这是一篇来自已证抗体库的有关犬 GRB2的综述,是根据17篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合GRB2 抗体。
碧迪BD
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 1:2000; 图 s3-1f
碧迪BD GRB2抗体(BD Transduction Laboratories, 610112)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s3-1f). elife (2021) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 1:2000; 图 s3-1f
碧迪BD GRB2抗体(BD Transduction Laboratories, 610112)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s3-1f). elife (2021) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 1:1000; 图 3b
碧迪BD GRB2抗体(BD, 610111s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). elife (2021) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 1:1000; 图 7g
  • 免疫印迹; 小鼠; 1:1000; 图 7g
碧迪BD GRB2抗体(BD, 610112)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7g). J Immunother Cancer (2021) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 大鼠; 图 2d
碧迪BD GRB2抗体(BD Bioscences, 610111)被用于被用于免疫印迹在大鼠样本上 (图 2d). Cell (2019) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫细胞化学; 人类; 图 s12
碧迪BD GRB2抗体(BD Biosciences, 610112)被用于被用于免疫细胞化学在人类样本上 (图 s12). Mol Biol Cell (2016) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 图 6b
碧迪BD GRB2抗体(BD Biosciences, 610111)被用于被用于免疫印迹在人类样本上 (图 6b). Nat Struct Mol Biol (2016) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类
碧迪BD GRB2抗体(Transduction Lab, 610111)被用于被用于免疫印迹在人类样本上. Sci Rep (2016) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 图 4
碧迪BD GRB2抗体(BD Pharmingen, 610111)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer (2015) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 图 2
  • 免疫印迹; 小鼠; 图 1
碧迪BD GRB2抗体(BD Bioscience, 610111)被用于被用于免疫印迹在人类样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 1). Nat Med (2015) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BD GRB2抗体(BD Transduction Laboratories, 610112)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 图 3
碧迪BD GRB2抗体(BD Biosciences, 610112)被用于被用于免疫印迹在人类样本上 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 小鼠; 图 2
碧迪BD GRB2抗体(BD Bioscience, 610112)被用于被用于免疫印迹在小鼠样本上 (图 2). Cancer Res (2015) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 图 4
碧迪BD GRB2抗体(BD Transduction, 610112)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Sci (2015) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 小鼠; 1:1000; 图 5D
碧迪BD GRB2抗体(BD, 610112)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5D). DNA Repair (Amst) (2015) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫沉淀; 小鼠; 图 7
  • 免疫印迹; 小鼠; 1:2000; 图 7
碧迪BD GRB2抗体(BD Transduction Laboratories, 610112)被用于被用于免疫沉淀在小鼠样本上 (图 7) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7). PLoS ONE (2014) ncbi
小鼠 单克隆(81/GRB2)
  • 免疫印迹; 人类; 1:2000
碧迪BD GRB2抗体(BD Biosciences, 610111)被用于被用于免疫印迹在人类样本上浓度为1:2000. FEBS Lett (2013) ncbi
文章列表
  1. Vemulapalli V, Chylek L, Erickson A, Pfeiffer A, Gabriel K, LaRochelle J, et al. Time-resolved phosphoproteomics reveals scaffolding and catalysis-responsive patterns of SHP2-dependent signaling. elife. 2021;10: pubmed 出版商
  2. Willoughby P, Allen M, Yu J, Korytnikov R, Chen T, Liu Y, et al. The recycling endosome protein Rab25 coordinates collective cell movements in the zebrafish surface epithelium. elife. 2021;10: pubmed 出版商
  3. Alghanem A, Abello J, Maurer J, Kumar A, Ta C, Gunasekar S, et al. The SWELL1-LRRC8 complex regulates endothelial AKT-eNOS signaling and vascular function. elife. 2021;10: pubmed 出版商
  4. Ghonim M, Ibba S, Tarhuni A, Errami Y, Luu H, Dean M, et al. Targeting PARP-1 with metronomic therapy modulates MDSC suppressive function and enhances anti-PD-1 immunotherapy in colon cancer. J Immunother Cancer. 2021;9: pubmed 出版商
  5. Lundby A, Franciosa G, Emdal K, Refsgaard J, Gnosa S, Bekker Jensen D, et al. Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell. 2019;179:543-560.e26 pubmed 出版商
  6. Yi J, Manna A, Barr V, Hong J, Neuman K, Samelson L. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy. Mol Biol Cell. 2016;27:3591-3600 pubmed
  7. Francavilla C, Papetti M, Rigbolt K, Pedersen A, Sigurdsson J, Cazzamali G, et al. Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking. Nat Struct Mol Biol. 2016;23:608-18 pubmed 出版商
  8. Osinalde N, Sánchez Quiles V, Blagoev B, Kratchmarova I. Changes in Gab2 phosphorylation and interaction partners in response to interleukin (IL)-2 stimulation in T-lymphocytes. Sci Rep. 2016;6:23530 pubmed 出版商
  9. van Jaarsveld M, van Kuijk P, Boersma A, Helleman J, Van Ijcken W, Mathijssen R, et al. miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer. 2015;14:196 pubmed 出版商
  10. Wen Q, Yang Q, Goldenson B, Malinge S, Lasho T, Schneider R, et al. Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med. 2015;21:1473-80 pubmed 出版商
  11. Xing M, Wang X, Palmai Pallag T, Shen H, Helleday T, Hickson I, et al. Acute MUS81 depletion leads to replication fork slowing and a constitutive DNA damage response. Oncotarget. 2015;6:37638-46 pubmed 出版商
  12. Capuani F, Conte A, Argenzio E, Marchetti L, Priami C, Polo S, et al. Quantitative analysis reveals how EGFR activation and downregulation are coupled in normal but not in cancer cells. Nat Commun. 2015;6:7999 pubmed 出版商
  13. Kratochvill F, Gratz N, Qualls J, Van De Velde L, Chi H, Kovarik P, et al. Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay-Independent Manner. Cancer Res. 2015;75:3054-64 pubmed 出版商
  14. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  15. Uringa E, Baldeyron C, Odijk H, Wassenaar E, van Cappellen W, Maas A, et al. A mRad51-GFP antimorphic allele affects homologous recombination and DNA damage sensitivity. DNA Repair (Amst). 2015;25:27-40 pubmed 出版商
  16. Tao W, Moore R, Smith E, Xu X. Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS ONE. 2014;9:e110737 pubmed 出版商
  17. Kodigepalli K, Dutta P, Bauckman K, Nanjundan M. SnoN/SkiL expression is modulated via arsenic trioxide-induced activation of the PI3K/AKT pathway in ovarian cancer cells. FEBS Lett. 2013;587:5-16 pubmed 出版商