版商
  462. Huang Y, Lin C, Liao H, Liu C, Chen Y, Chiu W, et al. Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling. Neuroscience. 2016;328:201-9 pubmed 出版商
  463. Vorvis C, Hatziapostolou M, Mahurkar Joshi S, Koutsioumpa M, Williams J, Donahue T, et al. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1124-37 pubmed 出版商
  464. Bie Q, Sun C, Gong A, Li C, Su Z, Zheng D, et al. Non-tumor tissue derived interleukin-17B activates IL-17RB/AKT/β-catenin pathway to enhance the stemness of gastric cancer. Sci Rep. 2016;6:25447 pubmed 出版商
  465. Xu Z, Mei F, Liu H, Sun C, Zheng Z. C-C Motif Chemokine Receptor 9 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction. J Am Heart Assoc. 2016;5: pubmed 出版商
  466. PluciÅ„ska K, Dekeryte R, Koss D, Shearer K, Mody N, Whitfield P, et al. Neuronal human BACE1 knockin induces systemic diabetes in mice. Diabetologia. 2016;59:1513-1523 pubmed 出版商
  467. He S, Mansour M, Zimmerman M, Ki D, Layden H, Akahane K, et al. Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain. elife. 2016;5: pubmed 出版商
  468. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed 出版商
  469. Du R, Liu Z, Hou X, Fu G, An N, Wang L. Trichostatin A potentiates genistein-induced apoptosis and reverses EMT in HEp2 cells. Mol Med Rep. 2016;13:5045-52 pubmed 出版商
  470. Qiu X, Wei R, Li Y, Zhu Q, Xiong C, Chen Y, et al. NEDL2 regulates enteric nervous system and kidney development in its Nedd8 ligase activity-dependent manner. Oncotarget. 2016;7:31440-53 pubmed 出版商
  471. Noda K, Kitami M, Kitami K, Kaku M, Komatsu Y. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A. 2016;113:E2589-97 pubmed 出版商
  472. Stephenson E, Ragauskas A, Jaligama S, Redd J, Parvathareddy J, Peloquin M, et al. Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice. Am J Physiol Endocrinol Metab. 2016;310:E1003-15 pubmed 出版商
  473. Seo J, Singh N, Ottesen E, Sivanesan S, Shishimorova M, Singh R. Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene. PLoS ONE. 2016;11:e0154390 pubmed 出版商
  474. Boothe T, Lim G, Cen H, Skovsø S, Piske M, Li S, et al. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells. Mol Metab. 2016;5:366-378 pubmed 出版商
  475. Yard B, Adams D, Chie E, Tamayo P, Battaglia J, Gopal P, et al. A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nat Commun. 2016;7:11428 pubmed 出版商
  476. Chowdhury B, Porter E, Stewart J, Ferreira C, Schipma M, Dykhuizen E. PBRM1 Regulates the Expression of Genes Involved in Metabolism and Cell Adhesion in Renal Clear Cell Carcinoma. PLoS ONE. 2016;11:e0153718 pubmed 出版商
  477. Thomas A, Belaidi E, Aron Wisnewsky J, van der Zon G, Levy P, Clement K, et al. Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice. Sci Rep. 2016;6:24618 pubmed 出版商
  478. Monyak R, Emerson D, Schoenfeld B, Zheng X, Chambers D, Rosenfelt C, et al. Insulin signaling misregulation underlies circadian and cognitive deficits in a Drosophila fragile X model. Mol Psychiatry. 2017;22:1140-1148 pubmed 出版商
  479. Dokas J, Chadt A, Joost H, Al Hasani H. Tbc1d1 deletion suppresses obesity in leptin-deficient mice. Int J Obes (Lond). 2016;40:1242-9 pubmed 出版商
  480. von Mässenhausen A, SANDERS C, Thewes B, Deng M, Queisser A, Vogel W, et al. MERTK as a novel therapeutic target in head and neck cancer. Oncotarget. 2016;7:32678-94 pubmed 出版商
  481. Zeng W, Liu Q, Chen Z, Wu X, Zhong Y, Wu J. Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-?B Pathway. J Cancer. 2016;7:746-57 pubmed 出版商
  482. Kumar A, Abbas W, Colin L, Khan K, Bouchat S, Varin A, et al. Tuning of AKT-pathway by Nef and its blockade by protease inhibitors results in limited recovery in latently HIV infected T-cell line. Sci Rep. 2016;6:24090 pubmed 出版商
  483. Jeong J, Noh M, Choi J, Lee H, Kim S. Neuroprotective and antioxidant activities of bamboo salt soy sauce against H2O2-induced oxidative stress in rat cortical neurons. Exp Ther Med. 2016;11:1201-1210 pubmed
  484. Yang E, Ahn S, Lee K, Mahmood U, Kim H. Early Behavioral Abnormalities and Perinatal Alterations of PTEN/AKT Pathway in Valproic Acid Autism Model Mice. PLoS ONE. 2016;11:e0153298 pubmed 出版商
  485. Gao Y, Bai X, Zhang D, Han C, Yuan J, Liu W, et al. Mammalian elongation factor 4 regulates mitochondrial translation essential for spermatogenesis. Nat Struct Mol Biol. 2016;23:441-9 pubmed 出版商
  486. Huang G, Yang X, Chen K, Xing J, Guo L, Zhu L, et al. Porf-2 Inhibits Neural Stem Cell Proliferation Through Wnt/?-Catenin Pathway by Its GAP Domain. Front Cell Neurosci. 2016;10:85 pubmed 出版商
  487. Wen M, Wang J, Chiu Y, Wang M, Lee S, Tai C. N-Cadherin Regulates Cell Migration Through a Rab5-Dependent Temporal Control of Macropinocytosis. Traffic. 2016;17:769-85 pubmed 出版商
  488. Palu R, Thummel C. Sir2 Acts through Hepatocyte Nuclear Factor 4 to maintain insulin Signaling and Metabolic Homeostasis in Drosophila. PLoS Genet. 2016;12:e1005978 pubmed 出版商
  489. Katlinskaya Y, Katlinski K, Yu Q, Ortiz A, Beiting D, Brice A, et al. Suppression of Type I Interferon Signaling Overcomes Oncogene-Induced Senescence and Mediates Melanoma Development and Progression. Cell Rep. 2016;15:171-180 pubmed 出版商
  490. Schlam D, Canton J, Carreño M, Kopinski H, Freeman S, Grinstein S, et al. Gliotoxin Suppresses Macrophage Immune Function by Subverting Phosphatidylinositol 3,4,5-Trisphosphate Homeostasis. MBio. 2016;7:e02242 pubmed 出版商
  491. Rorsman C, Tsioumpekou M, Heldin C, Lennartsson J. The Ubiquitin Ligases c-Cbl and Cbl-b Negatively Regulate Platelet-derived Growth Factor (PDGF) BB-induced Chemotaxis by Affecting PDGF Receptor β (PDGFRβ) Internalization and Signaling. J Biol Chem. 2016;291:11608-18 pubmed 出版商
  492. Phelps Polirer K, Abt M, Smith D, Yeh E. Co-Targeting of JNK and HUNK in Resistant HER2-Positive Breast Cancer. PLoS ONE. 2016;11:e0153025 pubmed 出版商
  493. Rhee M, Lee S, Kim J, Ham D, Park H, Yang H, et al. Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells. Sci Rep. 2016;6:23960 pubmed 出版商
  494. Fearnley G, Smith G, Abdul Zani I, Yuldasheva N, Mughal N, Homer Vanniasinkam S, et al. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis. Biol Open. 2016;5:571-83 pubmed 出版商
  495. Papadakis E, Barker C, Syed H, Reeves T, Schwaiger S, Stuppner H, et al. The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ. Oncogenesis. 2016;5:e215 pubmed 出版商
  496. Gandin V, Masvidal L, Cargnello M, Gyenis L, McLaughlan S, Cai Y, et al. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nat Commun. 2016;7:11127 pubmed 出版商
  497. Yan B, Zhang Z, Jin D, Cai C, Jia C, Liu W, et al. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat Commun. 2016;7:11151 pubmed 出版商
  498. Braley A, Kwak T, Jules J, Harja E, Landgraf R, Hudson B. Regulation of Receptor for Advanced Glycation End Products (RAGE) Ectodomain Shedding and Its Role in Cell Function. J Biol Chem. 2016;291:12057-73 pubmed 出版商
  499. Liu D, Bordicchia M, Zhang C, Fang H, Wei W, Li J, et al. Activation of mTORC1 is essential for ?-adrenergic stimulation of adipose browning. J Clin Invest. 2016;126:1704-16 pubmed 出版商
  500. Maugeri G, D Amico A, Rasà D, Reitano R, Saccone S, Federico C, et al. Expression profile of Wilms Tumor 1 (WT1) isoforms in undifferentiated and all-trans retinoic acid differentiated neuroblastoma cells. Genes Cancer. 2016;7:47-58 pubmed
  501. Gao Z, Zhang H, Hu F, Yang L, Yang X, Zhu Y, et al. Glycan-deficient PrP stimulates VEGFR2 signaling via glycosaminoglycan. Cell Signal. 2016;28:652-62 pubmed 出版商
  502. Mancini M, Lien E, Toker A. Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis. Oncotarget. 2016;7:17301-13 pubmed 出版商
  503. Patzke C, Acuna C, Giam L, Wernig M, Südhof T. Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med. 2016;213:499-515 pubmed 出版商
  504. Meng Y, Zheng L, Yang Y, Wang H, Dong J, Wang C, et al. A monoclonal antibody targeting ErbB2 domain III inhibits ErbB2 signaling and suppresses the growth of ErbB2-overexpressing breast tumors. Oncogenesis. 2016;5:e211 pubmed 出版商
  505. Lee I, Maniar K, Lydon J, Kim J. Akt regulates progesterone receptor B-dependent transcription and angiogenesis in endometrial cancer cells. Oncogene. 2016;35:5191-201 pubmed 出版商
  506. Agarwal S, Ghosh R, Chen Z, Lakoma A, Gunaratne P, Kim E, et al. Transmembrane adaptor protein PAG1 is a novel tumor suppressor in neuroblastoma. Oncotarget. 2016;7:24018-26 pubmed 出版商
  507. Lynch J, McEwen R, Crafter C, McDermott U, Garnett M, Barry S, et al. Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen. Oncotarget. 2016;7:22128-39 pubmed 出版商
  508. Lee J, Kim H, Rho S, Lee S. eIF3f reduces tumor growth by directly interrupting clusterin with anti-apoptotic property in cancer cells. Oncotarget. 2016;7:18541-57 pubmed 出版商
  509. Hayashi K, Michiue H, Yamada H, Takata K, Nakayama H, Wei F, et al. Fluvoxamine, an anti-depressant, inhibits human glioblastoma invasion by disrupting actin polymerization. Sci Rep. 2016;6:23372 pubmed 出版商
  510. Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun. 2016;7:11030 pubmed 出版商
  511. Giannogonas P, Apostolou A, Manousopoulou A, Theocharis S, Macari S, Psarras S, et al. Identification of a novel interaction between corticotropin releasing hormone (Crh) and macroautophagy. Sci Rep. 2016;6:23342 pubmed 出版商
  512. Morena D, Maestro N, Bersani F, Forni P, Lingua M, Foglizzo V, et al. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. elife. 2016;5: pubmed 出版商
  513. Lisewski U, Koehncke C, Wilck N, Buschmeyer B, Pieske B, Roepke T. Increased aldosterone-dependent Kv1.5 recycling predisposes to pacing-induced atrial fibrillation in Kcne3-/- mice. FASEB J. 2016;30:2476-89 pubmed 出版商
  514. Kurimoto R, Iwasawa S, Ebata T, Ishiwata T, Sekine I, Tada Y, et al. Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation. Int J Oncol. 2016;48:1825-36 pubmed 出版商
  515. Afsar T, Trembley J, Salomon C, Razak S, Khan M, Ahmed K. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways. Sci Rep. 2016;6:23077 pubmed 出版商
  516. Apostolidis S, Rodríguez Rodríguez N, Suárez Fueyo A, Dioufa N, Ozcan E, Crispín J, et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol. 2016;17:556-64 pubmed 出版商
  517. Winnay J, Solheim M, Dirice E, Sakaguchi M, Noh H, Kang H, et al. PI3-kinase mutation linked to insulin and growth factor resistance in vivo. J Clin Invest. 2016;126:1401-12 pubmed 出版商
  518. Kral J, Kuttke M, Schrottmaier W, Birnecker B, Warszawska J, Wernig C, et al. Sustained PI3K Activation exacerbates BLM-induced Lung Fibrosis via activation of pro-inflammatory and pro-fibrotic pathways. Sci Rep. 2016;6:23034 pubmed 出版商
  519. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  520. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  521. Hirth S, Bühler A, Bührdel J, Rudeck S, Dahme T, Rottbauer W, et al. Paxillin and Focal Adhesion Kinase (FAK) Regulate Cardiac Contractility in the Zebrafish Heart. PLoS ONE. 2016;11:e0150323 pubmed 出版商
  522. Takabatake Y, Oxvig C, Nagi C, Adelson K, Jaffer S, Schmidt H, et al. Lactation opposes pappalysin-1-driven pregnancy-associated breast cancer. EMBO Mol Med. 2016;8:388-406 pubmed 出版商
  523. Jang C, Oh S, Wada S, Rowe G, Liu L, Chan M, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 2016;22:421-6 pubmed 出版商
  524. Yang P, Leu D, Ye K, Srinivasan C, Fike J, Huang T. Cognitive impairments following cranial irradiation can be mitigated by treatment with a tropomyosin receptor kinase B agonist. Exp Neurol. 2016;279:178-186 pubmed 出版商
  525. Thakur A, Nigri J, Lac S, Leca J, Bressy C, Berthezene P, et al. TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma. Cell Death Differ. 2016;23:1358-70 pubmed 出版商
  526. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  527. Du Z, Li L, Huang X, Jin J, Huang S, Zhang Q, et al. The epigenetic modifier CHD5 functions as a novel tumor suppressor for renal cell carcinoma and is predominantly inactivated by promoter CpG methylation. Oncotarget. 2016;7:21618-30 pubmed 出版商
  528. Hu W, Xiao L, Cao C, Hua S, Wu D. UBE2T promotes nasopharyngeal carcinoma cell proliferation, invasion, and metastasis by activating the AKT/GSK3β/β-catenin pathway. Oncotarget. 2016;7:15161-72 pubmed 出版商
  529. Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, et al. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Mol Cancer Ther. 2016;15:628-39 pubmed 出版商
  530. Singh A, Joshi S, Zulcic M, Alcaraz M, GARLICH J, Morales G, et al. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma. PLoS ONE. 2016;11:e0150836 pubmed 出版商
  531. Li Y, Wei Z, Dong B, Lian Z, Xu Y. Silencing of phosphoglucose isomerase/autocrine motility factor decreases U87 human glioblastoma cell migration. Int J Mol Med. 2016;37:998-1004 pubmed 出版商
  532. Yang W, Yang Y, Yang J, Liang M, Song J. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med. 2016;37:1075-82 pubmed 出版商
  533. Jing H, Sun W, Fan J, Zhang Y, Yang J, Jia J, et al. Shikonin induces apoptosis of HaCaT cells via the mitochondrial, Erk and Akt pathways. Mol Med Rep. 2016;13:3009-16 pubmed 出版商
  534. Santio N, Salmela M, Arola H, Eerola S, Heino J, Rainio E, et al. The PIM1 kinase promotes prostate cancer cell migration and adhesion via multiple signalling pathways. Exp Cell Res. 2016;342:113-24 pubmed 出版商
  535. Gurnik S, Devraj K, Macas J, Yamaji M, Starke J, Scholz A, et al. Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol. 2016;131:753-73 pubmed 出版商
  536. Lyabin D, Ovchinnikov L. Selective regulation of YB-1 mRNA translation by the mTOR signaling pathway is not mediated by 4E-binding protein. Sci Rep. 2016;6:22502 pubmed 出版商
  537. Lee D, Wang Y, Kalaitzidis D, Ramachandran J, Eda H, Sykes D, et al. Endogenous transmembrane protein UT2 inhibits pSTAT3 and suppresses hematological malignancy. J Clin Invest. 2016;126:1300-10 pubmed 出版商
  538. Wong H, Jin G, Cao R, Zhang S, Cao Y, Zhou Z. MT1-MMP sheds LYVE-1 on lymphatic endothelial cells and suppresses VEGF-C production to inhibit lymphangiogenesis. Nat Commun. 2016;7:10824 pubmed 出版商
  539. Gong Q, Hu Z, Zhang F, Cui A, Chen X, Jiang H, et al. Fibroblast growth factor 21 improves hepatic insulin sensitivity by inhibiting mammalian target of rapamycin complex 1 in mice. Hepatology. 2016;64:425-38 pubmed 出版商
  540. Guillot F, Kemppainen S, Lavasseur G, Miettinen P, Laroche S, Tanila H, et al. Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis. 2016;51:1157-73 pubmed 出版商
  541. Chang T, Chen C, Wu Y, Liu J, Kuo Y, Lee K, et al. Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma. PLoS ONE. 2016;11:e0149897 pubmed 出版商
  542. Seip K, Fleten K, Barkovskaya A, Nygaard V, Haugen M, Engesæter B, et al. Fibroblast-induced switching to the mesenchymal-like phenotype and PI3K/mTOR signaling protects melanoma cells from BRAF inhibitors. Oncotarget. 2016;7:19997-20015 pubmed 出版商
  543. Mason J, Davison Versagli C, Leliaert A, Pape D, McCallister C, Zuo J, et al. Oncogenic Ras differentially regulates metabolism and anoikis in extracellular matrix-detached cells. Cell Death Differ. 2016;23:1271-82 pubmed 出版商
  544. Schwarzer M, Makki K, Storelli G, Machuca Gayet I, Srůtková D, Hermanova P, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 2016;351:854-7 pubmed 出版商
  545. Viana Huete V, Guillen C, García Aguilar A, García G, Fernandez S, Kahn C, et al. Essential Role of IGFIR in the Onset of Male Brown Fat Thermogenic Function: Regulation of Glucose Homeostasis by Differential Organ-Specific Insulin Sensitivity. Endocrinology. 2016;157:1495-511 pubmed 出版商
  546. Bai D, Zhang Y, Shen M, Sun Y, Xia Q, Zhang Y, et al. Hyperglycemia and hyperlipidemia blunts the Insulin-Inpp5f negative feedback loop in the diabetic heart. Sci Rep. 2016;6:22068 pubmed 出版商
  547. Wu G, Zeng G. METCAM/MUC18 is a novel tumor and metastasis suppressor for the human ovarian cancer SKOV3 cells. BMC Cancer. 2016;16:136 pubmed 出版商
  548. Li M, Lu G, Hu J, Shen X, Ju J, Gao Y, et al. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy. Stem Cell Reports. 2016;6:396-410 pubmed 出版商
  549. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  550. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  551. Urnukhsaikhan E, Cho H, Mishig Ochir T, Seo Y, Park J. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci. 2016;151:130-138 pubmed 出版商
  552. Tobita T, Guzman Lepe J, Takeishi K, Nakao T, Wang Y, Meng F, et al. SIRT1 Disruption in Human Fetal Hepatocytes Leads to Increased Accumulation of Glucose and Lipids. PLoS ONE. 2016;11:e0149344 pubmed 出版商
  553. Liao B, McManus S, Hughes W, Schmitz Peiffer C. Flavin-Containing Monooxygenase 3 Reduces Endoplasmic Reticulum Stress in Lipid-Treated Hepatocytes. Mol Endocrinol. 2016;30:417-28 pubmed 出版商
  554. Wang P, Zhang X, Luo P, Jiang X, Zhang P, Guo J, et al. Hepatocyte TRAF3 promotes liver steatosis and systemic insulin resistance through targeting TAK1-dependent signalling. Nat Commun. 2016;7:10592 pubmed 出版商
