这是一篇来自已证抗体库的有关犬 MAP1LC3B的综述,是根据218篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合MAP1LC3B 抗体。
Novus Biologicals
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a, 4b
Novus Biologicals MAP1LC3B抗体(Novus, NB100)被用于被用于免疫印迹在小鼠样本上 (图 4a, 4b). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d, 8b
  • 免疫印迹; 人类; 图 1d
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 3d, 8b) 和 被用于免疫印迹在人类样本上 (图 1d). Acta Pharm Sin B (2022) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2e
  • 免疫印迹; 人类; 1:500; 图 4d
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2e) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 4d). Cell Prolif (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 1:500; 图 4c
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4c). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
  • 免疫印迹; 大鼠; 图 1d
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 4b) 和 被用于免疫印迹在大鼠样本上 (图 1d). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上. Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1g
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 1g). Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2c
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2c). J Cachexia Sarcopenia Muscle (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 1d). Stem Cell Reports (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化; 小鼠; 图 s8j
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫组化在小鼠样本上 (图 s8j). Nat Neurosci (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 图 1e
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫印迹在小鼠样本上 (图 1e). Cell Death Differ (2021) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫细胞化学; 小鼠; 图 5c
  • 免疫印迹; 小鼠; 图 5c
Novus Biologicals MAP1LC3B抗体(NOVUS Biologicals, NB600-1384)被用于被用于免疫细胞化学在小鼠样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 5c). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 2i
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 2i). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1l
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1l). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nature (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 1a). EMBO Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1c
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫细胞化学在小鼠样本上 (图 1c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3a
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
Novus Biologicals MAP1LC3B抗体(Novus Biotechnology, NB1002220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Antioxidants (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2e
  • 免疫印迹; 小鼠; 1:5000; 图 2a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2e) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2a). Autophagy (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Novus Biologicals MAP1LC3B抗体(NOVUS Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 2a). Autophagy (2020) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 1:1000; 图 5s2b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5s2b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s2a
  • 免疫印迹; 人类; 图 2a
Novus Biologicals MAP1LC3B抗体(NOVUS, NB100-2220)被用于被用于免疫细胞化学在人类样本上 (图 s2a) 和 被用于免疫印迹在人类样本上 (图 2a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:20,000; 图 6h
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 6h). Autophagy (2019) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 5a
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫印迹在人类样本上 (图 5a). Nucleic Acids Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1c
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100?C2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2a
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). J Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3g
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, 100-2220)被用于被用于免疫印迹在人类样本上 (图 3g). Front Mol Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8c
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 5a). Autophagy (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 豚鼠; 图 7b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在豚鼠样本上 (图 7b). Biomed Res Int (2019) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 4b
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫印迹在人类样本上 (图 4b). Oncogene (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 1a). Autophagy (2018) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 图 s8d
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫印迹在小鼠样本上 (图 s8d). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 3c). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 1b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1b). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 2a). Front Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Death Differ (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 4b
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4b). J Lipid Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5g
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5g). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2f
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 2f). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 2c). PLoS Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 1f
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1f). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 2c). Cell Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 e4d
  • 免疫印迹; 小鼠; 图 1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB 100-2220)被用于被用于免疫印迹在人类样本上 (图 e4d) 和 被用于免疫印迹在小鼠样本上 (图 1a). Nature (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化; 大鼠; 1:200; 图 3
  • 免疫印迹; 大鼠; 1:1000; 图 1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1a). Am J Transl Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 图 3d
  • 免疫印迹; 人类; 图 5b
Novus Biologicals MAP1LC3B抗体(Novus, NB 100-2220)被用于被用于免疫印迹在斑马鱼样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 5b). Cell Chem Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4d
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8c
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8c). J Nutr Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 5a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-222055)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5a). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 3a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB00-2220)被用于被用于免疫印迹在小鼠样本上 (图 3d). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1f
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). EMBO Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1h
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 1h). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3f
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 3f). Autophagy (2017) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). J Huntingtons Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 5a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NN100-2220)被用于被用于免疫组化在人类样本上 (图 5a). J Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
Novus Biologicals MAP1LC3B抗体(Novus biological, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 5b). Front Cell Infect Microbiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Genet Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
Novus Biologicals MAP1LC3B抗体(NovusBio, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 4e). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 1e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 6
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Drug Des Devel Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上. Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 2d
