这是一篇来自已证抗体库的有关犬 HSP90AA1的综述,是根据92篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合HSP90AA1 抗体。
艾博抗(上海)贸易有限公司
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 HSP90AA1抗体(abcam, ab13492)被用于被用于免疫印迹在小鼠样本上 (图 5c). Cancer Discov (2020) ncbi
小鼠 单克隆(AC88)
  • 免疫组化; 小鼠; 1:100; 图 s6h
艾博抗(上海)贸易有限公司 HSP90AA1抗体(Abcam, ab13492)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s6h). Cell (2017) ncbi
小鼠 单克隆(AC88)
  • 流式细胞仪; 人类; 1:50; 图 3
艾博抗(上海)贸易有限公司 HSP90AA1抗体(ABCAM, ab13492)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3). Methods Mol Biol (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 HSP90AA1抗体(Abcam, ab13492)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Oncotarget (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫沉淀; 人类; 图 2a
艾博抗(上海)贸易有限公司 HSP90AA1抗体(Abcam, ab13492)被用于被用于免疫沉淀在人类样本上 (图 2a). FASEB J (2016) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 人类; 1:100; 图 3b
艾博抗(上海)贸易有限公司 HSP90AA1抗体(Abcam, ab13492)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3b). Mol Med Rep (2015) ncbi
小鼠 单克隆(AC88)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 HSP90AA1抗体(Abcam, ab13492)被用于被用于免疫印迹在小鼠样本上. Proteomics (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(S88)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 HSP90AA1抗体(Santa Cruz, sc-59578)被用于被用于免疫印迹在小鼠样本上 (图 1). J Virol (2015) ncbi
小鼠 单克隆(S88)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 HSP90AA1抗体(Santa Cruz Biotechnology, sc-59578)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2014) ncbi
Novus Biologicals
小鼠 单克隆(AC88)
  • 流式细胞仪; 小鼠; 图 4b
Novus Biologicals HSP90AA1抗体(Novus, AC88)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Adv Sci (Weinh) (2020) ncbi
碧迪BD
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:200
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上浓度为1:200. Sci Rep (2021) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫细胞化学; 人类; 1:100; 图 2d
碧迪BD HSP90AA1抗体(BD Biosciences, 611000)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2d). elife (2021) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:5000; 图 3f
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3f). Genome Biol (2021) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:10,000; 图 2g
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2g). elife (2020) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:5000; 图 1c
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1c). PLoS Genet (2020) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:1000; 图 3b
碧迪BD HSP90AA1抗体(BD Biosciences, 68)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). elife (2020) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫细胞化学; 人类; 图 2g
碧迪BD HSP90AA1抗体(BD Bioscience, 611000)被用于被用于免疫细胞化学在人类样本上 (图 2g). Nucleic Acids Res (2020) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:4000; 图 6c
碧迪BD HSP90AA1抗体(BD-Biosciences, 610419)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 6c). Cell Death Dis (2020) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫组化-冰冻切片; 人类; 图 1e
碧迪BD HSP90AA1抗体(BD Biosciences, 611000)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1e). Science (2020) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:1000; 图 2d
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Nat Commun (2019) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 3d
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在人类样本上 (图 3d). Mol Cell (2019) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫细胞化学; 人类; 1:100; 图 5a
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 611000)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5a). elife (2019) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 1d
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 1d). Cell (2019) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 1f