  555. Molteni R, Rossetti A, Savino E, Racagni G, Calabrese F. Chronic Mild Stress Modulates Activity-Dependent Transcription of BDNF in Rat Hippocampal Slices. Neural Plast. 2016;2016:2592319 pubmed 出版商
  556. Senol Cosar O, Flach R, DiStefano M, Chawla A, Nicoloro S, Straubhaar J, et al. Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion. Nat Commun. 2016;7:10686 pubmed 出版商
  557. Cui J, Xia T, Xie D, Gao Y, Jia Z, Wei D, et al. HGF/Met and FOXM1 form a positive feedback loop and render pancreatic cancer cells resistance to Met inhibition and aggressive phenotypes. Oncogene. 2016;35:4708-18 pubmed 出版商
  558. Hung M, Chen Y, Chu P, Shih C, Yu H, Tai W, et al. Upregulation of the oncoprotein SET determines poor clinical outcomes in hepatocellular carcinoma and shows therapeutic potential. Oncogene. 2016;35:4891-902 pubmed 出版商
  559. Minna E, Romeo P, Dugo M, De Cecco L, Todoerti K, Pilotti S, et al. miR-451a is underexpressed and targets AKT/mTOR pathway in papillary thyroid carcinoma. Oncotarget. 2016;7:12731-47 pubmed 出版商
  560. Krause C, Popp O, Thirunarayanan N, Dittmar G, Lipp M, Müller G. MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR. Oncotarget. 2016;7:10414-32 pubmed 出版商
  561. Liu T, Fang Z, Wang G, Shi M, Wang X, Jiang K, et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol Lett. 2016;11:182-188 pubmed
  562. Demetriades C, Plescher M, Teleman A. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun. 2016;7:10662 pubmed 出版商
  563. Lakshmipathi J, Alvarez Perez J, Rosselot C, Casinelli G, Stamateris R, Rausell Palamos F, et al. PKCζ Is Essential for Pancreatic β-Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2. Diabetes. 2016;65:1283-96 pubmed 出版商
  564. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  565. Cott C, Thuenauer R, Landi A, Kühn K, Juillot S, Imberty A, et al. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation. Biochim Biophys Acta. 2016;1863:1106-18 pubmed 出版商
  566. Hennig A, Markwart R, Wolff K, Schubert K, Cui Y, Prior I, et al. Feedback activation of neurofibromin terminates growth factor-induced Ras activation. Cell Commun Signal. 2016;14:5 pubmed 出版商
  567. Liu Y, Takahashi Y, Desai N, Zhang J, Serfass J, Shi Y, et al. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci Rep. 2016;6:20453 pubmed 出版商
  568. Ding M, Bruick R, Yu Y. Secreted IGFBP5 mediates mTORC1-dependent feedback inhibition of IGF-1 signalling. Nat Cell Biol. 2016;18:319-27 pubmed 出版商
  569. White Y, Bagchi A, Van Ziffle J, Inguva A, Bollag G, Zhang C, et al. KRAS insertion mutations are oncogenic and exhibit distinct functional properties. Nat Commun. 2016;7:10647 pubmed 出版商
  570. Coke C, Scarlett K, Chetram M, Jones K, Sandifer B, Davis A, et al. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression. J Biol Chem. 2016;291:9991-10005 pubmed 出版商
  571. Egawa H, Jingushi K, Hirono T, Ueda Y, Kitae K, Nakata W, et al. The miR-130 family promotes cell migration and invasion in bladder cancer through FAK and Akt phosphorylation by regulating PTEN. Sci Rep. 2016;6:20574 pubmed 出版商
  572. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  573. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  574. Iyer S, Chou F, Wang R, Chiu H, Raju V, Little M, et al. Crim1 has cell-autonomous and paracrine roles during embryonic heart development. Sci Rep. 2016;6:19832 pubmed 出版商
  575. Theodosiou M, Widmaier M, Böttcher R, Rognoni E, Veelders M, Bharadwaj M, et al. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. elife. 2016;5:e10130 pubmed 出版商
  576. Button R, Vincent J, Strang C, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget. 2016;7:5157-75 pubmed 出版商
  577. Grego Bessa J, Bloomekatz J, Castel P, Omelchenko T, Baselga J, Anderson K. The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium. elife. 2016;5:e12034 pubmed 出版商
  578. Goulielmaki M, Koustas E, Moysidou E, Vlassi M, Sasazuki T, Shirasawa S, et al. BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells. Oncotarget. 2016;7:9188-221 pubmed 出版商
  579. Luey B, May F. Insulin-like growth factors are essential to prevent anoikis in oestrogen-responsive breast cancer cells: importance of the type I IGF receptor and PI3-kinase/Akt pathway. Mol Cancer. 2016;15:8 pubmed 出版商
  580. Chung S, Moon H, Ju H, Kim D, Cho K, Ribback S, et al. Comparison of liver oncogenic potential among human RAS isoforms. Oncotarget. 2016;7:7354-66 pubmed 出版商
  581. Yoshida T, Song L, Bai Y, Kinose F, Li J, Ohaegbulam K, et al. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS ONE. 2016;11:e0147344 pubmed 出版商
  582. Heynen G, Nevedomskaya E, Palit S, Jagalur Basheer N, Lieftink C, Schlicker A, et al. Mastermind-Like 3 Controls Proliferation and Differentiation in Neuroblastoma. Mol Cancer Res. 2016;14:411-22 pubmed 出版商
  583. Chen X, Yang Q, Zheng T, Bian J, Sun X, Shi Y, et al. Neurotrophic Effect of Adipose Tissue-Derived Stem Cells on Erectile Function Recovery by Pigment Epithelium-Derived Factor Secretion in a Rat Model of Cavernous Nerve Injury. Stem Cells Int. 2016;2016:5161248 pubmed 出版商
  584. Watari K, Shibata T, Nabeshima H, Shinoda A, Fukunaga Y, Kawahara A, et al. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice. Sci Rep. 2016;6:19470 pubmed 出版商
  585. Cherepkova M, Sineva G, Pospelov V. Leukemia inhibitory factor (LIF) withdrawal activates mTOR signaling pathway in mouse embryonic stem cells through the MEK/ERK/TSC2 pathway. Cell Death Dis. 2016;7:e2050 pubmed 出版商
  586. Albert V, Svensson K, Shimobayashi M, Colombi M, Munoz S, Jimenez V, et al. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med. 2016;8:232-46 pubmed 出版商
  587. Cipriani G, Gibbons S, Verhulst P, Choi K, Eisenman S, Hein S, et al. Diabetic Csf1op/op mice lacking macrophages are protected against the development of delayed gastric emptying. Cell Mol Gastroenterol Hepatol. 2016;2:40-47 pubmed
  588. Pivonello C, Negri M, De Martino M, Napolitano M, De Angelis C, Provvisiero D, et al. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget. 2016;7:9718-31 pubmed 出版商
  589. Wandinger S, Lahortiga I, Jacobs K, Klammer M, Jordan N, Elschenbroich S, et al. Quantitative Phosphoproteomics Analysis of ERBB3/ERBB4 Signaling. PLoS ONE. 2016;11:e0146100 pubmed 出版商
  590. Amato K, Wang S, Tan L, Hastings A, Song W, Lovly C, et al. EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Res. 2016;76:305-18 pubmed 出版商
  591. Kim K, Qiang L, Hayden M, Sparling D, Purcell N, Pajvani U. mTORC1-independent Raptor prevents hepatic steatosis by stabilizing PHLPP2. Nat Commun. 2016;7:10255 pubmed 出版商
  592. Carroll B, Maetzel D, Maddocks O, Otten G, Ratcliff M, Smith G, et al. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. elife. 2016;5: pubmed 出版商
  593. Wang X, Tang Z, Yu D, Cui S, Jiang Y, Zhang Q, et al. Epithelial but not stromal expression of collagen alpha-1(III) is a diagnostic and prognostic indicator of colorectal carcinoma. Oncotarget. 2016;7:8823-38 pubmed 出版商
  594. Ho N, Morrison J, Silva A, Coomber B. The effect of 3-bromopyruvate on human colorectal cancer cells is dependent on glucose concentration but not hexokinase II expression. Biosci Rep. 2016;36:e00299 pubmed 出版商
  595. Jeong J, VanHouten J, Dann P, Kim W, Sullivan C, Yu H, et al. PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer. Proc Natl Acad Sci U S A. 2016;113:E282-90 pubmed 出版商
  596. Lv H, Zhang Z, Wu X, Wang Y, Li C, Gong W, et al. Preclinical Evaluation of Liposomal C8 Ceramide as a Potent anti-Hepatocellular Carcinoma Agent. PLoS ONE. 2016;11:e0145195 pubmed 出版商
  597. Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, et al. ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun. 2016;7:10060 pubmed 出版商
  598. Creedon H, Balderstone L, Muir M, Balla J, Gómez Cuadrado L, Tracey N, et al. Use of a genetically engineered mouse model as a preclinical tool for HER2 breast cancer. Dis Model Mech. 2016;9:131-40 pubmed 出版商
  599. Maria Z, Campolo A, Lacombe V. Diabetes Alters the Expression and Translocation of the Insulin-Sensitive Glucose Transporters 4 and 8 in the Atria. PLoS ONE. 2015;10:e0146033 pubmed 出版商
  600. Zhang H, Xiong Z, Wang J, Zhang S, Lei L, Yang L, et al. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway. Mol Med Rep. 2016;13:1593-601 pubmed 出版商
  601. Wang C, Che L, Hu J, Zhang S, Jiang L, Latte G, et al. Activated mutant forms of PIK3CA cooperate with RasV12 or c-Met to induce liver tumour formation in mice via AKT2/mTORC1 cascade. Liver Int. 2016;36:1176-86 pubmed 出版商
  602. Hamada D, Maynard R, Schott E, Drinkwater C, Ketz J, Kates S, et al. Suppressive Effects of Insulin on Tumor Necrosis Factor-Dependent Early Osteoarthritic Changes Associated With Obesity and Type 2 Diabetes Mellitus. Arthritis Rheumatol. 2016;68:1392-402 pubmed 出版商
  603. Benedykcinska A, Ferreira A, Lau J, Broni J, Richard Loendt A, Henriquez N, et al. Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen. Dis Model Mech. 2016;9:211-20 pubmed 出版商
  604. Ishibashi T, Yaguchi A, Terada K, Ueno Yokohata H, Tomita O, Iijima K, et al. Ph-like ALL-related novel fusion kinase ATF7IP-PDGFRB exhibits high sensitivity to tyrosine kinase inhibitors in murine cells. Exp Hematol. 2016;44:177-88.e5 pubmed 出版商
  605. Schmieg N, Rocchi C, Romeo S, Maggio R, Millan M, Mannoury La Cour C. Dysbindin-1 modifies signaling and cellular localization of recombinant, human D₃ and Dâ‚‚ receptors. J Neurochem. 2016;136:1037-51 pubmed 出版商
  606. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  607. Yan L, Liu Y, Xiang J, Wu Q, Xu L, Luo X, et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol. 2016;48:471-84 pubmed 出版商
  608. Drilon A, Somwar R, Wagner J, Vellore N, Eide C, Zabriskie M, et al. A Novel Crizotinib-Resistant Solvent-Front Mutation Responsive to Cabozantinib Therapy in a Patient with ROS1-Rearranged Lung Cancer. Clin Cancer Res. 2016;22:2351-8 pubmed 出版商
  609. Hu Y, Guo R, Wei J, Zhou Y, Ji W, Liu J, et al. Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death Dis. 2015;6:e2020 pubmed 出版商
  610. Giampietro C, Disanza A, Bravi L, Barrios Rodiles M, Corada M, Frittoli E, et al. The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling. J Cell Biol. 2015;211:1177-92 pubmed 出版商
  611. Vural A, Al Khodor S, Cheung G, Shi C, Srinivasan L, McQuiston T, et al. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection. J Immunol. 2016;196:846-56 pubmed 出版商
  612. Franco Villanueva A, Wandosell F, Antón I. Neuritic complexity of hippocampal neurons depends on WIP-mediated mTORC1 and Abl family kinases activities. Brain Behav. 2015;5:e00359 pubmed 出版商
  613. Patel A, Yamashita N, Ascano M, Bodmer D, Boehm E, Bodkin Clarke C, et al. RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome. Nat Commun. 2015;6:10119 pubmed 出版商
  614. Lagarrigue S, Lopez Mejia I, Denechaud P, Escoté X, Castillo Armengol J, Jimenez V, et al. CDK4 is an essential insulin effector in adipocytes. J Clin Invest. 2016;126:335-48 pubmed 出版商
  615. Audette D, Anand D, So T, Rubenstein T, Lachke S, Lovicu F, et al. Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression. Development. 2016;143:318-28 pubmed 出版商
  616. Kiermaier E, Moussion C, Veldkamp C, Gerardy Schahn R, de Vries I, Williams L, et al. Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science. 2016;351:186-90 pubmed 出版商
  617. Adam M, Matt S, Christian S, Hess Stumpp H, Haegebarth A, Hofmann T, et al. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle. 2015;14:3734-47 pubmed 出版商
  618. Yamagishi M, Katano H, Hishima T, Shimoyama T, Ota Y, Nakano K, et al. Coordinated loss of microRNA group causes defenseless signaling in malignant lymphoma. Sci Rep. 2015;5:17868 pubmed 出版商
  619. Aimi F, Georgiopoulou S, Kalus I, Lehner F, Hegglin A, Limani P, et al. Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult. Sci Rep. 2015;5:17705 pubmed 出版商
  620. Yamakawa H, Muraoka N, Miyamoto K, Sadahiro T, Isomi M, Haginiwa S, et al. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions. Stem Cell Reports. 2015;5:1128-1142 pubmed 出版商
  621. Bo Q, Sun X, Liu J, Sui X, Li G. Antitumor action of the peroxisome proliferator-activated receptor-γ agonist rosiglitazone in hepatocellular carcinoma. Oncol Lett. 2015;10:1979-1984 pubmed
  622. Oudart J, Doué M, Vautrin A, Brassart B, Sellier C, Dupont Deshorgue A, et al. The anti-tumor NC1 domain of collagen XIX inhibits the FAK/ PI3K/Akt/mTOR signaling pathway through αvβ3 integrin interaction. Oncotarget. 2016;7:1516-28 pubmed 出版商
  623. Messaoudi S, He Y, Gutsol A, Wight A, Hébert R, Vilmundarson R, et al. Endothelial Gata5 transcription factor regulates blood pressure. Nat Commun. 2015;6:8835 pubmed 出版商
  624. Debruyne D, Bhatnagar N, Sharma B, Luther W, Moore N, Cheung N, et al. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene. 2016;35:3681-91 pubmed 出版商
  625. O Hayre M, Inoue A, Kufareva I, Wang Z, Mikelis C, Drummond R, et al. Inactivating mutations in GNA13 and RHOA in Burkitt's lymphoma and diffuse large B-cell lymphoma: a tumor suppressor function for the Gα13/RhoA axis in B cells. Oncogene. 2016;35:3771-80 pubmed 出版商
  626. Ni Y, Nagashimada M, Zhuge F, Zhan L, Nagata N, Tsutsui A, et al. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci Rep. 2015;5:17192 pubmed 出版商
  627. Green A, Maciel T, Hospital M, Yin C, Mazed F, Townsend E, et al. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia. Sci Adv. 2015;1:e1500221 pubmed 出版商
  628. Yasuda K, Takahashi M, Mori N. Mdm20 Modulates Actin Remodeling through the mTORC2 Pathway via Its Effect on Rictor Expression. PLoS ONE. 2015;10:e0142943 pubmed 出版商
  629. Ye Z, Al Aidaroos A, Park J, Yuen H, Zhang S, Gupta A, et al. PRL-3 activates mTORC1 in Cancer Progression. Sci Rep. 2015;5:17046 pubmed 出版商
  630. Chen J, Chen Y, Yen C, Chen W, Huang W. HBx sensitizes hepatocellular carcinoma cells to lapatinib by up-regulating ErbB3. Oncotarget. 2016;7:473-89 pubmed 出版商
  631. McIlroy G, Tammireddy S, Maskrey B, Grant L, Doherty M, Watson D, et al. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue. Biochem Pharmacol. 2016;100:86-97 pubmed 出版商
  632. E L, Swerdlow R. Lactate's effect on human neuroblastoma cell bioenergetic fluxes. Biochem Pharmacol. 2016;99:88-100 pubmed 出版商
  633. Diersch S, Wirth M, Schneeweis C, Jörs S, Geisler F, Siveke J, et al. Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells. Oncogene. 2016;35:3880-6 pubmed 出版商
  634. Murata Y, Uehara Y, Hosoi Y. Activation of mTORC1 under nutrient starvation conditions increases cellular radiosensitivity in human liver cancer cell lines, HepG2 and HuH6. Biochem Biophys Res Commun. 2015;468:684-90 pubmed 出版商
  635. Hunt L, Xu B, Finkelstein D, Fan Y, Carroll P, Cheng P, et al. The glucose-sensing transcription factor MLX promotes myogenesis via myokine signaling. Genes Dev. 2015;29:2475-89 pubmed 出版商
  636. Skeldon A, Morizot A, Douglas T, Santoro N, Kursawe R, Kozlitina J, et al. Caspase-12, but Not Caspase-11, Inhibits Obesity and Insulin Resistance. J Immunol. 2016;196:437-47 pubmed 出版商
  637. Wang Z, Ma B, Li H, Xiao X, Zhou W, Liu F, et al. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC. Oncotarget. 2016;7:509-23 pubmed 出版商
  638. Alsafadi S, Tourpin S, Bessoltane N, Salomé Desnoulez S, Vassal G, André F, et al. Nuclear localization of the caspase-3-cleaved form of p73 in anoikis. Oncotarget. 2016;7:12331-43 pubmed 出版商
  639. Momcilovic M, McMickle R, Abt E, Seki A, Simko S, Magyar C, et al. Heightening Energetic Stress Selectively Targets LKB1-Deficient Non-Small Cell Lung Cancers. Cancer Res. 2015;75:4910-22 pubmed 出版商
  640. Hu Y, Zhang Y, Tian K, Xun C, Wang S, Lv D. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro. Mol Med Rep. 2016;13:49-58 pubmed 出版商
  641. Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho Maschler S. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics. 2015;16:944 pubmed 出版商
  642. Hu X, Garcia C, Fazli L, Gleave M, Vitek M, Jansen M, et al. Inhibition of Pten deficient Castration Resistant Prostate Cancer by Targeting of the SET - PP2A Signaling axis. Sci Rep. 2015;5:15182 pubmed 出版商
  643. Miura S, Sato K, Kato Negishi M, Teshima T, Takeuchi S. Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat Commun. 2015;6:8871 pubmed 出版商
  644. Clemente Vicario F, Alvarez C, ROWELL J, Roy S, London C, Kisseberth W, et al. Human Genetic Relevance and Potent Antitumor Activity of Heat Shock Protein 90 Inhibition in Canine Lung Adenocarcinoma Cell Lines. PLoS ONE. 2015;10:e0142007 pubmed 出版商
  645. Lohberger B, Leithner A, Stuendl N, Kaltenegger H, Kullich W, Steinecker Frohnwieser B. Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation. BMC Cancer. 2015;15:891 pubmed 出版商