  • 免疫印迹; 人类; 1:1000; 图 5b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Nat Commun (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 5
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, 600-1384)被用于被用于免疫印迹在人类样本上 (图 5). J Immunol (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 图 6
Novus Biologicals MAP1LC3B抗体(Novusbio, NB600-1384)被用于被用于免疫印迹在人类样本上 (图 6). Neurobiol Dis (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 3
  • 免疫印迹; 人类; 图 1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 3) 和 被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). J Pharmacol Exp Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 10
  • 免疫细胞化学; 小鼠; 图 7
  • 免疫印迹; 小鼠; 图 1
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在大鼠样本上 (图 10), 被用于免疫细胞化学在小鼠样本上 (图 7) 和 被用于免疫印迹在小鼠样本上 (图 1). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB100-2220)被用于被用于免疫印迹在小鼠样本上 (图 6). Autophagy (2016) ncbi
domestic rabbit 多克隆(OTI2B3)
  • 免疫印迹; 人类; 1:1000; 图 2
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 6). J Nanobiotechnology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:2000; 图 s2
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在斑马鱼样本上浓度为1:2000 (图 s2). Hum Mol Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在小鼠样本上. Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1
  • 免疫印迹; 小鼠; 1:1000; 图 6
Novus Biologicals MAP1LC3B抗体(Novus, NB 100-2220)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上 (图 3). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 1
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 7
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7). Traffic (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2e
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2e). J Mol Cell Cardiol (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB100?C2220)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于. Mol Pharmacol (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s4b
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s4b). Kidney Int (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220SS)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB-100-2220)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220SS)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于. Biochim Biophys Acta (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, 100-2220)被用于被用于免疫印迹在人类样本上 (图 2). Leukemia (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于被用于免疫印迹在大鼠样本上 (图 5). Nutr Neurosci (2016) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus Biologicals;, NB600- 1384)被用于. Nature (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Life Sci (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. PLoS Pathog (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, 100-2220)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于. Nat Cell Biol (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Cell Signal (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(novus Biologicals, NB100-2220)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB600-1384)被用于. Exp Neurol (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于. Toxicol Lett (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Nat Neurosci (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. J Neurosci (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于. Nat Genet (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于. Oncogene (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(Novus, NB600-1384)被用于. Sci Signal (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Nat Cell Biol (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biologicals, NB100-2220)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus Biological, NB100-2220)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆(OTI2B3)
Novus Biologicals MAP1LC3B抗体(novus Biologicals, NB600-1384)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(NOVUS Biologicals, NB100-2220)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于. J Biol Chem (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于. J Clin Invest (2015) ncbi
domestic rabbit 多克隆
Novus Biologicals MAP1LC3B抗体(Novus, NB100-2220)被用于. Nucleic Acids Res (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 5a). Front Cell Neurosci (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5f
  • 免疫印迹; 小鼠; 图 3d
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5f) 和 被用于免疫印迹在小鼠样本上 (图 3d). JCI Insight (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2h
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2h). Int J Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样本上浓度为1:1000. Front Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5e
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). J Gene Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
  • 免疫印迹; 人类; 1:1000; 图 s3a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s3a). Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 5a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab 48394)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5a). Biomolecules (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, Ab48394)被用于被用于免疫印迹在人类样本上 (图 4b). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1 ug/ml; 图 4c
  • 免疫印迹; 人类; 1:1000; 图 8g
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 4c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 8g). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, Ab48394)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在小鼠样本上 (图 2a). Biology (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; domestic rabbit; 1:2000; 图 2d, 7b
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:2000 (图 2d, 7b). Invest Ophthalmol Vis Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样本上 (图 1a). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6d
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, Ab48394)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 6b
  • 免疫印迹; 小鼠; 图 3a, 11b
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫细胞化学在小鼠样本上 (图 6b) 和 被用于免疫印迹在小鼠样本上 (图 3a, 11b). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样本上 (图 4d). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, Cambridge, UK, ab48394)被用于被用于免疫印迹在小鼠样本上 (图 4a). FASEB J (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 2a). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5b
  • 免疫印迹; 小鼠; 图 3c
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫细胞化学在小鼠样本上 (图 5b) 和 被用于免疫印迹在小鼠样本上 (图 3c). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在小鼠样本上 (图 2a). EMBO J (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样本上 (图 5a). Curr Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫细胞化学在大鼠样本上. Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s3c
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫组化在小鼠样本上 (图 s3c). PLoS Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab483941)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在小鼠样本上 (图 8). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在大鼠样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 5a
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫组化在人类样本上 (图 5a). Cancer Genomics Proteomics (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2). Hum Mol Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 9
艾博抗(上海)贸易有限公司 MAP1LC3B抗体(Abcam, ab48394)被用于被用于免疫组化在人类样本上 (图 9). Autophagy (2016) ncbi
赛默飞世尔
domestic rabbit 多克隆
赛默飞世尔 MAP1LC3B抗体(Thermo Fisher, PA1-16930)被用于. Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛默飞世尔 MAP1LC3B抗体(Pierce, PA1-16931)被用于被用于免疫印迹在人类样本上 (图 4a). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 8
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-C16,931)被用于被用于免疫印迹在大鼠样本上 (图 8). J Nutr Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2a
赛默飞世尔 MAP1LC3B抗体(Thermo Fisher Scientific, PA1-16931)被用于被用于免疫印迹在人类样本上 (图 s2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 1:500; 图 1