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 1f). Curr Biol (2019) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫印迹; 人类; 图 3b
碧迪BD HSP90AA1抗体(BD Biosciences, 611000)被用于被用于免疫印迹在人类样本上 (图 3b). Cell (2019) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 s11c
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 s11c). Science (2018) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:2500; 图 2j
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 2j). Nat Commun (2018) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫细胞化学; 人类; 1:500; 图 1c
碧迪BD HSP90AA1抗体(BD, 611000)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1c). J Cell Sci (2018) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:4000; 图 3b
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 3b). Nat Commun (2018) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫细胞化学; 人类; 1:1000; 图 s3a
碧迪BD HSP90AA1抗体(BD Biosciences, 611000)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s3a). Nat Commun (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 s5h
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在小鼠样本上 (图 s5h). Nat Methods (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 大鼠; 图 1d
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在大鼠样本上 (图 1d). Sci Rep (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:5000; 图 1b
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1b). Biochemistry (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2017) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫细胞化学; 小鼠; 1:500; 图 5h
  • 免疫印迹; 小鼠; 1:1000; 图 5g
碧迪BD HSP90AA1抗体(BD, 611000)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5h) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5g). J Clin Invest (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:1000; 图 6b
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). BMC Pulm Med (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 1c
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Clin Invest (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 6b
碧迪BD HSP90AA1抗体(BD, 610419)被用于被用于免疫印迹在小鼠样本上 (图 6b). Mol Cell Biol (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 1b
碧迪BD HSP90AA1抗体(BD Bioscience, 610418)被用于被用于免疫印迹在人类样本上 (图 1b). Oncogene (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 s6c
碧迪BD HSP90AA1抗体(BD Transduction Lab, 610419)被用于被用于免疫印迹在人类样本上 (图 s6c). Nature (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 大鼠; 1:2000; 图 7c
碧迪BD HSP90AA1抗体(BD Transduction, 610418)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 7c). J Cell Physiol (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:5000; 图 s2a
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s2a). Nat Commun (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 犬; 1:500; 图 3
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在犬样本上浓度为1:500 (图 3). Int J Hyperthermia (2017) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 2k
碧迪BD HSP90AA1抗体(BD Transduction, 610419)被用于被用于免疫印迹在小鼠样本上 (图 2k). Cell Cycle (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 3
碧迪BD HSP90AA1抗体(BD Transduction Labs, 610419)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS Genet (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 9h
  • 免疫印迹; 大鼠; 图 3a
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在小鼠样本上 (图 9h) 和 被用于免疫印迹在大鼠样本上 (图 3a). Sci Rep (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:1000; 图 7f
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7f). Nat Commun (2016) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
碧迪BD HSP90AA1抗体(BD Bioscience, 611000)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Protein Cell (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 4h