  646. Zhang Z, Wu N, Lu Y, Davidson D, Colonna M, Veillette A. DNAM-1 controls NK cell activation via an ITT-like motif. J Exp Med. 2015;212:2165-82 pubmed 出版商
  647. Ksionda O, Melton A, Bache J, Tenhagen M, Bakker J, Harvey R, et al. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene. 2016;35:3658-68 pubmed 出版商
  648. Askoxylakis V, Ferraro G, Kodack D, Badeaux M, Shankaraiah R, Seano G, et al. Preclinical Efficacy of Ado-trastuzumab Emtansine in the Brain Microenvironment. J Natl Cancer Inst. 2016;108: pubmed 出版商
  649. Goto A, Egawa T, Sakon I, Oshima R, Ito K, Serizawa Y, et al. Heat stress acutely activates insulin-independent glucose transport and 5'-AMP-activated protein kinase prior to an increase in HSP72 protein in rat skeletal muscle. Physiol Rep. 2015;3: pubmed 出版商
  650. Yen Y, Hsiao J, Jiang S, Chang J, Wang S, Shen Y, et al. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget. 2015;6:41837-55 pubmed 出版商
  651. Jackson E, Rendina Ruedy E, Smith B, Lacombe V. Loss of Toll-Like Receptor 4 Function Partially Protects against Peripheral and Cardiac Glucose Metabolic Derangements During a Long-Term High-Fat Diet. PLoS ONE. 2015;10:e0142077 pubmed 出版商
  652. Nikonova A, Deneka A, Eckman L, Kopp M, Hensley H, Egleston B, et al. Opposing Effects of Inhibitors of Aurora-A and EGFR in Autosomal-Dominant Polycystic Kidney Disease. Front Oncol. 2015;5:228 pubmed 出版商
  653. Hoshino A, Costa Silva B, Shen T, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329-35 pubmed 出版商
  654. Stanojlović M, GuÅ¡evac I, Grković I, Zlatković J, Mitrović N, Zarić M, et al. Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus. Neuroscience. 2015;311:308-21 pubmed 出版商
  655. Lin C, Chen Y, Lin C, Chen Y, Lo G, Lee P, et al. Amiodarone as an autophagy promoter reduces liver injury and enhances liver regeneration and survival in mice after partial hepatectomy. Sci Rep. 2015;5:15807 pubmed 出版商
  656. Hirano T, Yasuda H, Tani T, Hamamoto J, Oashi A, Ishioka K, et al. In vitro modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant EGFR mutants in non-small-cell lung cancer. Oncotarget. 2015;6:38789-803 pubmed 出版商
  657. Rizvi F, Mathur A, Krishna S, Siddiqi M, Kakkar P. Suppression in PHLPP2 induction by morin promotes Nrf2-regulated cellular defenses against oxidative injury to primary rat hepatocytes. Redox Biol. 2015;6:587-598 pubmed 出版商
  658. Wang Y, Zhang Y, Hu W, Xie S, Gong C, Iqbal K, et al. Rapid alteration of protein phosphorylation during postmortem: implication in the study of protein phosphorylation. Sci Rep. 2015;5:15709 pubmed 出版商
  659. Kurozumi A, Goto Y, Matsushita R, Fukumoto I, Kato M, Nishikawa R, et al. Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer. Cancer Sci. 2016;107:84-94 pubmed 出版商
  660. Webber P, Park C, Qui M, Ramalingam S, Khuri F, Fu H, et al. Combination of heat shock protein 90 and focal adhesion kinase inhibitors synergistically inhibits the growth of non-small cell lung cancer cells. Oncoscience. 2015;2:765-776 pubmed
  661. Li M, Quan C, Toth R, Campbell D, MacKintosh C, Wang H, et al. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders. J Biol Chem. 2015;290:30030-41 pubmed 出版商
  662. Bauer J, Ozden O, Akagi N, Carroll T, Principe D, Staudacher J, et al. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Mol Cancer. 2015;14:182 pubmed 出版商
  663. Zomerman W, Plasschaert S, Diks S, Lourens H, Meeuwsen de Boer T, Hoving E, et al. Exogenous HGF Bypasses the Effects of ErbB Inhibition on Tumor Cell Viability in Medulloblastoma Cell Lines. PLoS ONE. 2015;10:e0141381 pubmed 出版商
  664. Verbrugge S, Al M, Assaraf Y, Kammerer S, Chandrupatla D, Honeywell R, et al. Multifactorial resistance to aminopeptidase inhibitor prodrug CHR2863 in myeloid leukemia cells: down-regulation of carboxylesterase 1, drug sequestration in lipid droplets and pro-survival activation ERK/Akt/mTOR. Oncotarget. 2016;7:5240-57 pubmed 出版商
  665. Lauková J, Kozubík A, Hofmanová J, Nekvindová J, Sova P, Moyer M, et al. Loss of PTEN Facilitates Rosiglitazone-Mediated Enhancement of Platinum(IV) Complex LA-12-Induced Apoptosis in Colon Cancer Cells. PLoS ONE. 2015;10:e0141020 pubmed 出版商
  666. Zhang L, Zhang S, Yao J, Lowery F, Zhang Q, Huang W, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100-104 pubmed 出版商
  667. Pinel A, Rigaudière J, Laillet B, Pouyet C, Malpuech Brugère C, Prip Buus C, et al. N-3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells. Biochim Biophys Acta. 2016;1861:12-20 pubmed 出版商
  668. Chakedis J, French R, Babicky M, Jaquish D, Howard H, Mose E, et al. A novel protein isoform of the RON tyrosine kinase receptor transforms human pancreatic duct epithelial cells. Oncogene. 2016;35:3249-59 pubmed 出版商
  669. Manda K, Tripathi P, Hsi A, Ning J, Ruzinova M, Liapis H, et al. NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence. Oncogene. 2016;35:3282-92 pubmed 出版商
  670. Lin K, Kao S, Lai C, Chen C, Wu C, Hsu H, et al. Tumor Suppressor Lzap Suppresses Wnt/β-Catenin Signaling to Promote Zebrafish Embryonic Ventral Cell Fates via the Suppression of Inhibitory Phosphorylation of Glycogen Synthase Kinase 3. J Biol Chem. 2015;290:29808-19 pubmed 出版商
  671. Lu R, Herrera B, Eshleman H, Fu Y, Bloom A, Li Z, et al. Shigella Effector OspB Activates mTORC1 in a Manner That Depends on IQGAP1 and Promotes Cell Proliferation. PLoS Pathog. 2015;11:e1005200 pubmed 出版商
  672. Sabirzhanov B, Stoica B, Zhao Z, Loane D, Wu J, Dorsey S, et al. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ. 2016;23:654-68 pubmed 出版商
  673. Arriola Apelo S, Neuman J, Baar E, Syed F, Cummings N, Brar H, et al. Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system. Aging Cell. 2016;15:28-38 pubmed 出版商
  674. Sugiyama S, Yoshino Y, Kuriyama S, Inoue M, Komine K, Otsuka K, et al. A Curcumin Analog, GO-Y078, Effectively Inhibits Angiogenesis through Actin Disorganization. Anticancer Agents Med Chem. 2016;16:633-47 pubmed
  675. Barbáchano A, Fernández Barral A, Pereira F, Segura M, Ordóñez Morán P, Carrillo de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2016;35:2991-3003 pubmed 出版商
  676. Martínez Revollar G, Garay E, Martín Tapia D, Nava P, Huerta M, Lopez Bayghen E, et al. Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways. Exp Cell Res. 2015;339:67-80 pubmed 出版商
  677. Kuo H, Hsu H, Chen Y, Chang Y, Liu F, Wu C. Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer. Glycobiology. 2016;26:155-65 pubmed 出版商
  678. Martinez N, Agosto L, Qiu J, Mallory M, Gazzara M, Barash Y, et al. Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation. Genes Dev. 2015;29:2054-66 pubmed 出版商
  679. Luehders K, Sasai N, Davaapil H, Kurosawa Yoshida M, Hiura H, Brah T, et al. The small leucine-rich repeat secreted protein Asporin induces eyes in Xenopus embryos through the IGF signalling pathway. Development. 2015;142:3351-61 pubmed 出版商
  680. Payne S, Maher M, Tran N, Van De Hey D, Foley T, Yueh A, et al. PIK3CA mutations can initiate pancreatic tumorigenesis and are targetable with PI3K inhibitors. Oncogenesis. 2015;4:e169 pubmed 出版商
  681. Reinardy J, Corey D, Golzio C, Mueller S, Katsanis N, Kontos C. Phosphorylation of Threonine 794 on Tie1 by Rac1/PAK1 Reveals a Novel Angiogenesis Regulatory Pathway. PLoS ONE. 2015;10:e0139614 pubmed 出版商
  682. Fan S, Snell C, Turley H, Li J, McCormick R, Perera S, et al. PAT4 levels control amino-acid sensitivity of rapamycin-resistant mTORC1 from the Golgi and affect clinical outcome in colorectal cancer. Oncogene. 2016;35:3004-15 pubmed 出版商
  683. Liu L, Li C, Lu Y, Zong X, Luo C, Sun J, et al. Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion. Sci Rep. 2015;5:14474 pubmed 出版商
  684. Arce Cerezo A, García M, Rodríguez Nuevo A, Crosa Bonell M, Enguix N, Peró A, et al. HMGA1 overexpression in adipose tissue impairs adipogenesis and prevents diet-induced obesity and insulin resistance. Sci Rep. 2015;5:14487 pubmed 出版商
  685. Shu X, Wu J, Sun H, Chi L, Wang J. PAK4 confers the malignance of cervical cancers and contributes to the cisplatin-resistance in cervical cancer cells via PI3K/AKT pathway. Diagn Pathol. 2015;10:177 pubmed 出版商
  686. Cecchetti S, Bortolomai I, Ferri R, Mercurio L, Canevari S, Podo F, et al. Inhibition of Phosphatidylcholine-Specific Phospholipase C Interferes with Proliferation and Survival of Tumor Initiating Cells in Squamous Cell Carcinoma. PLoS ONE. 2015;10:e0136120 pubmed 出版商
  687. Xu Y, Morse L, da Silva R, Wang D, Battaglino R. A short report: PAMM, a novel antioxidant protein, induced by oxidative stress. Redox Biol. 2015;6:446-453 pubmed 出版商
  688. Kimball S, Ravi S, Gordon B, Dennis M, Jefferson L. Amino Acid-Induced Activation of mTORC1 in Rat Liver Is Attenuated by Short-Term Consumption of a High-Fat Diet. J Nutr. 2015;145:2496-502 pubmed 出版商
  689. Shnitsar I, Bashkurov M, Masson G, Ogunjimi A, Mosessian S, Cabeza E, et al. PTEN regulates cilia through Dishevelled. Nat Commun. 2015;6:8388 pubmed 出版商
  690. Haim Y, Bluher M, Slutsky N, Goldstein N, Kloting N, Harman Boehm I, et al. Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1. Autophagy. 2015;11:2074-2088 pubmed 出版商
  691. Leyme A, Marivin A, Perez Gutierrez L, Nguyen L, Garcia Marcos M. Integrins activate trimeric G proteins via the nonreceptor protein GIV/Girdin. J Cell Biol. 2015;210:1165-84 pubmed 出版商
  692. Herranz D, Ambesi Impiombato A, Sudderth J, Sánchez Martín M, Belver L, Tosello V, et al. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat Med. 2015;21:1182-9 pubmed 出版商
  693. Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed 出版商
  694. Poitelon Y, Bogni S, Matafora V, Della Flora Nunes G, Hurley E, Ghidinelli M, et al. Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Nat Commun. 2015;6:8303 pubmed 出版商
  695. Brina D, Miluzio A, Ricciardi S, Clarke K, Davidsen P, Viero G, et al. eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription. Nat Commun. 2015;6:8261 pubmed 出版商
  696. Liu R, Yang Y, Shen J, Chen H, Zhang Q, Ba R, et al. Fstl1 is involved in the regulation of radial glial scaffold development. Mol Brain. 2015;8:53 pubmed 出版商
  697. Davare M, Vellore N, Wagner J, Eide C, Goodman J, Drilon A, et al. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proc Natl Acad Sci U S A. 2015;112:E5381-90 pubmed 出版商
  698. Harmeier A, Obermueller S, Meyer C, Revel F, Buchy D, Chaboz S, et al. Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers. Eur Neuropsychopharmacol. 2015;25:2049-61 pubmed 出版商
  699. Kitatani K, Usui T, Sriraman S, Toyoshima M, Ishibashi M, Shigeta S, et al. Ceramide limits phosphatidylinositol-3-kinase C2β-controlled cell motility in ovarian cancer: potential of ceramide as a metastasis-suppressor lipid. Oncogene. 2016;35:2801-12 pubmed 出版商
  700. Vennin C, Spruyt N, Dahmani F, Julien S, Bertucci F, Finetti P, et al. H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget. 2015;6:29209-23 pubmed 出版商
  701. Salim H, Zong D, Hååg P, Novak M, Mörk B, Lewensohn R, et al. DKK1 is a potential novel mediator of cisplatin-refractoriness in non-small cell lung cancer cell lines. BMC Cancer. 2015;15:628 pubmed 出版商
  702. Yoo M, Kim B, Lee S, Jeong H, Park J, Seo D, et al. Syntaxin 4 regulates the surface localization of a promyogenic receptor Cdo thereby promoting myogenic differentiation. Skelet Muscle. 2015;5:28 pubmed 出版商
  703. Plescher M, Teleman A, Demetriades C. TSC2 mediates hyperosmotic stress-induced inactivation of mTORC1. Sci Rep. 2015;5:13828 pubmed 出版商
  704. Jeon J, Kim S, Park K, Yun M. The bifunctional autophagic flux by 2-deoxyglucose to control survival or growth of prostate cancer cells. BMC Cancer. 2015;15:623 pubmed 出版商
  705. Mizuno S, Hanamura I, Ota A, Karnan S, Narita T, Ri M, et al. Overexpression of salivary-type amylase reduces the sensitivity to bortezomib in multiple myeloma cells. Int J Hematol. 2015;102:569-78 pubmed 出版商
  706. Li M, Yang S, Xing B, Ferguson B, Gulchina Y, Li Y, et al. LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment. Exp Neurol. 2015;273:190-201 pubmed 出版商
  707. Yao K, Wu J, Zhang J, Bo J, Hong Z, Zu H. Protective Effect of DHT on Apoptosis Induced by U18666A via PI3K/Akt Signaling Pathway in C6 Glial Cell Lines. Cell Mol Neurobiol. 2016;36:801-9 pubmed 出版商
  708. Sasaki N, Itakura Y, Toyoda M. Ganglioside GM1 Contributes to the State of Insulin Resistance in Senescent Human Arterial Endothelial Cells. J Biol Chem. 2015;290:25475-86 pubmed 出版商
  709. Ebert S, Dyle M, Bullard S, Dierdorff J, Murry D, Fox D, et al. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy. J Biol Chem. 2015;290:25497-511 pubmed 出版商
  710. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  711. Thijssen R, Ter Burg J, van Bochove G, de Rooij M, Kuil A, Jansen M, et al. The pan phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) blocks survival, adhesion and proliferation of primary chronic lymphocytic leukemia cells. Leukemia. 2016;30:337-45 pubmed 出版商
  712. Xia H, Najafov A, Geng J, Galan Acosta L, Han X, Guo Y, et al. Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. J Cell Biol. 2015;210:705-16 pubmed 出版商
  713. Chiang K, Chen H, Hsu S, Pang J, Wang S, Hsu J, et al. PTEN insufficiency modulates ER+ breast cancer cell cycle progression and increases cell growth in vitro and in vivo. Drug Des Devel Ther. 2015;9:4631-8 pubmed 出版商
  714. Lee Y, Yun M, Kim H, Jeon B, Park B, Lee B, et al. Exogenous administration of DLK1 ameliorates hepatic steatosis and regulates gluconeogenesis via activation of AMPK. Int J Obes (Lond). 2016;40:356-65 pubmed 出版商
  715. Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6:25856-67 pubmed 出版商
  716. Zarpelon A, Rodrigues F, Lopes A, Souza G, Carvalho T, Pinto L, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54-65 pubmed 出版商
  717. Kumarasamy V, Shin Y, White J, Sun D. Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer. 2015;15:599 pubmed 出版商
  718. Feng R, Ye J, Zhou C, Qi L, Fu Z, Yan B, et al. Calreticulin down-regulation inhibits the cell growth, invasion and cell cycle progression of human hepatocellular carcinoma cells. Diagn Pathol. 2015;10:149 pubmed 出版商
  719. Tuncay H, Brinkmann B, Steinbacher T, Schürmann A, Gerke V, Iden S, et al. JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis. Nat Commun. 2015;6:8128 pubmed 出版商
  720. Chang C, Lin W, Pai L, Lee H, Wu S, Ding S, et al. Cytoophidium assembly reflects upregulation of IMPDH activity. J Cell Sci. 2015;128:3550-5 pubmed 出版商
  721. Zhao C, Su Y, Zhang J, Feng Q, Qu L, Wang L, et al. Fibrinogen-derived fibrinostatin inhibits tumor growth through anti-angiogenesis. Cancer Sci. 2015;106:1596-606 pubmed 出版商
  722. Chang C, Zhang M, Rajapakshe K, Coarfa C, Edwards D, Huang S, et al. Mammary Stem Cells and Tumor-Initiating Cells Are More Resistant to Apoptosis and Exhibit Increased DNA Repair Activity in Response to DNA Damage. Stem Cell Reports. 2015;5:378-91 pubmed 出版商
  723. Chang L, Zhao D, Liu H, Wang Q, Zhang P, Li C, et al. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma. Mol Med Rep. 2015;12:6702-10 pubmed 出版商
  724. Xie R, He W, Shen M, Shou X, Wang Y, Bao W, et al. Specific inhibition of mTOR pathway induces anti-proliferative effect and decreases the hormone secretion in cultured pituitary adenoma cells. J Neurooncol. 2015;125:79-89 pubmed 出版商
  725. Garwood C, Ratcliffe L, Morgan S, Simpson J, Owens H, Vazquez Villaseñor I, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51 pubmed 出版商
  726. Sabet O, Stockert R, Xouri G, Brüggemann Y, Stanoev A, Bastiaens P. Ubiquitination switches EphA2 vesicular traffic from a continuous safeguard to a finite signalling mode. Nat Commun. 2015;6:8047 pubmed 出版商
  727. Mughal A, Grieg Z, Skjellegrind H, Fayzullin A, Lamkhannat M, Joel M, et al. Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells. Mol Cancer. 2015;14:160 pubmed 出版商
  728. Fu Y, Cruz Monserrate Z, Helen Lin H, Chung Y, Ji B, Lin S, et al. Ductal activation of oncogenic KRAS alone induces sarcomatoid phenotype. Sci Rep. 2015;5:13347 pubmed 出版商
  729. Barbone D, Follo C, Echeverry N, Gerbaudo V, Klabatsa A, Bueno R, et al. Autophagy Correlates with the Therapeutic Responsiveness of Malignant Pleural Mesothelioma in 3D Models. PLoS ONE. 2015;10:e0134825 pubmed 出版商
  730. Chiang C, Uzoma I, Lane D, MemiÅ¡ević V, Alem F, Yao K, et al. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection. Front Microbiol. 2015;6:683 pubmed 出版商
  731. Álvaro Bartolomé M, García Sevilla J. The neuroplastic index p-FADD/FADD and phosphoprotein PEA-15, interacting at GABAA receptor, are upregulated in brain cortex during midazolam-induced hypnosis in mice. Eur Neuropsychopharmacol. 2015;25:2131-44 pubmed 出版商
  732. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed 出版商
