这是一篇来自已证抗体库的有关犬 GFAP的综述,是根据93篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GFAP 抗体。
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 3b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 3b). Front Pharmacol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 人类; 1:4000; 图 1b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, Ab7260)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:4000 (图 1b). Front Neuroanat (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 6d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 6d). PLoS ONE (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5c). Cell Rep (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4i
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, AB7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4i). Int J Ophthalmol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:8000; 图 5d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, Ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:8000 (图 5d). Transl Vis Sci Technol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:100; 图 2c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2c). J Neuroinflammation (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4h
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上 (图 4h). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:2000; 图 3d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 3d). Mol Brain (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 s1a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 (图 s1a). Cell Death Differ (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 5a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 5a). Proc Jpn Acad Ser B Phys Biol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 e1c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 e1c). Nat Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3e
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上 (图 3e). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). IBRO Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, Ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3c). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2e
  • 免疫细胞化学; 小鼠; 1:1000; 图 s2b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2e) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s2b). Front Cell Dev Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s1b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s1b). Front Cell Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2a). Cancer Genomics Proteomics (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7a). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). Biosci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 3
  • 免疫印迹; 大鼠; 1:5000; 图 2e
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2e). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 4c-f
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4c-f). CNS Neurosci Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 10b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上 (图 10b). Neurochem Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 s7c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, AB7260)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 s7c). PLoS Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:300; 图 s3b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 s3b). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5c). Braz J Med Biol Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 3a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 图 6b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上 (图 6b). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6b). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200; 图 1k
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 1k). Nat Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 s1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫印迹在大鼠样本上 (图 s1). Front Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3e
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3e). Transl Psychiatry (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 1d2
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1d2). J Histochem Cytochem (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s4e