碧迪BD HSP90AA1抗体(BD, 68/Hsp90)被用于被用于免疫印迹在人类样本上 (图 4h). Science (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 2
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cell Biol (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 5e
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在人类样本上 (图 5e). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 3
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在人类样本上 (图 3). IUBMB Life (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 其他; 人类; 图 st1
碧迪BD HSP90AA1抗体(BD, 68)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 4
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在小鼠样本上 (图 4). Cancer Discov (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 1
碧迪BD HSP90AA1抗体(BD Biosciences, 68/Hsp90)被用于被用于免疫印迹在小鼠样本上 (图 1). J Immunol (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:1000; 图 3
碧迪BD HSP90AA1抗体(BD Transduction Labs, 68)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 2
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 2). Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:5000; 图 3a
碧迪BD HSP90AA1抗体(BD, 610418)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3a). Mol Brain (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 2
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 2). Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:500; 图 4f
碧迪BD HSP90AA1抗体(BD, 610419)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4f). PLoS ONE (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 1
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 2
碧迪BD HSP90AA1抗体(BD Transduction laboratories, 610419)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 5
碧迪BD HSP90AA1抗体(BD Transduction Laboratorie, 610419)被用于被用于免疫印迹在小鼠样本上 (图 5). Genes Dev (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 鸡; 1:1000
碧迪BD HSP90AA1抗体(BD Bioscience, 610418)被用于被用于免疫印迹在鸡样本上浓度为1:1000. Biosci Biotechnol Biochem (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 s6
碧迪BD HSP90AA1抗体(BD, 610418)被用于被用于免疫印迹在人类样本上 (图 s6). Nature (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD Transduction Labs, 610418)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 4
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS Pathog (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:1000; 图 7
碧迪BD HSP90AA1抗体(BD Transduction laboratories, 610418)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Eur J Pharmacol (2015) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD Transduction, 610419)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在人类样本上. Proteomics (2015) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫组化; 小鼠; 1:400
碧迪BD HSP90AA1抗体(BD Biosciences, 611000)被用于被用于免疫组化在小鼠样本上浓度为1:400. Mol Cell Biol (2014) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫细胞化学; 小鼠
碧迪BD HSP90AA1抗体(BD Transduction lab, 611000)被用于被用于免疫细胞化学在小鼠样本上. PLoS Genet (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:3000; 图 2
碧迪BD HSP90AA1抗体(BD, 610419)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2). Nat Cell Biol (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 7f
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上 (图 7f). PLoS ONE (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD Biosciences, 610418)被用于被用于免疫印迹在人类样本上. Antimicrob Agents Chemother (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD, 610419)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 大鼠; 1:1000
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Lab Invest (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:3000
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在人类样本上浓度为1:3000. PLoS Genet (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:2000; 图 1a
碧迪BD HSP90AA1抗体(BD Transduction lab, 610419)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1a). Nat Cell Biol (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 大鼠; 图 s3