  733. Saeed M, Andreo U, Chung H, Espiritu C, Branch A, Silva J, et al. SEC14L2 enables pan-genotype HCV replication in cell culture. Nature. 2015;524:471-5 pubmed 出版商
  734. Hu X, Tang Z, Li Y, Liu W, Zhang S, Wang B, et al. Deletion of the tyrosine phosphatase Shp2 in Sertoli cells causes infertility in mice. Sci Rep. 2015;5:12982 pubmed 出版商
  735. Morancho B, Martínez Barriocanal Ã, Villanueva J, Arribas J. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Res. 2015;17:106 pubmed 出版商
  736. Zeng Z, Jing D, Zhang X, Duan Y, Xue F. Cyclic mechanical stretch promotes energy metabolism in osteoblast-like cells through an mTOR signaling-associated mechanism. Int J Mol Med. 2015;36:947-56 pubmed 出版商
  737. Tzenaki N, Aivaliotis M, Papakonstanti E. Focal adhesion kinase phosphorylates the phosphatase and tensin homolog deleted on chromosome 10 under the control of p110δ phosphoinositide-3 kinase. FASEB J. 2015;29:4840-52 pubmed 出版商
  738. Simard E, Söllradl T, Maltais J, Boucher J, D Orléans Juste P, Grandbois M. Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function. PLoS ONE. 2015;10:e0128881 pubmed 出版商
  739. Morley T, Xia J, Scherer P. Selective enhancement of insulin sensitivity in the mature adipocyte is sufficient for systemic metabolic improvements. Nat Commun. 2015;6:7906 pubmed 出版商
  740. Ahn J, Li J, Chen E, Kent D, Park H, Green A. JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation. Oncogene. 2016;35:2235-46 pubmed 出版商
  741. Khalil H, Loukili N, Regamey A, Cuesta Marbán A, Santori E, Huber M, et al. The caspase-3-p120-RasGAP module generates a NF-κB repressor in response to cellular stress. J Cell Sci. 2015;128:3502-13 pubmed 出版商
  742. Wostradowski T, Gudi V, Pul R, Gingele S, Lindquist J, Stangel M, et al. Effect of interferon-β1b on CXCR4-dependent chemotaxis in T cells from multiple sclerosis patients. Clin Exp Immunol. 2015;182:162-72 pubmed 出版商
  743. Pencik J, Schlederer M, Gruber W, Unger C, Walker S, Chalaris A, et al. STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun. 2015;6:7736 pubmed 出版商
  744. Dahlhoff M, Schäfer M, Muzumdar S, Rose C, Schneider M. ERBB3 is required for tumor promotion in a mouse model of skin carcinogenesis. Mol Oncol. 2015;9:1825-33 pubmed 出版商
  745. Luo J, Wu N, Jiang B, Wang L, Wang S, Li X, et al. Marine Bromophenol Derivative 3,4-Dibromo-5-(2-bromo-3,4-dihydroxy-6-isopropoxymethyl benzyl)benzene-1,2-diol Protects Hepatocytes from Lipid-Induced Cell Damage and Insulin Resistance via PTP1B Inhibition. Mar Drugs. 2015;13:4452-69 pubmed 出版商
  746. Sarma P, Bag I, Ramaiah M, Kamal A, Bhadra U, Pal Bhadra M. Bisindole-PBD regulates breast cancer cell proliferation via SIRT-p53 axis. Cancer Biol Ther. 2015;16:1486-501 pubmed 出版商
  747. Cheng C, Lin J, Tang N, Kao S, Hsieh C. Electroacupuncture at different frequencies (5Hz and 25Hz) ameliorates cerebral ischemia-reperfusion injury in rats: possible involvement of p38 MAPK-mediated anti-apoptotic signaling pathways. BMC Complement Altern Med. 2015;15:241 pubmed 出版商
  748. Geletu M, Guy S, Greer S, Raptis L. Differential effects of polyoma virus middle tumor antigen mutants upon gap junctional, intercellular communication. Exp Cell Res. 2015;336:223-31 pubmed 出版商
  749. Lee M, Jeong M, Lee H, Han H, Ko A, Hewitt S, et al. PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis. Nat Commun. 2015;6:7769 pubmed 出版商
  750. Zhou J, Joshi B, Duan X, Pant A, Qiu Z, Kuick R, et al. EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging. Clin Transl Gastroenterol. 2015;6:e101 pubmed 出版商
  751. Jiang S, Zou Z, Nie P, Wen R, Xiao Y, Tang J. Synergistic Effects between mTOR Complex 1/2 and Glycolysis Inhibitors in Non-Small-Cell Lung Carcinoma Cells. PLoS ONE. 2015;10:e0132880 pubmed 出版商
  752. Lin C, Pan C, Wang C, Liu S, Hsiao L, Yang C. Tumor necrosis factor-alpha induces VCAM-1-mediated inflammation via c-Src-dependent transactivation of EGF receptors in human cardiac fibroblasts. J Biomed Sci. 2015;22:53 pubmed 出版商
  753. Schipany K, Rosner M, Ionce L, Hengstschläger M, Kovacic B. eIF3 controls cell size independently of S6K1-activity. Oncotarget. 2015;6:24361-75 pubmed
  754. García Pérez D, Laorden M, Milanés M. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration. Int J Neuropsychopharmacol. 2015;19: pubmed 出版商
  755. Li Y, Shen C, Zhu B, Shi F, Eisen H, Chen J. Persistent Antigen and Prolonged AKT-mTORC1 Activation Underlie Memory CD8 T Cell Impairment in the Absence of CD4 T Cells. J Immunol. 2015;195:1591-8 pubmed 出版商
  756. Gorojod R, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler M. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions. Free Radic Biol Med. 2015;87:237-51 pubmed 出版商
  757. Chen K, Tsai M, Wu C, Jou M, Wei I, Huang C. AMPA Receptor-mTOR Activation is Required for the Antidepressant-Like Effects of Sarcosine during the Forced Swim Test in Rats: Insertion of AMPA Receptor may Play a Role. Front Behav Neurosci. 2015;9:162 pubmed 出版商
  758. Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed 出版商
  759. Laberge R, Sun Y, Orjalo A, Patil C, Freund A, Zhou L, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17:1049-61 pubmed 出版商
  760. Reis C, Chen P, Srinivasan S, Aguet F, Mettlen M, Schmid S. Crosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis. EMBO J. 2015;34:2132-46 pubmed 出版商
  761. McGowan S, McCoy D. Fibroblast growth factor signaling in myofibroblasts differs from lipofibroblasts during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol. 2015;309:L463-74 pubmed 出版商
  762. Zhao L, Liu S, Che X, Hou K, Ma Y, Li C, et al. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors. Int J Mol Med. 2015;36:645-52 pubmed 出版商
  763. Andersson L, Scharin Täng M, Lundqvist A, Lindbom M, Mardani I, Fogelstrand P, et al. Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischaemia. Cardiovasc Res. 2015;107:478-86 pubmed 出版商
  764. Seo G, Ho M, Bui N, Kim Y, Koh D, Lim Y, et al. Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. J Biomed Sci. 2015;22:47 pubmed 出版商
  765. Ding B, Gomi K, Rafii S, Crystal R, Walters M. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells. J Cell Sci. 2015;128:2983-8 pubmed 出版商
  766. Zidek L, Ackermann T, Hartleben G, Eichwald S, Kortman G, Kiehntopf M, et al. Deficiency in mTORC1-controlled C/EBPβ-mRNA translation improves metabolic health in mice. EMBO Rep. 2015;16:1022-36 pubmed 出版商
  767. Westcot S, Hatzold J, Urban M, Richetti S, Skuster K, Harm R, et al. Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis. PLoS ONE. 2015;10:e0130688 pubmed 出版商
  768. Pickard A, McDade S, McFarland M, McCluggage W, Wheeler C, McCance D. HPV16 Down-Regulates the Insulin-Like Growth Factor Binding Protein 2 to Promote Epithelial Invasion in Organotypic Cultures. PLoS Pathog. 2015;11:e1004988 pubmed 出版商
  769. Tan X, Xue Y, Ma T, Wang X, Li J, Lan L, et al. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol Neurodegener. 2015;10:24 pubmed 出版商
  770. Chang C, Lin C, Lu C, Martel J, Ko Y, Ojcius D, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun. 2015;6:7489 pubmed 出版商
  771. Braccini L, Ciraolo E, Campa C, Perino A, Longo D, Tibolla G, et al. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat Commun. 2015;6:7400 pubmed 出版商
  772. Carthy J, Sundqvist A, Heldin A, van Dam H, Kletsas D, Heldin C, et al. Tamoxifen Inhibits TGF-β-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2. J Cell Physiol. 2015;230:3084-92 pubmed 出版商
  773. Heinemann A, Cullinane C, De Paoli Iseppi R, Wilmott J, Gunatilake D, Madore J, et al. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling. Oncotarget. 2015;6:21507-21 pubmed
  774. Yang L, Li Y, Bhattacharya A, Zhang Y. Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant. EBioMedicine. 2015;2:396-405 pubmed
  775. Hutchinson K, Johnson D, Johnson A, Sanchez V, Kuba M, Lu P, et al. ERBB activation modulates sensitivity to MEK1/2 inhibition in a subset of driver-negative melanoma. Oncotarget. 2015;6:22348-60 pubmed
  776. Li C, Siragy H. (Pro)renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose. Am J Physiol Endocrinol Metab. 2015;309:E302-10 pubmed 出版商
  777. Shen Y, Zeng L, Novosyadlyy R, Forest A, Zhu A, Korytko A, et al. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation. MAbs. 2015;7:931-45 pubmed 出版商
  778. Stoy C, Sundaram A, Rios Garcia M, Wang X, Seibert O, Zota A, et al. Transcriptional co-factor Transducin beta-like (TBL) 1 acts as a checkpoint in pancreatic cancer malignancy. EMBO Mol Med. 2015;7:1048-62 pubmed 出版商
  779. Koos B, Cane G, Grannas K, Löf L, ArngÃ¥rden L, Heldin J, et al. Proximity-dependent initiation of hybridization chain reaction. Nat Commun. 2015;6:7294 pubmed 出版商
  780. Albers P, Bojsen Møller K, Dirksen C, Serup A, Kristensen D, Frystyk J, et al. Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol. 2015;309:R510-24 pubmed 出版商
  781. Xie C, Wei D, Zhao L, Marchetto S, Mei L, Borg J, et al. Erbin is a novel substrate of the Sag-βTrCP E3 ligase that regulates KrasG12D-induced skin tumorigenesis. J Cell Biol. 2015;209:721-37 pubmed 出版商
  782. Kurppa K, Denessiouk K, Johnson M, Elenius K. Activating ERBB4 mutations in non-small cell lung cancer. Oncogene. 2016;35:1283-91 pubmed 出版商
  783. Ching J, Amiridis S, Stylli S, Bjorksten A, Kountouri N, Zheng T, et al. The peroxisome proliferator activated receptor gamma agonist pioglitazone increases functional expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in human glioblastoma cells. Oncotarget. 2015;6:21301-14 pubmed
  784. Jäger W, Xue H, Hayashi T, Janssen C, Awrey S, Wyatt A, et al. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget. 2015;6:21522-32 pubmed
  785. Min H, Yun H, Lee J, Lee H, Cho J, Jang H, et al. Targeting the insulin-like growth factor receptor and Src signaling network for the treatment of non-small cell lung cancer. Mol Cancer. 2015;14:113 pubmed 出版商
  786. Subathra M, Korrapati M, Howell L, Arthur J, Shayman J, Schnellmann R, et al. Kidney glycosphingolipids are elevated early in diabetic nephropathy and mediate hypertrophy of mesangial cells. Am J Physiol Renal Physiol. 2015;309:F204-15 pubmed 出版商
  787. Tréhoux S, Lahdaoui F, Delpu Y, Renaud F, Leteurtre E, Torrisani J, et al. Micro-RNAs miR-29a and miR-330-5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells. Biochim Biophys Acta. 2015;1853:2392-403 pubmed 出版商
  788. Zhang F, Cui J, Lv B, Yu B. Nicorandil protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Int J Mol Med. 2015;36:415-23 pubmed 出版商
  789. DiPilato L, Ahmad F, Harms M, Seale P, Manganiello V, Birnbaum M. The Role of PDE3B Phosphorylation in the Inhibition of Lipolysis by Insulin. Mol Cell Biol. 2015;35:2752-60 pubmed 出版商
  790. Liu D, Xiong H, Ellis A, Northrup N, Dobbin K, Shin D, et al. Canine spontaneous head and neck squamous cell carcinomas represent their human counterparts at the molecular level. PLoS Genet. 2015;11:e1005277 pubmed 出版商
  791. Sawada T, Arai D, Jing X, Furushima K, Chen Q, Kawakami K, et al. Trans-Activation between EphA and FGFR Regulates Self-Renewal and Differentiation of Mouse Embryonic Neural Stem/Progenitor Cells via Differential Activation of FRS2α. PLoS ONE. 2015;10:e0128826 pubmed 出版商
  792. Vinue A, Andrés Blasco I, Herrero Cervera A, Piqueras L, Andres V, Burks D, et al. Ink4/Arf locus restores glucose tolerance and insulin sensitivity by reducing hepatic steatosis and inflammation in mice with impaired IRS2-dependent signalling. Biochim Biophys Acta. 2015;1852:1729-42 pubmed 出版商
  793. Nagata T, Yasukawa H, Kyogoku S, Oba T, Takahashi J, Nohara S, et al. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules. PLoS ONE. 2015;10:e0127942 pubmed 出版商
  794. Zhu D, Wang Z, Zhao J, Calimeri T, Meng J, Hideshima T, et al. The Cyclophilin A-CD147 complex promotes the proliferation and homing of multiple myeloma cells. Nat Med. 2015;21:572-80 pubmed 出版商
  795. Li L, Qi L, Liang Z, Song W, Liu Y, Wang Y, et al. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells. Int J Mol Med. 2015;36:113-22 pubmed 出版商
  796. Petrov D, Pedrós I, Artiach G, Sureda F, Barroso E, Pallas M, et al. High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents. Biochim Biophys Acta. 2015;1852:1687-99 pubmed 出版商
  797. Yu J, Ramasamy T, Murphy N, Holt M, Czapiewski R, Wei S, et al. PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation. Nat Commun. 2015;6:7212 pubmed 出版商
  798. Cheung C, Bendris N, Paul C, Hamieh A, Anouar Y, Hahne M, et al. Cyclin A2 modulates EMT via β-catenin and phospholipase C pathways. Carcinogenesis. 2015;36:914-24 pubmed 出版商
  799. Li P, Sheu M, Ma W, Pan C, Sheu J, Wu C. Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells. Mar Drugs. 2015;13:3046-60 pubmed 出版商
  800. Revuelta López E, Cal R, Herraiz Martínez A, De Gonzalo Calvo D, Nasarre L, Roura S, et al. Hypoxia-driven sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) downregulation depends on low-density lipoprotein receptor-related protein 1 (LRP1)-signalling in cardiomyocytes. J Mol Cell Cardiol. 2015;85:25-36 pubmed 出版商
  801. Choi H, Zhang H, Park H, Choi K, Lee H, Agrawal V, et al. Yes-associated protein regulates endothelial cell contact-mediated expression of angiopoietin-2. Nat Commun. 2015;6:6943 pubmed 出版商
  802. Heinen A, Beyer F, Tzekova N, Hartung H, Küry P. Fingolimod induces the transition to a nerve regeneration promoting Schwann cell phenotype. Exp Neurol. 2015;271:25-35 pubmed 出版商
  803. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  804. Rios Doria J, Sabol D, Chesebrough J, Stewart D, Xu L, Tammali R, et al. A Monoclonal Antibody to ADAM17 Inhibits Tumor Growth by Inhibiting EGFR and Non-EGFR-Mediated Pathways. Mol Cancer Ther. 2015;14:1637-49 pubmed 出版商
  805. Sadowski S, Boufraqech M, Zhang L, Mehta A, Kapur P, Zhang Y, et al. Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis. Oncotarget. 2015;6:18038-49 pubmed
  806. Waters A, Stewart J, Atigadda V, Mroczek Musulman E, Muccio D, Grubbs C, et al. Preclinical Evaluation of a Novel RXR Agonist for the Treatment of Neuroblastoma. Mol Cancer Ther. 2015;14:1559-69 pubmed 出版商
  807. Liu X, Wang J, Li S, Li L, Huang M, Zhang Y, et al. Histone deacetylase 3 expression correlates with vasculogenic mimicry through the phosphoinositide3-kinase / ERK-MMP-laminin5γ2 signaling pathway. Cancer Sci. 2015;106:857-66 pubmed 出版商
  808. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed 出版商
  809. Buonora J, Mousseau M, Jacobowitz D, Lazarus R, Yarnell A, Olsen C, et al. Autoimmune Profiling Reveals Peroxiredoxin 6 as a Candidate Traumatic Brain Injury Biomarker. J Neurotrauma. 2015;32:1805-14 pubmed 出版商
  810. Lee E, Park E, Mun H, Chang E, Ko J, Kim D, et al. Soluble receptor for advanced glycation end products inhibits disease progression in autosomal dominant polycystic kidney disease by down-regulating cell proliferation. FASEB J. 2015;29:3506-14 pubmed 出版商
  811. Yeom C, Kim D, Park M, Choi J, Jeong J, Wi A, et al. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. Biochem Biophys Res Commun. 2015;461:568-74 pubmed 出版商
  812. Dungan C, Li Z, Wright D, Williamson D. Hyperactive mTORC1 signaling is unaffected by metformin treatment in aged skeletal muscle. Muscle Nerve. 2016;53:107-17 pubmed 出版商
  813. Park J, Zhao L, Willingham M, Cheng S. Oncogenic mutations of thyroid hormone receptor β. Oncotarget. 2015;6:8115-31 pubmed
  814. Quan C, Xie B, Wang H, Chen S. PKB-Mediated Thr649 Phosphorylation of AS160/TBC1D4 Regulates the R-Wave Amplitude in the Heart. PLoS ONE. 2015;10:e0124491 pubmed 出版商
  815. Mendonsa A, Chalfant M, Gorden L, VanSaun M. Modulation of the leptin receptor mediates tumor growth and migration of pancreatic cancer cells. PLoS ONE. 2015;10:e0126686 pubmed 出版商
  816. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed 出版商
  817. Ledee D, Kajimoto M, O Kelly Priddy C, Olson A, Isern N, Robillard Frayne I, et al. Pyruvate modifies metabolic flux and nutrient sensing during extracorporeal membrane oxygenation in an immature swine model. Am J Physiol Heart Circ Physiol. 2015;309:H137-46 pubmed 出版商
  818. Liu H, Du L, Wang R, Wei C, Liu B, Zhu L, et al. High frequency of loss of PTEN expression in human solid salivary adenoid cystic carcinoma and its implication for targeted therapy. Oncotarget. 2015;6:11477-91 pubmed
  819. Jang D, Kwon H, Jeong K, Lee J, Pak Y. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor. J Cell Sci. 2015;128:2179-90 pubmed 出版商
  820. Chen H, Huang W, Yang L, Lin C. The PTEN-AKT-mTOR/RICTOR Pathway in Nasal Natural Killer Cell Lymphoma Is Activated by miR-494-3p via PTEN But Inhibited by miR-142-3p via RICTOR. Am J Pathol. 2015;185:1487-99 pubmed 出版商
  821. Kim H, Kim I, Dong Y, Lee I, Kim J, Kim J, et al. Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression. Int J Mol Sci. 2015;16:8772-88 pubmed 出版商
