这是一篇来自已证抗体库的有关犬 紧密连接蛋白-1 (TJP1) 的综述,是根据632篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合紧密连接蛋白-1 抗体。
紧密连接蛋白-1 同义词: ZO-1; ZO1

赛默飞世尔
domestic rabbit 多克隆(ZMD.437)
  • 免疫组化; 小鼠; 1:200; 图 3p
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 402300)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3p). Cancers (Basel) (2022) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; African green monkey; 图 1a
  • 免疫细胞化学; 人类; 图 4f
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 61-7300)被用于被用于免疫细胞化学在African green monkey样本上 (图 1a) 和 被用于免疫细胞化学在人类样本上 (图 4f). PLoS ONE (2022) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 2a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2a). Int J Mol Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 5h
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5h). Sci Adv (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 斑马鱼; 1:150; 图 9a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 40-2200)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:150 (图 9a). Fluids Barriers CNS (2022) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:200; 图 s4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s4). iScience (2022) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 6f
  • 免疫组化; 小鼠; 图 6g
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 33-9100)被用于被用于免疫细胞化学在小鼠样本上 (图 6f) 和 被用于免疫组化在小鼠样本上 (图 6g). Cell Rep (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s8a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 40-2200)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s8a). Proc Natl Acad Sci U S A (2022) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:100; 图 1s1c
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1s1c). elife (2022) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 3e
  • 免疫细胞化学; 大鼠; 1:200; 图 3m
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 40-2200)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3e) 和 被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 3m). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 大鼠; 1:5000; 图 4c
  • 免疫组化; African green monkey; 1:100; 图 1b
  • 免疫印迹; African green monkey; 1:5000; 图 4c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4c), 被用于免疫组化在African green monkey样本上浓度为1:100 (图 1b) 和 被用于免疫印迹在African green monkey样本上浓度为1:5000 (图 4c). Pharmaceutics (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:100; 图 s3b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3b). Development (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:200; 图 7b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在人类样本上浓度为1:200 (图 7b). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; pigs ; 1:100; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Thermo, 61-7300)被用于被用于免疫细胞化学在pigs 样本上浓度为1:100 (图 3). Animals (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s2c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s2c). Sci Rep (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 2.5 ug/ml
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 339188)被用于被用于免疫组化在小鼠样本上浓度为2.5 ug/ml. elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). FASEB J (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4a
赛默飞世尔紧密连接蛋白-1抗体(Fisher, 61-7300)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 4a
  • 免疫印迹; 小鼠; 图 4b
赛默飞世尔紧密连接蛋白-1抗体(Thermo, 61-7300)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 4b). Redox Biol (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:350; 图 1c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-C9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:350 (图 1c). elife (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 339188)被用于被用于免疫组化在小鼠样本上 (图 7). Front Cell Infect Microbiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2e
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 61-7300)被用于被用于免疫印迹在小鼠样本上 (图 2e). Front Med (Lausanne) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 61-7300)被用于被用于免疫印迹在小鼠样本上 (图 3e). Mucosal Immunol (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:200; 图 3c
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3c). PLoS Negl Trop Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 s3b
  • 免疫细胞化学; 人类; 1:200; 图 s4a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 617300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 s3b) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 s4a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5g
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在大鼠样本上 (图 5g). Front Pharmacol (2020) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 图 6f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在犬样本上 (图 6f). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬; 图 6f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在犬样本上 (图 6f). J Exp Clin Cancer Res (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:100; 图 5d
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5d). J Clin Invest (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 3g
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 3g). Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 1a
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1a). Commun Biol (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 5b
赛默飞世尔紧密连接蛋白-1抗体(分子探针, 339100)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 5b). Front Cell Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 4a
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). J Exp Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4a
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于被用于免疫组化在小鼠样本上 (图 4a). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:100; 图 3c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339188)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 5i
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5i). Nat Commun (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:250
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 339194)被用于被用于免疫组化在小鼠样本上浓度为1:250. EMBO Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 1d
赛默飞世尔紧密连接蛋白-1抗体(Thermo, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1d). Stem Cell Reports (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:300; 图 2d
赛默飞世尔紧密连接蛋白-1抗体(Thermofisher, 61-7300)被用于被用于免疫组化在人类样本上浓度为1:300 (图 2d). Stem Cells (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:200; 图 3d
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3d). elife (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:50; 图 s1g
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339,188)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s1g). Arch Toxicol (2021) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:100; 图 3b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33?C9100)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3b). elife (2020) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:200; 图 1a
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher, 33-9100)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1a). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 3c
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 40-2200)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 8e
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 8e). Acta Neuropathol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在小鼠样本上 (图 4f). PLoS ONE (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7i
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7i). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2h
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 61-7300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2h). J Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:400; 图 4a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 40-2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 4a). Stem Cell Res Ther (2020) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; turquoise killifish; 图 s2f
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 33-9100)被用于被用于免疫组化在turquoise killifish样本上 (图 s2f). Curr Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s2b
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher Scientific, 61-7300)被用于被用于免疫组化在小鼠样本上 (图 s2b). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1d
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1d). Cell Death Dis (2020) ncbi
小鼠 单克隆(ZO1-1A12)
  • 其他; 斑马鱼; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-C9100)被用于被用于其他在斑马鱼样本上浓度为1:100. elife (2020) ncbi
小鼠 单克隆(ZO1-1A12)
  • 其他; 斑马鱼; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-C9100)被用于被用于其他在斑马鱼样本上浓度为1:100. elife (2020) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫细胞化学; 人类; 1:100; 图 4c
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 40-2300)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4c). MBio (2020) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5b
赛默飞世尔紧密连接蛋白-1抗体(Thermo Scientific, 33-9100)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5b). Sci Rep (2020) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:200; 图 7b3
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher, 33-9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 7b3). elife (2020) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 1j
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 33-9100)被用于被用于免疫组化在小鼠样本上 (图 1j). Dev Cell (2019) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:2000; 图 5d
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 5d). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Signal (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s3f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 402200)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3f). Nat Commun (2019) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:500; 图 4c
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 339188)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4c). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 2a
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher, 61-7300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 2a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1c
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 617300)被用于被用于免疫细胞化学在人类样本上 (图 1c). BMC Cancer (2019) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5s1a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 40-2300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5s1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2s2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫组化在小鼠样本上 (图 2s2). elife (2019) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 6g
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 6g). J Clin Invest (2019) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 4a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上 (图 4a). Front Physiol (2019) ncbi
小鼠 单克隆(ZO1-1A12)
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 33-9100)被用于. Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 2d
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2d). Cell Mol Gastroenterol Hepatol (2019) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1e
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher, 339100)被用于被用于免疫细胞化学在人类样本上 (图 1e). elife (2018) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:1000; 图 s2c
  • 免疫细胞化学; 犬; 1:1000; 图 s4b
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s2c) 和 被用于免疫细胞化学在犬样本上浓度为1:1000 (图 s4b). J Cell Sci (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s7e
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 402200)被用于被用于免疫细胞化学在人类样本上 (图 s7e). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1f). J Biol Chem (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 图 1f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1f). J Biol Chem (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 图 2 - s1b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2 - s1b). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 6b
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40-2200)被用于被用于免疫细胞化学在人类样本上 (图 6b). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 大鼠; 1:500; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2). J Comp Neurol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3h
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 40-2200)被用于被用于免疫组化在小鼠样本上 (图 3h). J Clin Invest (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 小鼠; 1:400; 图 4f, 4h
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 4f, 4h). Neuroscience (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1a
  • 免疫印迹; 人类; 图 1b
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 40-2200)被用于被用于免疫细胞化学在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1b). J Cell Physiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 5l
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫组化在人类样本上浓度为1:200 (图 5l). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 ev1b
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 61-7300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 ev1b). EMBO Mol Med (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 图 4c