碧迪BD HSP90AA1抗体(BD Transduction, 610418)被用于被用于免疫印迹在大鼠样本上 (图 s3). Nat Neurosci (2014) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠
碧迪BD HSP90AA1抗体(BD Transduction laboratories, 610418)被用于被用于免疫印迹在小鼠样本上. Physiol Rep (2013) ncbi
小鼠 单克隆(27/LAP2)
  • 免疫组化-石蜡切片; 小鼠; 1:400
碧迪BD HSP90AA1抗体(BD, 611000)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. Proc Natl Acad Sci U S A (2013) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 1:3000
碧迪BD HSP90AA1抗体(BD Biosciences, 610419)被用于被用于免疫印迹在小鼠样本上浓度为1:3000. FASEB J (2013) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 1:1000; 图 7
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610419)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Mol Pharmacol (2013) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 小鼠; 图 4
碧迪BD HSP90AA1抗体(BD Transduction, 610419)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2012) ncbi
小鼠 单克隆(68/Hsp90)
  • 免疫印迹; 人类; 图 5
碧迪BD HSP90AA1抗体(BD Transduction Laboratories, 610418)被用于被用于免疫印迹在人类样本上 (图 5). Nat Immunol (2011) ncbi
文章列表
  1. Rippe C, Morén B, Liu L, Stenkula K, Mustaniemi J, Wennström M, et al. NG2/CSPG4, CD146/MCAM and VAP1/AOC3 are regulated by myocardin-related transcription factors in smooth muscle cells. Sci Rep. 2021;11:5955 pubmed 出版商
  2. Chen X, Yao H, Kashif M, Revêchon G, Eriksson M, Hu J, et al. A small-molecule ICMT inhibitor delays senescence of Hutchinson-Gilford progeria syndrome cells. elife. 2021;10: pubmed 出版商
  3. Li L, Ugalde A, Scheele C, Dieter S, Nagel R, Ma J, et al. A comprehensive enhancer screen identifies TRAM2 as a key and novel mediator of YAP oncogenesis. Genome Biol. 2021;22:54 pubmed 出版商
  4. Ow J, Cadez M, Zafer G, Foo J, Li H, Ghosh S, et al. Remodeling of whole-body lipid metabolism and a diabetic-like phenotype caused by loss of CDK1 and hepatocyte division. elife. 2020;9: pubmed 出版商
  5. Dewhurst M, Ow J, Zafer G, Van Hul N, Wollmann H, Bisteau X, et al. Loss of hepatocyte cell division leads to liver inflammation and fibrosis. PLoS Genet. 2020;16:e1009084 pubmed 出版商
  6. Wang H, Radomska H, Phelps M, Iorns E, Tsui R, Denis A, et al. Replication Study: Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. elife. 2020;9: pubmed 出版商
  7. Bekeschus S, Clemen R, Nießner F, Sagwal S, Freund E, Schmidt A. Medical Gas Plasma Jet Technology Targets Murine Melanoma in an Immunogenic Fashion. Adv Sci (Weinh). 2020;7:1903438 pubmed 出版商
  8. Hu H, Ji Q, Song M, Ren J, Liu Z, Wang Z, et al. ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res. 2020;48:6001-6018 pubmed 出版商
  9. Wu Y, Chou T, Young L, Hsieh F, Pan H, Mo S, et al. Tumor suppressor death-associated protein kinase 1 inhibits necroptosis by p38 MAPK activation. Cell Death Dis. 2020;11:305 pubmed 出版商
  10. Topalian S, Taube J, Pardoll D. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science. 2020;367: pubmed 出版商
  11. Klotz R, Thomas A, Teng T, Han S, Iriondo O, Li L, et al. Circulating Tumor Cells Exhibit Metastatic Tropism and Reveal Brain Metastasis Drivers. Cancer Discov. 2020;10:86-103 pubmed 出版商
  12. Matsumoto S, Yamamichi T, Shinzawa K, Kasahara Y, Nojima S, Kodama T, et al. GREB1 induced by Wnt signaling promotes development of hepatoblastoma by suppressing TGFβ signaling. Nat Commun. 2019;10:3882 pubmed 出版商
  13. Chino H, Hatta T, Natsume T, Mizushima N. Intrinsically Disordered Protein TEX264 Mediates ER-phagy. Mol Cell. 2019;74:909-921.e6 pubmed 出版商
  14. Lieb S, Blaha Ostermann S, Kamper E, Rippka J, Schwarz C, Ehrenhöfer Wölfer K, et al. Werner syndrome helicase is a selective vulnerability of microsatellite instability-high tumor cells. elife. 2019;8: pubmed 出版商