  822. Bugaj L, Spelke D, Mesuda C, Varedi M, Kane R, Schaffer D. Regulation of endogenous transmembrane receptors through optogenetic Cry2 clustering. Nat Commun. 2015;6:6898 pubmed 出版商
  823. Koenig S, Moreau C, Dupont G, Scoumanne A, Erneux C. Regulation of NGF-driven neurite outgrowth by Ins(1,4,5)P3 kinase is specifically associated with the two isoenzymes Itpka and Itpkb in a model of PC12 cells. FEBS J. 2015;282:2553-69 pubmed 出版商
  824. Roffé M, Lupinacci F, Soares L, Hajj G, Martins V. Two widely used RSK inhibitors, BI-D1870 and SL0101, alter mTORC1 signaling in a RSK-independent manner. Cell Signal. 2015;27:1630-42 pubmed 出版商
  825. Moreira J, Wohlwend M, Alves M, Wisløff U, Bye A. A small molecule activator of AKT does not reduce ischemic injury of the rat heart. J Transl Med. 2015;13:76 pubmed 出版商
  826. Bettaieb A, Jiang J, Sasaki Y, Chao T, Kiss Z, Chen X, et al. Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice. Gastroenterology. 2015;149:468-80.e10 pubmed 出版商
  827. Cookman C, Belcher S. Estrogen Receptor-β Up-Regulates IGF1R Expression and Activity to Inhibit Apoptosis and Increase Growth of Medulloblastoma. Endocrinology. 2015;156:2395-408 pubmed 出版商
  828. Tancioni I, Miller N, Uryu S, Lawson C, Jean C, Chen X, et al. FAK activity protects nucleostemin in facilitating breast cancer spheroid and tumor growth. Breast Cancer Res. 2015;17:47 pubmed 出版商
  829. Chien P, Lin C, Hsiao L, Yang C. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol. 2015;409:59-72 pubmed 出版商
  830. Ip L, Poulogiannis G, Viciano F, Sasaki J, Kofuji S, Spanswick V, et al. Loss of INPP4B causes a DNA repair defect through loss of BRCA1, ATM and ATR and can be targeted with PARP inhibitor treatment. Oncotarget. 2015;6:10548-62 pubmed
  831. Navis A, van Lith S, van Duijnhoven S, de Pooter M, Yetkin Arik B, Wesseling P, et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol. 2015;130:131-44 pubmed 出版商
  832. Ohashi M, Holthaus A, Calderwood M, Lai C, Krastins B, Sarracino D, et al. The EBNA3 family of Epstein-Barr virus nuclear proteins associates with the USP46/USP12 deubiquitination complexes to regulate lymphoblastoid cell line growth. PLoS Pathog. 2015;11:e1004822 pubmed 出版商
  833. Janes K. An analysis of critical factors for quantitative immunoblotting. Sci Signal. 2015;8:rs2 pubmed 出版商
  834. Ota A, Kovary K, Wu O, Ahrends R, Shen W, Costa M, et al. Using SRM-MS to quantify nuclear protein abundance differences between adipose tissue depots of insulin-resistant mice. J Lipid Res. 2015;56:1068-78 pubmed 出版商
  835. Sadok A, McCarthy A, Caldwell J, Collins I, Garrett M, Yeo M, et al. Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer Res. 2015;75:2272-84 pubmed 出版商
  836. Brohée L, Demine S, Willems J, Arnould T, Colige A, Deroanne C. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget. 2015;6:11264-80 pubmed
  837. Yamakoshi K, Katano S, Iida M, Kimura H, Okuma A, Ikemoto Uezumi M, et al. Dysregulation of the Bmi-1/p16(Ink⁴a) pathway provokes an aging-associated decline of submandibular gland function. Aging Cell. 2015;14:616-24 pubmed 出版商
  838. Zhang W, Hou J, Wang X, Jiang R, Yin Y, Ji J, et al. PTPRO-mediated autophagy prevents hepatosteatosis and tumorigenesis. Oncotarget. 2015;6:9420-33 pubmed
  839. Shi Y, Chen J, Karner C, Long F. Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation. Proc Natl Acad Sci U S A. 2015;112:4678-83 pubmed 出版商
  840. Zhang Z, Zhang T, Zhou Y, Wei X, Zhu J, Zhang J, et al. Activated phosphatidylinositol 3-kinase/Akt inhibits the transition of endothelial progenitor cells to mesenchymal cells by regulating the forkhead box subgroup O-3a signaling. Cell Physiol Biochem. 2015;35:1643-53 pubmed 出版商
  841. Marathe S, Liu S, Brai E, Kaczarowski M, Alberi L. Notch signaling in response to excitotoxicity induces neurodegeneration via erroneous cell cycle reentry. Cell Death Differ. 2015;22:1775-84 pubmed 出版商
  842. Ye R, Wang M, Wang Q, Scherer P. Adiponectin-mediated antilipotoxic effects in regenerating pancreatic islets. Endocrinology. 2015;156:2019-28 pubmed 出版商
  843. Fallahi Sichani M, Moerke N, Niepel M, Zhang T, Gray N, Sorger P. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol Syst Biol. 2015;11:797 pubmed 出版商
  844. Hoekstra E, Kodach L, Das A, Ruela de Sousa R, Ferreira C, Hardwick J, et al. Low molecular weight protein tyrosine phosphatase (LMWPTP) upregulation mediates malignant potential in colorectal cancer. Oncotarget. 2015;6:8300-12 pubmed
  845. Balhara B, Burkart A, Topcu V, Lee Y, Cowan C, Kahn C, et al. Severe insulin resistance alters metabolism in mesenchymal progenitor cells. Endocrinology. 2015;156:2039-48 pubmed 出版商
  846. Yazlovitskaya E, Tseng H, Viquez O, Tu T, Mernaugh G, McKee K, et al. Integrin α3β1 regulates kidney collecting duct development via TRAF6-dependent K63-linked polyubiquitination of Akt. Mol Biol Cell. 2015;26:1857-74 pubmed 出版商
  847. Chan N, He S, Spee C, Ishikawa K, Hinton D. Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS ONE. 2015;10:e0120587 pubmed 出版商
  848. Kann M, Bae E, Lenz M, Li L, Trannguyen B, Schumacher V, et al. WT1 targets Gas1 to maintain nephron progenitor cells by modulating FGF signals. Development. 2015;142:1254-66 pubmed 出版商
  849. Venkatesh A, Ma S, Le Y, Hall M, Rüegg M, Punzo C. Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice. J Clin Invest. 2015;125:1446-58 pubmed 出版商
  850. Graziani G, Artuso S, De Luca A, Muzi A, Rotili D, Scimeca M, et al. A new water soluble MAPK activator exerts antitumor activity in melanoma cells resistant to the BRAF inhibitor vemurafenib. Biochem Pharmacol. 2015;95:16-27 pubmed 出版商
  851. Tapia O, Fong L, Huber M, Young S, Gerace L. Nuclear envelope protein Lem2 is required for mouse development and regulates MAP and AKT kinases. PLoS ONE. 2015;10:e0116196 pubmed 出版商
  852. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed 出版商
  853. Brulhart Meynet M, Braunersreuther V, Brinck J, Montecucco F, Prost J, Thomas A, et al. Improving reconstituted HDL composition for efficient post-ischemic reduction of ischemia reperfusion injury. PLoS ONE. 2015;10:e0119664 pubmed 出版商
  854. Harris White M, Ferbas K, Johnson M, Eslami P, Poteshkina A, Venkova K, et al. A cell-penetrating ester of the neural metabolite lanthionine ketimine stimulates autophagy through the mTORC1 pathway: Evidence for a mechanism of action with pharmacological implications for neurodegenerative pathologies. Neurobiol Dis. 2015;84:60-8 pubmed 出版商
  855. Ma W, Na M, Tang C, Wang H, Lin Z. Overexpression of N-myc downstream-regulated gene 1 inhibits human glioma proliferation and invasion via phosphoinositide 3-kinase/AKT pathways. Mol Med Rep. 2015;12:1050-8 pubmed 出版商
  856. Panneerselvam J, Jin J, Shanker M, Lauderdale J, BATES J, Wang Q, et al. IL-24 inhibits lung cancer cell migration and invasion by disrupting the SDF-1/CXCR4 signaling axis. PLoS ONE. 2015;10:e0122439 pubmed 出版商
  857. Qiao Y, Shiue C, Zhu J, Zhuang T, Jonsson P, Wright A, et al. AP-1-mediated chromatin looping regulates ZEB2 transcription: new insights into TNFα-induced epithelial-mesenchymal transition in triple-negative breast cancer. Oncotarget. 2015;6:7804-14 pubmed
  858. Gorantla S, Zirlik K, Reiter A, Yu C, Illert A, von Bubnoff N, et al. F604S exchange in FIP1L1-PDGFRA enhances FIP1L1-PDGFRA protein stability via SHP-2 and SRC: a novel mode of kinase inhibitor resistance. Leukemia. 2015;29:1763-70 pubmed 出版商
  859. Maione F, Oliaro Bosso S, Meda C, Di Nicolantonio F, Bussolino F, Balliano G, et al. The cholesterol biosynthesis enzyme oxidosqualene cyclase is a new target to impair tumour angiogenesis and metastasis dissemination. Sci Rep. 2015;5:9054 pubmed 出版商
  860. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  861. Zhang W, Cai J, Chen S, Zheng X, Hu S, Dong W, et al. Paclitaxel resistance in MCF-7/PTX cells is reversed by paeonol through suppression of the SET/phosphatidylinositol 3-kinase/Akt pathway. Mol Med Rep. 2015;12:1506-14 pubmed 出版商
  862. Shibayama Y, Kondo T, Ohya H, Fujisawa S, Teshima T, Iseki K. Upregulation of microRNA-126-5p is associated with drug resistance to cytarabine and poor prognosis in AML patients. Oncol Rep. 2015;33:2176-82 pubmed 出版商
  863. Wengrod J, Wang D, Weiss S, Zhong H, Osman I, Gardner L. Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma. Sci Signal. 2015;8:ra27 pubmed 出版商
  864. Wilson F, Johannessen C, Piccioni F, Tamayo P, Kim J, Van Allen E, et al. A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell. 2015;27:397-408 pubmed 出版商
  865. Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3β/CTNNB1 signaling pathway. Sci Rep. 2015;5:8997 pubmed 出版商
  866. Geurts L, Everard A, Van Hul M, Essaghir A, Duparc T, Matamoros S, et al. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat Commun. 2015;6:6495 pubmed 出版商
  867. Münzberg C, Höhn K, Krndija D, Maaß U, Bartsch D, Slater E, et al. IGF-1 drives chromogranin A secretion via activation of Arf1 in human neuroendocrine tumour cells. J Cell Mol Med. 2015;19:948-59 pubmed 出版商
  868. McKee C, Sigala B, Soeda J, Mouralidarane A, Morgan M, Mazzoccoli G, et al. Amphiregulin activates human hepatic stellate cells and is upregulated in non alcoholic steatohepatitis. Sci Rep. 2015;5:8812 pubmed 出版商
  869. Wu J, Pipathsouk A, Keizer Gunnink A, Fusetti F, Alkema W, Liu S, et al. Homer3 regulates the establishment of neutrophil polarity. Mol Biol Cell. 2015;26:1629-39 pubmed 出版商
  870. Vogel C, Smit M, Maddalo G, Possik P, Sparidans R, van der Burg S, et al. Cooperative induction of apoptosis in NRAS mutant melanoma by inhibition of MEK and ROCK. Pigment Cell Melanoma Res. 2015;28:307-17 pubmed 出版商
  871. Yi Y, Kang H, Bae E, Oh S, Seong Y, Bae I. β-TrCP1 degradation is a novel action mechanism of PI3K/mTOR inhibitors in triple-negative breast cancer cells. Exp Mol Med. 2015;47:e143 pubmed 出版商
  872. Sanjurjo L, Amézaga N, Aran G, Naranjo Gómez M, Arias L, Armengol C, et al. The human CD5L/AIM-CD36 axis: A novel autophagy inducer in macrophages that modulates inflammatory responses. Autophagy. 2015;11:487-502 pubmed 出版商
  873. Stolze B, Reinhart S, Bulllinger L, Fröhling S, Scholl C. Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines. Sci Rep. 2015;5:8535 pubmed 出版商
  874. Fumagalli I, Dugue D, Bibault J, Clémenson C, Vozenin M, Mondini M, et al. Cytotoxic effect of lapatinib is restricted to human papillomavirus-positive head and neck squamous cell carcinoma cell lines. Onco Targets Ther. 2015;8:335-45 pubmed 出版商
  875. Okita N, Honda Y, Kishimoto N, Liao W, Azumi E, Hashimoto Y, et al. Supplementation of strontium to a chondrogenic medium promotes chondrogenic differentiation of human dedifferentiated fat cells. Tissue Eng Part A. 2015;21:1695-704 pubmed 出版商
  876. Momeny M, Saunus J, Marturana F, McCart Reed A, Black D, Sala G, et al. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget. 2015;6:3932-46 pubmed
  877. Jeffery J, Neyt C, Moore W, Paterson S, Bower N, Chenevix Trench G, et al. Cep55 regulates embryonic growth and development by promoting Akt stability in zebrafish. FASEB J. 2015;29:1999-2009 pubmed 出版商
  878. Kodigepalli K, Nanjundan M. Induction of PLSCR1 in a STING/IRF3-dependent manner upon vector transfection in ovarian epithelial cells. PLoS ONE. 2015;10:e0117464 pubmed 出版商
  879. Dametto P, Lakkaraju A, Bridel C, Villiger L, O CONNOR T, Herrmann U, et al. Neurodegeneration and unfolded-protein response in mice expressing a membrane-tethered flexible tail of PrP. PLoS ONE. 2015;10:e0117412 pubmed 出版商
  880. Castorina A, Waschek J, Marzagalli R, Cardile V, Drago F. PACAP interacts with PAC1 receptors to induce tissue plasminogen activator (tPA) expression and activity in schwann cell-like cultures. PLoS ONE. 2015;10:e0117799 pubmed 出版商
  881. Papadakis A, Sun C, Knijnenburg T, Xue Y, Grernrum W, Hölzel M, et al. SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer. Cell Res. 2015;25:445-58 pubmed 出版商
  882. Barrichon M, Hadi T, Wendremaire M, Ptasinski C, Seigneuric R, Marcion G, et al. Dose-dependent biphasic leptin-induced proliferation is caused by non-specific IL-6/NF-κB pathway activation in human myometrial cells. Br J Pharmacol. 2015;172:2974-90 pubmed 出版商
  883. González N, Martín Duce A, Martínez Arrieta F, Moreno Villegas Z, Portal Núñez S, Sanz R, et al. Effect of bombesin receptor subtype-3 and its synthetic agonist on signaling, glucose transport and metabolism in myocytes from patients with obesity and type 2 diabetes. Int J Mol Med. 2015;35:925-31 pubmed 出版商
  884. Schreiber K, Ortiz D, Academia E, Anies A, Liao C, Kennedy B. Rapamycin-mediated mTORC2 inhibition is determined by the relative expression of FK506-binding proteins. Aging Cell. 2015;14:265-73 pubmed 出版商
  885. Ju B, Chen W, Orr B, Spitsbergen J, Jia S, Eden C, et al. Oncogenic KRAS promotes malignant brain tumors in zebrafish. Mol Cancer. 2015;14:18 pubmed 出版商
  886. Kozlova N, Samoylenko A, Drobot L, Kietzmann T. Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog. 2016;55:170-81 pubmed 出版商
  887. Li S, Bhave D, Chow J, Riera T, Schlee S, Rauch S, et al. Quantitative analysis of receptor tyrosine kinase-effector coupling at functionally relevant stimulus levels. J Biol Chem. 2015;290:10018-36 pubmed 出版商
  888. Shaw A, Pickup M, Chytil A, Aakre M, Owens P, Moses H, et al. TGFβ signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions. PLoS ONE. 2015;10:e0117908 pubmed 出版商
  889. Chen Z, Shen H, Sun C, Yin L, Tang F, Zheng P, et al. Myeloid cell TRAF3 promotes metabolic inflammation, insulin resistance, and hepatic steatosis in obesity. Am J Physiol Endocrinol Metab. 2015;308:E460-9 pubmed 出版商
  890. Lee E, Kim S, Cho K. Reconstituted High-Density Lipoprotein Containing Human Growth Hormone-1 Shows Potent Tissue Regeneration Activity with Enhancement of Anti-Oxidant and Anti-Atherosclerotic Activities. Rejuvenation Res. 2015;18:245-56 pubmed 出版商
  891. Chandler R, Damrauer J, Raab J, Schisler J, Wilkerson M, Didion J, et al. Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat Commun. 2015;6:6118 pubmed 出版商
  892. Ammar A, Esmat A, Hassona M, Tadros M, Abdel Naim A, Guns E. The effect of pomegranate fruit extract on testosterone-induced BPH in rats. Prostate. 2015;75:679-92 pubmed 出版商
  893. Verma R, Marchese A. The endosomal sorting complex required for transport pathway mediates chemokine receptor CXCR4-promoted lysosomal degradation of the mammalian target of rapamycin antagonist DEPTOR. J Biol Chem. 2015;290:6810-24 pubmed 出版商
  894. López de Figueroa P, Lotz M, Blanco F, Caramés B. Autophagy activation and protection from mitochondrial dysfunction in human chondrocytes. Arthritis Rheumatol. 2015;67:966-76 pubmed 出版商
  895. Niemeyer B, Parrish J, Spoelstra N, Joyal T, Richer J, Jedlicka P. Variable expression of PIK3R3 and PTEN in Ewing Sarcoma impacts oncogenic phenotypes. PLoS ONE. 2015;10:e0116895 pubmed 出版商
  896. Buchner D, Charrier A, Srinivasan E, Wang L, Paulsen M, Ljungman M, et al. Zinc finger protein 407 (ZFP407) regulates insulin-stimulated glucose uptake and glucose transporter 4 (Glut4) mRNA. J Biol Chem. 2015;290:6376-86 pubmed 出版商
  897. Peres J, Mowla S, Prince S. The T-box transcription factor, TBX3, is a key substrate of AKT3 in melanomagenesis. Oncotarget. 2015;6:1821-33 pubmed
  898. Yoo J, Kim T, Kong S, Lee J, Choi W, Kim K, et al. Role of Mig-6 in hepatic glucose metabolism. J Diabetes. 2016;8:86-97 pubmed 出版商
  899. Kim S, Ebbert K, Cordeiro M, Romero M, Zhu J, Serna V, et al. Cell autonomous phosphoinositide 3-kinase activation in oocytes disrupts normal ovarian function through promoting survival and overgrowth of ovarian follicles. Endocrinology. 2015;156:1464-76 pubmed 出版商
  900. Azimzadeh O, Sievert W, Sarioglu H, Merl Pham J, Yentrapalli R, Bakshi M, et al. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res. 2015;14:1203-19 pubmed 出版商
  901. Blanchard Z, Paul B, Craft B, ElShamy W. BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers. Breast Cancer Res. 2015;17:5 pubmed 出版商
  902. Wang S, Amato K, Song W, Youngblood V, Lee K, Boothby M, et al. Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways. Mol Cell Biol. 2015;35:1299-313 pubmed 出版商
  903. Zhou W, Ke S, Huang Z, Flavahan W, Fang X, Paul J, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol. 2015;17:170-82 pubmed 出版商
  904. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed 出版商
  905. Sathyamurthy A, Yin D, Barik A, Shen C, Bean J, Figueiredo D, et al. ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination. Development. 2015;142:522-32 pubmed 出版商
  906. Karner C, Esen E, Okunade A, Patterson B, Long F. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling. J Clin Invest. 2015;125:551-62 pubmed 出版商