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4e). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6e
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6e). Front Aging Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫印迹在人类样本上 (图 3a). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1d
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1d). elife (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 1e
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 1e). Brain Behav Immun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1e
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1e). J Exp Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:5000; 图 2
  • 免疫组化-自由浮动切片; 人类; 1:5000; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000 (图 2) 和 被用于免疫组化-自由浮动切片在人类样本上浓度为1:5000 (图 4). Neurosci Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:4000; 图 4b
艾博抗(上海)贸易有限公司 GFAP抗体(Millipore, AB7260)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 4b). Biochem Biophys Res Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:50; 图 1c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 1c). Oncol Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 GFAP抗体(Sigma, AB7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a). J Headache Pain (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 1f
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1f). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, AB7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1c). Mol Psychiatry (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1c). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:50
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 和 被用于免疫细胞化学在人类样本上. Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于被用于免疫印迹在小鼠样本上 (图 8). Mol Vis (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:50; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, 7260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 1). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 4). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5a). Dev Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 1b). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:5000; 图 3
  • 免疫印迹; 大鼠; 1:20,000; 图 3
艾博抗(上海)贸易有限公司 GFAP抗体(abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:5000 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:20,000 (图 3). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 ev1c
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 ev1c). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s10
艾博抗(上海)贸易有限公司 GFAP抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s10). Brain (2016) ncbi
BioLegend
小鼠 单克隆(SMI 21)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 9d
BioLegend GFAP抗体(BioLegend, 837201)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 9d). Acta Neuropathol Commun (2022) ncbi
小鼠 单克隆(SMI 21)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 2e
BioLegend GFAP抗体(Sternberger, SMI21)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 2e). Nat Commun (2021) ncbi
小鼠 单克隆(SMI 21)
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
BioLegend GFAP抗体(BioLegend, SMI-21)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (表 1), 被用于免疫印迹在小鼠样本上浓度为1:5000 (表 1), 被用于免疫细胞化学在人类样本上浓度为1:400 (表 1) 和 被用于免疫印迹在人类样本上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 21)
  • 免疫印迹; 人类; 图 3a
BioLegend GFAP抗体(Covance, SMI-21R)被用于被用于免疫印迹在人类样本上 (图 3a). JCI Insight (2017) ncbi
小鼠 单克隆(SMI 21)
  • 免疫组化; 小鼠; 1:1000; 图 s4c
BioLegend GFAP抗体(Covance, SMI21)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s4c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(SMI 21)
  • 免疫组化; 小鼠; 图 st1
BioLegend GFAP抗体(BioLegend, 837201)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 21)
  • 免疫细胞化学; 人类; 1:000; 图 4
BioLegend GFAP抗体(Covance, SMI21)被用于被用于免疫细胞化学在人类样本上浓度为1:000 (图 4). J Neurosci (2012) ncbi
碧迪BD
小鼠 单克隆(4A11)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1e'
碧迪BD GFAP抗体(BD, 556330)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1e'). Front Neurosci (2022) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-石蜡切片; 人类; 图 2a
碧迪BD GFAP抗体(BD Biosciences, 556330)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). J Neuroinflammation (2021) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1b