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-16930)被用于被用于免疫印迹在牛样本上浓度为1:500 (图 1). J Dairy Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-16930)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-C16930)被用于. Autophagy (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAP1LC3B抗体(Thermo, PA116931)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-46286)被用于. Biol Reprod (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAP1LC3B抗体(Thermo, PA5-22731)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAP1LC3B抗体(Thermo Scientific, PA1-46286)被用于. Methods (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 MAP1LC3B抗体(Thermo Fisher Scientific, PA1-16931)被用于. Mol Neurobiol (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4i
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于被用于免疫印迹在人类样本上 (图 4i). Int J Mol Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b, 5c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 4108)被用于被用于免疫印迹在小鼠样本上 (图 5b, 5c). Mol Metab (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108S)被用于被用于免疫印迹在人类样本上 (图 5b). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 4108S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). J Inflamm Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 a12s8a, a8s4b
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 4108)被用于被用于免疫细胞化学在人类样本上 (图 a12s8a, a8s4b) 和 被用于免疫印迹在人类样本上 (图 3c). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4). Brain Pathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1b). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8c). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Exp Eye Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于被用于免疫印迹在小鼠样本上 (图 2a). Arterioscler Thromb Vasc Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Autophagy (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在人类样本上 (图 3c). Front Cell Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Front Mol Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a, 1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 4108)被用于被用于免疫印迹在人类样本上 (图 3a, 1d). Am J Cancer Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Int J Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oxid Med Cell Longev (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signal Technology, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Front Physiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1500; 图 1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在大鼠样本上浓度为1:1500 (图 1c). Exp Ther Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Neurobiol Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上 (图 3a). Biomed Res Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3d
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 4108)被用于被用于免疫组化在小鼠样本上 (图 3d) 和 被用于免疫印迹在小鼠样本上 (图 2b). Front Physiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 9e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9e). Invest Ophthalmol Vis Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 3b
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling, 4108)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 3a). Autophagy (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于被用于免疫印迹在人类样本上 (图 4e). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1g, 2e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signalling, 4108)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g, 2e). EMBO J (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上 (图 1d). Dev Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Endocrinology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 4108s)被用于被用于免疫印迹在人类样本上 (图 2). Tumour Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). FASEB J (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7g
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7g). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上 (图 3e). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在人类样本上 (图 7a). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Mol Med Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell signaling, 4108)被用于被用于免疫印迹在人类样本上 (图 3d). Eur J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 6a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 4108)被用于被用于免疫细胞化学在人类样本上 (图 6a). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(CST, 4108)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1d). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:1000; 图 s1c
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 s1c). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 S8
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 S8). Aging Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Abcam, 4108)被用于被用于免疫印迹在小鼠样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 S1
  • 免疫印迹; 小鼠; 1:1000; 图 1B
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling, 4108)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 S1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1B). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 MAP1LC3B抗体(Cell Signaling Technology, 4108S)被用于被用于免疫印迹在人类样本上 (图 2a). J Crohns Colitis (2016) ncbi
文章列表
  1. Moore T, Cheng L, Wolf D, Ngo J, Segawa M, Zhu X, et al. Parkin regulates adiposity by coordinating mitophagy with mitochondrial biogenesis in white adipocytes. Nat Commun. 2022;13:6661 pubmed 出版商
  2. Magdy A, Farrag E, Hamed S, Abdallah Z, El Nashar E, Alghamdi M, et al. Neuroprotective and therapeutic effects of calcitriol in rotenone-induced Parkinson's disease rat model. Front Cell Neurosci. 2022;16:967813 pubmed 出版商
  3. Gao H, Sun H, Yan N, Zhao P, Xu H, Zheng W, et al. ATP13A2 Declines Zinc-Induced Accumulation of α-Synuclein in a Parkinson's Disease Model. Int J Mol Sci. 2022;23: pubmed 出版商
  4. Yang C, Su C, Iyaswamy A, Krishnamoorthi S, Zhu Z, Yang S, et al. Celastrol enhances transcription factor EB (TFEB)-mediated autophagy and mitigates Tau pathology: Implications for Alzheimer's disease therapy. Acta Pharm Sin B. 2022;12:1707-1722 pubmed 出版商
  5. Han H, Kim S, Kim Y, Jang S, Kwon Y, Choi D, et al. A novel role of CRTC2 in promoting nonalcoholic fatty liver disease. Mol Metab. 2022;55:101402 pubmed 出版商
  6. Li M, Shen Y, Xiong Y, Wang S, Li C, Bai J, et al. Loss of SMARCB1 promotes autophagy and facilitates tumour progression in chordoma by transcriptionally activating ATG5. Cell Prolif. 2021;54:e13136 pubmed 出版商
  7. Li R, Hao Y, Wang Q, Meng Y, Wu K, Liu C, et al. ECHS1, an interacting protein of LASP1, induces sphingolipid-metabolism imbalance to promote colorectal cancer progression by regulating ceramide glycosylation. Cell Death Dis. 2021;12:911 pubmed 出版商
  8. Lü Z, Liu H, Song N, Liang Y, Zhu J, Chen J, et al. METTL14 aggravates podocyte injury and glomerulopathy progression through N6-methyladenosine-dependent downregulating of Sirt1. Cell Death Dis. 2021;12:881 pubmed 出版商
  9. Shi Y, Hu Y, Wang Y, Ma X, Tang L, Tao M, et al. Blockade of Autophagy Prevents the Development and Progression of Peritoneal Fibrosis. Front Pharmacol. 2021;12:724141 pubmed 出版商
  10. Liu M, Shan M, Zhang Y, Guo Z. Progranulin Protects Against Airway Remodeling Through the Modulation of Autophagy via HMGB1 Suppression in House Dust Mite-Induced Chronic Asthma. J Inflamm Res. 2021;14:3891-3904 pubmed 出版商
  11. Silva Rojas R, Charles A, Djeddi S, Geny B, Laporte J, Böhm J. Pathophysiological Effects of Overactive STIM1 on Murine Muscle Function and Structure. Cells. 2021;10: pubmed 出版商
  12. Yoon Y, Go G, Yoon S, Lim J, Lee G, Lee J, et al. Melatonin Treatment Improves Renal Fibrosis via miR-4516/SIAH3/PINK1 Axis. Cells. 2021;10: pubmed 出版商