  15. Jachimowicz R, Beleggia F, Isensee J, Velpula B, Goergens J, Bustos M, et al. UBQLN4 Represses Homologous Recombination and Is Overexpressed in Aggressive Tumors. Cell. 2019;176:505-519.e22 pubmed 出版商
  16. Rausch V, Bostrom J, Park J, Bravo I, Feng Y, Hay D, et al. The Hippo Pathway Regulates Caveolae Expression and Mediates Flow Response via Caveolae. Curr Biol. 2019;29:242-255.e6 pubmed 出版商
  17. Mirza A, McKellar S, Urman N, Brown A, Hollmig T, Aasi S, et al. LAP2 Proteins Chaperone GLI1 Movement between the Lamina and Chromatin to Regulate Transcription. Cell. 2019;176:198-212.e15 pubmed 出版商
  18. Bigenzahn J, Collu G, Kartnig F, Pieraks M, Vladimer G, Heinz L, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018;362:1171-1177 pubmed 出版商
  19. Yao F, Zhou Z, Kim J, Hang Q, Xiao Z, Ton B, et al. SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity. Nat Commun. 2018;9:2269 pubmed 出版商
  20. Platani M, Samejima I, Samejima K, Kanemaki M, Earnshaw W. Seh1 targets GATOR2 and Nup153 to mitotic chromosomes. J Cell Sci. 2018;131: pubmed 出版商
  21. Hsieh W, Hsu T, Chang Y, Lai M. IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nat Commun. 2018;9:463 pubmed 出版商
  22. Takaki T, Montagner M, Serres M, Le Berre M, Russell M, Collinson L, et al. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability. Nat Commun. 2017;8:16013 pubmed 出版商
  23. Rogers Z, McFarland C, Winters I, Naranjo S, Chuang C, Petrov D, et al. A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo. Nat Methods. 2017;14:737-742 pubmed 出版商
  24. Rippe C, Zhu B, Krawczyk K, Bavel E, Albinsson S, Sjölund J, et al. Hypertension reduces soluble guanylyl cyclase expression in the mouse aorta via the Notch signaling pathway. Sci Rep. 2017;7:1334 pubmed 出版商
  25. Melville Z, Hernández Ochoa E, Pratt S, Liu Y, Pierce A, Wilder P, et al. The Activation of Protein Kinase A by the Calcium-Binding Protein S100A1 Is Independent of Cyclic AMP. Biochemistry. 2017;56:2328-2337 pubmed 出版商
  26. Shizu R, Osabe M, Perera L, Moore R, Sueyoshi T, Negishi M. Phosphorylated Nuclear Receptor CAR Forms a Homodimer To Repress Its Constitutive Activity for Ligand Activation. Mol Cell Biol. 2017;37: pubmed 出版商
  27. Li H, Liu P, Xu S, Li Y, Dekker J, Li B, et al. FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J Clin Invest. 2017;127:1241-1253 pubmed 出版商
  28. Stefanowicz D, Ullah J, Lee K, Shaheen F, Olumese E, Fishbane N, et al. Epigenetic modifying enzyme expression in asthmatic airway epithelial cells and fibroblasts. BMC Pulm Med. 2017;17:24 pubmed 出版商
  29. Stein S, Lemos V, Xu P, Demagny H, Wang X, Ryu D, et al. Impaired SUMOylation of nuclear receptor LRH-1 promotes nonalcoholic fatty liver disease. J Clin Invest. 2017;127:583-592 pubmed 出版商
  30. Nagaraj R, Sharpley M, Chi F, Braas D, Zhou Y, Kim R, et al. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation. Cell. 2017;168:210-223.e11 pubmed 出版商
  31. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  32. Zhao B, Hu W, Kumar S, Gonyo P, Rana U, Liu Z, et al. The Nogo-B receptor promotes Ras plasma membrane localization and activation. Oncogene. 2017;36:3406-3416 pubmed 出版商
  33. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2017;541:228-232 pubmed 出版商
  34. Grossi M, Bhattachariya A, Nordström I, Turczynska K, Svensson D, Albinsson S, et al. Pyk2 inhibition promotes contractile differentiation in arterial smooth muscle. J Cell Physiol. 2017;232:3088-3102 pubmed 出版商
  35. Chaudhury A, Cheema S, Fachini J, Kongchan N, Lu G, Simon L, et al. CELF1 is a central node in post-transcriptional regulatory programmes underlying EMT. Nat Commun. 2016;7:13362 pubmed 出版商
  36. Graner A, Hellwinkel J, Lencioni A, Madsen H, Harland T, Marchando P, et al. HSP90 inhibitors in the context of heat shock and the unfolded protein response: effects on a primary canine pulmonary adenocarcinoma cell line. Int J Hyperthermia. 2017;33:303-317 pubmed 出版商