碧迪BD GFAP抗体(BD Biosciences, 556330)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1b). Nat Commun (2021) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s6b
碧迪BD GFAP抗体(BD, 556329)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s6b). Nat Neurosci (2019) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-石蜡切片; 人类; 图 s7a
碧迪BD GFAP抗体(BD Biosciences, 556330)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s7a). Neurosurgery (2018) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 小鼠; 图 s4a
碧迪BD GFAP抗体(BD Biosciences, 561483)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). J Cell Sci (2017) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 st8
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 st8
  • 免疫组化-石蜡切片; 犬; 1:100; 图 st8
碧迪BD GFAP抗体(BD Biosciences, 556329)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 st8), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 st8) 和 被用于免疫组化-石蜡切片在犬样本上浓度为1:100 (图 st8). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(4A11)
  • 免疫印迹; 大鼠; 1:1000; 图 5c
碧迪BD GFAP抗体(BD Pharmingen, 556327)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). Pharmacol Biochem Behav (2017) ncbi
小鼠 单克隆(1B4)
  • 免疫细胞化学; 人类; 1:100; 图 s8
碧迪BD GFAP抗体(BD Biosciences, 561483)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s8). Nat Commun (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 大鼠; 1:2000; 图 3
  • 免疫印迹; 大鼠; 1:2000; 图 3
碧迪BD GFAP抗体(BD, 556327)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3). Alzheimers Res Ther (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 小鼠; 1:2000; 图 3
碧迪BD GFAP抗体(BD Pharmigen, 556327)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 小鼠; 1:50; 图 4
碧迪BD GFAP抗体(BD Biosciences, 561483)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫印迹; 人类; 1:500; 图 6
碧迪BD GFAP抗体(BD Pharmingen, 556330)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Glia (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-石蜡切片; 小鼠; 0.01 ug/ml; 图 4
碧迪BD GFAP抗体(BD Biosciences, 556330)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为0.01 ug/ml (图 4). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 小鼠; 图 4, 7
碧迪BD GFAP抗体(BD Pharmingen, 561483)被用于被用于流式细胞仪在小鼠样本上 (图 4, 7). Nat Neurosci (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 小鼠; 1:1000; 图 5
碧迪BD GFAP抗体(BD Pharmingen, 556329)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5). Eneuro (2015) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 人类; 图 4
碧迪BD GFAP抗体(Becton-Dickinson, 561449)被用于被用于流式细胞仪在人类样本上 (图 4). Int J Oncol (2015) ncbi
小鼠 单克隆(1B4)
  • 免疫细胞化学; 小鼠; 图 2a
碧迪BD GFAP抗体(BD Biosciences, 1B4)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). Hepatology (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 大鼠
碧迪BD GFAP抗体(BD Pharmagen, Clon 4a11, Ref. 55632)被用于被用于免疫组化在大鼠样本上. J Neuroendocrinol (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 小鼠; 1:200; 图 8
碧迪BD GFAP抗体(BD Biosciences, 556330)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 8). Neurotherapeutics (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
碧迪BD GFAP抗体(BD Pharmingen, 55632)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
碧迪BD GFAP抗体(BD Pharmingen, 55632)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-冰冻切片; 大鼠; 1:200
碧迪BD GFAP抗体(BD Pharmigen, 556327)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200. J Comp Neurol (2010) ncbi
文章列表
  1. Hannawi Y, Ewees M, Moore J, Zweier J. Characterizing CD38 Expression and Enzymatic Activity in the Brain of Spontaneously Hypertensive Stroke-Prone Rats. Front Pharmacol. 2022;13:881708 pubmed 出版商
  2. Moore A, Chinnaiya K, Kim D, Brown S, Stewart I, Robins S, et al. Loss of Function of the Neural Cell Adhesion Molecule NrCAM Regulates Differentiation, Proliferation and Neurogenesis in Early Postnatal Hypothalamic Tanycytes. Front Neurosci. 2022;16:832961 pubmed 出版商
  3. Coviello S, Gramuntell Y, Klimczak P, Varea E, Blasco Iba xf1 ez J, Crespo C, et al. Phenotype and Distribution of Immature Neurons in the Human Cerebral Cortex Layer II. Front Neuroanat. 2022;16:851432 pubmed 出版商
  4. Drummond E, Kavanagh T, Pires G, Martá Ariza M, Kanshin E, Nayak S, et al. The amyloid plaque proteome in early onset Alzheimer's disease and Down syndrome. Acta Neuropathol Commun. 2022;10:53 pubmed 出版商