  907. Loeuillard E, Bertrand J, Herranen A, Melchior C, Guérin C, Coëffier M, et al. 2,4,6-trinitrobenzene sulfonic acid-induced chronic colitis with fibrosis and modulation of TGF-β1 signaling. World J Gastroenterol. 2014;20:18207-15 pubmed 出版商
  908. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  909. Boj S, Hwang C, Baker L, Chio I, Engle D, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160:324-38 pubmed 出版商
  910. Zheng H, Fu J, Xue P, Zhao R, Dong J, Liu D, et al. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion. Antioxid Redox Signal. 2015;22:819-31 pubmed 出版商
  911. Rogers R, Beaudoin M, Wheatley J, Wright D, Geiger P. Heat shock proteins: in vivo heat treatments reveal adipose tissue depot-specific effects. J Appl Physiol (1985). 2015;118:98-106 pubmed 出版商
  912. Mir S, George N, Zahoor L, Harms R, Guinn Z, SARVETNICK N. Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J Biol Chem. 2015;290:6071-85 pubmed 出版商
  913. Chen C, Hung T, Lee C, Wang L, Wu C, Ke C, et al. Berberine protects against neuronal damage via suppression of glia-mediated inflammation in traumatic brain injury. PLoS ONE. 2014;9:e115694 pubmed 出版商
  914. Lin T, Shih Y, Chen S, Lien C, Chang C, Huang T, et al. Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer's disease (APP/PS1) transgenic mice. Neurobiol Learn Mem. 2015;118:189-97 pubmed 出版商
  915. Azizi P, Zyla R, Guan S, Wang C, Liu J, Bolz S, et al. Clathrin-dependent entry and vesicle-mediated exocytosis define insulin transcytosis across microvascular endothelial cells. Mol Biol Cell. 2015;26:740-50 pubmed 出版商
  916. Lee S, Lee K, Lee J, Kang S, Kim H, Asahara T, et al. Selective Interference Targeting of Lnk in Umbilical Cord-Derived Late Endothelial Progenitor Cells Improves Vascular Repair, Following Hind Limb Ischemic Injury, via Regulation of JAK2/STAT3 Signaling. Stem Cells. 2015;33:1490-500 pubmed 出版商
  917. Zhang X, Cheng S, Bian K, Wang L, Zhang X, Yan B, et al. MicroRNA-26a promotes anoikis in human hepatocellular carcinoma cells by targeting alpha5 integrin. Oncotarget. 2015;6:2277-89 pubmed
  918. Ni H, Bhakta A, Wang S, Li Z, Manley S, Huang H, et al. Role of hypoxia inducing factor-1β in alcohol-induced autophagy, steatosis and liver injury in mice. PLoS ONE. 2014;9:e115849 pubmed 出版商
  919. Cebulla J, Huuse E, Pettersen K, van der Veen A, Kim E, Andersen S, et al. MRI reveals the in vivo cellular and vascular response to BEZ235 in ovarian cancer xenografts with different PI3-kinase pathway activity. Br J Cancer. 2015;112:504-13 pubmed 出版商
  920. Pino M, Verstraeten S. Tl(I) and Tl(III) alter the expression of EGF-dependent signals and cyclins required for pheochromocytoma (PC12) cell-cycle resumption and progression. J Appl Toxicol. 2015;35:952-69 pubmed 出版商
  921. Fiorini C, Cordani M, Gotte G, Picone D, Donadelli M. Onconase induces autophagy sensitizing pancreatic cancer cells to gemcitabine and activates Akt/mTOR pathway in a ROS-dependent manner. Biochim Biophys Acta. 2015;1853:549-60 pubmed 出版商
  922. Inaba J, McConnell E, Davis K. Lunasin sensitivity in non-small cell lung cancer cells is linked to suppression of integrin signaling and changes in histone acetylation. Int J Mol Sci. 2014;15:23705-24 pubmed 出版商
  923. Zemany L, Bhanot S, Peroni O, Murray S, Moraes Vieira P, Castoldi A, et al. Transthyretin Antisense Oligonucleotides Lower Circulating RBP4 Levels and Improve Insulin Sensitivity in Obese Mice. Diabetes. 2015;64:1603-14 pubmed 出版商
  924. Shao C, Ahmad N, Hodges K, Kuang S, Ratliff T, Liu X. Inhibition of polo-like kinase 1 (Plk1) enhances the antineoplastic activity of metformin in prostate cancer. J Biol Chem. 2015;290:2024-33 pubmed 出版商
  925. Winkler M, Dib C, Ljubimov A, Saghizadeh M. Targeting miR-146a to treat delayed wound healing in human diabetic organ-cultured corneas. PLoS ONE. 2014;9:e114692 pubmed 出版商
  926. Zhang H, Chen Y, Wadham C, McCaughan G, Keane F, Gorrell M. Dipeptidyl peptidase 9 subcellular localization and a role in cell adhesion involving focal adhesion kinase and paxillin. Biochim Biophys Acta. 2015;1853:470-80 pubmed 出版商
  927. Yoda A, Adelmant G, Tamburini J, Chapuy B, Shindoh N, Yoda Y, et al. Mutations in G protein β subunits promote transformation and kinase inhibitor resistance. Nat Med. 2015;21:71-5 pubmed 出版商
  928. Bisson J, Mills B, Paul Helt J, Zwaka T, Cohen E. Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT. Dev Biol. 2015;398:80-96 pubmed 出版商
  929. Ozmen A, Unek G, Kipmen Korgun D, Cetinkaya B, Avcil Z, Korgun E. Glucocorticoid exposure altered angiogenic factor expression via Akt/mTOR pathway in rat placenta. Ann Anat. 2015;198:34-40 pubmed 出版商
  930. Smithline Z, Nikonova A, Hensley H, Cai K, Egleston B, Proia D, et al. Inhibiting heat shock protein 90 (HSP90) limits the formation of liver cysts induced by conditional deletion of Pkd1 in mice. PLoS ONE. 2014;9:e114403 pubmed 出版商
  931. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  932. O Connell K, Guo W, Serra C, Beck M, Wachtman L, Hoggatt A, et al. The effects of an ActRIIb receptor Fc fusion protein ligand trap in juvenile simian immunodeficiency virus-infected rhesus macaques. FASEB J. 2015;29:1165-75 pubmed 出版商
  933. Kettenbach A, Sano H, Keller S, Lienhard G, Gerber S. SPECHT - single-stage phosphopeptide enrichment and stable-isotope chemical tagging: quantitative phosphoproteomics of insulin action in muscle. J Proteomics. 2015;114:48-60 pubmed 出版商
  934. Galinato M, Orio L, Mandyam C. Methamphetamine differentially affects BDNF and cell death factors in anatomically defined regions of the hippocampus. Neuroscience. 2015;286:97-108 pubmed 出版商
  935. Carter E, Miron Buchacra G, Goldoni S, Danahay H, Westwick J, Watson M, et al. Phosphoinositide 3-kinase alpha-dependent regulation of branching morphogenesis in murine embryonic lung: evidence for a role in determining morphogenic properties of FGF7. PLoS ONE. 2014;9:e113555 pubmed 出版商
  936. Gasser J, Inuzuka H, Lau A, Wei W, Beroukhim R, Toker A. SGK3 mediates INPP4B-dependent PI3K signaling in breast cancer. Mol Cell. 2014;56:595-607 pubmed 出版商
  937. Park B, Cha S, Han B, Kim S. Angiotensin IV stimulates high atrial stretch-induced ANP secretion via insulin regulated aminopeptidase. Peptides. 2015;63:30-7 pubmed 出版商
  938. Kapodistria K, Tsilibary E, Politis P, Moustardas P, Charonis A, Kitsiou P. Nephrin, a transmembrane protein, is involved in pancreatic beta-cell survival signaling. Mol Cell Endocrinol. 2015;400:112-28 pubmed 出版商
  939. Saghizadeh M, Dib C, Brunken W, Ljubimov A. Normalization of wound healing and stem cell marker patterns in organ-cultured human diabetic corneas by gene therapy of limbal cells. Exp Eye Res. 2014;129:66-73 pubmed 出版商
  940. Olayanju A, Copple I, Bryan H, Edge G, Sison R, Wong M, et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic Biol Med. 2015;78:202-12 pubmed 出版商
  941. Heynen G, Fonfara A, Bernards R. Resistance to targeted cancer drugs through hepatocyte growth factor signaling. Cell Cycle. 2014;13:3808-17 pubmed 出版商
  942. Guzmán E, Maers K, Roberts J, Kemami Wangun H, Harmody D, Wright A. The marine natural product microsclerodermin A is a novel inhibitor of the nuclear factor kappa B and induces apoptosis in pancreatic cancer cells. Invest New Drugs. 2015;33:86-94 pubmed 出版商
  943. Wu C, Hung T, Chen C, Ke C, Lee C, Wang P, et al. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS ONE. 2014;9:e113397 pubmed 出版商
  944. Hall J, Sun J, Slade J, Kintner J, Bambino M, Whittimore J, et al. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development. Front Cell Infect Microbiol. 2014;4:158 pubmed 出版商
  945. Kim T, Jo S, Choi H, Park J, Kim M, Nojima H, et al. Identification of Creb3l4 as an essential negative regulator of adipogenesis. Cell Death Dis. 2014;5:e1527 pubmed 出版商
  946. Douglas R, Mester T, Ginter A, Kim D. Thyrotropin receptor and CD40 mediate interleukin-8 expression in fibrocytes: implications for thyroid-associated ophthalmopathy (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 2014;112:26-37 pubmed
  947. Huang L, Carney J, Cardona D, Counter C. Decreased tumorigenesis in mice with a Kras point mutation at C118. Nat Commun. 2014;5:5410 pubmed 出版商
  948. Soga M, Ohashi A, Taniguchi M, Matsui T, Tsuda T. The di-peptide Trp-His activates AMP-activated protein kinase and enhances glucose uptake independently of insulin in L6 myotubes. FEBS Open Bio. 2014;4:898-904 pubmed 出版商
  949. Pérez Alvarez M, Mateos L, Alonso A, Wandosell F. Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus. Mol Neurobiol. 2015;52:1690-1703 pubmed 出版商
  950. Blair B, Wu X, Zahari M, Mohseni M, Cidado J, Wong H, et al. A phosphoproteomic screen demonstrates differential dependence on HER3 for MAP kinase pathway activation by distinct PIK3CA mutations. Proteomics. 2015;15:318-26 pubmed 出版商
  951. Israeli Rosenberg S, Chen C, Li R, Deussen D, Niesman I, Okada H, et al. Caveolin modulates integrin function and mechanical activation in the cardiomyocyte. FASEB J. 2015;29:374-84 pubmed 出版商
  952. Qin J, Rajaratnam R, Feng L, Salami J, Barber Rotenberg J, Domsic J, et al. Development of organometallic S6K1 inhibitors. J Med Chem. 2015;58:305-14 pubmed 出版商
  953. Hong Y, Kim J, Pectasides E, Fox C, Hong S, Ma Q, et al. Src mutation induces acquired lapatinib resistance in ERBB2-amplified human gastroesophageal adenocarcinoma models. PLoS ONE. 2014;9:e109440 pubmed 出版商
  954. Tan L, Wang J, Tanizaki J, Huang Z, Aref A, Rusan M, et al. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proc Natl Acad Sci U S A. 2014;111:E4869-77 pubmed 出版商
  955. Bing L, Wu J, Zhang J, Chen Y, Hong Z, Zu H. DHT inhibits the Aβ25-35-induced apoptosis by regulation of seladin-1, survivin, XIAP, bax, and bcl-xl expression through a rapid PI3-K/Akt signaling in C6 glial cell lines. Neurochem Res. 2015;40:41-8 pubmed 出版商
  956. Bhattachariya A, TurczyÅ„ska K, Grossi M, Nordström I, Buckbinder L, Albinsson S, et al. PYK2 selectively mediates signals for growth versus differentiation in response to stretch of spontaneously active vascular smooth muscle. Physiol Rep. 2014;2: pubmed 出版商
  957. Ye R, Holland W, Gordillo R, Wang M, Wang Q, Shao M, et al. Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes β-cell regeneration. elife. 2014;3: pubmed 出版商
  958. Musazzi L, Seguini M, Mallei A, Treccani G, Pelizzari M, Tornese P, et al. Time-dependent activation of MAPK/Erk1/2 and Akt/GSK3 cascades: modulation by agomelatine. BMC Neurosci. 2014;15:119 pubmed 出版商
  959. Souza R, Piedade W, Soares L, Souza P, Aguiar A, Vechetti Júnior I, et al. Aerobic exercise training prevents heart failure-induced skeletal muscle atrophy by anti-catabolic, but not anabolic actions. PLoS ONE. 2014;9:e110020 pubmed 出版商
  960. Blaabjerg L, Christensen G, Matsumoto M, van der Meulen T, Huising M, Billestrup N, et al. CRFR1 activation protects against cytokine-induced β-cell death. J Mol Endocrinol. 2014;53:417-27 pubmed 出版商
  961. Holland W, Chinn D, Lara P, Gandara D, Mack P. Effects of AKT inhibition on HGF-mediated erlotinib resistance in non-small cell lung cancer cell lines. J Cancer Res Clin Oncol. 2015;141:615-26 pubmed 出版商
  962. Guerrouahen B, Pasquier J, Kaoud N, Maleki M, Beauchamp M, Yasmeen A, et al. Akt-activated endothelium constitutes the niche for residual disease and resistance to bevacizumab in ovarian cancer. Mol Cancer Ther. 2014;13:3123-36 pubmed 出版商
  963. Kim S, Ahn S, Lee E, Kim S, Na K, Chae D, et al. Bilirubin activates transcription of HIF-1α in human proximal tubular cells cultured in the physiologic oxygen content. J Korean Med Sci. 2014;29 Suppl 2:S146-54 pubmed 出版商
  964. Mössenböck K, Vegiopoulos A, Rose A, Sijmonsma T, Herzig S, Schafmeier T. Browning of white adipose tissue uncouples glucose uptake from insulin signaling. PLoS ONE. 2014;9:e110428 pubmed 出版商
  965. Puig M, Lugo R, Gabasa M, Giménez A, Velásquez A, Galgoczy R, et al. Matrix stiffening and β1 integrin drive subtype-specific fibroblast accumulation in lung cancer. Mol Cancer Res. 2015;13:161-73 pubmed 出版商
  966. Balbas M, Burgess M, Murali R, Wongvipat J, Skaggs B, Mundel P, et al. MAGI-2 scaffold protein is critical for kidney barrier function. Proc Natl Acad Sci U S A. 2014;111:14876-81 pubmed 出版商
  967. Kannike K, Sepp M, Zuccato C, Cattaneo E, Timmusk T. Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop. J Biol Chem. 2014;289:32845-57 pubmed 出版商
  968. Ledonne A, Nobili A, Latagliata E, Cavallucci V, Guatteo E, Puglisi Allegra S, et al. Neuregulin 1 signalling modulates mGluR1 function in mesencephalic dopaminergic neurons. Mol Psychiatry. 2015;20:959-73 pubmed 出版商
  969. Portella A, Silveira P, Laureano D, Cardoso S, Bittencourt V, Noschang C, et al. Litter size reduction alters insulin signaling in the ventral tegmental area and influences dopamine-related behaviors in adult rats. Behav Brain Res. 2015;278:66-73 pubmed 出版商
  970. Morioka T, Sakabe M, Ioka T, Iguchi T, Mizuta K, Hattammaru M, et al. An important role of endothelial hairy-related transcription factors in mouse vascular development. Genesis. 2014;52:897-906 pubmed 出版商
  971. Peng M, Yin N, Li M. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell. 2014;159:122-133 pubmed 出版商
  972. Serizawa Y, Oshima R, Yoshida M, Sakon I, Kitani K, Goto A, et al. Salicylate acutely stimulates 5'-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscles. Biochem Biophys Res Commun. 2014;453:81-5 pubmed 出版商
  973. Vanli G, Peltzer N, Dubuis G, Widmann C. The activity of the anti-apoptotic fragment generated by the caspase-3/p120 RasGAP stress-sensing module displays strict Akt isoform specificity. Cell Signal. 2014;26:2992-7 pubmed 出版商
  974. Wang Y, Yang R, Gu J, Yin X, Jin N, Xie S, et al. Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging. 2015;36:188-200 pubmed 出版商
  975. Ritchie I, Wright D, Dyck D. Adiponectin is not required for exercise training-induced improvements in glucose and insulin tolerance in mice. Physiol Rep. 2014;2: pubmed 出版商
  976. Sackmann Sala L, Chiche A, Mosquera Garrote N, Boutillon F, Cordier C, Pourmir I, et al. Prolactin-induced prostate tumorigenesis links sustained Stat5 signaling with the amplification of basal/stem cells and emergence of putative luminal progenitors. Am J Pathol. 2014;184:3105-19 pubmed 出版商
  977. Rubashkin M, Cassereau L, Bainer R, DuFort C, Yui Y, Ou G, et al. Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res. 2014;74:4597-611 pubmed 出版商
  978. Oliveira C, de Bock C, Molloy T, Sadeqzadeh E, Geng X, Hersey P, et al. Macrophage migration inhibitory factor engages PI3K/Akt signalling and is a prognostic factor in metastatic melanoma. BMC Cancer. 2014;14:630 pubmed 出版商
  979. Niu F, Yao H, Zhang W, Sutliff R, Buch S. Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders. J Neurosci. 2014;34:11812-25 pubmed 出版商
  980. Kleinert M, Sylow L, Fazakerley D, Krycer J, Thomas K, Oxbøll A, et al. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo. Mol Metab. 2014;3:630-41 pubmed 出版商
  981. Kodama T, Motoi N, Ninomiya H, Sakamoto H, Kitada K, Tsukaguchi T, et al. A novel mechanism of EML4-ALK rearrangement mediated by chromothripsis in a patient-derived cell line. J Thorac Oncol. 2014;9:1638-46 pubmed 出版商
  982. Osinalde N, Sánchez Quiles V, Akimov V, Guerra B, Blagoev B, Kratchmarova I. Simultaneous dissection and comparison of IL-2 and IL-15 signaling pathways by global quantitative phosphoproteomics. Proteomics. 2015;15:520-31 pubmed 出版商
  983. Niu H, Nie L, Liu M, Chi Y, Zhang T, Li Y. Benazepril affects integrin-linked kinase and smooth muscle α-actin expression in diabetic rat glomerulus and cultured mesangial cells. BMC Nephrol. 2014;15:135 pubmed 出版商
  984. Jung Y, Wang J, Lee E, McGee S, Berry J, Yumoto K, et al. Annexin 2-CXCL12 interactions regulate metastatic cell targeting and growth in the bone marrow. Mol Cancer Res. 2015;13:197-207 pubmed 出版商
  985. Fuller S, Richard A, Ribnicky D, Beyl R, Mynatt R, Stephens J. St. John's Wort Has Metabolically Favorable Effects on Adipocytes In Vivo. Evid Based Complement Alternat Med. 2014;2014:862575 pubmed 出版商
  986. Morris S, Carter K, Baek J, Koszarek A, Yeh M, Knoblaugh S, et al. TGF-? signaling alters the pattern of liver tumorigenesis induced by Pten inactivation. Oncogene. 2015;34:3273-82 pubmed 出版商
  987. Tang S, Chen T, Yu Z, Zhu X, Yang M, Xie B, et al. RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase. Nat Commun. 2014;5:4657 pubmed 出版商
  988. Curto G, Nieto Estévez V, Hurtado Chong A, Valero J, Gómez C, Alonso J, et al. Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb. Stem Cells Dev. 2014;23:2813-30 pubmed 出版商