  13. Chen H, Zhang Brotzge X, Morozov Y, Li Y, Wang S, Zhang H, et al. Creatine transporter deficiency impairs stress adaptation and brain energetics homeostasis. JCI Insight. 2021;6: pubmed 出版商
  14. Liu H, Zang P, Lee I, Anderson B, Christiani A, Strait Bodey L, et al. Growth hormone secretagogue receptor-1a mediates ghrelin's effects on attenuating tumour-induced loss of muscle strength but not muscle mass. J Cachexia Sarcopenia Muscle. 2021;12:1280-1295 pubmed 出版商
  15. Zou S, Gao Y, Zhang S. lncRNA HCP5 acts as a ceRNA to regulate EZH2 by sponging miR‑138‑5p in cutaneous squamous cell carcinoma. Int J Oncol. 2021;59: pubmed 出版商
  16. Amegandjin C, Choudhury M, Jadhav V, Carriço J, Quintal A, Berryer M, et al. Sensitive period for rescuing parvalbumin interneurons connectivity and social behavior deficits caused by TSC1 loss. Nat Commun. 2021;12:3653 pubmed 出版商
  17. Li D, He C, Ye F, Ye E, He H, Chen G, et al. p62 Overexpression Promotes Bone Metastasis of Lung Adenocarcinoma out of LC3-Dependent Autophagy. Front Oncol. 2021;11:609548 pubmed 出版商
  18. Chen W, Huang F, Huang J, Li Y, Peng J, Zhuang Y, et al. SLC45A4 promotes glycolysis and prevents AMPK/ULK1-induced autophagy in TP53 mutant pancreatic ductal adenocarcinoma. J Gene Med. 2021;23:e3364 pubmed 出版商
  19. Pramanick A, Chakraborti S, Mahata T, Basak M, Das K, Verma S, et al. G protein β5-ATM complexes drive acetaminophen-induced hepatotoxicity. Redox Biol. 2021;43:101965 pubmed 出版商
  20. Wang X, Li X, Lin F, Sun H, Lin Y, Wang Z, et al. The lnc-CTSLP8 upregulates CTSL1 as a competitive endogenous RNA and promotes ovarian cancer metastasis. J Exp Clin Cancer Res. 2021;40:151 pubmed 出版商
  21. Racetin A, Filipović N, Lozić M, Ogata M, Gudelj Ensor L, Kelam N, et al. A Homozygous Dab1-/- Is a Potential Novel Cause of Autosomal Recessive Congenital Anomalies of the Mice Kidney and Urinary Tract. Biomolecules. 2021;11: pubmed 出版商
  22. Poon A, Saini H, Sethi S, O Sullivan G, Plun Favreau H, Wray S, et al. The role of SQSTM1 (p62) in mitochondrial function and clearance in human cortical neurons. Stem Cell Reports. 2021;16:1276-1289 pubmed 出版商
  23. Hua Y, Zhang K, Sheng J, Ning Z, Li Y, Shi W, et al. NUCB1 Suppresses Growth and Shows Additive Effects With Gemcitabine in Pancreatic Ductal Adenocarcinoma via the Unfolded Protein Response. Front Cell Dev Biol. 2021;9:641836 pubmed 出版商
  24. Van Alstyne M, Tattoli I, Delestrée N, Recinos Y, Workman E, Shihabuddin L, et al. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat Neurosci. 2021;24:930-940 pubmed 出版商
  25. Tamargo Gómez I, Martínez García G, Suarez M, Rey V, Fueyo A, Codina Martínez H, et al. ATG4D is the main ATG8 delipidating enzyme in mammalian cells and protects against cerebellar neurodegeneration. Cell Death Differ. 2021;: pubmed 出版商
  26. Higgins N, Greenslade J, Wu J, Miranda E, Galliciotti G, Monteiro M. Serpin neuropathology in the P497S UBQLN2 mouse model of ALS/FTD. Brain Pathol. 2021;:e12948 pubmed 出版商
  27. Kim D, Park J, Choi H, Kim C, Bae E, Ma S, et al. The critical role of FXR is associated with the regulation of autophagy and apoptosis in the progression of AKI to CKD. Cell Death Dis. 2021;12:320 pubmed 出版商
  28. Shen Z, Ji K, Cai Z, Huang C, He X, Xu H, et al. Inhibition of HDAC6 by Tubastatin A reduces chondrocyte oxidative stress in chondrocytes and ameliorates mouse osteoarthritis by activating autophagy. Aging (Albany NY). 2021;13:9820-9837 pubmed 出版商
  29. Cheng Y, Liu M, Tang H, Chen B, Yang G, Zhao W, et al. iTRAQ-Based Quantitative Proteomics Indicated Nrf2/OPTN-Mediated Mitophagy Inhibits NLRP3 Inflammasome Activation after Intracerebral Hemorrhage. Oxid Med Cell Longev. 2021;2021:6630281 pubmed 出版商
  30. Xiao J, Yao J, Jia L, Ferguson T, Weber S, Sundstrom J, et al. Autophagy activation and photoreceptor survival in retinal detachment. Exp Eye Res. 2021;205:108492 pubmed 出版商
  31. Diao L, Zhang Q. Transfer of lncRNA UCA1 by hUCMSCs-derived exosomes protects against hypoxia/reoxygenation injury through impairing miR-143-targeted degradation of Bcl-2. Aging (Albany NY). 2021;13:5967-5985 pubmed 出版商
  32. Simpson C, Tokito M, Uppala R, Sarkar M, Gudjonsson J, Holzbaur E. NIX initiates mitochondrial fragmentation via DRP1 to drive epidermal differentiation. Cell Rep. 2021;34:108689 pubmed 出版商
  33. Choi G, Lee H, Chae C, Cho J, Jung Y, Kim J, et al. BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nat Commun. 2021;12:487 pubmed 出版商
  34. Stojakovic A, Trushin S, Sheu A, Khalili L, Chang S, Li X, et al. Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice. Commun Biol. 2021;4:61 pubmed 出版商
  35. Choi S, Agatisa Boyle C, Gonen A, Kim A, Kim J, Alekseeva E, et al. Intracellular AIBP (Apolipoprotein A-I Binding Protein) Regulates Oxidized LDL (Low-Density Lipoprotein)-Induced Mitophagy in Macrophages. Arterioscler Thromb Vasc Biol. 2020;:ATVBAHA120315485 pubmed 出版商
  36. Dong X, Yang Y, Zou Z, Zhao Y, Ci B, Zhong L, et al. Sorting nexin 5 mediates virus-induced autophagy and immunity. Nature. 2021;589:456-461 pubmed 出版商
  37. Wang C, Chen C, Lin M, Su H, Ho M, Yeh J, et al. TLR9 Binding to Beclin 1 and Mitochondrial SIRT3 by a Sodium-Glucose Co-Transporter 2 Inhibitor Protects the Heart from Doxorubicin Toxicity. Biology (Basel). 2020;9: pubmed 出版商
  38. Tiwari S, Dang J, Lin N, Qin Y, Wang S, Rana T. Zika virus depletes neural stem cells and evades selective autophagy by suppressing the Fanconi anemia protein FANCC. EMBO Rep. 2020;:e49183 pubmed 出版商
  39. Wang Y, Gao G, Wu Y, Wang Y, Wu X, Zhou Q. S100A4 Silencing Facilitates Corneal Wound Healing After Alkali Burns by Promoting Autophagy via Blocking the PI3K/Akt/mTOR Signaling Pathway. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed 出版商
  40. Ogasawara Y, Cheng J, Tatematsu T, Uchida M, Murase O, Yoshikawa S, et al. Long-term autophagy is sustained by activation of CCTβ3 on lipid droplets. Nat Commun. 2020;11:4480 pubmed 出版商
  41. Li Z, Zhang H, Huang Y, Huang J, Sun P, Zhou N, et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat Commun. 2020;11:3806 pubmed 出版商
  42. Lanzillotta C, Zuliani I, Vasavda C, Snyder S, Paul B, Perluigi M, et al. BVR-A Deficiency Leads to Autophagy Impairment through the Dysregulation of AMPK/mTOR Axis in the Brain-Implications for Neurodegeneration. Antioxidants (Basel). 2020;9: pubmed 出版商
  43. Huang Q, Liu Y, Zhang S, Yap Y, Li W, Zhang D, et al. Autophagy core protein ATG5 is required for elongating spermatid development, sperm individualization and normal fertility in male mice. Autophagy. 2021;17:1753-1767 pubmed 出版商
  44. Stojanović S, Fuchs M, Fiedler J, Xiao K, Meinecke A, Just A, et al. Comprehensive Bioinformatics Identifies Key microRNA Players in ATG7-Deficient Lung Fibroblasts. Int J Mol Sci. 2020;21: pubmed 出版商
  45. Brattås P, Hersbach B, Madsen S, Petri R, Jakobsson J, Pircs K. Impact of differential and time-dependent autophagy activation on therapeutic efficacy in a model of Huntington disease. Autophagy. 2021;17:1316-1329 pubmed 出版商
  46. Giraud Gatineau A, Coya J, Maure A, Biton A, Thomson M, Bernard E, et al. The antibiotic bedaquiline activates host macrophage innate immune resistance to bacterial infection. elife. 2020;9: pubmed 出版商
  47. Zhang W, Zhou M, Lu W, Gong J, Gao F, Li Y, et al. CNTNAP4 deficiency in dopaminergic neurons initiates parkinsonian phenotypes. Theranostics. 2020;10:3000-3021 pubmed 出版商
  48. Huang Z, Zhao J, Wang W, Zhou J, Zhang J. Depletion of LncRNA NEAT1 Rescues Mitochondrial Dysfunction Through NEDD4L-Dependent PINK1 Degradation in Animal Models of Alzheimer's Disease. Front Cell Neurosci. 2020;14:28 pubmed 出版商
  49. Ormeño F, Hormazabal J, Moreno J, Riquelme F, Rios J, Criollo A, et al. Chaperone Mediated Autophagy Degrades TDP-43 Protein and Is Affected by TDP-43 Aggregation. Front Mol Neurosci. 2020;13:19 pubmed 出版商