  5. Abd El Rahman S, Fayed H. Improved cognition impairment by activating cannabinoid receptor type 2: Modulating CREB/BDNF expression and impeding TLR-4/NFκBp65/M1 microglia signaling pathway in D-galactose-injected ovariectomized rats. PLoS ONE. 2022;17:e0265961 pubmed 出版商
  6. Qureshi Y, Berman D, Marsh S, Klein R, Patel V, Simoes S, et al. The neuronal retromer can regulate both neuronal and microglial phenotypes of Alzheimer's disease. Cell Rep. 2022;38:110262 pubmed 出版商
  7. Xiao Y, Liang J, Gao M, Sun J, Liu Y, Chen J, et al. Deletion of prominin-1 in mice results in disrupted photoreceptor outer segment protein homeostasis. Int J Ophthalmol. 2021;14:1334-1344 pubmed 出版商
  8. Weigelt C, Fuchs H, Schonberger T, Stierstorfer B, Strobel B, Lamla T, et al. AAV-Mediated Expression of Human VEGF, TNF-α, and IL-6 Induces Retinal Pathology in Mice. Transl Vis Sci Technol. 2021;10:15 pubmed 出版商
  9. Kilicarslan I, Zanetti L, Novelli E, Schwarzer C, Strettoi E, Koschak A. Knockout of CaV1.3 L-type calcium channels in a mouse model of retinitis pigmentosa. Sci Rep. 2021;11:15146 pubmed 出版商
  10. Xiao J, Cai T, Fang Y, Liu R, Flores J, Wang W, et al. Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. J Neuroinflammation. 2021;18:160 pubmed 出版商
  11. Li J, Pan L, Pembroke W, Rexach J, Godoy M, Condro M, et al. Conservation and divergence of vulnerability and responses to stressors between human and mouse astrocytes. Nat Commun. 2021;12:3958 pubmed 出版商
  12. Wang Y, Su Y, Yu G, Wang X, Chen X, Yu B, et al. Reduced Oligodendrocyte Precursor Cell Impairs Astrocytic Development in Early Life Stress. Adv Sci (Weinh). 2021;8:e2101181 pubmed 出版商
  13. MacLean M, Juranek J, Cuddapah S, López Díez R, Ruiz H, Hu J, et al. Microglia RAGE exacerbates the progression of neurodegeneration within the SOD1G93A murine model of amyotrophic lateral sclerosis in a sex-dependent manner. J Neuroinflammation. 2021;18:139 pubmed 出版商
  14. Asahina M, Fujinawa R, Hirayama H, Tozawa R, Kajii Y, Suzuki T. Reversibility of motor dysfunction in the rat model of NGLY1 deficiency. Mol Brain. 2021;14:91 pubmed 出版商
  15. Shin S, Zhou H, He C, Wei Y, Wang Y, Shingu T, et al. Qki activates Srebp2-mediated cholesterol biosynthesis for maintenance of eye lens transparency. Nat Commun. 2021;12:3005 pubmed 出版商
  16. Grissi M, Boudot C, Assem M, Candellier A, Lando M, Poirot Leclercq S, et al. Metformin prevents stroke damage in non-diabetic female mice with chronic kidney disease. Sci Rep. 2021;11:7464 pubmed 出版商
  17. Fang Y, Jiang Q, Li S, Zhu H, Xu R, Song N, et al. Opposing functions of β-arrestin 1 and 2 in Parkinson's disease via microglia inflammation and Nprl3. Cell Death Differ. 2021;28:1822-1836 pubmed 出版商
  18. Asahina M, Fujinawa R, Fujihira H, Masahara Negishi Y, Andou T, Tozawa R, et al. JF1/B6F1 Ngly1-/- mouse as an isogenic animal model of NGLY1 deficiency. Proc Jpn Acad Ser B Phys Biol Sci. 2021;97:89-102 pubmed 出版商
  19. Dorrier C, Aran D, Haenelt E, Sheehy R, Hoi K, Pintarić L, et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat Neurosci. 2021;24:234-244 pubmed 出版商
  20. Yoon S, Bae Y, Oh S, Song W, Chang H, Kim M. Altered hippocampal gene expression, glial cell population, and neuronal excitability in aminopeptidase P1 deficiency. Sci Rep. 2021;11:932 pubmed 出版商
  21. Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, et al. Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Rep. 2020;9:102-114 pubmed 出版商
  22. Tang S, Fesharaki Zadeh A, Takahashi H, Nies S, Smith L, Luo A, et al. Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic Tauopathy. Acta Neuropathol Commun. 2020;8:96 pubmed 出版商
  23. Mashkaryan V, Siddiqui T, Popova S, Cosacak M, Bhattarai P, Brandt K, et al. Type 1 Interleukin-4 Signaling Obliterates Mouse Astroglia in vivo but Not in vitro. Front Cell Dev Biol. 2020;8:114 pubmed 出版商
  24. Xing Z, Zhang L, Zhang Y, Sun X, Sun X, Yu H, et al. DIP2B Interacts With α-Tubulin to Regulate Axon Outgrowth. Front Cell Neurosci. 2020;14:29 pubmed 出版商
  25. Martinelli C, Gabriele F, Manai F, Ciccone R, Novara F, Sauta E, et al. The Search for Molecular Markers in a Gene-Orphan Case Study of a Pediatric Spinal Cord Pilocytic Astrocytoma. Cancer Genomics Proteomics. 2020;17:117-130 pubmed 出版商