  989. Tsai Y, Lai C, Lai C, Chang K, Wu K, Tseng S, et al. The role of homeostatic regulation between tumor suppressor DAB2IP and oncogenic Skp2 in prostate cancer growth. Oncotarget. 2014;5:6425-36 pubmed
  990. Selfridge J, Wilkins H, E L, Carl S, Koppel S, Funk E, et al. Effect of one month duration ketogenic and non-ketogenic high fat diets on mouse brain bioenergetic infrastructure. J Bioenerg Biomembr. 2015;47:1-11 pubmed 出版商
  991. Baek J, Kim J, Cheon Y, Park S, Ahn S, Yoon K, et al. Aconitum pseudo-laeve var. erectum inhibits receptor activator of nuclear factor kappa-B ligand-induced osteoclastogenesis via the c-Fos/nuclear factor of activated T-cells, cytoplasmic 1 signaling pathway and prevents lipopolysaccharide-induced bone. Molecules. 2014;19:11628-44 pubmed 出版商
  992. Bailon E, Ugarte Berzal E, Amigo Jiménez I, Van den Steen P, Opdenakker G, Garcia Marco J, et al. Overexpression of progelatinase B/proMMP-9 affects migration regulatory pathways and impairs chronic lymphocytic leukemia cell homing to bone marrow and spleen. J Leukoc Biol. 2014;96:185-99 pubmed 出版商
  993. Tersey S, Maier B, Nishiki Y, Maganti A, Nadler J, Mirmira R. 12-lipoxygenase promotes obesity-induced oxidative stress in pancreatic islets. Mol Cell Biol. 2014;34:3735-45 pubmed 出版商
  994. Wang F, Cai M, Mai S, Chen J, Bai H, Li Y, et al. Ablation of EIF5A2 induces tumor vasculature remodeling and improves tumor response to chemotherapy via regulation of matrix metalloproteinase 2 expression. Oncotarget. 2014;5:6716-33 pubmed
  995. Watanabe T, Nakamura S, Ono T, Ui S, Yagi S, Kagawa H, et al. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma. Biochem Biophys Res Commun. 2014;451:93-100 pubmed 出版商
  996. Sidhu H, Dansie L, Hickmott P, Ethell D, Ethell I. Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model. J Neurosci. 2014;34:9867-79 pubmed 出版商
  997. Zeldich E, Chen C, Colvin T, Bove Fenderson E, Liang J, Tucker Zhou T, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem. 2014;289:24700-15 pubmed 出版商
  998. Moorwood C, Philippou A, Spinazzola J, Keyser B, Macarak E, Barton E. Absence of ?-sarcoglycan alters the response of p70S6 kinase to mechanical perturbation in murine skeletal muscle. Skelet Muscle. 2014;4:13 pubmed 出版商
  999. Patel A, Burton D, Halvorsen K, Balkan W, Reiner T, Perez Stable C, et al. MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways. Oncogene. 2015;34:2586-96 pubmed 出版商
  1000. Hyde G, Taylor R, Ashton N, Borland S, Wu H, Gilmore A, et al. Axl tyrosine kinase protects against tubulo-interstitial apoptosis and progression of renal failure in a murine model of chronic kidney disease and hyperphosphataemia. PLoS ONE. 2014;9:e102096 pubmed 出版商
  1001. Martin V, Corso S, Comoglio P, Giordano S. Increase of MET gene copy number confers resistance to a monovalent MET antibody and establishes drug dependence. Mol Oncol. 2014;8:1561-74 pubmed 出版商
  1002. Yokota M, Kobayashi Y, Morita J, Suzuki H, Hashimoto Y, Sasaki Y, et al. Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis. PLoS ONE. 2014;9:e101693 pubmed 出版商
  1003. Wang Y, Li W, Patel S, Cong J, Zhang N, Sabbatino F, et al. Blocking the formation of radiation-induced breast cancer stem cells. Oncotarget. 2014;5:3743-55 pubmed
  1004. Zaganjor E, Weil L, Gonzales J, Minna J, Cobb M. Ras transformation uncouples the kinesin-coordinated cellular nutrient response. Proc Natl Acad Sci U S A. 2014;111:10568-73 pubmed 出版商
  1005. E L, Burns J, Swerdlow R. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol Aging. 2014;35:2574-2583 pubmed 出版商
  1006. Abildgaard J, Henstridge D, Pedersen A, Langley K, Scheele C, Pedersen B, et al. In vitro palmitate treatment of myotubes from postmenopausal women leads to ceramide accumulation, inflammation and affected insulin signaling. PLoS ONE. 2014;9:e101555 pubmed 出版商
  1007. Li C, Chen J, Lu B, Shi Z, Wang H, Zhang B, et al. Molecular switch role of Akt in Polygonatum odoratum lectin-induced apoptosis and autophagy in human non-small cell lung cancer A549 cells. PLoS ONE. 2014;9:e101526 pubmed 出版商
  1008. Zheng X, Zhai B, Koivunen P, Shin S, Lu G, Liu J, et al. Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase. Genes Dev. 2014;28:1429-44 pubmed 出版商
  1009. Liu J, Ke F, Xu Z, Liu Z, Zhang L, Yan S, et al. CCR6 is a prognostic marker for overall survival in patients with colorectal cancer, and its overexpression enhances metastasis in vivo. PLoS ONE. 2014;9:e101137 pubmed 出版商
  1010. Morris M, Gilliam E, Button J, Li L. Dynamic modulation of innate immune response by varying dosages of lipopolysaccharide (LPS) in human monocytic cells. J Biol Chem. 2014;289:21584-90 pubmed 出版商
  1011. Paatero I, Seagroves T, Vaparanta K, Han W, Jones F, Johnson R, et al. Hypoxia-inducible factor-1? induces ErbB4 signaling in the differentiating mammary gland. J Biol Chem. 2014;289:22459-69 pubmed 出版商
  1012. Hellesøy M, Blois A, Tiron C, Mannelqvist M, Akslen L, Lorens J. Akt1 activity regulates vessel maturation in a tissue engineering model of angiogenesis. Tissue Eng Part A. 2014;20:2590-603 pubmed 出版商
  1013. Xu Y, Du H, Li J, Xu R, Wang Y, You S, et al. Statins upregulate cystathionine ?-lyase transcription and H2S generation via activating Akt signaling in macrophage. Pharmacol Res. 2014;87:18-25 pubmed 出版商
  1014. Tanaka T, Iino M. Sec6 regulated cytoplasmic translocation and degradation of p27 via interactions with Jab1 and Siah1. Cell Signal. 2014;26:2071-85 pubmed 出版商
  1015. Chen J, Long F. mTORC1 signaling controls mammalian skeletal growth through stimulation of protein synthesis. Development. 2014;141:2848-54 pubmed 出版商
  1016. Lebron M, Brennan L, Damoci C, Prewett M, O Mahony M, Duignan I, et al. A human monoclonal antibody targeting the stem cell factor receptor (c-Kit) blocks tumor cell signaling and inhibits tumor growth. Cancer Biol Ther. 2014;15:1208-18 pubmed 出版商
  1017. Moody S, Schinzel A, Singh S, Izzo F, Strickland M, Luo L, et al. PRKACA mediates resistance to HER2-targeted therapy in breast cancer cells and restores anti-apoptotic signaling. Oncogene. 2015;34:2061-71 pubmed 出版商
  1018. Wang J, Mikse O, Liao R, Li Y, Tan L, Jänne P, et al. Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells. Oncogene. 2015;34:2167-77 pubmed 出版商
  1019. Johnston Cox H, Eisenstein A, Koupenova M, Carroll S, Ravid K. The macrophage A2B adenosine receptor regulates tissue insulin sensitivity. PLoS ONE. 2014;9:e98775 pubmed 出版商
  1020. Jung K, Wu F, Wang P, Ye X, Abdulkarim B, Lai R. YB-1 regulates Sox2 to coordinately sustain stemness and tumorigenic properties in a phenotypically distinct subset of breast cancer cells. BMC Cancer. 2014;14:328 pubmed 出版商
  1021. Vélez E, Lutfi E, Jiménez Amilburu V, Riera Codina M, Capilla E, Navarro I, et al. IGF-I and amino acids effects through TOR signaling on proliferation and differentiation of gilthead sea bream cultured myocytes. Gen Comp Endocrinol. 2014;205:296-304 pubmed 出版商
  1022. Wan Y, Yang Y, Leng Q, Lan B, Jia H, Liu Y, et al. Vav1 increases Bcl-2 expression by selective activation of Rac2-Akt in leukemia T cells. Cell Signal. 2014;26:2202-9 pubmed 出版商
  1023. Godde N, Sheridan J, Smith L, Pearson H, Britt K, Galea R, et al. Scribble modulates the MAPK/Fra1 pathway to disrupt luminal and ductal integrity and suppress tumour formation in the mammary gland. PLoS Genet. 2014;10:e1004323 pubmed 出版商
  1024. Chen K, Yang T, Wu C, Cheng C, Hsu S, Hung H, et al. Pemetrexed induces S-phase arrest and apoptosis via a deregulated activation of Akt signaling pathway. PLoS ONE. 2014;9:e97888 pubmed 出版商
  1025. Barns M, Gondro C, Tellam R, Radley Crabb H, Grounds M, Shavlakadze T. Molecular analyses provide insight into mechanisms underlying sarcopenia and myofibre denervation in old skeletal muscles of mice. Int J Biochem Cell Biol. 2014;53:174-85 pubmed 出版商
  1026. Chin R, Fu X, Pai M, Vergnes L, Hwang H, Deng G, et al. The metabolite ?-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature. 2014;510:397-401 pubmed 出版商
  1027. Stevenson C, de la Rosa G, Anderson C, Murphy P, Capece T, Kim M, et al. Essential role of Elmo1 in Dock2-dependent lymphocyte migration. J Immunol. 2014;192:6062-70 pubmed 出版商
  1028. Jiang Y, Kou Z, Wu T, An W, Zhou R, Wang H, et al. Xist deficiency and disorders of X-inactivation in rabbit embryonic stem cells can be rescued by transcription-factor-mediated conversion. Stem Cells Dev. 2014;23:2283-96 pubmed 出版商
  1029. Brown D, LASSEGUE B, Lee M, Zafari R, Long J, Saavedra H, et al. Poldip2 knockout results in perinatal lethality, reduced cellular growth and increased autophagy of mouse embryonic fibroblasts. PLoS ONE. 2014;9:e96657 pubmed 出版商
  1030. Padiya R, Chowdhury D, Borkar R, Srinivas R, Pal Bhadra M, Banerjee S. Garlic attenuates cardiac oxidative stress via activation of PI3K/AKT/Nrf2-Keap1 pathway in fructose-fed diabetic rat. PLoS ONE. 2014;9:e94228 pubmed 出版商
  1031. Jung S, Ohk J, Jeong D, Li C, Lee S, Duan J, et al. Distinct regulatory effect of the p34SEI-1 oncoprotein on cancer metastasis in HER2/neu-positive and -negative cells. Int J Oncol. 2014;45:189-96 pubmed 出版商
  1032. Coomans de Brachène A, Bollaert E, Eijkelenboom A, de Rocca Serra A, van der Vos K, Burgering B, et al. The expression of the tumour suppressor HBP1 is down-regulated by growth factors via the PI3K/PKB/FOXO pathway. Biochem J. 2014;460:25-34 pubmed 出版商
  1033. Hardman S, Hall D, Cabrera A, Hancock C, Thomson D. The effects of age and muscle contraction on AMPK activity and heterotrimer composition. Exp Gerontol. 2014;55:120-8 pubmed 出版商
  1034. Liu B, Cao Y, Huizinga T, Hafler D, Toes R. TLR-mediated STAT3 and ERK activation controls IL-10 secretion by human B cells. Eur J Immunol. 2014;44:2121-9 pubmed 出版商
  1035. Tobin G, Zhang J, Goodwin D, Stewart S, Xu L, Knapton A, et al. The role of eNOS phosphorylation in causing drug-induced vascular injury. Toxicol Pathol. 2014;42:709-24 pubmed 出版商
  1036. Akkad H, Corpeno R, Larsson L. Masseter muscle myofibrillar protein synthesis and degradation in an experimental critical illness myopathy model. PLoS ONE. 2014;9:e92622 pubmed 出版商
  1037. Lamprecht M, Morrison B. GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17?-estradiol after an ischemic injury in organotypic hippocampal slice cultures. Brain Res. 2014;1563:131-7 pubmed 出版商
  1038. Flavin R, Pettersson A, Hendrickson W, Fiorentino M, Finn S, Kunz L, et al. SPINK1 protein expression and prostate cancer progression. Clin Cancer Res. 2014;20:4904-11 pubmed 出版商
  1039. Glinskii O, Li F, Wilson L, Barnes S, Rittenhouse Olson K, Barchi J, et al. Endothelial integrin ?3?1 stabilizes carbohydrate-mediated tumor/endothelial cell adhesion and induces macromolecular signaling complex formation at the endothelial cell membrane. Oncotarget. 2014;5:1382-9 pubmed
  1040. Wahl S, McLane L, Bercury K, Macklin W, Wood T. Mammalian target of rapamycin promotes oligodendrocyte differentiation, initiation and extent of CNS myelination. J Neurosci. 2014;34:4453-65 pubmed 出版商
  1041. Marquez E, Riera M, Pascual J, Soler M. Albumin inhibits the insulin-mediated ACE2 increase in cultured podocytes. Am J Physiol Renal Physiol. 2014;306:F1327-34 pubmed 出版商
  1042. Chen W, Ho C, Chang Y, Chen H, Lin C, Ling T, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5:3472 pubmed 出版商
  1043. Codeluppi S, Fernández Zafra T, Sandor K, Kjell J, Liu Q, Abrams M, et al. Interleukin-6 secretion by astrocytes is dynamically regulated by PI3K-mTOR-calcium signaling. PLoS ONE. 2014;9:e92649 pubmed 出版商
  1044. Knubel K, Pernu B, Sufit A, Nelson S, Pierce A, Keating A. MerTK inhibition is a novel therapeutic approach for glioblastoma multiforme. Oncotarget. 2014;5:1338-51 pubmed
  1045. Zhang L, Castanaro C, Luan B, Yang K, Fan L, Fairhurst J, et al. ERBB3/HER2 signaling promotes resistance to EGFR blockade in head and neck and colorectal cancer models. Mol Cancer Ther. 2014;13:1345-55 pubmed 出版商
  1046. Yu P, Laird A, Du X, Wu J, Won K, Yamaguchi K, et al. Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol Cancer Ther. 2014;13:1078-91 pubmed 出版商
  1047. Wang H, Sun W, Ma J, Pan Y, Wang L, Zhang W. Polycystin-1 mediates mechanical strain-induced osteoblastic mechanoresponses via potentiation of intracellular calcium and Akt/?-catenin pathway. PLoS ONE. 2014;9:e91730 pubmed 出版商
  1048. Bouchekioua Bouzaghou K, Poulard C, Rambaud J, Lavergne E, Hussein N, Billaud M, et al. LKB1 when associated with methylatedER? is a marker of bad prognosis in breast cancer. Int J Cancer. 2014;135:1307-18 pubmed 出版商
  1049. Son J, Jeong H, Kim H, Kim Y, Lee E, Lee H, et al. Pelargonidin attenuates PDGF-BB-induced aortic smooth muscle cell proliferation and migration by direct inhibition of focal adhesion kinase. Biochem Pharmacol. 2014;89:236-45 pubmed 出版商
  1050. Jo D, Kim J, Son J, Song N, Kim Y, Yu Y, et al. Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity. Nanomedicine. 2014;10:1109-17 pubmed 出版商
  1051. Mellor K, Varma U, Stapleton D, Delbridge L. Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose. Am J Physiol Heart Circ Physiol. 2014;306:H1240-5 pubmed 出版商
  1052. Boin A, Couvelard A, Couderc C, Brito I, Filipescu D, Kalamarides M, et al. Proteomic screening identifies a YAP-driven signaling network linked to tumor cell proliferation in human schwannomas. Neuro Oncol. 2014;16:1196-209 pubmed 出版商
  1053. Hu J, Lu J, Lian G, Zhang J, Hecht J, Sheen V. Filamin B regulates chondrocyte proliferation and differentiation through Cdk1 signaling. PLoS ONE. 2014;9:e89352 pubmed 出版商
  1054. Chang P, Wang T, Chang Y, Chu C, Lee C, Hsu H, et al. Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells. PLoS ONE. 2014;9:e88556 pubmed 出版商
  1055. Yoon H, Choi Y, Song J, Do I, Kang S, Ko Y, et al. Targeted inhibition of FAK, PYK2 and BCL-XL synergistically enhances apoptosis in ovarian clear cell carcinoma cell lines. PLoS ONE. 2014;9:e88587 pubmed 出版商
  1056. Park E, Kim B, Lee E, Chang E, Kim D, Choi S, et al. Targeting of receptor for advanced glycation end products suppresses cyst growth in polycystic kidney disease. J Biol Chem. 2014;289:9254-62 pubmed 出版商
  1057. Solan J, Lampe P. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett. 2014;588:1423-9 pubmed 出版商
  1058. Tchetchelnitski V, Van Den Eijnden M, Schmidt F, Stoker A. Developmental co-expression and functional redundancy of tyrosine phosphatases with neurotrophin receptors in developing sensory neurons. Int J Dev Neurosci. 2014;34:48-59 pubmed 出版商
  1059. Zhang Q, Pan Y, Wang R, Kang L, Xue Q, Wang X, et al. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. J Nutr Biochem. 2014;25:420-8 pubmed 出版商
  1060. Taniguchi R, Fukushima H, Osawa K, Maruyama T, Yasuda H, Weih F, et al. RelB-induced expression of Cot, an MAP3K family member, rescues RANKL-induced osteoclastogenesis in alymphoplasia mice by promoting NF-?B2 processing by IKK?. J Biol Chem. 2014;289:7349-61 pubmed 出版商
  1061. Pavet V, Shlyakhtina Y, He T, Ceschin D, Kohonen P, Perala M, et al. Plasminogen activator urokinase expression reveals TRAIL responsiveness and supports fractional survival of cancer cells. Cell Death Dis. 2014;5:e1043 pubmed 出版商
  1062. Xiang M, Birkbak N, Vafaizadeh V, Walker S, Yeh J, Liu S, et al. STAT3 induction of miR-146b forms a feedback loop to inhibit the NF-?B to IL-6 signaling axis and STAT3-driven cancer phenotypes. Sci Signal. 2014;7:ra11 pubmed 出版商
  1063. Chen S, Otero Y, Mulligan K, Lundblad T, Williams P, McGuinness O. Liver, but not muscle, has an entrainable metabolic memory. PLoS ONE. 2014;9:e86164 pubmed 出版商
  1064. Naudin C, Sirvent A, Leroy C, Larive R, Simon V, Pannequin J, et al. SLAP displays tumour suppressor functions in colorectal cancer via destabilization of the SRC substrate EPHA2. Nat Commun. 2014;5:3159 pubmed 出版商
  1065. Massimino M, Consoli M, Mesuraca M, Stagno F, Tirrò E, Stella S, et al. IRF5 is a target of BCR-ABL kinase activity and reduces CML cell proliferation. Carcinogenesis. 2014;35:1132-43 pubmed 出版商
  1066. Wadosky K, Rodriguez J, Hite R, Min J, Walton B, Willis M. Muscle RING finger-1 attenuates IGF-I-dependent cardiomyocyte hypertrophy by inhibiting JNK signaling. Am J Physiol Endocrinol Metab. 2014;306:E723-39 pubmed 出版商
  1067. Jespersen J, Mikkelsen U, Nedergaard A, Thorlund J, Schjerling P, Suetta C, et al. Alterations in molecular muscle mass regulators after 8 days immobilizing Special Forces mission. Scand J Med Sci Sports. 2015;25:175-83 pubmed 出版商
  1068. Groenendyk J, Michalak M. Disrupted WNT signaling in mouse embryonic stem cells in the absence of calreticulin. Stem Cell Rev. 2014;10:191-206 pubmed 出版商
  1069. Zemljic Harpf A, Godoy J, Platoshyn O, Asfaw E, Busija A, Domenighetti A, et al. Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci. 2014;127:1104-16 pubmed 出版商