  50. Zhao W, Zhang W, Ma H, Yang M. NIPA2 regulates osteoblast function by modulating mitophagy in type 2 diabetes osteoporosis. Sci Rep. 2020;10:3078 pubmed 出版商
  51. Zhuang X, Wang S, Tan Y, Song J, Zhu Z, Wang Z, et al. Pharmacological enhancement of TFEB-mediated autophagy alleviated neuronal death in oxidative stress-induced Parkinson's disease models. Cell Death Dis. 2020;11:128 pubmed 出版商
  52. Liu K, Yu Q, Li H, Xie C, Wu Y, Ma D, et al. BIRC7 promotes epithelial-mesenchymal transition and metastasis in papillary thyroid carcinoma through restraining autophagy. Am J Cancer Res. 2020;10:78-94 pubmed
  53. Jiang G, Xin R, Yuan W, Zhang L, Meng X, Sun W, et al. Ligustrazine ameliorates acute kidney injury through downregulation of NOD2‑mediated inflammation. Int J Mol Med. 2020;45:731-742 pubmed 出版商
  54. Jo D, Park S, Kim A, Park N, Kim J, Bae J, et al. Loss of HSPA9 induces peroxisomal degradation by increasing pexophagy. Autophagy. 2020;:1-15 pubmed 出版商
  55. Lieberman O, Frier M, McGuirt A, Griffey C, Rafikian E, Yang M, et al. Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy. elife. 2020;9: pubmed 出版商
  56. Huang Y, Gu C, Wang Q, Xu L, Chen J, Zhou W, et al. The protective effort of GPCR kinase 2-interacting protein-1 in neurons via promoting Beclin1-Parkin induced mitophagy at the early stage of spinal cord ischemia-reperfusion injury. FASEB J. 2020;34:2055-2074 pubmed 出版商
  57. Zuo Z, Ji M, Zhao K, Su Z, Li P, Hou D, et al. CD47 Deficiency Attenuates Isoproterenol-Induced Cardiac Remodeling in Mice. Oxid Med Cell Longev. 2019;2019:7121763 pubmed 出版商
  58. Wang X, Zhao L, Ajay A, Jiao B, Zhang X, Wang C, et al. QiDiTangShen Granules Activate Renal Nutrient-Sensing Associated Autophagy in db/db Mice. Front Physiol. 2019;10:1224 pubmed 出版商
  59. Tang C, Han H, Liu Z, Liu Y, Yin L, Cai J, et al. Activation of BNIP3-mediated mitophagy protects against renal ischemia-reperfusion injury. Cell Death Dis. 2019;10:677 pubmed 出版商
  60. Yang M, Chen P, Liu J, Zhu S, Kroemer G, Klionsky D, et al. Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv. 2019;5:eaaw2238 pubmed 出版商
  61. Wu Y, Xu H, Li Y, Huang D, Chen L, Hu Y, et al. miRNA-344b-1-3p modulates the autophagy of NR8383 cells during Aspergillus fumigatus infection via TLR2. Exp Ther Med. 2019;18:139-146 pubmed 出版商
  62. Jung S, Choe S, Woo H, Jeong H, An H, Moon H, et al. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy. 2019;:1-19 pubmed 出版商
  63. Zheng J, Croteau D, Bohr V, Akbari M. Diminished OPA1 expression and impaired mitochondrial morphology and homeostasis in Aprataxin-deficient cells. Nucleic Acids Res. 2019;: pubmed 出版商
  64. Judith D, Jefferies H, Boeing S, Frith D, Snijders A, Tooze S. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ. J Cell Biol. 2019;218:1634-1652 pubmed 出版商
  65. Li L, Kang H, Zhang Q, D Agati V, Al Awqati Q, Lin F. FoxO3 activation in hypoxic tubules prevents chronic kidney disease. J Clin Invest. 2019;129:2374-2389 pubmed 出版商
  66. Chang H, Di T, Wang Y, Zeng X, Li G, Wan Q, et al. Seipin deletion in mice enhances phosphorylation and aggregation of tau protein through reduced neuronal PPARγ and insulin resistance. Neurobiol Dis. 2019;127:350-361 pubmed 出版商
  67. Shao J, Miao C, Geng Z, Gu M, Wu Y, Li Q. Effect of eNOS on Ischemic Postconditioning-Induced Autophagy against Ischemia/Reperfusion Injury in Mice. Biomed Res Int. 2019;2019:5201014 pubmed 出版商
  68. Li Z, Tian Y, Qu L, Mao J, Zhong H. AAV-Mig-6 Increase the Efficacy of TAE in VX2 Rabbit Model, Is Associated With JNK Mediated Autophagy. J Cancer. 2019;10:1060-1069 pubmed 出版商
  69. Park H, Chung K, An H, Gim J, Hong J, Woo H, et al. Parkin Promotes Mitophagic Cell Death in Adult Hippocampal Neural Stem Cells Following Insulin Withdrawal. Front Mol Neurosci. 2019;12:46 pubmed 出版商
  70. Carballo Carbajal I, Laguna A, Romero Gimenez J, Cuadros T, Bove J, Martinez Vicente M, et al. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis. Nat Commun. 2019;10:973 pubmed 出版商
  71. Wang H, Wang X, Zhang K, Wang Q, Cao X, Wang Z, et al. Rapid depletion of ESCRT protein Vps4 underlies injury-induced autophagic impediment and Wallerian degeneration. Sci Adv. 2019;5:eaav4971 pubmed 出版商
  72. Huang X, Gan G, Wang X, Xu T, Xie W. The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy. 2019;15:1258-1279 pubmed 出版商
  73. Zhang Y, Jiang Q, Xie S, Wu X, Zhou J, Sun H. Lead Induced Ototoxicity and Neurotoxicity in Adult Guinea Pig. Biomed Res Int. 2019;2019:3626032 pubmed 出版商
  74. Yang Z, Huang C, Wu Y, Chen B, Zhang W, Zhang J. Autophagy Protects the Blood-Brain Barrier Through Regulating the Dynamic of Claudin-5 in Short-Term Starvation. Front Physiol. 2019;10:2 pubmed 出版商
  75. Wang D, Xu Q, Yuan Q, Jia M, Niu H, Liu X, et al. Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab. Oncogene. 2019;38:3458-3474 pubmed 出版商
  76. Jassim A, Inman D. Evidence of Hypoxic Glial Cells in a Model of Ocular Hypertension. Invest Ophthalmol Vis Sci. 2019;60:1-15 pubmed 出版商
  77. Rai S, Arasteh M, Jefferson M, Pearson T, Wang Y, Zhang W, et al. The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis. Autophagy. 2019;15:599-612 pubmed 出版商
  78. Wang H, Bu L, Wang C, Zhang Y, Zhou H, Zhang X, et al. The Hsp70 inhibitor 2-phenylethynesulfonamide inhibits replication and carcinogenicity of Epstein-Barr virus by inhibiting the molecular chaperone function of Hsp70. Cell Death Dis. 2018;9:734 pubmed 出版商
  79. Wang W, Xia Z, Farre J, Subramani S. TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis. Autophagy. 2018;14:1574-1585 pubmed 出版商
  80. Rapino F, Delaunay S, Rambow F, Zhou Z, Tharun L, de Tullio P, et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature. 2018;558:605-609 pubmed 出版商
  81. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed 出版商
  82. Hartlova A, Herbst S, Peltier J, Rodgers A, Bilkei Gorzo O, Fearns A, et al. LRRK2 is a negative regulator of Mycobacterium tuberculosis phagosome maturation in macrophages. EMBO J. 2018;37: pubmed 出版商
  83. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  84. Marrone L, Bus C, Schöndorf D, Fitzgerald J, Kübler M, Schmid B, et al. Generation of iPSCs carrying a common LRRK2 risk allele for in vitro modeling of idiopathic Parkinson's disease. PLoS ONE. 2018;13:e0192497 pubmed 出版商
  85. Hsu C, Lee E, Gordon K, Paz E, Shen W, Ohnishi K, et al. MAP4K3 mediates amino acid-dependent regulation of autophagy via phosphorylation of TFEB. Nat Commun. 2018;9:942 pubmed 出版商
  86. Agod Z, Pazmandi K, Bencze D, Vereb G, Biro T, Szabo A, et al. Signaling Lymphocyte Activation Molecule Family 5 Enhances Autophagy and Fine-Tunes Cytokine Response in Monocyte-Derived Dendritic Cells via Stabilization of Interferon Regulatory Factor 8. Front Immunol. 2018;9:62 pubmed 出版商
  87. Goiran T, Duplan E, Rouland L, El Manaa W, Lauritzen I, Dunys J, et al. Nuclear p53-mediated repression of autophagy involves PINK1 transcriptional down-regulation. Cell Death Differ. 2018;25:873-884 pubmed 出版商
  88. Fletcher K, Ulferts R, Jacquin E, Veith T, Gammoh N, Arasteh J, et al. The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes. EMBO J. 2018;37: pubmed 出版商
  89. Guo H, Chitiprolu M, Roncevic L, Javalet C, Hemming F, Trung M, et al. Atg5 Disassociates the V1V0-ATPase to Promote Exosome Production and Tumor Metastasis Independent of Canonical Macroautophagy. Dev Cell. 2017;43:716-730.e7 pubmed 出版商
  90. Sun H, Krauss R, Chang J, Teng B. PCSK9 deficiency reduces atherosclerosis, apolipoprotein B secretion, and endothelial dysfunction. J Lipid Res. 2018;59:207-223 pubmed 出版商
  91. Lüningschrör P, Binotti B, Dombert B, Heimann P, Pérez Lara A, Slotta C, et al. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun. 2017;8:678 pubmed 出版商