  26. Angel A, Volkman R, Royal T, Offen D. Caspase-6 Knockout in the 5xFAD Model of Alzheimer's Disease Reveals Favorable Outcome on Memory and Neurological Hallmarks. Int J Mol Sci. 2020;21: pubmed 出版商
  27. Liu Y, Zhang S, Li X, Liu E, Wang X, Zhou Q, et al. Peripheral inflammation promotes brain tau transmission via disrupting blood-brain barrier. Biosci Rep. 2020;40: pubmed 出版商
  28. Guyot A, Leuxe C, Disdier C, Oumata N, Costa N, Roux G, et al. A Small Compound Targeting Prohibitin with Potential Interest for Cognitive Deficit Rescue in Aging mice and Tau Pathology Treatment. Sci Rep. 2020;10:1143 pubmed 出版商
  29. Cha M, Lee K, Lee B. Astroglial changes in the zona incerta in response to motor cortex stimulation in a rat model of chronic neuropathy. Sci Rep. 2020;10:943 pubmed 出版商
  30. Findlay A, McKie L, Keighren M, Clementson Mobbs S, Sanchez Pulido L, Wells S, et al. Fam151b, the mouse homologue of C.elegans menorin gene, is essential for retinal function. Sci Rep. 2020;10:437 pubmed 出版商
  31. Li C, Chen W, Wang J, Xia M, Jia Z, Guo C, et al. Nicotinamide riboside rescues angiotensin II-induced cerebral small vessel disease in mice. CNS Neurosci Ther. 2020;26:438-447 pubmed 出版商
  32. Tang X, Yan K, Wang Y, Wang Y, Chen H, Xu J, et al. Activation of PPAR-β/δ Attenuates Brain Injury by Suppressing Inflammation and Apoptosis in a Collagenase-Induced Intracerebral Hemorrhage Mouse Model. Neurochem Res. 2020;45:837-850 pubmed 出版商
  33. Bhattarai P, Cosacak M, Mashkaryan V, Demir S, Popova S, Govindarajan N, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol. 2020;18:e3000585 pubmed 出版商
  34. Wang X, Deng Y, Gao Y, Dong Y, Wang F, Guan Z, et al. Activation of α7 nAChR by PNU-282987 improves synaptic and cognitive functions through restoring the expression of synaptic-associated proteins and the CaM-CaMKII-CREB signaling pathway. Aging (Albany NY). 2020;12:543-570 pubmed 出版商
  35. Yu T, Zhao C, Hou S, Zhou W, Wang B, Chen Y. Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal cord injury in rats. Braz J Med Biol Res. 2019;52:e8735 pubmed 出版商
  36. Li J, Liu Z, Wang L, Xu H, Wang Y. Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep. 2019;39: pubmed 出版商
  37. Zhou C, Sun X, Hu Y, Song J, Dong S, Kong D, et al. Genomic deletion of TLR2 induces aggravated white matter damage and deteriorated neurobehavioral functions in mouse models of Alzheimer's disease. Aging (Albany NY). 2019;11:7257-7273 pubmed 出版商
  38. Wegmann S, Bennett R, Delorme L, Robbins A, Hu M, McKenzie D, et al. Experimental evidence for the age dependence of tau protein spread in the brain. Sci Adv. 2019;5:eaaw6404 pubmed 出版商
  39. Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler R, Zhang S, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nat Neurosci. 2019;22:719-728 pubmed 出版商
  40. Giandomenico S, Mierau S, Gibbons G, Wenger L, Masullo L, Sit T, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22:669-679 pubmed 出版商
  41. Hlavac N, VandeVord P. Astrocyte Mechano-Activation by High-Rate Overpressure Involves Alterations in Structural and Junctional Proteins. Front Neurol. 2019;10:99 pubmed 出版商
  42. Amal H, Gong G, Gjoneska E, Lewis S, Wishnok J, Tsai L, et al. S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl Psychiatry. 2019;9:44 pubmed 出版商
  43. Ko S, Price J, Blatch G, Nurgali K. Netrin-1-like-immunoreactivity Coexpresses With DCC and Has a Differential Level in the Myenteric Cholinergic and Nitrergic Neurons of the Adult Mouse Colon. J Histochem Cytochem. 2019;67:335-349 pubmed 出版商
  44. Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, et al. Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun. 2018;9:4845 pubmed 出版商
  45. Nie S, Tan Y, Zhang Z, Chen G, Xiong J, Hu D, et al. Bilateral Implantation of Shear Stress Modifier in ApoE Knockout Mouse Induces Cognitive Impairment and Tau Abnormalities. Front Aging Neurosci. 2018;10:303 pubmed 出版商
  46. Wang L, Wang J, Jin T, Zhou Y, Chen Q. FoxG1 facilitates proliferation and inhibits differentiation by downregulating FoxO/Smad signaling in glioblastoma. Biochem Biophys Res Commun. 2018;504:46-53 pubmed 出版商
  47. Pratt D, Dominah G, Lobel G, Obungu A, Lynes J, Sanchez V, et al. Programmed Death Ligand 1 Is a Negative Prognostic Marker in Recurrent Isocitrate Dehydrogenase-Wildtype Glioblastoma. Neurosurgery. 2018;: pubmed 出版商