  1070. Ziegler A, Chidambaram S, Forbes B, Wood T, Levison S. Insulin-like growth factor-II (IGF-II) and IGF-II analogs with enhanced insulin receptor-a binding affinity promote neural stem cell expansion. J Biol Chem. 2014;289:4626-33 pubmed 出版商
  1071. Maire C, Ramkissoon S, Hayashi M, Haidar S, Ramkissoon L, diTomaso E, et al. Pten loss in Olig2 expressing neural progenitor cells and oligodendrocytes leads to interneuron dysplasia and leukodystrophy. Stem Cells. 2014;32:313-26 pubmed 出版商
  1072. Wheeler S, Hammond C, Jornayvaz F, Samuel V, Shulman G, Soroka C, et al. Ost?-/- mice exhibit altered expression of intestinal lipid absorption genes, resistance to age-related weight gain, and modestly improved insulin sensitivity. Am J Physiol Gastrointest Liver Physiol. 2014;306:G425-38 pubmed 出版商
  1073. Borghgraef P, Menuet C, Theunis C, Louis J, Devijver H, Maurin H, et al. Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau.P301L mice. PLoS ONE. 2013;8:e84442 pubmed 出版商
  1074. McGuire D, Rowse A, Li H, Peng B, Sestero C, Cashman K, et al. CD5 enhances Th17-cell differentiation by regulating IFN-? response and ROR?t localization. Eur J Immunol. 2014;44:1137-42 pubmed 出版商
  1075. Balko J, Giltnane J, Wang K, Schwarz L, Young C, Cook R, et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014;4:232-45 pubmed 出版商
  1076. Wang W, Chen Y, Wang S, Hu N, Cao Z, Wang W, et al. PIASx? ligase enhances SUMO1 modification of PTEN protein as a SUMO E3 ligase. J Biol Chem. 2014;289:3217-30 pubmed 出版商
  1077. Sahlberg S, Gustafsson A, Pendekanti P, Glimelius B, Stenerlow B. The influence of AKT isoforms on radiation sensitivity and DNA repair in colon cancer cell lines. Tumour Biol. 2014;35:3525-34 pubmed 出版商
  1078. Shi L, Wang J, Ren J, Cheng Y, Ying R, Wu X, et al. KLRG1 impairs CD4+ T cell responses via p16ink4a and p27kip1 pathways: role in hepatitis B vaccine failure in individuals with hepatitis C virus infection. J Immunol. 2014;192:649-57 pubmed 出版商
  1079. Tan S, Shui G, Zhou J, Shi Y, Huang J, Xia D, et al. Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway. Autophagy. 2014;10:226-42 pubmed 出版商
  1080. Yue X, Hariri D, Caballero B, Zhang S, Bartlett M, Kaut O, et al. Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinson's disease. Neuroscience. 2014;258:385-400 pubmed 出版商
  1081. Wang Y, Briz V, Chishti A, Bi X, Baudry M. Distinct roles for ?-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J Neurosci. 2013;33:18880-92 pubmed 出版商
  1082. Zhang Y, Zhang X, Gao L, Liu Y, Jiang D, Chen K, et al. Growth/differentiation factor 1 alleviates pressure overload-induced cardiac hypertrophy and dysfunction. Biochim Biophys Acta. 2014;1842:232-44 pubmed 出版商
  1083. Ashlin T, Buckley M, Salter R, Johnson J, Kwan A, Ramji D. The anti-atherogenic cytokine interleukin-33 inhibits the expression of a disintegrin and metalloproteinase with thrombospondin motifs-1, -4 and -5 in human macrophages: Requirement of extracellular signal-regulated kinase, c-Jun N-terminal kinase an. Int J Biochem Cell Biol. 2014;46:113-23 pubmed 出版商
  1084. Wu J, Akkuratov E, Bai Y, Gaskill C, Askari A, Liu L. Cell signaling associated with Na(+)/K(+)-ATPase: activation of phosphatidylinositide 3-kinase IA/Akt by ouabain is independent of Src. Biochemistry. 2013;52:9059-67 pubmed 出版商
  1085. Haws M, JARAMILLO T, Espinosa F, Widman A, Stuber G, Sparta D, et al. PTEN knockdown alters dendritic spine/protrusion morphology, not density. J Comp Neurol. 2014;522:1171-90 pubmed 出版商
  1086. El Ami T, Moll L, Carvalhal Marques F, Volovik Y, Reuveni H, Cohen E. A novel inhibitor of the insulin/IGF signaling pathway protects from age-onset, neurodegeneration-linked proteotoxicity. Aging Cell. 2014;13:165-74 pubmed 出版商
  1087. Wang J, Chen J, Miller D, Li W. Synergistic combination of novel tubulin inhibitor ABI-274 and vemurafenib overcome vemurafenib acquired resistance in BRAFV600E melanoma. Mol Cancer Ther. 2014;13:16-26 pubmed 出版商
  1088. Treebak J, Pehmøller C, Kristensen J, Kjøbsted R, Birk J, Schjerling P, et al. Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle. J Physiol. 2014;592:351-75 pubmed 出版商
  1089. Castorina A, Scuderi S, D Amico A, Drago F, D Agata V. PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways. Exp Cell Res. 2014;322:108-21 pubmed 出版商
  1090. Dunn C, Lampe P. Injury-triggered Akt phosphorylation of Cx43: a ZO-1-driven molecular switch that regulates gap junction size. J Cell Sci. 2014;127:455-64 pubmed 出版商
  1091. Valtcheva N, Primorac A, Jurisic G, Hollmen M, Detmar M. The orphan adhesion G protein-coupled receptor GPR97 regulates migration of lymphatic endothelial cells via the small GTPases RhoA and Cdc42. J Biol Chem. 2013;288:35736-48 pubmed 出版商
  1092. Chen Z, Morris D, Jiang L, Liu Y, Rui L. SH2B1 in ?-cells regulates glucose metabolism by promoting ?-cell survival and islet expansion. Diabetes. 2014;63:585-95 pubmed 出版商
  1093. Udagawa T, Farny N, Jakovcevski M, Kaphzan H, Alarcon J, Anilkumar S, et al. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat Med. 2013;19:1473-7 pubmed 出版商
  1094. Bhaskar K, Maphis N, Xu G, Varvel N, Kokiko Cochran O, Weick J, et al. Microglial derived tumor necrosis factor-? drives Alzheimer's disease-related neuronal cell cycle events. Neurobiol Dis. 2014;62:273-85 pubmed 出版商
  1095. Dai X, Jiang W, Zhang Q, Xu L, Geng P, Zhuang S, et al. Requirement for integrin-linked kinase in neural crest migration and differentiation and outflow tract morphogenesis. BMC Biol. 2013;11:107 pubmed 出版商
  1096. Haas M, Onstead Haas L, Naem E, Arnold A, Rohrbaugh N, Flowers M, et al. The effect of black seed (Nigella sativa) extract on FOXO3 expression in HepG2 cells. Phytother Res. 2014;28:873-9 pubmed 出版商
  1097. Ni H, Du K, You M, Ding W. Critical role of FoxO3a in alcohol-induced autophagy and hepatotoxicity. Am J Pathol. 2013;183:1815-1825 pubmed 出版商
  1098. Ishikawa K, Yoshida S, Nakao S, Nakama T, Kita T, Asato R, et al. Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy. FASEB J. 2014;28:131-42 pubmed 出版商
  1099. Paugh B, Zhu X, Qu C, Endersby R, Diaz A, Zhang J, et al. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res. 2013;73:6219-29 pubmed 出版商
  1100. Sáinz Jaspeado M, Huertas Martínez J, Lagares Tena L, Martín Liberal J, Mateo Lozano S, de Alava E, et al. EphA2-induced angiogenesis in ewing sarcoma cells works through bFGF production and is dependent on caveolin-1. PLoS ONE. 2013;8:e71449 pubmed 出版商
  1101. Kucherlapati M, Esfahani S, Habibollahi P, Wang J, Still E, Bronson R, et al. Genotype directed therapy in murine mismatch repair deficient tumors. PLoS ONE. 2013;8:e68817 pubmed 出版商
  1102. Yu P, Yan M, Lai H, Huang R, Chou Y, Lin W, et al. Downregulation of miR-29 contributes to cisplatin resistance of ovarian cancer cells. Int J Cancer. 2014;134:542-51 pubmed 出版商
  1103. Dokas J, Chadt A, Nolden T, Himmelbauer H, Zierath J, Joost H, et al. Conventional knockout of Tbc1d1 in mice impairs insulin- and AICAR-stimulated glucose uptake in skeletal muscle. Endocrinology. 2013;154:3502-14 pubmed 出版商
  1104. Zhang Y, Liu X, Han L, Gao X, Liu E, Wang T. Regulation of lipid and glucose homeostasis by mango tree leaf extract is mediated by AMPK and PI3K/AKT signaling pathways. Food Chem. 2013;141:2896-905 pubmed 出版商
  1105. Elliott S, Swift S, Busse L, Scully S, Van G, Rossi J, et al. Epo receptors are not detectable in primary human tumor tissue samples. PLoS ONE. 2013;8:e68083 pubmed 出版商
  1106. Hauerslev S, Sveen M, Vissing J, Krag T. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I. PLoS ONE. 2013;8:e66929 pubmed 出版商
  1107. Eguchi J, Kong X, Tenta M, Wang X, Kang S, Rosen E. Interferon regulatory factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage polarization. Diabetes. 2013;62:3394-403 pubmed 出版商
  1108. Pulinilkunnil T, Kienesberger P, Nagendran J, Sharma N, Young M, Dyck J. Cardiac-specific adipose triglyceride lipase overexpression protects from cardiac steatosis and dilated cardiomyopathy following diet-induced obesity. Int J Obes (Lond). 2014;38:205-15 pubmed 出版商
  1109. Chang A, Huang J, Battiprolu P, Hill J, Kamm K, Stull J. The effects of neuregulin on cardiac Myosin light chain kinase gene-ablated hearts. PLoS ONE. 2013;8:e66720 pubmed 出版商
  1110. Brouxhon S, Kyrkanides S, Teng X, O Banion M, Clarke R, Byers S, et al. Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers. Mol Carcinog. 2014;53:893-906 pubmed 出版商
  1111. Mietzsch U, McKenna J, Reith R, Way S, Gambello M. Comparative analysis of Tsc1 and Tsc2 single and double radial glial cell mutants. J Comp Neurol. 2013;521:3817-31 pubmed 出版商
  1112. Griffeth R, Carretero J, Burks D. Insulin receptor substrate 2 is required for testicular development. PLoS ONE. 2013;8:e62103 pubmed 出版商
  1113. Beckham T, Cheng J, Lu P, Shao Y, Troyer D, Lance R, et al. Acid ceramidase induces sphingosine kinase 1/S1P receptor 2-mediated activation of oncogenic Akt signaling. Oncogenesis. 2013;2:e49 pubmed 出版商
  1114. Zhou D, Tan R, Lin L, Zhou L, Liu Y. Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int. 2013;84:509-20 pubmed 出版商
  1115. Liang H, Hussey S, Sanchez Avila A, Tantiwong P, Musi N. Effect of lipopolysaccharide on inflammation and insulin action in human muscle. PLoS ONE. 2013;8:e63983 pubmed 出版商
  1116. Ma T, Galimberti F, Erkmen C, Memoli V, Chinyengetere F, SEMPERE L, et al. Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer. Mol Cancer Ther. 2013;12:1545-55 pubmed 出版商
  1117. Gokhale N, Zaremba A, Janoshazi A, Weaver J, Shears S. PPIP5K1 modulates ligand competition between diphosphoinositol polyphosphates and PtdIns(3,4,5)P3 for polyphosphoinositide-binding domains. Biochem J. 2013;453:413-26 pubmed 出版商
  1118. Wang Y, Zhao X, Shi D, Chen P, Yu Y, Yang L, et al. Overexpression of SIRT1 promotes high glucose-attenuated corneal epithelial wound healing via p53 regulation of the IGFBP3/IGF-1R/AKT pathway. Invest Ophthalmol Vis Sci. 2013;54:3806-14 pubmed 出版商
  1119. Lessard S, Rivas D, Alves Wagner A, Hirshman M, Gallagher I, Constantin Teodosiu D, et al. Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks. Diabetes. 2013;62:2717-27 pubmed 出版商
  1120. Yu M, Trobridge P, Wang Y, Kanngurn S, Morris S, Knoblaugh S, et al. Inactivation of TGF-? signaling and loss of PTEN cooperate to induce colon cancer in vivo. Oncogene. 2014;33:1538-47 pubmed 出版商
  1121. Tokami H, Ago T, Sugimori H, Kuroda J, Awano H, Suzuki K, et al. RANTES has a potential to play a neuroprotective role in an autocrine/paracrine manner after ischemic stroke. Brain Res. 2013;1517:122-32 pubmed 出版商
  1122. Bauckman K, Haller E, Flores I, Nanjundan M. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells. Cell Death Dis. 2013;4:e592 pubmed 出版商
  1123. Backman L, Danielson P. Akt-mediated anti-apoptotic effects of substance P in Anti-Fas-induced apoptosis of human tenocytes. J Cell Mol Med. 2013;17:723-33 pubmed 出版商
  1124. Chu I, Lai W, Aprelikova O, El Touny L, Kouros Mehr H, Green J. Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß. PLoS ONE. 2013;8:e61125 pubmed 出版商
  1125. Willis M, Min J, Wang S, McDonough H, Lockyer P, Wadosky K, et al. Carboxyl terminus of Hsp70-interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise. Cell Biochem Funct. 2013;31:724-35 pubmed 出版商
  1126. Haeussler D, Pimentel D, Hou X, Burgoyne J, Cohen R, Bachschmid M. Endomembrane H-Ras controls vascular endothelial growth factor-induced nitric-oxide synthase-mediated endothelial cell migration. J Biol Chem. 2013;288:15380-9 pubmed 出版商
  1127. Ni M, Chen Y, Fei T, Li D, Lim E, Liu X, et al. Amplitude modulation of androgen signaling by c-MYC. Genes Dev. 2013;27:734-48 pubmed 出版商
  1128. Liang H, Tantiwong P, Sriwijitkamol A, Shanmugasundaram K, Mohan S, Espinoza S, et al. Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects. J Physiol. 2013;591:2897-909 pubmed 出版商
  1129. BENTLEY C, Jurinka S, Kljavin N, Vartanian S, Ramani S, Gonzalez L, et al. A requirement for wild-type Ras isoforms in mutant KRas-driven signalling and transformation. Biochem J. 2013;452:313-20 pubmed 出版商
  1130. Areta J, Burke L, Ross M, Camera D, West D, Broad E, et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol. 2013;591:2319-31 pubmed 出版商
  1131. Stergiou L, Bauer M, Mair W, Bausch Fluck D, Drayman N, Wollscheid B, et al. Integrin-mediated signaling induced by simian virus 40 leads to transient uncoupling of cortical actin and the plasma membrane. PLoS ONE. 2013;8:e55799 pubmed 出版商
  1132. Kim H, Woo H, Ryu J, Bok J, Kim J, Choi S, et al. Conditional deletion of pten leads to defects in nerve innervation and neuronal survival in inner ear development. PLoS ONE. 2013;8:e55609 pubmed 出版商
  1133. Dai J, Shen D, Bian Z, Zhou H, Gan H, Zong J, et al. IKKi deficiency promotes pressure overload-induced cardiac hypertrophy and fibrosis. PLoS ONE. 2013;8:e53412 pubmed 出版商
  1134. Carra E, Barbieri F, Marubbi D, Pattarozzi A, Favoni R, Florio T, et al. Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures. Cell Cycle. 2013;12:491-500 pubmed 出版商
  1135. Suetta C, Frandsen U, Jensen L, Jensen M, Jespersen J, Hvid L, et al. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy. PLoS ONE. 2012;7:e51238 pubmed 出版商
  1136. Danielson L, Park D, Rotllan N, Chamorro Jorganes A, Guijarro M, Fernandez Hernando C, et al. Cardiovascular dysregulation of miR-17-92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis. FASEB J. 2013;27:1460-7 pubmed 出版商
  1137. Sánchez Alvarez R, Martinez Outschoorn U, Lin Z, Lamb R, Hulit J, Howell A, et al. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention. Cell Cycle. 2013;12:289-301 pubmed 出版商
  1138. Wang I, Allen M, Goffin D, Zhu X, Fairless A, Brodkin E, et al. Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proc Natl Acad Sci U S A. 2012;109:21516-21 pubmed 出版商
  1139. Fan C, Lum M, Xu C, Black J, Wang X. Ubiquitin-dependent regulation of phospho-AKT dynamics by the ubiquitin E3 ligase, NEDD4-1, in the insulin-like growth factor-1 response. J Biol Chem. 2013;288:1674-84 pubmed 出版商
  1140. Vartanian S, BENTLEY C, Brauer M, Li L, Shirasawa S, Sasazuki T, et al. Identification of mutant K-Ras-dependent phenotypes using a panel of isogenic cell lines. J Biol Chem. 2013;288:2403-13 pubmed 出版商
  1141. Kodigepalli K, Dutta P, Bauckman K, Nanjundan M. SnoN/SkiL expression is modulated via arsenic trioxide-induced activation of the PI3K/AKT pathway in ovarian cancer cells. FEBS Lett. 2013;587:5-16 pubmed 出版商
  1142. van der Hoeven D, Cho K, Ma X, Chigurupati S, Parton R, Hancock J. Fendiline inhibits K-Ras plasma membrane localization and blocks K-Ras signal transmission. Mol Cell Biol. 2013;33:237-51 pubmed 出版商
  1143. Cho K, Park J, Piggott A, Salim A, Gorfe A, Parton R, et al. Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins. J Biol Chem. 2012;287:43573-84 pubmed 出版商
  1144. Wang H, Ducommun S, Quan C, Xie B, Li M, Wasserman D, et al. AS160 deficiency causes whole-body insulin resistance via composite effects in multiple tissues. Biochem J. 2013;449:479-89 pubmed 出版商
  1145. Schweitzer G, Arias E, Cartee G. Sustained postexercise increases in AS160 Thr642 and Ser588 phosphorylation in skeletal muscle without sustained increases in kinase phosphorylation. J Appl Physiol (1985). 2012;113:1852-61 pubmed 出版商
  1146. Chatain N, Ziegler P, Fahrenkamp D, Jost E, Moriggl R, Schmitz Van de Leur H, et al. Src family kinases mediate cytoplasmic retention of activated STAT5 in BCR-ABL-positive cells. Oncogene. 2013;32:3587-97 pubmed 出版商
  1147. Riaz A, Zeller K, Johansson S. Receptor-specific mechanisms regulate phosphorylation of AKT at Ser473: role of RICTOR in ?1 integrin-mediated cell survival. PLoS ONE. 2012;7:e32081 pubmed 出版商
  1148. O Brien T, Gorentla B, Xie D, Srivatsan S, McLeod I, He Y, et al. Regulation of T-cell survival and mitochondrial homeostasis by TSC1. Eur J Immunol. 2011;41:3361-70 pubmed 出版商
  1149. Li J, Swope D, Raess N, Cheng L, Muller E, Radice G. Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of {beta}-catenin signaling. Mol Cell Biol. 2011;31:1134-44 pubmed 出版商
  1150. Modi H, Li L, Chu S, Rossi J, Yee J, Bhatia R. Inhibition of Grb2 expression demonstrates an important role in BCR-ABL-mediated MAPK activation and transformation of primary human hematopoietic cells. Leukemia. 2011;25:305-12 pubmed 出版商
  1151. Son J, Varadarajan S, Bratton S. TRAIL-activated stress kinases suppress apoptosis through transcriptional upregulation of MCL-1. Cell Death Differ. 2010;17:1288-301 pubmed 出版商
  1152. Udelhoven M, Pasieka M, Leeser U, Krone W, Schubert M. Neuronal insulin receptor substrate 2 (IRS2) expression is regulated by ZBP89 and SP1 binding to the IRS2 promoter. J Endocrinol. 2010;204:199-208 pubmed 出版商