  92. Viana Huete V, Guillen C, García G, Fernandez S, García Aguilar A, Kahn C, et al. Male Brown Fat-Specific Double Knockout of IGFIR/IR: Atrophy, Mitochondrial Fission Failure, Impaired Thermogenesis, and Obesity. Endocrinology. 2018;159:323-340 pubmed 出版商
  93. Bartolomeo R, Cinque L, De Leonibus C, Forrester A, Salzano A, Monfregola J, et al. mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy. J Clin Invest. 2017;127:3717-3729 pubmed 出版商
  94. Rocchi A, Yamamoto S, Ting T, Fan Y, SADLEIR K, Wang Y, et al. A Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer's disease. PLoS Genet. 2017;13:e1006962 pubmed 出版商
  95. Joachim J, Razi M, Judith D, Wirth M, Calamita E, Encheva V, et al. Centriolar Satellites Control GABARAP Ubiquitination and GABARAP-Mediated Autophagy. Curr Biol. 2017;27:2123-2136.e7 pubmed 出版商
  96. Button R, Roberts S, Willis T, Hanemann C, Luo S. Accumulation of autophagosomes confers cytotoxicity. J Biol Chem. 2017;292:13599-13614 pubmed 出版商
  97. Zhou Y, Huang N, Wu J, Zhen N, Li N, Li Y, et al. Silencing of NRAGE induces autophagy via AMPK/Ulk1/Atg13 signaling pathway in NSCLC cells. Tumour Biol. 2017;39:1010428317709676 pubmed 出版商
  98. Wu D, Adamopoulos I. Loss of WDFY3 ameliorates severity of serum transfer-induced arthritis independently of autophagy. Cell Immunol. 2017;316:61-69 pubmed 出版商
  99. Ashkenazi A, Bento C, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature. 2017;545:108-111 pubmed 出版商
  100. Gao Y, Zhuang Z, Gao S, Li X, Zhang Z, Ye Z, et al. Tetrahydrocurcumin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury. Am J Transl Res. 2017;9:887-899 pubmed
  101. Zhang Y, Nguyen D, Olzomer E, Poon G, Cole N, Puvanendran A, et al. Rescue of Pink1 Deficiency by Stress-Dependent Activation of Autophagy. Cell Chem Biol. 2017;24:471-480.e4 pubmed 出版商
  102. Vazquez Cintron E, Beske P, Tenezaca L, Tran B, Oyler J, Glotfelty E, et al. Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery. Sci Rep. 2017;7:42923 pubmed 出版商
  103. Delaney J, Patel C, Willis K, Haghighiabyaneh M, Axelrod J, Tancioni I, et al. Haploinsufficiency networks identify targetable patterns of allelic deficiency in low mutation ovarian cancer. Nat Commun. 2017;8:14423 pubmed 出版商
  104. Qian Q, Liu Q, Zhou D, Pan H, Liu Z, He F, et al. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway. FASEB J. 2017;31:2104-2113 pubmed 出版商
  105. Hammerling B, Najor R, Cortez M, Shires S, Leon L, Gonzalez E, et al. A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance. Nat Commun. 2017;8:14050 pubmed 出版商
  106. Liu J, Wang H, Gu J, Deng T, Yuan Z, Hu B, et al. BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy. 2017;13:739-753 pubmed 出版商
  107. Granato M, Rizzello C, Gilardini Montani M, Cuomo L, Vitillo M, Santarelli R, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem. 2017;41:124-136 pubmed 出版商
  108. Wang Q, Wu S, Zhu H, Ding Y, Dai X, Ouyang C, et al. Deletion of PRKAA triggers mitochondrial fission by inhibiting the autophagy-dependent degradation of DNM1L. Autophagy. 2017;13:404-422 pubmed 出版商
  109. Jiang C, Diao F, Sang Y, Xu N, Zhu R, Wang X, et al. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet. 2017;13:e1006535 pubmed 出版商
  110. Hosoya M, Fujioka M, Sone T, Okamoto S, Akamatsu W, Ukai H, et al. Cochlear Cell Modeling Using Disease-Specific iPSCs Unveils a Degenerative Phenotype and Suggests Treatments for Congenital Progressive Hearing Loss. Cell Rep. 2017;18:68-81 pubmed 出版商
  111. Kim H, Lee S, Kim C, Kim Y, Ju W, Kim S. Subcellular localization of FOXO3a as a potential biomarker of response to combined treatment with inhibitors of PI3K and autophagy in PIK3CA-mutant cancer cells. Oncotarget. 2017;8:6608-6622 pubmed 出版商
  112. Wei Y, Chiang W, Sumpter R, Mishra P, Levine B. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell. 2017;168:224-238.e10 pubmed 出版商
  113. Pavel M, Imarisio S, Menzies F, Jimenez Sanchez M, Siddiqi F, Wu X, et al. CCT complex restricts neuropathogenic protein aggregation via autophagy. Nat Commun. 2016;7:13821 pubmed 出版商
  114. Yan H, Gao Y, Zhang Y. Inhibition of JNK suppresses autophagy and attenuates insulin resistance in a rat model of nonalcoholic fatty liver disease. Mol Med Rep. 2017;15:180-186 pubmed 出版商
  115. Su F, Myers V, Knezevic T, Wang J, Gao E, Madesh M, et al. Bcl-2-associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI Insight. 2016;1:e90931 pubmed 出版商
  116. Lee M, Sumpter R, Zou Z, Sirasanagandla S, Wei Y, Mishra P, et al. Peroxisomal protein PEX13 functions in selective autophagy. EMBO Rep. 2017;18:48-60 pubmed 出版商
  117. Li D, Xie B, Wu X, Li J, Ding Y, Wen X, et al. Late-stage inhibition of autophagy enhances calreticulin surface exposure. Oncotarget. 2016;7:80842-80854 pubmed 出版商
  118. Huang Z, Her L. The Ubiquitin Receptor ADRM1 Modulates HAP40-Induced Proteasome Activity. Mol Neurobiol. 2017;54:7382-7400 pubmed 出版商
  119. Cai Y, Yang L, Hu G, Chen X, Niu F, Yuan L, et al. Regulation of morphine-induced synaptic alterations: Role of oxidative stress, ER stress, and autophagy. J Cell Biol. 2016;215:245-258 pubmed
  120. Fan Y, Wang N, Rocchi A, Zhang W, Vassar R, Zhou Y, et al. Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy. 2017;13:41-56 pubmed 出版商
  121. Yao J, Jia L, Feathers K, Lin C, Khan N, Klionsky D, et al. Autophagy-mediated catabolism of visual transduction proteins prevents retinal degeneration. Autophagy. 2016;12:2439-2450 pubmed
  122. Zou P, Liu L, Zheng L, Payne K, Manjili M, Idowu M, et al. Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment. Oxid Med Cell Longev. 2016;2016:4085727 pubmed
  123. Zhao Y, Fan D, Ru B, Cheng K, Hu S, Zhang J, et al. 6-C-(E-phenylethenyl)naringenin induces cell growth inhibition and cytoprotective autophagy in colon cancer cells. Eur J Cancer. 2016;68:38-50 pubmed 出版商
  124. Vodicka P, Chase K, Iuliano M, Tousley A, Valentine D, Sapp E, et al. Autophagy Activation by Transcription Factor EB (TFEB) in Striatum of HDQ175/Q7 Mice. J Huntingtons Dis. 2016;5:249-260 pubmed
  125. White S, McDermott M, Sufit R, Kosmac K, Bugg A, Gonzalez Freire M, et al. Walking performance is positively correlated to calf muscle fiber size in peripheral artery disease subjects, but fibers show aberrant mitophagy: an observational study. J Transl Med. 2016;14:284 pubmed 出版商
  126. Kim S, Roy S, Chen B, Nguyen T, McMonigle R, McCracken A, et al. Targeting cancer metabolism by simultaneously disrupting parallel nutrient access pathways. J Clin Invest. 2016;126:4088-4102 pubmed 出版商
  127. Dragich J, Kuwajima T, Hirose Ikeda M, Yoon M, Eenjes E, Bosco J, et al. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. elife. 2016;5: pubmed 出版商
  128. Park S, Han S, Choi I, Kim B, Park S, Joe E, et al. Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in Selective Autophagy. PLoS ONE. 2016;11:e0163029 pubmed 出版商
  129. Teo W, Kerr M, Teasdale R. MTMR4 Is Required for the Stability of the Salmonella-Containing Vacuole. Front Cell Infect Microbiol. 2016;6:91 pubmed 出版商
  130. Cudré Cung H, Zavadakova P, Do Vale Pereira S, Remacle N, Henry H, Ivanisevic J, et al. Ammonium accumulation is a primary effect of 2-methylcitrate exposure in an in vitro model for brain damage in methylmalonic aciduria. Mol Genet Metab. 2016;119:57-67 pubmed 出版商
  131. Lin M, Liu H, Xiong Q, Niu H, Cheng Z, Yamamoto A, et al. Ehrlichia secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase. Autophagy. 2016;12:2145-2166 pubmed
  132. Jo Y, Park N, Park S, Kim B, Shin J, Jo D, et al. O-GlcNAcylation of ATG4B positively regulates autophagy by increasing its hydroxylase activity. Oncotarget. 2016;7:57186-57196 pubmed 出版商