  48. Giera S, Luo R, Ying Y, Ackerman S, Jeong S, Stoveken H, et al. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. elife. 2018;7: pubmed 出版商
  49. Beazley Long N, Moss C, Ashby W, Bestall S, Almahasneh F, Durrant A, et al. VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain Behav Immun. 2018;74:49-67 pubmed 出版商
  50. Sun G, Yang S, Cao G, Wang Q, Hao J, Wen Q, et al. γδ T cells provide the early source of IFN-γ to aggravate lesions in spinal cord injury. J Exp Med. 2018;215:521-535 pubmed 出版商
  51. Watanabe Matsumoto S, Moriwaki Y, Okuda T, Ohara S, Yamanaka K, Abe Y, et al. Dissociation of blood-brain barrier disruption and disease manifestation in an aquaporin-4-deficient mouse model of amyotrophic lateral sclerosis. Neurosci Res. 2018;133:48-57 pubmed 出版商
  52. Lin N, Messing A, Perng M. Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP. PLoS ONE. 2017;12:e0180694 pubmed 出版商
  53. Jung J, Kim L, Wang X, Wu Q, Sanvoranart T, Hubert C, et al. Nicotinamide metabolism regulates glioblastoma stem cell maintenance. JCI Insight. 2017;2: pubmed 出版商
  54. Wizeman J, Mohan R. Expression of peptidylarginine deiminase 4 in an alkali injury model of retinal gliosis. Biochem Biophys Res Commun. 2017;487:134-139 pubmed 出版商
  55. Bryukhovetskiy I, Lyakhova I, Mischenko P, Milkina E, Zaitsev S, Khotimchenko Y, et al. Alkaloids of fascaplysin are effective conventional chemotherapeutic drugs, inhibiting the proliferation of C6 glioma cells and causing their death in vitro. Oncol Lett. 2017;13:738-746 pubmed 出版商
  56. Reynolds L, D Amico G, Lechertier T, Papachristodoulou A, Muñoz Félix J, De Arcangelis A, et al. Dual role of pericyte ?6?1-integrin in tumour blood vessels. J Cell Sci. 2017;130:1583-1595 pubmed 出版商
  57. Jongbloets B, Lemstra S, Schellino R, Broekhoven M, Parkash J, Hellemons A, et al. Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors. Nat Commun. 2017;8:14666 pubmed 出版商
  58. Ehrlich M, Mozafari S, Glatza M, Starost L, Velychko S, Hallmann A, et al. Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci U S A. 2017;114:E2243-E2252 pubmed 出版商
  59. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  60. Zhao B, Pan Y, Xu H, Song X. Hyperbaric oxygen attenuates neuropathic pain and reverses inflammatory signaling likely via the Kindlin-1/Wnt-10a signaling pathway in the chronic pain injury model in rats. J Headache Pain. 2017;18:1 pubmed 出版商
  61. Li M, Li Z, Yao Y, Jin W, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A. 2017;114:E396-E405 pubmed 出版商
  62. Gray J, Rubin T, Kogan J, Marrocco J, Weidmann J, Lindkvist S, et al. Translational profiling of stress-induced neuroplasticity in the CA3 pyramidal neurons of BDNF Val66Met mice. Mol Psychiatry. 2018;23:904-913 pubmed 出版商
  63. Marco E, Ballesta J, Irala C, Hernández M, Serrano M, Mela V, et al. Sex-dependent influence of chronic mild stress (CMS) on voluntary alcohol consumption; study of neurobiological consequences. Pharmacol Biochem Behav. 2017;152:68-80 pubmed 出版商
  64. Lajko M, Cardona H, Taylor J, Shah R, Farrow K, Fawzi A. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption. PLoS ONE. 2016;11:e0166886 pubmed 出版商
  65. Nguyen H, Kirkton R, Bursac N. Engineering prokaryotic channels for control of mammalian tissue excitability. Nat Commun. 2016;7:13132 pubmed 出版商
  66. Bryukhovetskiy I, Dyuizen I, Shevchenko V, Bryukhovetskiy A, Mischenko P, Milkina E, et al. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep. 2016;14:4511-4520 pubmed 出版商
  67. Wizeman J, Nicholas A, Ishigami A, Mohan R. Citrullination of glial intermediate filaments is an early response in retinal injury. Mol Vis. 2016;22:1137-1155 pubmed
  68. Zhang S, Wang P, Ren L, Hu C, Bi J. Protective effect of melatonin on soluble A?1-42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus. Alzheimers Res Ther. 2016;8:40 pubmed 出版商
  69. Bryukhovetskiy I, Manzhulo I, Mischenko P, Milkina E, Dyuizen I, Bryukhovetskiy A, et al. Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncol Lett. 2016;12:1721-1728 pubmed
  70. Dhillon R, Parker J, Syed Y, Edgley S, Young A, Fawcett J, et al. Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy. Acta Neuropathol Commun. 2016;4:89 pubmed 出版商