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher Scientific, 339100)被用于被用于免疫印迹在人类样本上 (图 4c). Oncogenesis (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:300; 图 s4a
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:300 (图 s4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1g
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1g). Hum Mol Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 6e
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫细胞化学在小鼠样本上 (图 6e). PLoS ONE (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:500; 图 s1a, s1e
赛默飞世尔紧密连接蛋白-1抗体(生活技术, Zo1-1A12)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1a, s1e). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2b
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2b). Mol Vis (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫细胞化学在小鼠样本上 (图 1a). Front Aging Neurosci (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:200; 图 3c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 3c). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 2A
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2A). PLoS ONE (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:200; 图 5A
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在人类样本上浓度为1:200 (图 5A). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 1e
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher Scientific, 402200)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1e). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在小鼠样本上 (图 4f). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 图 2c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 402200)被用于被用于免疫细胞化学在小鼠样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 2c). Redox Biol (2017) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 40-2300)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Mol Ther (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. EBioMedicine (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 402200)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. EBioMedicine (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 500 ug/ml; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 40-2200)被用于被用于免疫细胞化学在人类样本上浓度为500 ug/ml (图 4). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:25; 图 8b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:25 (图 8b). Hear Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:200; 图 5X'
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61?C7300)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 5X'). elife (2017) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1e
  • 免疫细胞化学; 人类; 1:200; 图 2i
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40-2300)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1e) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 2i). Nat Commun (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 大鼠; 1:100; 图 1
  • 免疫印迹; 大鼠; 1:250; 图 2a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:250 (图 2a). Cell Signal (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1a
  • 免疫组化; 人类; 图 6a
  • 免疫印迹; 人类; 图 1a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, ZO-1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 1a), 被用于免疫组化在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 1a). FASEB J (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 s2f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 s2f). Mol Biol Cell (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:300; 图 1a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 1a). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s6a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 40-2200)被用于被用于免疫细胞化学在人类样本上 (图 s6a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 4b
  • 免疫印迹; 人类; 1:1000; 表 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (表 3). Mol Cell Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 402200)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3a). Development (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹基因敲除验证; 大鼠; 图 4d
  • 免疫细胞化学; 大鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(GE医疗保健, 33-9100)被用于被用于免疫印迹基因敲除验证在大鼠样本上 (图 4d) 和 被用于免疫细胞化学在大鼠样本上 (图 5). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 7a
  • 免疫印迹; 大鼠; 1:1000; 图 7g
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 7a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7g). Toxicol Lett (2017) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 40- 2300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2). J Dent Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 4f
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 40-2200)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4f). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 3d
赛默飞世尔紧密连接蛋白-1抗体(Thermo Scientific, 33-9100)被用于被用于免疫组化在小鼠样本上 (图 3d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6e
  • 免疫印迹; 小鼠; 1:1000; 图 6a
  • 免疫印迹; 人类; 1:1000; 图 2a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6e), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; domestic rabbit; 1:100; 图 6a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 61-7300)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:100 (图 6a). J Cell Physiol (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 6d
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 6d). Sci Rep (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:300; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 339100)被用于被用于免疫组化在小鼠样本上浓度为1:300 (表 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Transl Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 3b
  • 免疫印迹; 大鼠; 1:250; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher Scientific, 61-7300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3b) 和 被用于免疫印迹在大鼠样本上浓度为1:250 (图 3a). FASEB J (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 6a
  • 免疫印迹; 小鼠; 1:500; 图 6b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 6b). Sci Rep (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:150; 图 s5a
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher Scientific, 33-9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:150 (图 s5a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 斑马鱼; 1:100; 图 4a
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher, 33-9100)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:100 (图 4a). Immunity (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Inflamm Bowel Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40-2200)被用于被用于免疫印迹在人类样本上 (图 1a). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬; 图 7a
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 61-7300)被用于被用于免疫细胞化学在犬样本上 (图 7a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:200; 图 6c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 6c). BMC Neurosci (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 表 2
赛默飞世尔紧密连接蛋白-1抗体(生活技术, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 2). Lab Chip (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s2
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Thermo Scientific, 33-9100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s2) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5h
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s10h
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 339100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5h) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s10h). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2c
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 617300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2c). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 2f
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40-2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2f). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 3d
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3d). Acta Physiol (Oxf) (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 5c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 5c). Cell Cycle (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:300; 图 5c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 5c). Cell Cycle (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上 (图 2a). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 9a
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 40-2200)被用于被用于免疫印迹在人类样本上 (图 9a). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:500; 图 1d
  • 免疫印迹; 人类; 1:1000; 图 5a
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Exp Neurol (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:200; 图 2b
赛默飞世尔紧密连接蛋白-1抗体(生活技术, ZO1-1A12)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2b). J Cell Sci (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 2.5 ug/ml; 图 3d
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫细胞化学在人类样本上浓度为2.5 ug/ml (图 3d). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 犬; 1:200; 图 4c
  • 免疫印迹; 犬; 1:1000; 图 3f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 4c) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 3f). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s1b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫细胞化学在小鼠样本上 (图 s1b). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 7 ug/ml; 表 s5
  • 免疫印迹; 小鼠; 2 ug/ml; 表 s5
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化在小鼠样本上浓度为7 ug/ml (表 s5) 和 被用于免疫印迹在小鼠样本上浓度为2 ug/ml (表 s5). Brain Behav Immun (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:250; 图 7a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 7a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 表 1
  • 免疫印迹; 大鼠; 1:500; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (表 1) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (表 1). Spermatogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2a
  • 免疫印迹; 小鼠; 1:40; 图 4k
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:40 (图 4k). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3h
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3h). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1a
  • 免疫印迹; 人类; 图 1d
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1d). Biol Open (2016) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫细胞化学; 人类; 图 s1
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher Scientific, 40-2300)被用于被用于免疫细胞化学在人类样本上 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 s2
  • 免疫印迹; 人类; 图 s1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 s2) 和 被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 1:200; 图 5
  • 免疫印迹; 犬; 1:1000; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在犬样本上浓度为1:200 (图 5) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 3a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:500; 图 s3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 402200)被用于被用于免疫细胞化学在人类样本上 (图 1). Nutr Metab (Lond) (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 2a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2a). J Neurochem (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 图 1e
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 1:4000; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, ZO1-1A12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e), 被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:4000 (图 3a). Hum Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 4
  • 免疫印迹; 大鼠; 1:500; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 s6
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于免疫组化在小鼠样本上 (图 s6). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3e
  • 免疫印迹; 小鼠; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40- 2200)被用于被用于免疫组化在小鼠样本上 (图 3e) 和 被用于免疫印迹在小鼠样本上 (图 3a). Neurobiol Dis (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 3o
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在小鼠样本上 (图 3o). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 3b
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40?C2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher Scientific, 61-7300)被用于被用于免疫细胞化学在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 3A
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 40-2200)被用于被用于免疫组化在人类样本上 (图 3A). Sci Rep (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:250; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, Life Technologies, 61-7300)被用于被用于免疫印迹在大鼠样本上浓度为1:250 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫组化; 人类; 图 2e
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2300)被用于被用于免疫组化在人类样本上 (图 2e). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 71-6300)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). PLoS ONE (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 339111)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7,300)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). J Mol Psychiatry (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 10 ug/ml; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Thermo-Fisher, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为10 ug/ml (图 1). Microbes Infect (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫组化在人类样本上 (图 3a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 流式细胞仪; 人类; 图 3