  133. Zhang A, He W, Shi H, Huang X, Ji G. Natural compound oblongifolin C inhibits autophagic flux, and induces apoptosis and mitochondrial dysfunction in human cholangiocarcinoma QBC939 cells. Mol Med Rep. 2016;14:3179-83 pubmed 出版商
  134. Wang Y, Sun H, Wang J, Wang H, Meng L, Xu C, et al. DNA-PK-mediated phosphorylation of EZH2 regulates the DNA damage-induced apoptosis to maintain T-cell genomic integrity. Cell Death Dis. 2016;7:e2316 pubmed 出版商
  135. Zea A, Stewart T, Ascani J, Tate D, Finkel Jimenez B, Wilk A, et al. Activation of the IL-2 Receptor in Podocytes: A Potential Mechanism for Podocyte Injury in Idiopathic Nephrotic Syndrome?. PLoS ONE. 2016;11:e0157907 pubmed 出版商
  136. Dejesus R, Moretti F, McAllister G, Wang Z, Bergman P, Liu S, et al. Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62. elife. 2016;5: pubmed 出版商
  137. Davis M, Delaney J, Patel C, Storgard R, Stupack D. Nelfinavir is effective against human cervical cancer cells in vivo: a potential treatment modality in resource-limited settings. Drug Des Devel Ther. 2016;10:1837-46 pubmed 出版商
  138. Kuramoto K, Wang N, Fan Y, Zhang W, Schoenen F, Frankowski K, et al. Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids. Autophagy. 2016;12:1460-71 pubmed 出版商
  139. Wijdeven R, Janssen H, Nahidiazar L, Janssen L, Jalink K, Berlin I, et al. Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway. Nat Commun. 2016;7:11808 pubmed 出版商
  140. Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, et al. Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis. J Immunol. 2016;197:504-16 pubmed 出版商
  141. Ando K, Tomimura K, Sazdovitch V, Suain V, Yilmaz Z, Authelet M, et al. Level of PICALM, a key component of clathrin-mediated endocytosis, is correlated with levels of phosphotau and autophagy-related proteins and is associated with tau inclusions in AD, PSP and Pick disease. Neurobiol Dis. 2016;94:32-43 pubmed 出版商
  142. Shruthi K, Reddy S, Reddy P, Shivalingam P, Harishankar N, Reddy G. Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. J Nutr Biochem. 2016;33:73-81 pubmed 出版商
  143. Zeng J, Jing Y, Shi R, Pan X, Lai F, Liu W, et al. Autophagy regulates biliary differentiation of hepatic progenitor cells through Notch1 signaling pathway. Cell Cycle. 2016;15:1602-10 pubmed 出版商
  144. Adams O, Dislich B, Berezowska S, Schläfli A, Seiler C, Kröll D, et al. Prognostic relevance of autophagy markers LC3B and p62 in esophageal adenocarcinomas. Oncotarget. 2016;7:39241-39255 pubmed 出版商
  145. Barnard R, Regan D, Hansen R, Maycotte P, Thorburn A, Gustafson D. Autophagy Inhibition Delays Early but Not Late-Stage Metastatic Disease. J Pharmacol Exp Ther. 2016;358:282-93 pubmed 出版商
  146. Park S, Yi H, Suh N, Park Y, Koh J, Jeong S, et al. Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF-?B. Oncotarget. 2016;7:39796-39808 pubmed 出版商
  147. Song J, Sun Y, Peluso I, Zeng Y, Yu X, Lu J, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy. 2016;12:1372-89 pubmed 出版商
  148. Huang G, Zhang F, Ye Q, Wang H. The circadian clock regulates autophagy directly through the nuclear hormone receptor Nr1d1/Rev-erb? and indirectly via Cebpb/(C/ebp?) in zebrafish. Autophagy. 2016;12:1292-309 pubmed 出版商
  149. Pastore N, Brady O, Diab H, Martina J, Sun L, Huynh T, et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy. 2016;12:1240-58 pubmed 出版商
  150. Xue H, Yuan G, Guo X, Liu Q, Zhang J, Gao X, et al. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy. 2016;12:1129-52 pubmed 出版商
  151. Pereira D, Simões A, Gomes S, Castro R, Carvalho T, Rodrigues C, et al. MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism. Oncotarget. 2016;7:34322-40 pubmed 出版商
  152. Krall A, Xu S, Graeber T, Braas D, Christofk H. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun. 2016;7:11457 pubmed 出版商
  153. Chen K, Lin C, Huang C, Chen S, Wu S, Chiang H, et al. Dual Roles of 17-? Estradiol in Estrogen Receptor-dependent Growth Inhibition in Renal Cell Carcinoma. Cancer Genomics Proteomics. 2016;13:219-30 pubmed
  154. Basisty N, Dai D, Gagnidze A, Gitari L, Fredrickson J, Maina Y, et al. Mitochondrial-targeted catalase is good for the old mouse proteome, but not for the young: 'reverse' antagonistic pleiotropy?. Aging Cell. 2016;15:634-45 pubmed 出版商
  155. Wohlgemuth S, Ramirez Lee Y, Tao S, Monteiro A, Ahmed B, Dahl G. Short communication: Effect of heat stress on markers of autophagy in the mammary gland during the dry period. J Dairy Sci. 2016;99:4875-4880 pubmed 出版商
  156. Viringipurampeer I, Metcalfe A, Bashar A, Sivak O, Yanai A, Mohammadi Z, et al. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. Hum Mol Genet. 2016;25:1501-16 pubmed 出版商
  157. Gschweitl M, Ulbricht A, Barnes C, Enchev R, Stoffel Studer I, Meyer Schaller N, et al. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. elife. 2016;5:e13841 pubmed 出版商
  158. Lopes V, Loitto V, Audinot J, Bayat N, Gutleb A, Cristobal S. Dose-dependent autophagic effect of titanium dioxide nanoparticles in human HaCaT cells at non-cytotoxic levels. J Nanobiotechnology. 2016;14:22 pubmed 出版商
  159. Ruparelia A, Oorschot V, Ramm G, Bryson Richardson R. FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Hum Mol Genet. 2016;25:2131-2142 pubmed
  160. Scotton C, Bovolenta M, Schwartz E, Falzarano M, Martoni E, Passarelli C, et al. Deep RNA profiling identified CLOCK and molecular clock genes as pathophysiological signatures in collagen VI myopathy. J Cell Sci. 2016;129:1671-84 pubmed 出版商
  161. Stojcheva N, Schechtmann G, Sass S, Roth P, Florea A, Stefanski A, et al. MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM. Oncotarget. 2016;7:12937-50 pubmed 出版商
  162. Liu Y, Takahashi Y, Desai N, Zhang J, Serfass J, Shi Y, et al. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci Rep. 2016;6:20453 pubmed 出版商
  163. Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies F, et al. Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun. 2016;7:10533 pubmed 出版商
  164. Gentry E, Henderson B, Arrant A, Gearing M, Feng Y, Riddle N, et al. Rho Kinase Inhibition as a Therapeutic for Progressive Supranuclear Palsy and Corticobasal Degeneration. J Neurosci. 2016;36:1316-23 pubmed 出版商
  165. Button R, Vincent J, Strang C, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget. 2016;7:5157-75 pubmed 出版商
  166. Mukherjee R, Chakrabarti O. Ubiquitin-mediated regulation of the E3 ligase GP78 by MGRN1 in trans affects mitochondrial homeostasis. J Cell Sci. 2016;129:757-73 pubmed 出版商
  167. Kraft L, Manral P, Dowler J, Kenworthy A. Nuclear LC3 Associates with Slowly Diffusing Complexes that Survey the Nucleolus. Traffic. 2016;17:369-99 pubmed 出版商
  168. Xie C, Ginet V, Sun Y, Koike M, Zhou K, Li T, et al. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy. 2016;12:410-23 pubmed 出版商
  169. Yang X, Liang L, Zong C, Lai F, Zhu P, Liu Y, et al. Kupffer cells-dependent inflammation in the injured liver increases recruitment of mesenchymal stem cells in aging mice. Oncotarget. 2016;7:1084-95 pubmed 出版商
  170. Stotland A, Gottlieb R. α-MHC MitoTimer mouse: In vivo mitochondrial turnover model reveals remarkable mitochondrial heterogeneity in the heart. J Mol Cell Cardiol. 2016;90:53-8 pubmed 出版商
  171. Sin J, Andres A, Taylor D, Weston T, Hiraumi Y, Stotland A, et al. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy. 2016;12:369-80 pubmed 出版商
  172. Chrisam M, Pirozzi M, Castagnaro S, Blaauw B, Polishchuck R, Cecconi F, et al. Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice. Autophagy. 2015;11:2142-52 pubmed 出版商
  173. Majumder P, Chakrabarti O. Mahogunin regulates fusion between amphisomes/MVBs and lysosomes via ubiquitination of TSG101. Cell Death Dis. 2015;6:e1970 pubmed 出版商