  71. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  72. Achuta V, Grym H, Putkonen N, Louhivuori V, Kärkkäinen V, Koistinaho J, et al. Metabotropic glutamate receptor 5 responses dictate differentiation of neural progenitors to NMDA-responsive cells in fragile X syndrome. Dev Neurobiol. 2017;77:438-453 pubmed 出版商
  73. Auderset L, Cullen C, Young K. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System. PLoS ONE. 2016;11:e0155878 pubmed 出版商
  74. Ko A, Hyun H, Min S, Kim J. The Differential DRP1 Phosphorylation and Mitochondrial Dynamics in the Regional Specific Astroglial Death Induced by Status Epilepticus. Front Cell Neurosci. 2016;10:124 pubmed 出版商
  75. Singh V, Singh M, Gorantla S, Poluektova L, Maggirwar S. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice. Sci Rep. 2016;6:26876 pubmed 出版商
  76. Srinivasan K, Friedman B, Larson J, Lauffer B, Goldstein L, Appling L, et al. Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses. Nat Commun. 2016;7:11295 pubmed 出版商
  77. Linkus B, Wiesner D, Meßner M, Karabatsiakis A, Scheffold A, Rudolph K, et al. Telomere shortening leads to earlier age of onset in ALS mice. Aging (Albany NY). 2016;8:382-93 pubmed
  78. Xu A, Zheng G, Wang Z, Chen X, Jiang Q. Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats. Mol Med Rep. 2016;13:2957-66 pubmed 出版商
  79. Hinrich A, Jodelka F, Chang J, Brutman D, Bruno A, Briggs C, et al. Therapeutic correction of ApoER2 splicing in Alzheimer's disease mice using antisense oligonucleotides. EMBO Mol Med. 2016;8:328-45 pubmed 出版商
  80. Liu R, Li S, Garcia E, Glubrecht D, Poon H, Easaw J, et al. Association between cytoplasmic CRABP2, altered retinoic acid signaling, and poor prognosis in glioblastoma. Glia. 2016;64:963-76 pubmed 出版商
  81. Liu B, Ma A, Zhang F, Wang Y, Li Z, Li Q, et al. MAZ mediates the cross-talk between CT-1 and NOTCH1 signaling during gliogenesis. Sci Rep. 2016;6:21534 pubmed 出版商
  82. Tokuda E, Brännström T, Andersen P, Marklund S. Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase. Acta Neuropathol Commun. 2016;4:6 pubmed 出版商
  83. Liu Q, Sanai N, Jin W, La Cava A, Van Kaer L, Shi F. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat Neurosci. 2016;19:243-52 pubmed 出版商
  84. Gilkes J, Bloom M, Heldermon C. Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10. Gene Ther. 2016;23:263-71 pubmed 出版商
  85. Haas L, Salazar S, Kostylev M, Um J, Kaufman A, Strittmatter S. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain. 2016;139:526-46 pubmed 出版商
  86. Hauser D, Primiani C, Langston R, Kumaran R, Cookson M. The Polg Mutator Phenotype Does Not Cause Dopaminergic Neurodegeneration in DJ-1-Deficient Mice. Eneuro. 2015;2: pubmed 出版商
  87. Yamamuro S, Sano E, Okamoto Y, Ochiai Y, Ohta T, Ogino A, et al. Antitumorigenic effect of interferon-β by inhibition of undifferentiated glioblastoma cells. Int J Oncol. 2015;47:1647-54 pubmed 出版商
  88. Khadem F, Gao X, Mou Z, Jia P, Movassagh H, Onyilagha C, et al. Hepatic stellate cells regulate liver immunity to visceral leishmaniasis through P110δ-dependent induction and expansion of regulatory T cells in mice. Hepatology. 2016;63:620-32 pubmed 出版商
  89. López Gallardo M, Antón Fernández A, Llorente R, Mela V, Llorente Berzal A, Prada C, et al. Neonatal Treatment with a Pegylated Leptin Antagonist Induces Sexually Dimorphic Effects on Neurones and Glial Cells, and on Markers of Synaptic Plasticity in the Developing Rat Hippocampal Formation. J Neuroendocrinol. 2015;27:658-69 pubmed 出版商
  90. Tokuda E, Watanabe S, Okawa E, Ono S. Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis. Neurotherapeutics. 2015;12:461-76 pubmed 出版商
  91. Pérez Alvarez M, Mateos L, Alonso A, Wandosell F. Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus. Mol Neurobiol. 2015;52:1690-1703 pubmed 出版商
  92. McClain C, Sim F, Goldman S. Pleiotrophin suppression of receptor protein tyrosine phosphatase-?/? maintains the self-renewal competence of fetal human oligodendrocyte progenitor cells. J Neurosci. 2012;32:15066-75 pubmed 出版商
  93. Schwartz C, Cheng A, Mughal M, Mattson M, Yao P. Clathrin assembly proteins AP180 and CALM in the embryonic rat brain. J Comp Neurol. 2010;518:3803-18 pubmed 出版商