  • 免疫细胞化学; 人类; 图 3
  • 免疫细胞化学; 小鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于流式细胞仪在人类样本上 (图 3), 被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫细胞化学在小鼠样本上 (图 5). Adv Healthc Mater (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 5b
  • 免疫印迹; 人类; 图 5a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 图 8b
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 339100)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫细胞化学; 小鼠; 1:100; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 7). Nat Protoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Thermo-Fisher, 40-2200)被用于被用于免疫组化在小鼠样本上 (图 4). Invest Ophthalmol Vis Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 402200)被用于被用于免疫组化在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:25; 图 1
  • 免疫细胞化学; 小鼠; 1:25; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 61-7300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:25 (图 1) 和 被用于免疫细胞化学在小鼠样本上浓度为1:25 (图 2). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Eur Cell Mater (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 斑马鱼; 1:200; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:200 (图 2). Development (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Infect Immun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s2
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于被用于免疫组化在小鼠样本上 (图 s2). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 4
  • 免疫印迹; 大鼠; 1:500; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 2). Respir Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Vis Exp (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上 (图 3). Am J Transl Res (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 图 6
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher Scientific, 33-9100)被用于被用于免疫印迹在人类样本上 (图 6). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s6
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 402200)被用于被用于免疫组化在小鼠样本上 (图 s6). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). Virol J (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:50; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). J Control Release (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
  • 免疫细胞化学; pigs ; 图 3
  • 免疫印迹; pigs ; 1:1000; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61-7300)被用于被用于免疫细胞化学在人类样本上 (图 3), 被用于免疫印迹在人类样本上浓度为1:1000 (图 3), 被用于免疫细胞化学在pigs 样本上 (图 3) 和 被用于免疫印迹在pigs 样本上浓度为1:1000 (图 3). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Life Tech, 40-2300)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Cell Adh Migr (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 40-2200)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2). J Comp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 2). Hepatology (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; pigs ; 1:50; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在pigs 样本上浓度为1:50 (图 3). Mol Vis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3). Endocrinology (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:250; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 4). Drug Metab Dispos (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 61-7300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). J Biol Chem (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-自由浮动切片; 斑马鱼; 1:200; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫组化-自由浮动切片在斑马鱼样本上浓度为1:200 (图 7). Dev Dyn (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; pigs ; 1:100; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在pigs 样本上浓度为1:100 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在犬样本上 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫印迹在大鼠样本上 (图 6). Inflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:250; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Thermo Scientific, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:250 (图 4). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上 (图 4). Exp Biol Med (Maywood) (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:500; 图 s1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40-2200)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Vis Exp (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 7
  • 免疫印迹; 小鼠; 图 8
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 7) 和 被用于免疫印迹在小鼠样本上 (图 8). Histochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2). Peptides (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 鸡; 1:100; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 402200)被用于被用于免疫组化在鸡样本上浓度为1:100 (图 1). BMC Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:100; 图 s1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 s1). Hum Mol Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:4000; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1). Oncogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:1000; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61-7300)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 4). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). ALTEX (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 8
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:50; 图 s2f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen Life Technologies, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s2f). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 40-2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (表 1). Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s4c
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 40-2200)被用于被用于免疫组化在小鼠样本上 (图 s4c). JCI Insight (2016) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫组化; 小鼠; 1:500; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2300)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 1). J Vis Exp (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 8
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8). BMC Cancer (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫细胞化学; 大鼠; 1:50; 图 s3
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40-2300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 s3). Tissue Eng Part C Methods (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:400; 图 1
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于被用于免疫组化在斑马鱼样本上浓度为1:400 (图 1). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3). J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1,250 ug/ml; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61-7300)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1,250 ug/ml (图 4). Hum Reprod (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:200; 图 s1
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 339100)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s1). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Biotechnol Bioeng (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 6
  • 免疫组化; 小鼠; 1:200; 图 5
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40-2200402200)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1). Cell Signal (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61-7300)被用于. F1000Res (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:300; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 61-7300)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 5). Mol Med Rep (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 大鼠; 1:100; 图 3
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 339100)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3). Cell Med (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 617300)被用于. Cell Med (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 5 ug/ml; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫细胞化学在小鼠样本上浓度为5 ug/ml (图 2). Fluids Barriers CNS (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:500; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 2.5 ug/ml
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为2.5 ug/ml. Endocrinology (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:200; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 40-2200)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Pharmacol Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-C1A12)被用于被用于免疫细胞化学在人类样本上 (图 2). Mol Vis (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 犬; 1:2000; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫印迹在犬样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 3:1000; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫组化在小鼠样本上浓度为3:1000 (图 1). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:100; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (表 1). Mol Cell Endocrinol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:300; 图 6
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 6). Int J Mol Sci (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher Scientific, 33-9100)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 大鼠; 1:200; 图 8
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 1A12)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 8). Biomaterials (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 8
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 61-7300)被用于被用于免疫印迹在大鼠样本上 (图 8). Biomaterials (2016) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫印迹; 大鼠; 图 4
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 40-2300)被用于被用于免疫印迹在大鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 5). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 6
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于被用于免疫细胞化学在人类样本上 (图 6). Colloids Surf B Biointerfaces (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:50; 表 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50 (表 2). FASEB J (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40-2200)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4d
  • 免疫印迹; 小鼠; 1:2000; 图 4b
赛默飞世尔紧密连接蛋白-1抗体(Cell Signaling, 339100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4d) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4b). Mol Med Rep (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 6
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 339111)被用于被用于免疫组化在小鼠样本上 (图 6). Mol Vis (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 犬; 1:400; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:400 (图 1). Vet Dermatol (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-自由浮动切片; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2). Front Cell Neurosci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). J Gen Virol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Front Cell Neurosci (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 5e
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在小鼠样本上 (图 5e). Cell Tissue Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5e
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫细胞化学在小鼠样本上 (图 5e). Cell Tissue Res (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61-7300)被用于. BMC Genomics (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 犬; 图 1c
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫印迹在犬样本上 (图 1c). BMC Genomics (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 1). Sci Rep (2015) ncbi
domestic rabbit 多克隆(ZMD.437)
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 40-2300)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Methods (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 7e
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339188)被用于被用于免疫细胞化学在人类样本上 (图 7e). Oncotarget (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Nat Med (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61?C7300)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-910)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:300
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在斑马鱼样本上浓度为1:300. Traffic (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339,100)被用于被用于免疫组化在小鼠样本上. Dev Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Exp Cell Res (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 2
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100, clone ZO1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). J Tissue Eng Regen Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化在人类样本上. Support Care Cancer (2016) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
  • 免疫细胞化学; 犬; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫细胞化学在犬样本上 (图 2). J Biol Chem (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-C2200)被用于. Mol Ther Methods Clin Dev (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:500; 图 s1