  37. Dias M, Martins V, Hajj G. Stress-Inducible Protein 1 (STI1): Extracellular Vesicle Analysis and Quantification. Methods Mol Biol. 2016;1459:161-74 pubmed 出版商
  38. Jayapal S, Ang H, Wang C, Bisteau X, Caldez M, Xuan G, et al. Cyclin A2 regulates erythrocyte morphology and numbers. Cell Cycle. 2016;15:3070-3081 pubmed
  39. Diril M, Bisteau X, Kitagawa M, Caldez M, Wee S, Gunaratne J, et al. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint. PLoS Genet. 2016;12:e1006310 pubmed 出版商
  40. Krawczyk K, Ekman M, Rippe C, Grossi M, Nilsson B, Albinsson S, et al. Assessing the contribution of thrombospondin-4 induction and ATF6? activation to endoplasmic reticulum expansion and phenotypic modulation in bladder outlet obstruction. Sci Rep. 2016;6:32449 pubmed 出版商
  41. Aryal B, Rotllan N, Araldi E, Ramírez C, He S, Chousterman B, et al. ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nat Commun. 2016;7:12313 pubmed 出版商
  42. Pinet S, Bessette B, Vedrenne N, Lacroix A, Richard L, Jauberteau M, et al. TrkB-containing exosomes promote the transfer of glioblastoma aggressiveness to YKL-40-inactivated glioblastoma cells. Oncotarget. 2016;7:50349-50364 pubmed 出版商
  43. Li Y, Zhang W, Chang L, Han Y, Sun L, Gong X, et al. Vitamin C alleviates aging defects in a stem cell model for Werner syndrome. Protein Cell. 2016;7:478-88 pubmed 出版商
  44. Galloway A, Saveliev A, Łukasiak S, Hodson D, Bolland D, Balmanno K, et al. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence. Science. 2016;352:453-9 pubmed 出版商
  45. Okumura F, Uematsu K, Byrne S, Hirano M, Joo Okumura A, Nishikimi A, et al. Parallel Regulation of von Hippel-Lindau Disease by pVHL-Mediated Degradation of B-Myb and Hypoxia-Inducible Factor ?. Mol Cell Biol. 2016;36:1803-17 pubmed 出版商
  46. Bigenzahn J, Fauster A, Rebsamen M, Kandasamy R, Scorzoni S, Vladimer G, et al. An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client. Mol Cell Proteomics. 2016;15:1139-50 pubmed
  47. Bober J, Olsnes S, Kostas M, Bogacz M, Zakrzewska M, Otlewski J. Identification of new FGF1 binding partners-Implications for its intracellular function. IUBMB Life. 2016;68:242-51 pubmed 出版商
  48. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  49. Roundhill E, Turnbull D, Burchill S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. FASEB J. 2016;30:1712-23 pubmed 出版商
  50. Dimitrova N, Gocheva V, Bhutkar A, Resnick R, Jong R, Miller K, et al. Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development. Cancer Discov. 2016;6:188-201 pubmed 出版商
  51. Moriwaki K, Farias Luz N, Balaji S, De Rosa M, O Donnell C, Gough P, et al. The Mitochondrial Phosphatase PGAM5 Is Dispensable for Necroptosis but Promotes Inflammasome Activation in Macrophages. J Immunol. 2016;196:407-15 pubmed 出版商
  52. Robles Oteiza C, Taylor S, Yates T, Cicchini M, Lauderback B, Cashman C, et al. Recombinase-based conditional and reversible gene regulation via XTR alleles. Nat Commun. 2015;6:8783 pubmed 出版商
  53. Joshi A, Barabutis N, Birmpas C, Dimitropoulou C, Thangjam G, Cherian Shaw M, et al. Histone deacetylase inhibitors prevent pulmonary endothelial hyperpermeability and acute lung injury by regulating heat shock protein 90 function. Am J Physiol Lung Cell Mol Physiol. 2015;309:L1410-9 pubmed 出版商
  54. Ho D, Kim H, Kim J, Sim H, Ahn H, Kim J, et al. Leucine-Rich Repeat Kinase 2 (LRRK2) phosphorylates p53 and induces p21(WAF1/CIP1) expression. Mol Brain. 2015;8:54 pubmed 出版商
  55. Ashford A, Dunkley T, Cockerill M, Rowlinson R, Baak L, Gallo R, et al. Identification of DYRK1B as a substrate of ERK1/2 and characterisation of the kinase activity of DYRK1B mutants from cancer and metabolic syndrome. Cell Mol Life Sci. 2016;73:883-900 pubmed 出版商