  174. Lin C, Chen Y, Lin C, Chen Y, Lo G, Lee P, et al. Amiodarone as an autophagy promoter reduces liver injury and enhances liver regeneration and survival in mice after partial hepatectomy. Sci Rep. 2015;5:15807 pubmed 出版商
  175. Levin A, Koelink P, Bloemendaal F, Vos A, D Haens G, van den Brink G, et al. Autophagy Contributes to the Induction of Anti-TNF Induced Macrophages. J Crohns Colitis. 2016;10:323-9 pubmed 出版商
  176. Xiong R, Zhou W, Siegel D, Kitson R, Freed C, Moody C, et al. A Novel Hsp90 Inhibitor Activates Compensatory Heat Shock Protein Responses and Autophagy and Alleviates Mutant A53T α-Synuclein Toxicity. Mol Pharmacol. 2015;88:1045-54 pubmed 出版商
  177. Sorrell S, Golder Z, Johnstone D, Frankl F. Renal peroxiredoxin 6 interacts with anion exchanger 1 and plays a novel role in pH homeostasis. Kidney Int. 2016;89:105-112 pubmed 出版商
  178. Granato M, Santarelli R, Filardi M, Gonnella R, Farina A, Torrisi M, et al. The activation of KSHV lytic cycle blocks autophagy in PEL cells. Autophagy. 2015;11:1978-1986 pubmed 出版商
  179. Koukourakis M, Kalamida D, Giatromanolaki A, Zois C, Sivridis E, Pouliliou S, et al. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines. PLoS ONE. 2015;10:e0137675 pubmed 出版商
  180. Pellegrini C, Columbaro M, Capanni C, D Apice M, Cavallo C, Murdocca M, et al. All-trans retinoic acid and rapamycin normalize Hutchinson Gilford progeria fibroblast phenotype. Oncotarget. 2015;6:29914-28 pubmed 出版商
  181. Granato M, Gilardini Montani M, Filardi M, Faggioni A, Cirone M. Capsaicin triggers immunogenic PEL cell death, stimulates DCs and reverts PEL-induced immune suppression. Oncotarget. 2015;6:29543-54 pubmed 出版商
  182. Moreau K, Ghislat G, Hochfeld W, Renna M, Zavodszky E, Runwal G, et al. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat Commun. 2015;6:8045 pubmed 出版商
  183. Triplett J, Tramutola A, Swomley A, Kirk J, Grimes K, Lewis K, et al. Age-related changes in the proteostasis network in the brain of the naked mole-rat: Implications promoting healthy longevity. Biochim Biophys Acta. 2015;1852:2213-24 pubmed 出版商
  184. Hermanova I, Arruabarrena Aristorena A, Valis K, Nůsková H, Alberich Jorda M, Fiser K, et al. Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia. 2016;30:209-18 pubmed 出版商
  185. Chesser A, Ganeshan V, Yang J, Johnson G. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr Neurosci. 2016;19:21-31 pubmed 出版商
  186. Wu H, Jiang Z, Ding P, Shao L, Liu R. Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells. Sci Rep. 2015;5:12291 pubmed 出版商
  187. Perera R, Stoykova S, Nicolay B, Ross K, Fitamant J, Boukhali M, et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature. 2015;524:361-5 pubmed 出版商
  188. Wang I, Sun K, Tsai T, Chen C, Chang S, Yu T, et al. MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury. Life Sci. 2015;136:133-41 pubmed 出版商
  189. Campbell G, Rawat P, Bruckman R, Spector S. Human Immunodeficiency Virus Type 1 Nef Inhibits Autophagy through Transcription Factor EB Sequestration. PLoS Pathog. 2015;11:e1005018 pubmed 出版商
  190. Liu K, Frazier W. Phosphorylation of the BNIP3 C-Terminus Inhibits Mitochondrial Damage and Cell Death without Blocking Autophagy. PLoS ONE. 2015;10:e0129667 pubmed 出版商
  191. Hu G, McQuiston T, Bernard A, Park Y, Qiu J, Vural A, et al. A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat Cell Biol. 2015;17:930-942 pubmed 出版商
  192. Park S, Choi S, Yoo S, Nah J, Jeong E, Kim H, et al. Pyruvate stimulates mitophagy via PINK1 stabilization. Cell Signal. 2015;27:1824-30 pubmed 出版商
  193. Sun T, Li X, Zhang P, Chen W, Zhang H, Li D, et al. Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat Commun. 2015;6:7215 pubmed 出版商
  194. Milkereit R, Persaud A, Vanoaica L, Guetg A, Verrey F, Rotin D. LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation. Nat Commun. 2015;6:7250 pubmed 出版商
  195. Ferreira J, Soares A, Ramalho J, Pereira P, Girao H. K63 linked ubiquitin chain formation is a signal for HIF1A degradation by Chaperone-Mediated Autophagy. Sci Rep. 2015;5:10210 pubmed 出版商
  196. Del Mar N, von Buttlar X, Yu A, Guley N, Reiner A, Honig M. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments. Exp Neurol. 2015;271:53-71 pubmed 出版商
  197. Kim Y, Kang Y, Lee N, Kim K, Hwang Y, Kim H, et al. Uvrag targeting by Mir125a and Mir351 modulates autophagy associated with Ewsr1 deficiency. Autophagy. 2015;11:796-811 pubmed 出版商
  198. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed 出版商
  199. Laguna A, Schintu N, Nobre A, Alvarsson A, Volakakis N, Jacobsen J, et al. Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson's disease. Nat Neurosci. 2015;18:826-35 pubmed 出版商
  200. Marsh N, Wareham A, White B, Miskiewicz E, Landry J, MacPhee D. HSPB8 and the Cochaperone BAG3 Are Highly Expressed During the Synthetic Phase of Rat Myometrium Programming During Pregnancy. Biol Reprod. 2015;92:131 pubmed 出版商
  201. Kett L, Stiller B, Bernath M, Tasset I, Blesa J, Jackson Lewis V, et al. α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2. J Neurosci. 2015;35:5724-42 pubmed 出版商
  202. Akizu N, Cantagrel V, Zaki M, Al Gazali L, Wang X, Rosti R, et al. Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat Genet. 2015;47:528-34 pubmed 出版商
  203. Strohecker A, Joshi S, Possemato R, Abraham R, Sabatini D, White E. Identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel autophagy regulator by high content shRNA screening. Oncogene. 2015;34:5662-76 pubmed 出版商
  204. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  205. Wengrod J, Wang D, Weiss S, Zhong H, Osman I, Gardner L. Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma. Sci Signal. 2015;8:ra27 pubmed 出版商
  206. Medina D, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and ​TFEB. Nat Cell Biol. 2015;17:288-99 pubmed
  207. Pedro J, Wei Y, Sica V, Maiuri M, Zou Z, Kroemer G, et al. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy. 2015;11:452-9 pubmed 出版商
  208. Ulbricht A, Gehlert S, Leciejewski B, Schiffer T, Bloch W, Höhfeld J. Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle. Autophagy. 2015;11:538-46 pubmed 出版商
  209. Sanjurjo L, Amézaga N, Aran G, Naranjo Gómez M, Arias L, Armengol C, et al. The human CD5L/AIM-CD36 axis: A novel autophagy inducer in macrophages that modulates inflammatory responses. Autophagy. 2015;11:487-502 pubmed 出版商
  210. Jabir M, Hopkins L, Ritchie N, Ullah I, Bayes H, Li D, et al. Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy. Autophagy. 2015;11:166-82 pubmed 出版商
  211. Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11:253-70 pubmed 出版商
  212. Kim E, Shin J, Park S, Jo Y, Kim J, Kang I, et al. Inhibition of autophagy suppresses sertraline-mediated primary ciliogenesis in retinal pigment epithelium cells. PLoS ONE. 2015;10:e0118190 pubmed 出版商
  213. Kommaddi R, Jean Charles P, Shenoy S. Phosphorylation of the deubiquitinase USP20 by protein kinase A regulates post-endocytic trafficking of β2 adrenergic receptors to autophagosomes during physiological stress. J Biol Chem. 2015;290:8888-903 pubmed 出版商
  214. Liu S, Sarkar C, Dinizo M, Faden A, Koh E, Lipinski M, et al. Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis. 2015;6:e1582 pubmed 出版商
  215. Bueno M, Lai Y, Romero Y, Brands J, St Croix C, Kamga C, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest. 2015;125:521-38 pubmed 出版商
  216. Sykora P, Misiak M, Wang Y, Ghosh S, Leandro G, Liu D, et al. DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res. 2015;43:943-59 pubmed 出版商
  217. Varga M, Fodor E, Vellai T. Autophagy in zebrafish. Methods. 2015;75:172-80 pubmed 出版商
  218. Morgado A, Xavier J, Dionísio P, Ribeiro M, Dias R, Sebastião A, et al. MicroRNA-34a Modulates Neural Stem Cell Differentiation by Regulating Expression of Synaptic and Autophagic Proteins. Mol Neurobiol. 2015;51:1168-83 pubmed 出版商