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 1A12)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1). J Cell Biol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔紧密连接蛋白-1抗体(ZO-1, 40-2200)被用于被用于免疫印迹在小鼠样本上 (图 1d). Oncogene (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Lasers Med Sci (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:200; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7). Mol Brain (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-220)被用于. Viral Immunol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Thermo Scientific, 61-7300)被用于. Mol Cancer (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Nat Cell Biol (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:300; 图 s1g
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, . 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 s1g). Nat Cell Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于. J Neurosci Res (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:100; 图 s3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3). Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61-7300)被用于. Virus Res (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(InvitrogenTM, 40-2200)被用于. Toxicol Sci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 617300)被用于. Cardiovasc Res (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 10 ug/ml
  • 免疫细胞化学; 人类; 1.25 ug/ml
  • 免疫印迹; 人类; 1 ug/ml
赛默飞世尔紧密连接蛋白-1抗体(生活技术, ZO-1-1A12)被用于被用于免疫组化-石蜡切片在人类样本上浓度为10 ug/ml, 被用于免疫细胞化学在人类样本上浓度为1.25 ug/ml 和 被用于免疫印迹在人类样本上浓度为1 ug/ml. Bladder (San Franc) (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Neuroscience (2015) ncbi
domestic rabbit 多克隆(ZMD.437)
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2300)被用于. Am J Physiol Gastrointest Liver Physiol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40-2200)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 1:300; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于. EMBO J (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:500; 图 s4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s4). J Neuroinflammation (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 40-2200)被用于. Development (2015) ncbi
domestic rabbit 多克隆(ZMD.437)
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 402300)被用于. Development (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:50; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4). PLoS Genet (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40-2200)被用于. Am J Clin Nutr (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于. Am J Physiol Renal Physiol (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 5 ug/ml
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上浓度为5 ug/ml. Mol Hum Reprod (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7,300)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Reprod Toxicol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61-7300)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61-7300)被用于被用于免疫细胞化学在人类样本上. J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(生活技术, ZO1-1A12)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Theriogenology (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. FASEB J (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339194)被用于被用于免疫细胞化学在小鼠样本上. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于. Invest Ophthalmol Vis Sci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于. Biochim Biophys Acta (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Radiat Prot Dosimetry (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 402200)被用于. J Cell Sci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Mol Biol Cell (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Mol Ther (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen/Life Technologies, 61-C7300)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 大鼠
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 339100)被用于被用于免疫细胞化学在大鼠样本上. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Milipore, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Cell J (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于免疫印迹在小鼠样本上. Physiol Rep (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 大鼠
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于免疫组化在大鼠样本上. Tissue Barriers (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于. Biomaterials (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-C7300)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Nat Cell Biol (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61-7300)被用于. Tissue Eng Part C Methods (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Ann Biomed Eng (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于. Endocrinology (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; domestic rabbit; 图 4
  • 免疫印迹; domestic rabbit; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫组化在domestic rabbit样本上 (图 4) 和 被用于免疫印迹在domestic rabbit样本上 (图 3). J Tissue Eng Regen Med (2017) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于. J Cereb Blood Flow Metab (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Cell Biol (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:200; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). Development (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Carcinog (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Technologies, 61-7300)被用于. J Dairy Sci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Mol Biol Cell (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Biochem Biophys Res Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61-7300)被用于. J Clin Invest (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen Corporation, 61-7300)被用于. Nutr Res (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于. FASEB J (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在人类样本上浓度为1:100. Nat Protoc (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61-7300)被用于. Curr Protoc Stem Cell Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. J Urol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. J Cereb Blood Flow Metab (2015) ncbi
domestic rabbit 多克隆(ZMD.437)
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2300)被用于. J Mol Med (Berl) (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于. Exp Cell Res (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Mol Vis (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 5 ug/ml
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339188)被用于被用于免疫细胞化学在犬样本上浓度为5 ug/ml. J R Soc Interface (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 豚鼠
赛默飞世尔紧密连接蛋白-1抗体(ZYMED, 33-9100)被用于被用于免疫组化在豚鼠样本上. Reprod Fertil Dev (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于. Dis Model Mech (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于. Eur J Pharm Biopharm (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. J Clin Invest (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS Pathog (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 61-7300)被用于. J Neuropathol Exp Neurol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Endocrinology (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫组化-冰冻切片在人类样本上. Dermatol Reports (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(生活技术, ZO1-1A12)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Nat Neurosci (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61-7300)被用于. Stem Cells (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于. Mol Cancer Res (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上 (图 2). elife (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Surg Obes Relat Dis (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 流式细胞仪; 人类
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于流式细胞仪在人类样本上. Inflamm Bowel Dis (2014) ncbi
domestic rabbit 多克隆(ZMD.437)
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2300)被用于. J Eur Acad Dermatol Venereol (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 S3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9188)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 S3). J Cell Sci (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:200
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:200. J Neurophysiol (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 非洲爪蛙; 1:100; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:100 (图 6). Development (2014) ncbi
domestic rabbit 多克隆(ZMD.437)
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2300)被用于. Brain Pathol (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 犬
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫印迹在犬样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫细胞化学在人类样本上 (图 3). Mol Biol Cell (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫细胞化学; 犬; 1:100; 图 4
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫细胞化学在犬样本上浓度为1:100 (图 4). Cell Microbiol (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 鸡; 1:200; 图 5
  • 免疫印迹; 鸡; 1:1000; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫组化在鸡样本上浓度为1:200 (图 5) 和 被用于免疫印迹在鸡样本上浓度为1:1000 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔紧密连接蛋白-1抗体(InVitrogen, 339100)被用于被用于免疫细胞化学在人类样本上 (图 5). J Cell Sci (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 339111)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Stem Cells Transl Med (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上. Mol Psychiatry (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:500
赛默飞世尔紧密连接蛋白-1抗体(invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Biotechnol J (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 斑马鱼
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 339111)被用于被用于免疫组化-冰冻切片在斑马鱼样本上. Neural Dev (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:25
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:25. PLoS ONE (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 大鼠
赛默飞世尔紧密连接蛋白-1抗体(生活技术, ZO1-1A12)被用于被用于免疫组化-冰冻切片在大鼠样本上. J Biochem (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 家羊; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen Life Technologies, ZO1-1A12)被用于被用于免疫细胞化学在家羊样本上浓度为1:100. J Cell Physiol (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100
  • 免疫组化; 人类; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫组化在人类样本上浓度为1:100. Am J Pathol (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61-7300)被用于. Perit Dial Int (2015) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6
  • 免疫组化-冰冻切片; 鸡
赛默飞世尔紧密连接蛋白-1抗体(分子探针, 339194)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6) 和 被用于免疫组化-冰冻切片在鸡样本上. Development (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:500; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 4). Development (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:300
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300. FEBS Lett (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Formos Med Assoc (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Biomaterials (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 6
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 6). Cell Microbiol (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:100. Dev Biol (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 斑马鱼; 1:25
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:25. Development (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339188)被用于被用于免疫细胞化学在人类样本上 (图 1). Invest Ophthalmol Vis Sci (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4). PLoS ONE (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 1:25; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, clone ZO1-1A12)被用于被用于免疫细胞化学在犬样本上浓度为1:25 (图 1). J Biol Chem (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 鸡; 1:100; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:100 (图 3). Development (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在人类样本上. J Cell Biol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-冰冻切片在小鼠样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:1000; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3). J Nutr (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:200; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 5). Dev Biol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 人类; 图 8
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫组化-冰冻切片在人类样本上 (图 8). Tissue Eng Part C Methods (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Nephrol Dial Transplant (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Cell Host Microbe (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上 (图 6). J Am Soc Nephrol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339188)被用于被用于免疫细胞化学在人类样本上 (图 6). Acta Biomater (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Acta Ophthalmol (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 大鼠; 1:50; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (表 1). Spermatogenesis (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:100; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Cancer Cell Int (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 1:1000
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:1000. Arch Dermatol Res (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 图 11