  56. Hussein M, Shrestha E, Ouimet M, Barrett T, Leone S, Moore K, et al. LXR-Mediated ABCA1 Expression and Function Are Modulated by High Glucose and PRMT2. PLoS ONE. 2015;10:e0135218 pubmed 出版商
  57. Krawczyk K, Yao Mattisson I, Ekman M, Oskolkov N, Grantinge R, Kotowska D, et al. Myocardin Family Members Drive Formation of Caveolae. PLoS ONE. 2015;10:e0133931 pubmed 出版商
  58. Gurt I, Artsi H, Cohen Kfir E, Hamdani G, Ben Shalom G, Feinstein B, et al. The Sirt1 Activators SRT2183 and SRT3025 Inhibit RANKL-Induced Osteoclastogenesis in Bone Marrow-Derived Macrophages and Down-Regulate Sirt3 in Sirt1 Null Cells. PLoS ONE. 2015;10:e0134391 pubmed 出版商
  59. Chiou S, Winters I, Wang J, Naranjo S, Dudgeon C, Tamburini F, et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev. 2015;29:1576-85 pubmed 出版商
  60. Ueda S, Kokaji Y, Simizu S, Honda K, Yoshino K, Kamisoyama H, et al. Chicken heat shock protein HSPB1 increases and interacts with αB-crystallin in aged skeletal muscle. Biosci Biotechnol Biochem. 2015;79:1867-75 pubmed 出版商
  61. Cheng W, Ainiwaer A, Xiao L, Cao Q, Wu G, Yang Y, et al. Role of the novel HSP90 inhibitor AUY922 in hepatocellular carcinoma: Potential for therapy. Mol Med Rep. 2015;12:2451-6 pubmed 出版商
  62. Vashist S, Ureña L, Gonzalez Hernandez M, Choi J, de Rougemont A, Rocha Pereira J, et al. Molecular chaperone Hsp90 is a therapeutic target for noroviruses. J Virol. 2015;89:6352-63 pubmed 出版商
  63. Lee A, Kranzusch P, Cate J. eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature. 2015;522:111-4 pubmed 出版商
  64. Clark P, Kim R, Pober J, Kluger M. Tumor necrosis factor disrupts claudin-5 endothelial tight junction barriers in two distinct NF-κB-dependent phases. PLoS ONE. 2015;10:e0120075 pubmed 出版商
  65. Hodgson A, Wier E, Fu K, Sun X, Yu H, Zheng W, et al. Metalloprotease NleC suppresses host NF-κB/inflammatory responses by cleaving p65 and interfering with the p65/RPS3 interaction. PLoS Pathog. 2015;11:e1004705 pubmed 出版商
  66. Zeng J, Ekman M, Grossi M, Svensson D, Nilsson B, Jiang C, et al. Vasopressin-induced mouse urethral contraction is modulated by caveolin-1. Eur J Pharmacol. 2015;750:59-65 pubmed 出版商
  67. Ohno M, Kanayama T, Moore R, Ray M, Negishi M. The roles of co-chaperone CCRP/DNAJC7 in Cyp2b10 gene activation and steatosis development in mouse livers. PLoS ONE. 2014;9:e115663 pubmed 出版商
  68. Ohoka N, Nagai K, Hattori T, Okuhira K, Shibata N, Cho N, et al. Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin-proteasome pathway. Cell Death Dis. 2014;5:e1513 pubmed 出版商
  69. Cubeñas Potts C, Srikumar T, Lee C, Osula O, Subramonian D, Zhang X, et al. Identification of SUMO-2/3-modified proteins associated with mitotic chromosomes. Proteomics. 2015;15:763-72 pubmed 出版商
  70. Jung H, Tatar A, Tu Y, Nobumori C, Yang S, Goulbourne C, et al. An absence of nuclear lamins in keratinocytes leads to ichthyosis, defective epidermal barrier function, and intrusion of nuclear membranes and endoplasmic reticulum into the nuclear chromatin. Mol Cell Biol. 2014;34:4534-44 pubmed 出版商
  71. Menon M, Sawada A, Chaturvedi A, Mishra P, Schuster Gossler K, Galla M, et al. Genetic deletion of SEPT7 reveals a cell type-specific role of septins in microtubule destabilization for the completion of cytokinesis. PLoS Genet. 2014;10:e1004558 pubmed 出版商
  72. Ronzitti G, Bucci G, Emanuele M, Leo D, Sotnikova T, Mus L, et al. Exogenous ?-synuclein decreases raft partitioning of Cav2.2 channels inducing dopamine release. J Neurosci. 2014;34:10603-15 pubmed 出版商
  73. Zhang P, Wei Y, Wang L, Debeb B, Yuan Y, Zhang J, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat Cell Biol. 2014;16:864-75 pubmed 出版商