赛默飞世尔紧密连接蛋白-1抗体(生活技术, ZO1-1A12)被用于被用于免疫印迹在人类样本上 (图 11). Trans Am Ophthalmol Soc (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:100. Methods (2014) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). J Cell Sci (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:400; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (表 1). PLoS ONE (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Sci Transl Med (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6). Dev Dyn (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 5). Mol Cell Biol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 日本大米鱼; 1:400; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在日本大米鱼样本上浓度为1:400 (图 4). Development (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, clone ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 2). J Agric Food Chem (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上 (图 1). Mol Cell Biol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 家羊; 1:5000; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, OZO1-1A12)被用于被用于免疫印迹在家羊样本上浓度为1:5000 (图 2). Neurotoxicol Teratol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 大鼠; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9111)被用于被用于免疫组化在大鼠样本上浓度为1:100. PLoS ONE (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 大鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫细胞化学在大鼠样本上 (图 2). Brain Res (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9111)被用于被用于免疫细胞化学在人类样本上. Sci Rep (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 6a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上 (图 6a). Front Immunol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 2
  • 免疫印迹; 人类; 1:200; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 2). J Invest Dermatol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:80; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:80 (表 1). PLoS ONE (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:250; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 2). Exp Eye Res (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 大鼠; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9111)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100. Spermatogenesis (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:200; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Am J Physiol Gastrointest Liver Physiol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:750; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:750 (图 2). Nature (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 3). Infect Immun (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:250; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, clone ZO1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 7). Am J Physiol Heart Circ Physiol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在小鼠样本上. J Cell Physiol (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在小鼠样本上 (图 3). Invest Ophthalmol Vis Sci (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上. J Physiol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在小鼠样本上 (图 4). Cancer Cell (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 1:500; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Lab Invest (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在人类样本上 (图 3). Am J Cancer Res (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上 (图 3). Biomaterials (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 3). Cell Biol Toxicol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 鸡; 1:50; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:50 (图 2). Development (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:250; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 4). Biomaterials (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:500; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在人类样本上浓度为1:500 (图 5). J Cell Biol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫印迹在人类样本上 (图 2). Regul Pept (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 大鼠; 1:750
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, clone ZO-1-1A12)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:750. Hepatology (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 5 ug/ml; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, zo1-1A12)被用于被用于免疫细胞化学在犬样本上浓度为5 ug/ml (图 1). PLoS ONE (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在人类样本上 (图 1). FEBS J (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Cereb Cortex (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 1:500; 图 s1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在犬样本上浓度为1:500 (图 s1). PLoS ONE (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 图 8
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8). Dev Dyn (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:50
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, ZO-1-1A12)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. BMC Urol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 大鼠; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9188)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100. Spermatogenesis (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 2). Exp Dermatol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:400; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4). Development (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 3). J Biol Chem (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 15 ug/ml; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫组化在人类样本上浓度为15 ug/ml (图 5). J Tissue Eng Regen Med (2013) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; domestic rabbit; 1:200; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, clone ZO1-1A12)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:200 (图 2). Int J Alzheimers Dis (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4). Invest Ophthalmol Vis Sci (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:400; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, clone ZO1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 7). Am J Physiol Heart Circ Physiol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; domestic rabbit; 1:200; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:200 (图 4). PLoS Pathog (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在犬样本上 (图 4). Mol Biol Cell (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在犬样本上 (图 1). PLoS ONE (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 金鱼; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在金鱼样本上浓度为1:100. PLoS ONE (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在犬样本上 (图 2). J Biol Chem (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上 (图 2). Nat Neurosci (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 斑马鱼; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在斑马鱼样本上 (图 4). Nat Protoc (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:200
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在人类样本上浓度为1:200. Mol Vis (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO-1-1A12)被用于被用于免疫印迹在小鼠样本上 (图 6). J Carcinog (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫细胞化学在小鼠样本上. Oncotarget (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在小鼠样本上 (图 1). Toxicol Appl Pharmacol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; African green monkey; 1:200; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在African green monkey样本上浓度为1:200 (图 3). Cereb Cortex (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, clone ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 1). Mol Cancer Res (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:100; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 3). Mol Vis (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 犬; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在犬样本上 (图 7). J Am Soc Nephrol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 斑马鱼; 1:20; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, clone ZO1-1A12)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:20 (图 3). Glia (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:400; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:400 (图 4). Dev Biol (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫印迹在人类样本上 (图 4). FASEB J (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Mol Biol Cell (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1.25 ug/ml; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫组化在人类样本上浓度为1.25 ug/ml (图 3). J Urol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339111)被用于被用于免疫细胞化学在人类样本上 (图 6). Shock (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫细胞化学在小鼠样本上 (图 5). J Neurosci (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12,)被用于被用于免疫组化在小鼠样本上 (图 2). PLoS ONE (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在小鼠样本上 (图 2). Development (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫组化在斑马鱼样本上 (图 4). PLoS ONE (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 犬; 2.5 ug/ml; 图 4f
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1- 1A12)被用于被用于免疫组化在犬样本上浓度为2.5 ug/ml (图 4f). Am J Vet Res (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1.25 ug/ml; 图 7
赛默飞世尔紧密连接蛋白-1抗体(ZYMED, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1.25 ug/ml (图 7). J Urol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:150; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:150 (图 1). J Cell Mol Med (2012) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 1:25; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在犬样本上浓度为1:25 (图 1). Mol Biol Cell (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫印迹在人类样本上 (图 4). Int J Oncol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Tissue Eng Part A (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 家羊; 1:5000; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫印迹在家羊样本上浓度为1:5000 (图 3). Brain Res (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 3). Int J Cancer (2012) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Mol Biol Cell (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; pigs ; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在pigs 样本上 (图 1). Am J Pathol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Shock (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:50; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 2). Dev Biol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; pigs ; 1:200; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫细胞化学在pigs 样本上浓度为1:200 (图 2). Endocrinology (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫细胞化学在人类样本上 (图 2). Am J Physiol Cell Physiol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 5 ug/ml; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为5 ug/ml (图 3). J Mol Histol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 小鼠; 1:200
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在小鼠样本上浓度为1:200. J Comp Neurol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 2). J Invest Dermatol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在人类样本上 (图 5). Tissue Eng Part A (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 1:40; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在犬样本上浓度为1:40 (图 4). Mol Membr Biol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫印迹在人类样本上. Cancer Res (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 6). J Virol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上 (表 1). In Vitro Cell Dev Biol Anim (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO-1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO-1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 1). Cell Microbiol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cell Biol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:500; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 7). Dev Biol (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 斑马鱼; 1:200; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 4). Development (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 犬; 1:1000; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 6). Traffic (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 大鼠; 1:50; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9111)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (表 1). Int J Biochem Cell Biol (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:300; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1). Development (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 5
  • 免疫组化; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 5), 被用于免疫组化在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Am J Pathol (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 牛; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫印迹在牛样本上 (图 3). FASEB J (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, clone 1A12)被用于被用于免疫细胞化学在人类样本上 (图 2). Mol Biol Cell (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 339100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). Cell (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上 (图 4). Br J Ophthalmol (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1). Nat Neurosci (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 猕猴; 1:15; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在猕猴样本上浓度为1:15 (图 5). PLoS ONE (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 大鼠; 图 1
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 1) 和 被用于免疫印迹在大鼠样本上 (图 3). Biochem Biophys Res Commun (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
  • 免疫细胞化学; 犬; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫细胞化学在犬样本上 (图 2). J Mol Histol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:200; 图 9
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, clone A12)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 9). J Physiol (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 猫; 1:50; 图 3c
  • 免疫组化; 人类; 1:50; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫组化在猫样本上浓度为1:50 (图 3c) 和 被用于免疫组化在人类样本上浓度为1:50 (图 3a). Biotech Histochem (2011) ncbi
小鼠 单克隆(ZO1-1A12)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO-1-1A12)被用于被用于流式细胞仪在人类样本上 (表 2). Am J Obstet Gynecol (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:25; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncogene (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 家羊; 1:5000; 图 2d
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫印迹在家羊样本上浓度为1:5000 (图 2d). Am J Physiol Heart Circ Physiol (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Dev Biol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上. Nat Cell Biol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 1). Pancreas (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4). Tissue Eng Part C Methods (2010) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 1). Invest Ophthalmol Vis Sci (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫沉淀; 人类; 图 5
  • 免疫印迹; 人类; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫沉淀在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Proteomics (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上 (图 3). Toxicol In Vitro (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 大鼠; 1:5; 图 4
  • 免疫印迹; 大鼠; 1:500; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO-1-1A12)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:5 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 7). Microsc Res Tech (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 斑马鱼; 图 5k
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在斑马鱼样本上 (图 5k). PLoS ONE (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 斑马鱼; 1:200; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在斑马鱼样本上浓度为1:200 (图 5). Dev Dyn (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; Trachemys dorbigni; 1:500
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33- 9100)被用于被用于免疫组化在Trachemys dorbigni样本上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO-1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7). J Virol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1 ug/ml; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 1). Am J Physiol Renal Physiol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在犬样本上 (图 1). J Membr Biol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 图 3
  • 免疫组化-冰冻切片; 大鼠; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3) 和 被用于免疫组化-冰冻切片在大鼠样本上 (图 4). J Am Soc Nephrol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 斑马鱼; 1:150; 图 s7
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在斑马鱼样本上浓度为1:150 (图 s7). Nature (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上. Development (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 1). J Histochem Cytochem (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; domestic rabbit; 1:200; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:200 (表 1). Invest Ophthalmol Vis Sci (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:50; 图 4
  • 免疫印迹; 人类; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO-1-1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4) 和 被用于免疫印迹在人类样本上 (图 3a). Toxicol In Vitro (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1 ug/ml
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫细胞化学在小鼠样本上浓度为1 ug/ml. Exp Eye Res (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33?C9100)被用于被用于免疫细胞化学在人类样本上 (图 2). Peptides (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 6c
赛默飞世尔紧密连接蛋白-1抗体(Zymed/Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 6c). Hepatology (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 3a). Neurosci Lett (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 图 5
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, clone ZO1-1A12)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Neurochem (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Exp Cell Res (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 图 1b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33?C9100)被用于被用于免疫细胞化学在犬样本上 (图 1b). J Cell Biol (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1.25 ug/ml; 表 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1.25 ug/ml (表 2). Eur Urol (2009) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 表 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (表 2). Dev Biol (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 大鼠; 图 2
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在大鼠样本上 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 5). J Neurochem (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫细胞化学在小鼠样本上 (图 1). J Cell Sci (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 大鼠; 图 1g
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 1A12)被用于被用于免疫组化在大鼠样本上 (图 1g). Neuroscience (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 大鼠; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100. J Chem Neuroanat (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 图 2a
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). AIDS (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 犬; 图 1b
  • 免疫组化; 牛; 图 4b
  • 免疫印迹; 牛; 图 1b
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫印迹在犬样本上 (图 1b), 被用于免疫组化在牛样本上 (图 4b) 和 被用于免疫印迹在牛样本上 (图 1b). Exp Eye Res (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, ZO1-1A12)被用于被用于流式细胞仪在人类样本上 (图 4). Genome Biol (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; pigs ; 5,000 ug/ml; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫组化在pigs 样本上浓度为5,000 ug/ml (图 4). Eur Urol (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; domestic rabbit; 图 6
  • 免疫印迹; domestic rabbit; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上 (图 6) 和 被用于免疫印迹在domestic rabbit样本上 (图 4). J Neuroinflammation (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 大鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫组化在大鼠样本上 (图 5). Exp Eye Res (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在小鼠样本上 (图 6). J Mol Cell Cardiol (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 1). Eye Contact Lens (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 图 5
  • 免疫印迹; 犬; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在犬样本上 (图 5) 和 被用于免疫印迹在犬样本上 (图 3). Mol Membr Biol (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Nat Cell Biol (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为1:100. Mech Dev (2008) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在小鼠样本上. Dev Dyn (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 大鼠; 1:100; 图 1
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). J Neurochem (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上. J Cell Sci (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9111)被用于被用于免疫细胞化学在人类样本上. Curr Eye Res (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:400; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 1A12)被用于被用于免疫组化在人类样本上浓度为1:400 (图 1). J Cell Mol Med (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, ZO1-1A12)被用于被用于免疫细胞化学在人类样本上 (图 2). Invest Ophthalmol Vis Sci (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 4 ug/ml
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为4 ug/ml. Neuroscience (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Exp Cell Res (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 鸡; 1:1000
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 33-9100)被用于被用于免疫组化-石蜡切片在鸡样本上浓度为1:1000. Acta Neuropathol (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 人类; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2). Br J Dermatol (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 3). Am J Physiol Renal Physiol (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; domestic rabbit; 图 3
  • 免疫印迹; domestic rabbit; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在domestic rabbit样本上 (图 3) 和 被用于免疫印迹在domestic rabbit样本上 (图 1). Cell Signal (2007) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7,300)被用于. J Cell Biol (2006) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:20; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫组化在人类样本上浓度为1:20 (图 5). Stem Cells (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:50; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9,100)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1). Histochem Cell Biol (2007) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 犬; 1:250
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在犬样本上浓度为1:250. FEBS Lett (2006) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; domestic rabbit; 2 ug/ml; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO-1-1A12)被用于被用于免疫印迹在domestic rabbit样本上浓度为2 ug/ml (图 1). Invest Ophthalmol Vis Sci (2006) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠; 4 ug/ml; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen/Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上浓度为4 ug/ml (图 4). Neuroscience (2006) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Development (2006) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫沉淀; 大鼠; 表 1
  • 免疫印迹; 大鼠; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 33-9100)被用于被用于免疫沉淀在大鼠样本上 (表 1) 和 被用于免疫印迹在大鼠样本上 (表 1). J Cell Physiol (2006) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 2.5 ug/ml
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为2.5 ug/ml. Development (2006) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 20 ug/ml; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为20 ug/ml (图 3). Mol Vis (2005) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Dev Biol (2005) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔紧密连接蛋白-1抗体(ZYMED, 33-9100)被用于被用于免疫组化-冰冻切片在人类样本上. J Histochem Cytochem (2006) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:333; 图 5B
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:333 (图 5B). Am J Pathol (2005) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9111)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (表 1). J Cell Physiol (2005) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-冰冻切片; 小鼠; 4 ug/ml; 图 4
  • 免疫沉淀; 人类; 图 5
  • 免疫细胞化学; 人类; 0.5 ug/ml; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为4 ug/ml (图 4), 被用于免疫沉淀在人类样本上 (图 5) 和 被用于免疫细胞化学在人类样本上浓度为0.5 ug/ml (图 4). Histochem Cell Biol (2004) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上 (图 4). J Clin Endocrinol Metab (2004) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 大鼠; 1:500
  • 免疫细胞化学; African green monkey; 1:500
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 和 被用于免疫细胞化学在African green monkey样本上浓度为1:500. EMBO J (2004) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:100; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2). J Histochem Cytochem (2004) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 小鼠
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在小鼠样本上. Nature (2004) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 1:100; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, ZO1-1A12)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). J Urol (2004) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 小鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Biochem Biophys Res Commun (2004) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类
  • 免疫细胞化学; 牛
  • 免疫细胞化学; 犬
  • 免疫细胞化学; African green monkey
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 1A12)被用于被用于免疫细胞化学在人类样本上, 被用于免疫细胞化学在牛样本上, 被用于免疫细胞化学在犬样本上 和 被用于免疫细胞化学在African green monkey样本上. Cell Motil Cytoskeleton (2003) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫组化在人类样本上 (图 1). Br J Dermatol (2003) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化; 大鼠; 图 9
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9111)被用于被用于免疫组化在大鼠样本上 (图 9). Endocrinology (2003) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫印迹; 大鼠; 1:100; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 7). Endocrinology (2003) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛默飞世尔紧密连接蛋白-1抗体(ZYMED, 33-9100)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Dev Dyn (2002) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33-9100)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Methods Mol Biol (2002) ncbi
小鼠 单克隆(ZO1-1A12)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 33?C9100)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). J Invest Dermatol (2001) ncbi