  74. Lo Sasso G, Menzies K, Mottis A, Piersigilli A, Perino A, Yamamoto H, et al. SIRT2 deficiency modulates macrophage polarization and susceptibility to experimental colitis. PLoS ONE. 2014;9:e103573 pubmed 出版商
  75. Lo Sasso G, Ryu D, Mouchiroud L, Fernando S, Anderson C, Katsyuba E, et al. Loss of Sirt1 function improves intestinal anti-bacterial defense and protects from colitis-induced colorectal cancer. PLoS ONE. 2014;9:e102495 pubmed 出版商
  76. Yamauchi T, Nishiyama M, Moroishi T, Yumimoto K, Nakayama K. MDM2 mediates nonproteolytic polyubiquitylation of the DEAD-Box RNA helicase DDX24. Mol Cell Biol. 2014;34:3321-40 pubmed 出版商
  77. Tam A, Wadsworth S, Dorscheid D, Man S, Sin D. Estradiol increases mucus synthesis in bronchial epithelial cells. PLoS ONE. 2014;9:e100633 pubmed 出版商
  78. Ballana E, Badia R, Terradas G, Torres Torronteras J, Ruiz A, Pauls E, et al. SAMHD1 specifically affects the antiviral potency of thymidine analog HIV reverse transcriptase inhibitors. Antimicrob Agents Chemother. 2014;58:4804-13 pubmed 出版商
  79. Kitagawa K, Shibata K, Matsumoto A, Matsumoto M, Ohhata T, Nakayama K, et al. Fbw7 targets GATA3 through cyclin-dependent kinase 2-dependent proteolysis and contributes to regulation of T-cell development. Mol Cell Biol. 2014;34:2732-44 pubmed
  80. Moroishi T, Yamauchi T, Nishiyama M, Nakayama K. HERC2 targets the iron regulator FBXL5 for degradation and modulates iron metabolism. J Biol Chem. 2014;289:16430-41 pubmed 出版商
  81. Swärd K, Albinsson S, Rippe C. Arterial dysfunction but maintained systemic blood pressure in cavin-1-deficient mice. PLoS ONE. 2014;9:e92428 pubmed 出版商
  82. Ekman M, Uvelius B, Albinsson S, Swärd K. HIF-mediated metabolic switching in bladder outlet obstruction mitigates the relaxing effect of mitochondrial inhibition. Lab Invest. 2014;94:557-68 pubmed 出版商
  83. Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Zhang J, et al. miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet. 2014;10:e1004177 pubmed 出版商
  84. Piao H, Yuan Y, Wang M, Sun Y, Liang H, Ma L. ?-catenin acts as a tumour suppressor in E-cadherin-negative basal-like breast cancer by inhibiting NF-?B signalling. Nat Cell Biol. 2014;16:245-54 pubmed 出版商
  85. Fan X, Jin W, Lu J, Wang J, Wang Y. Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat Neurosci. 2014;17:471-80 pubmed 出版商
  86. Swärd K, Sadegh M, Mori M, Erjefalt J, Rippe C. Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/PTRF. Physiol Rep. 2013;1:e00008 pubmed 出版商
  87. Jockusch H, Holland A, Staunton L, Schmitt John T, Heimann P, Dowling P, et al. Pathoproteomics of testicular tissue deficient in the GARP component VPS54: the wobbler mouse model of globozoospermia. Proteomics. 2014;14:839-52 pubmed 出版商
  88. Jung H, Nobumori C, Goulbourne C, Tu Y, Lee J, Tatar A, et al. Farnesylation of lamin B1 is important for retention of nuclear chromatin during neuronal migration. Proc Natl Acad Sci U S A. 2013;110:E1923-32 pubmed 出版商
  89. Danielson L, Park D, Rotllan N, Chamorro Jorganes A, Guijarro M, Fernandez Hernando C, et al. Cardiovascular dysregulation of miR-17-92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis. FASEB J. 2013;27:1460-7 pubmed 出版商
  90. Krzysik Walker S, González Mariscal I, Scheibye Knudsen M, Indig F, Bernier M. The biarylpyrazole compound AM251 alters mitochondrial physiology via proteolytic degradation of ERR?. Mol Pharmacol. 2013;83:157-66 pubmed 出版商
  91. Diril M, Ratnacaram C, Padmakumar V, Du T, Wasser M, Coppola V, et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc Natl Acad Sci U S A. 2012;109:3826-31 pubmed 出版商
  92. Wan F, Weaver A, Gao X, Bern M, Hardwidge P, Lenardo M. IKK? phosphorylation regulates RPS3 nuclear translocation and NF-?B function during infection with Escherichia coli strain O157:H7. Nat Immunol. 2011;12:335-43 pubmed 出版商