艾博抗(上海)贸易有限公司
domestic goat 多克隆
  • 流式细胞仪; 小鼠; 图 s2a
艾博抗(上海)贸易有限公司紧密连接蛋白-1抗体(Abcam, ab190085)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Arthritis Res Ther (2022) ncbi
domestic goat 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司紧密连接蛋白-1抗体(abcam, ab190085)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Cell Death Dis (2021) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 3g
艾博抗(上海)贸易有限公司紧密连接蛋白-1抗体(Abcam, ab190085)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 3g). Front Pharmacol (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s3
艾博抗(上海)贸易有限公司紧密连接蛋白-1抗体(Abcam, ab190085)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s3). Cell Death Differ (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; common marmoset; 1:100; 图 4
艾博抗(上海)贸易有限公司紧密连接蛋白-1抗体(Abcam, ab190085)被用于被用于免疫组化-冰冻切片在common marmoset样本上浓度为1:100 (图 4). Neurosci Res (2016) ncbi
domestic goat 多克隆
  • 免疫组化; African green monkey; 1:100; 图 5d
艾博抗(上海)贸易有限公司紧密连接蛋白-1抗体(Abcam, ab190085)被用于被用于免疫组化在African green monkey样本上浓度为1:100 (图 5d). Sci Rep (2016) ncbi
Developmental Studies Hybridoma Bank
大鼠 单克隆(R26.4C)
  • 免疫组化; 小鼠; 1:200; 图 2c, 3a
Developmental Studies Hybridoma Bank紧密连接蛋白-1抗体(Developmental Studies Hybridoma Bank, R26.4C)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2c, 3a). Nat Commun (2021) ncbi
大鼠 单克隆(R26.4C)
  • 免疫组化-石蜡切片; 小鼠; 图 5e
Developmental Studies Hybridoma Bank紧密连接蛋白-1抗体(Developmental Studies Hybridoma Bank, R26.4C)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5e). PLoS Genet (2017) ncbi
大鼠 单克隆(R26.4C)
  • 免疫印迹; 小鼠; 图 6b
Developmental Studies Hybridoma Bank紧密连接蛋白-1抗体(DSHB, R26.4C)被用于被用于免疫印迹在小鼠样本上 (图 6b). PLoS ONE (2017) ncbi
大鼠 单克隆(R26.4C)
  • 免疫细胞化学; 犬; 1:500; 图 6d
Developmental Studies Hybridoma Bank紧密连接蛋白-1抗体(Developmental Studies Hybridoma Bank, R26.4C)被用于被用于免疫细胞化学在犬样本上浓度为1:500 (图 6d). J Cell Biol (2016) ncbi
大鼠 单克隆(R26.4C)
  • 免疫细胞化学; 犬; 图 1A
Developmental Studies Hybridoma Bank紧密连接蛋白-1抗体(Developmental Studies Hybridoma Bank, R26.4C)被用于被用于免疫细胞化学在犬样本上 (图 1A). Mol Biol Cell (2016) ncbi
大鼠 单克隆(R26.4C)
  • 免疫细胞化学; 犬; 1:100; 图 2d
Developmental Studies Hybridoma Bank紧密连接蛋白-1抗体(DSHB, R26.4C-z)被用于被用于免疫细胞化学在犬样本上浓度为1:100 (图 2d). Mol Biol Cell (2015) ncbi
大鼠 单克隆(R26.4C)
  • 免疫组化-自由浮动切片; 小鼠; 1:10
Developmental Studies Hybridoma Bank紧密连接蛋白-1抗体(Developmental Studies Hybridoma Bank , R26.4C)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10. Cell Tissue Res (2016) ncbi
文章列表
  1. Yao Y, Cai X, Zhang M, Zhang X, Ren F, Zheng Y, et al. PSTPIP2 regulates synovial macrophages polarization and dynamics via ERβ in the joint microenvironment. Arthritis Res Ther. 2022;24:247 pubmed 出版商
  2. Hopkins J, Asada K, Leung A, Papadaki V, Davaapil H, Morrison M, et al. PRELP Regulates Cell-Cell Adhesion and EMT and Inhibits Retinoblastoma Progression. Cancers (Basel). 2022;14: pubmed 出版商
  3. Cegarra C, Cameron B, Chaves C, Dabdoubi T, Do T, Gen xea t B, et al. An innovative strategy to identify new targets for delivering antibodies to the brain has led to the exploration of the integrin family. PLoS ONE. 2022;17:e0274667 pubmed 出版商
  4. Vignone D, Gonzalez Paz O, Fini I, Cellucci A, Auciello G, Battista M, et al. Modelling the Human Blood-Brain Barrier in Huntington Disease. Int J Mol Sci. 2022;23: pubmed 出版商
  5. Werder R, Liu T, Abo K, Lindstrom Vautrin J, Villacorta Martin C, Huang J, et al. CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells. Sci Adv. 2022;8:eabo6566 pubmed 出版商
  6. Li Y, Wang C, Zhang L, Chen B, Mo Y, Zhang J. Claudin-5a is essential for the functional formation of both zebrafish blood-brain barrier and blood-cerebrospinal fluid barrier. Fluids Barriers CNS. 2022;19:40 pubmed 出版商
  7. Fleming Martinez A, D xf6 ppler H, Bastea L, Edenfield B, Liou G, Storz P. Ym1+ macrophages orchestrate fibrosis, lesion growth, and progression during development of murine pancreatic cancer. iScience. 2022;25:104327 pubmed 出版商
  8. Saxena V, Piao W, Li L, Paluskievicz C, Xiong Y, Simon T, et al. Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses. Cell Rep. 2022;39:110727 pubmed 出版商
  9. Zhao Q, Dai W, Chen H, Jacobs R, Zlokovic B, Lund B, et al. Prenatal disruption of blood-brain barrier formation via cyclooxygenase activation leads to lifelong brain inflammation. Proc Natl Acad Sci U S A. 2022;119:e2113310119 pubmed 出版商
  10. Wang J, Liu C, He L, Xie Z, Bai L, Yu W, et al. Selective YAP activation in Procr cells is essential for ovarian stem/progenitor expansion and epithelium repair. elife. 2022;11: pubmed 出版商
  11. Li J, Qiu C, Wei Y, Yuan W, Liu J, Cui W, et al. Human Amniotic Epithelial Stem Cell-Derived Retinal Pigment Epithelium Cells Repair Retinal Degeneration. Front Cell Dev Biol. 2021;9:737242 pubmed 出版商
  12. Watanabe D, Nakagawa S, Morofuji Y, Tóth A, Vastag M, Aruga J, et al. Characterization of a Primate Blood-Brain Barrier Co-Culture Model Prepared from Primary Brain Endothelial Cells, Pericytes and Astrocytes. Pharmaceutics. 2021;13: pubmed 出版商
  13. Liu N, Qadri F, Busch H, Huegel S, Sihn G, Chuykin I, et al. Kpna6 deficiency causes infertility in male mice by disrupting spermatogenesis. Development. 2021;148: pubmed 出版商
  14. Waters S, Swanson M, Dieriks B, Zhang Y, Grimsey N, Murray H, et al. Blood-spinal cord barrier leakage is independent of motor neuron pathology in ALS. Acta Neuropathol Commun. 2021;9:144 pubmed 出版商
  15. Bernardini C, La Mantia D, Salaroli R, Zannoni A, Nauwelaerts N, Deferm N, et al. Development of a Pig Mammary Epithelial Cell Culture Model as a Non-Clinical Tool for Studying Epithelial Barrier-A Contribution from the IMI-ConcePTION Project. Animals (Basel). 2021;11: pubmed 出版商
  16. Huang Y, Chu P, Chen J, Huang C, Huang C, Tsai Y, et al. Expression pattern and prognostic impact of glycoprotein non-metastatic B (GPNMB) in triple-negative breast cancer. Sci Rep. 2021;11:12171 pubmed 出版商
  17. Uehara H, Zhang X, Pereira F, Narendran S, Choi S, Bhuvanagiri S, et al. Start codon disruption with CRISPR/Cas9 prevents murine Fuchs' endothelial corneal dystrophy. elife. 2021;10: pubmed 出版商
  18. Hanke Gogokhia C, Lehmann G, Benedicto I, de la Fuente Ortega E, Arshavsky V, Schreiner R, et al. Apical CLC-2 in retinal pigment epithelium is crucial for survival of the outer retina. FASEB J. 2021;35:e21689 pubmed 出版商
  19. Park N, Shetye S, Bogush I, Keene D, Tufa S, Hudson D, et al. Reticulocalbin 3 is involved in postnatal tendon development by regulating collagen fibrillogenesis and cellular maturation. Sci Rep. 2021;11:10868 pubmed 出版商
  20. Liu M, Rao H, Liu J, Li X, Feng W, Gui L, et al. The histone methyltransferase SETD2 modulates oxidative stress to attenuate experimental colitis. Redox Biol. 2021;43:102004 pubmed 出版商
  21. Kindt K, Akturk A, Jarysta A, Day M, Beirl A, Flonard M, et al. EMX2-GPR156-Gαi reverses hair cell orientation in mechanosensory epithelia. Nat Commun. 2021;12:2861 pubmed 出版商
  22. Lasseigne A, Echeverry F, Ijaz S, Michel J, Martin E, Marsh A, et al. Electrical synaptic transmission requires a postsynaptic scaffolding protein. elife. 2021;10: pubmed 出版商
  23. Sun Y, Wu D, Zeng W, Chen Y, Guo M, Lu B, et al. The Role of Intestinal Dysbacteriosis Induced Arachidonic Acid Metabolism Disorder in Inflammaging in Atherosclerosis. Front Cell Infect Microbiol. 2021;11:618265 pubmed 出版商
  24. Ngamsri K, Gamper Tsigaras J, Reutershan J, Konrad F. Fractalkine Is Linked to the Necrosome Pathway in Acute Pulmonary Inflammation. Front Med (Lausanne). 2021;8:591790 pubmed 出版商
  25. Wan L, Wang Y, Zhang Z, Wang J, Niu M, Wu Y, et al. Elevated TEFM expression promotes growth and metastasis through activation of ROS/ERK signaling in hepatocellular carcinoma. Cell Death Dis. 2021;12:325 pubmed 出版商
  26. Krausová A, Buresova P, Sarnova L, Oyman Eyrilmez G, Skarda J, Wohl P, et al. Plectin ensures intestinal epithelial integrity and protects colon against colitis. Mucosal Immunol. 2021;14:691-702 pubmed 出版商
  27. Sheng Z, Gao N, Fan D, Wu N, Zhang Y, Han D, et al. Zika virus disrupts the barrier structure and Absorption/Secretion functions of the epididymis in mice. PLoS Negl Trop Dis. 2021;15:e0009211 pubmed 出版商
  28. Evstatiev R, Cervenka A, Austerlitz T, Deim G, Baumgartner M, Beer A, et al. The food additive EDTA aggravates colitis and colon carcinogenesis in mouse models. Sci Rep. 2021;11:5188 pubmed 出版商
  29. Guan Y, Chen K, Quan D, Kang L, Yang D, Wu H, et al. The Combination of Scutellaria baicalensis Georgi and Sophora japonica L. ameliorate Renal Function by Regulating Gut Microbiota in Spontaneously Hypertensive Rats. Front Pharmacol. 2020;11:575294 pubmed 出版商
  30. Kumar B, Ahmad R, Giannico G, Zent R, Talmon G, Harris R, et al. Claudin-2 inhibits renal clear cell carcinoma progression by inhibiting YAP-activation. J Exp Clin Cancer Res. 2021;40:77 pubmed 出版商
  31. Yoshida S, Wei X, Zhang G, O Connor C, Torres M, Zhou Z, et al. Endoplasmic reticulum-associated degradation is required for nephrin maturation and kidney glomerular filtration function. J Clin Invest. 2021;131: pubmed 出版商
  32. Grönroos P, Ilmarinen T, Skottman H. Directed Differentiation of Human Pluripotent Stem Cells towards Corneal Endothelial-Like Cells under Defined Conditions. Cells. 2021;10: pubmed 出版商
  33. Tang C, Han J, Dalvi S, Manian K, Winschel L, Volland S, et al. A human model of Batten disease shows role of CLN3 in phagocytosis at the photoreceptor-RPE interface. Commun Biol. 2021;4:161 pubmed 出版商
  34. Greferath U, Huynh M, Jobling A, Vessey K, Venables G, Surrao D, et al. Dorsal-Ventral Differences in Retinal Structure in the Pigmented Royal College of Surgeons Model of Retinal Degeneration. Front Cell Neurosci. 2020;14:553708 pubmed 出版商
  35. Nikolakopoulou A, Wang Y, Ma Q, Sagare A, Montagne A, Huuskonen M, et al. Endothelial LRP1 protects against neurodegeneration by blocking cyclophilin A. J Exp Med. 2021;218: pubmed 出版商
  36. Vong K, Ma T, Li B, Leung T, Nong W, Ngai S, et al. SOX9-COL9A3-dependent regulation of choroid plexus epithelial polarity governs blood-cerebrospinal fluid barrier integrity. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  37. Ryu H, Lee H, Lee J, Noh H, Shin M, Kumar V, et al. The molecular dynamics of subdistal appendages in multi-ciliated cells. Nat Commun. 2021;12:612 pubmed 出版商
  38. Zhou H, Qin L, Jiang Q, Murray K, Zhang H, Li B, et al. Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model. Nat Commun. 2021;12:504 pubmed 出版商
  39. Yang H, Lee S, Yang D, Dai H, Zhang Y, Han L, et al. Deletions in CWH43 cause idiopathic normal pressure hydrocephalus. EMBO Mol Med. 2021;13:e13249 pubmed 出版商
  40. Hayashi H, Osaka S, Sakabe K, Fukami A, Kishimoto E, Aihara E, et al. Modeling Human Bile Acid Transport and Synthesis in Stem Cell-Derived Hepatocytes with a Patient-Specific Mutation. Stem Cell Reports. 2021;16:309-323 pubmed 出版商
  41. Cuevas E, Holder D, Alshehri A, Tr xe9 guier J, Lakowski J, Sowden J. NRL-/- gene edited human embryonic stem cells generate rod-deficient retinal organoids enriched in S-cone-like photoreceptors. Stem Cells. 2021;39:414-428 pubmed 出版商
  42. Mykytyn A, Breugem T, Riesebosch S, Schipper D, van den Doel P, Rottier R, et al. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. elife. 2021;10: pubmed 出版商
  43. Wang T, Liu C, Pan L, Liu Z, Li C, Lin J, et al. Inhibition of p38 MAPK Mitigates Lung Ischemia Reperfusion Injury by Reducing Blood-Air Barrier Hyperpermeability. Front Pharmacol. 2020;11:569251 pubmed 出版商
  44. Hempt C, Hirsch C, Hannig Y, Rippl A, Wick P, Buerki Thurnherr T. Investigating the effects of differently produced synthetic amorphous silica (E 551) on the integrity and functionality of the human intestinal barrier using an advanced in vitro co-culture model. Arch Toxicol. 2021;95:837-852 pubmed 出版商
  45. Roth J, Muench K, Asokan A, Mallett V, Gai H, Verma Y, et al. 16p11.2 microdeletion imparts transcriptional alterations in human iPSC-derived models of early neural development. elife. 2020;9: pubmed 出版商
  46. Bennett R, Hu M, Fernandes A, Pérez Rando M, Robbins A, Kamath T, et al. Tau reduction in aged mice does not impact Microangiopathy. Acta Neuropathol Commun. 2020;8:137 pubmed 出版商
  47. Yang C, Eleftheriadou M, Kelaini S, Morrison T, González M, Caines R, et al. Targeting QKI-7 in vivo restores endothelial cell function in diabetes. Nat Commun. 2020;11:3812 pubmed 出版商
  48. Devraj G, Guérit S, Seele J, Spitzer D, Macas J, Khel M, et al. HIF-1α is involved in blood-brain barrier dysfunction and paracellular migration of bacteria in pneumococcal meningitis. Acta Neuropathol. 2020;140:183-208 pubmed 出版商
  49. Peroutka R, Buzza M, Mukhopadhyay S, Johnson T, Driesbaugh K, Antalis T. Testisin/Prss21 deficiency causes increased vascular permeability and a hemorrhagic phenotype during luteal angiogenesis. PLoS ONE. 2020;15:e0234407 pubmed 出版商
  50. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488 pubmed 出版商
  51. Salido E, Ramamurthy V. Proteoglycan IMPG2 Shapes the Interphotoreceptor Matrix and Modulates Vision. J Neurosci. 2020;40:4059-4072 pubmed 出版商
  52. Hou M, Han J, Li G, Kwon M, Jiang J, Emani S, et al. Multipotency of mouse trophoblast stem cells. Stem Cell Res Ther. 2020;11:55 pubmed 出版商
  53. Coolen M, Labusch M, Mannioui A, Bally Cuif L. Mosaic Heterochrony in Neural Progenitors Sustains Accelerated Brain Growth and Neurogenesis in the Juvenile Killifish N. furzeri. Curr Biol. 2020;30:736-745.e4 pubmed 出版商
  54. Trevisan A, Bauer M, Brindley R, Currie K, Carter B. Jedi-1 deficiency increases sensory neuron excitability through a non-cell autonomous mechanism. Sci Rep. 2020;10:1300 pubmed 出版商
  55. Marin Navarro A, Pronk R, van der Geest A, Oliynyk G, Nordgren A, Arsenian Henriksson M, et al. p53 controls genomic stability and temporal differentiation of human neural stem cells and affects neural organization in human brain organoids. Cell Death Dis. 2020;11:52 pubmed 出版商
  56. Wangen J, Green R. Stop codon context influences genome-wide stimulation of termination codon readthrough by aminoglycosides. elife. 2020;9: pubmed 出版商
  57. Arora P, Dongre S, Raman R, Sonawane M. Stepwise polarisation of developing bilayered epidermis is mediated by aPKC and E-cadherin in zebrafish. elife. 2020;9: pubmed 出版商
  58. Hagbom M, de Faria F, Winberg M, Westerberg S, Nordgren J, Sharma S, et al. Neurotrophic Factors Protect the Intestinal Barrier from Rotavirus Insult in Mice. MBio. 2020;11: pubmed 出版商
  59. Findlay A, McKie L, Keighren M, Clementson Mobbs S, Sanchez Pulido L, Wells S, et al. Fam151b, the mouse homologue of C.elegans menorin gene, is essential for retinal function. Sci Rep. 2020;10:437 pubmed 出版商
  60. Thouvenin O, Keiser L, Cantaut Belarif Y, Carbó Tano M, Verweij F, Jurisch Yaksi N, et al. Origin and role of the cerebrospinal fluid bidirectional flow in the central canal. elife. 2020;9: pubmed 出版商
  61. Sozen B, Cox A, De Jonghe J, Bao M, Hollfelder F, Glover D, et al. Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid. Dev Cell. 2019;51:698-712.e8 pubmed 出版商
  62. Bendriem R, Singh S, Aleem A, Antonetti D, Ross M. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. elife. 2019;8: pubmed 出版商
  63. Kramer M, Markart P, Drakopanagiotakis F, Mamazhakypov A, Schaefer L, Didiasova M, et al. Pirfenidone inhibits motility of NSCLC cells by interfering with the urokinase system. Cell Signal. 2020;65:109432 pubmed 出版商
  64. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  65. Roy A, Murphy R, Deng M, MacDonald J, Bammler T, Aldinger K, et al. PI3K-Yap activity drives cortical gyrification and hydrocephalus in mice. elife. 2019;8: pubmed 出版商
  66. Bertrand L, Méroth F, Tournebize M, Leda A, Sun E, Toborek M. Targeting the HIV-infected brain to improve ischemic stroke outcome. Nat Commun. 2019;10:2009 pubmed 出版商
  67. Ferraro D, Patella F, Zanivan S, Donato C, Aceto N, Giannotta M, et al. Endothelial cell-derived nidogen-1 inhibits migration of SK-BR-3 breast cancer cells. BMC Cancer. 2019;19:312 pubmed 出版商
  68. Benz F, Wichitnaowarat V, Lehmann M, Germano R, Mihova D, Macas J, et al. Low wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. elife. 2019;8: pubmed 出版商
  69. Wang Y, Sabbagh M, Gu X, Rattner A, Williams J, Nathans J. Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures. elife. 2019;8: pubmed 出版商
  70. Liu J, Liu Y, Shao J, Li Y, Qin L, Shen H, et al. Zeb1 is important for proper cleavage plane orientation of dividing progenitors and neuronal migration in the mouse neocortex. Cell Death Differ. 2019;: pubmed 出版商
  71. Li Y, Hu Q, Li C, Liang K, Xiang Y, Hsiao H, et al. PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease. J Clin Invest. 2019;129:1129-1151 pubmed 出版商
  72. Yang Z, Huang C, Wu Y, Chen B, Zhang W, Zhang J. Autophagy Protects the Blood-Brain Barrier Through Regulating the Dynamic of Claudin-5 in Short-Term Starvation. Front Physiol. 2019;10:2 pubmed 出版商
  73. Nerurkar N, Lee C, Mahadevan L, Tabin C. Molecular control of macroscopic forces drives formation of the vertebrate hindgut. Nature. 2019;565:480-484 pubmed 出版商
  74. Kiyohara H, Sujino T, Teratani T, Miyamoto K, Arai M, Nomura E, et al. Toll-Like Receptor 7 Agonist-Induced Dermatitis Causes Severe Dextran Sulfate Sodium Colitis by Altering the Gut Microbiome and Immune Cells. Cell Mol Gastroenterol Hepatol. 2019;7:135-156 pubmed 出版商
  75. Luong P, Hedl M, Yan J, Zuo T, Fu T, Jiang X, et al. INAVA-ARNO complexes bridge mucosal barrier function with inflammatory signaling. elife. 2018;7: pubmed 出版商
  76. Ibar C, Kirichenko E, Keepers B, Enners E, Fleisch K, Irvine K. Tension-dependent regulation of mammalian Hippo signaling through LIMD1. J Cell Sci. 2018;131: pubmed 出版商
  77. Souma T, Thomson B, Heinen S, Carota I, Yamaguchi S, Onay T, et al. Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proc Natl Acad Sci U S A. 2018;115:1298-1303 pubmed 出版商
  78. Pelz L, Purfürst B, Rathjen F. The cell adhesion molecule BT-IgSF is essential for a functional blood-testis barrier and male fertility in mice. J Biol Chem. 2017;292:21490-21503 pubmed 出版商
  79. Connell M, Chen H, Jiang J, Kuan C, Fotovati A, Chu T, et al. HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development. elife. 2017;6: pubmed 出版商
  80. Hazim R, Karumbayaram S, Jiang M, Dimashkie A, Lopes V, Li D, et al. Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization. Stem Cell Res Ther. 2017;8:217 pubmed 出版商
  81. Liang F, Hwang J, Tang N, Hunziker W. Juxtanodin in retinal pigment epithelial cells: Expression and biological activities in regulating cell morphology and actin cytoskeleton organization. J Comp Neurol. 2018;526:205-215 pubmed 出版商
  82. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  83. Boussadia B, Lakhal L, Payrastre L, Ghosh C, Pascussi J, Gangarossa G, et al. Pregnane X Receptor Deletion Modifies Recognition Memory and Electroencephalographic Activity. Neuroscience. 2018;370:130-138 pubmed 出版商
  84. Wilkinson E, Sidaway J, Cross M. Statin regulated ERK5 stimulates tight junction formation and reduces permeability in human cardiac endothelial cells. J Cell Physiol. 2018;233:186-200 pubmed 出版商
  85. Benedicto I, Lehmann G, Ginsberg M, Nolan D, Bareja R, Elemento O, et al. Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors. Nat Commun. 2017;8:15374 pubmed 出版商
  86. Feldner A, Adam M, Tetzlaff F, Moll I, Komljenovic D, Sahm F, et al. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med. 2017;9:890-905 pubmed 出版商
  87. Li P, Wang Y, Mao X, Jiang Y, Liu J, Li J, et al. CRB3 downregulation confers breast cancer stem cell traits through TAZ/?-catenin. Oncogenesis. 2017;6:e322 pubmed 出版商
  88. Yanagida K, Liu C, Faraco G, Galvani S, Smith H, Burg N, et al. Size-selective opening of the blood-brain barrier by targeting endothelial sphingosine 1-phosphate receptor 1. Proc Natl Acad Sci U S A. 2017;114:4531-4536 pubmed 出版商
  89. Kharfallah F, Guyot M, El Hassan A, Allache R, Merello E, De Marco P, et al. Scribble1 plays an important role in the pathogenesis of neural tube defects through its mediating effect of Par-3 and Vangl1/2 localization. Hum Mol Genet. 2017;26:2307-2320 pubmed 出版商
  90. Li Y, Urban A, Midura D, Simon H, Wang Q. Proteomic characterization of epicardial-myocardial signaling reveals novel regulatory networks including a role for NF-κB in epicardial EMT. PLoS ONE. 2017;12:e0174563 pubmed 出版商
  91. Ahmed S, Macara I. The Par3 polarity protein is an exocyst receptor essential for mammary cell survival. Nat Commun. 2017;8:14867 pubmed 出版商
  92. Samuel W, Jaworski C, Postnikova O, Kutty R, Duncan T, Tan L, et al. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol Vis. 2017;23:60-89 pubmed
  93. Balmer D, Bapst Wicht L, Pyakurel A, Emery M, Nanchen N, Bochet C, et al. Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis. Front Aging Neurosci. 2017;9:43 pubmed 出版商
  94. Jin Z, Liang F, Yang J, Mei W. hnRNP I regulates neonatal immune adaptation and prevents colitis and colorectal cancer. PLoS Genet. 2017;13:e1006672 pubmed 出版商
  95. Xavier A, Fontaine R, Bloch S, Affaticati P, Jenett A, Demarque M, et al. Comparative analysis of monoaminergic cerebrospinal fluid-contacting cells in Osteichthyes (bony vertebrates). J Comp Neurol. 2017;525:2265-2283 pubmed 出版商
  96. Huang H, Liu Y, Wang L, Li W. Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice. PLoS ONE. 2017;12:e0173716 pubmed 出版商
  97. Geng Z, Walsh P, Truong V, Hill C, Ebeling M, Kapphahn R, et al. Generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. PLoS ONE. 2017;12:e0173575 pubmed 出版商
  98. Miyashita H, Niwano H, Yoshida S, Hatou S, Inagaki E, Tsubota K, et al. Long-term homeostasis and wound healing in an in vitro epithelial stem cell niche model. Sci Rep. 2017;7:43557 pubmed 出版商
  99. Tung K, Harakal J, Qiao H, Rival C, Li J, Paul A, et al. Egress of sperm autoantigen from seminiferous tubules maintains systemic tolerance. J Clin Invest. 2017;127:1046-1060 pubmed 出版商
  100. Prasad S, Sajja R, Kaisar M, Park J, Villalba H, Liles T, et al. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017;12:58-69 pubmed 出版商
  101. Qi X, Pay S, Yan Y, Thomas J, Lewin A, Chang L, et al. Systemic Injection of RPE65-Programmed Bone Marrow-Derived Cells Prevents Progression of Chronic Retinal Degeneration. Mol Ther. 2017;25:917-927 pubmed 出版商
  102. Zhang W, Li H, Ogando D, Li S, Feng M, Price F, et al. Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium. EBioMedicine. 2017;16:292-301 pubmed 出版商
  103. Varadi J, Harazin A, Fenyvesi F, Réti Nagy K, Gogolak P, Vámosi G, et al. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers. PLoS ONE. 2017;12:e0170537 pubmed 出版商
  104. Zhang J, Chen S, Cai J, Hou Z, Wang X, Kachelmeier A, et al. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage-like melanocytes from the young mouse vestibular system. Hear Res. 2017;345:10-22 pubmed 出版商
  105. Kozlovskaja GumbrienÄ— A, Yi R, Alexander R, Aman A, Jiskra R, Nagelberg D, et al. Proliferation-independent regulation of organ size by Fgf/Notch signaling. elife. 2017;6: pubmed 出版商
  106. Salomon J, Gaston C, Magescas J, Duvauchelle B, Canioni D, Sengmanivong L, et al. Contractile forces at tricellular contacts modulate epithelial organization and monolayer integrity. Nat Commun. 2017;8:13998 pubmed 出版商
  107. Dukic A, Haugen L, Pidoux G, Leithe E, Bakke O, Tasken K. A protein kinase A-ezrin complex regulates connexin 43 gap junction communication in liver epithelial cells. Cell Signal. 2017;32:1-11 pubmed 出版商
  108. Lesage J, Suarez Carmona M, Neyrinck Leglantier D, Grelet S, Blacher S, Hunziker W, et al. Zonula occludens-1/NF-?B/CXCL8: a new regulatory axis for tumor angiogenesis. FASEB J. 2017;31:1678-1688 pubmed 出版商
  109. Priya R, Liang X, Teo J, Duszyc K, Yap A, Gomez G. ROCK1 but not ROCK2 contributes to RhoA signaling and NMIIA-mediated contractility at the epithelial zonula adherens. Mol Biol Cell. 2017;28:12-20 pubmed 出版商
  110. Bordeleau F, Mason B, Lollis E, Mazzola M, Zanotelli M, Somasegar S, et al. Matrix stiffening promotes a tumor vasculature phenotype. Proc Natl Acad Sci U S A. 2017;114:492-497 pubmed 出版商
  111. Sivagurunathan S, Palanisamy K, Arunachalam J, Chidambaram S. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway. Mol Cell Biochem. 2017;427:145-156 pubmed 出版商
  112. Foerster P, Daclin M, Asm S, Faucourt M, Boletta A, Genovesio A, et al. mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis. Development. 2017;144:201-210 pubmed 出版商
  113. Van Itallie C, Tietgens A, Anderson J. Visualizing the dynamic coupling of claudin strands to the actin cytoskeleton through ZO-1. Mol Biol Cell. 2017;28:524-534 pubmed 出版商
  114. Cao X, Shen L, Wu S, Yan C, Zhou Y, Xiong G, et al. Urban fine particulate matter exposure causes male reproductive injury through destroying blood-testis barrier (BTB) integrity. Toxicol Lett. 2017;266:1-12 pubmed 出版商
  115. Tamasas B, Cox T. Massively Increased Caries Susceptibility in an Irf6 Cleft Lip/Palate Model. J Dent Res. 2017;96:315-322 pubmed 出版商
  116. He Z, Forest F, Bernard A, Gauthier A, Montard R, Peoc h M, et al. Cutting and Decellularization of Multiple Corneal Stromal Lamellae for the Bioengineering of Endothelial Grafts. Invest Ophthalmol Vis Sci. 2016;57:6639-6651 pubmed 出版商
  117. Yuan J, Cha J, Deng W, Bartos A, Sun X, Ho H, et al. Planar cell polarity signaling in the uterus directs appropriate positioning of the crypt for embryo implantation. Proc Natl Acad Sci U S A. 2016;113:E8079-E8088 pubmed
  118. Hurtado Alvarado G, Dominguez Salazar E, Velazquez Moctezuma J, Gómez González B. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS ONE. 2016;11:e0167236 pubmed 出版商
  119. Lin Z, Zhang Y, Xia Y, Xu X, Jiao X, Sun J. Salmonella enteritidis Effector AvrA Stabilizes Intestinal Tight Junctions via the JNK Pathway. J Biol Chem. 2016;291:26837-26849 pubmed 出版商
  120. Martínez Rendón J, Sánchez Guzmán E, Rueda A, González J, Gulias Cañizo R, Aquino Jarquin G, et al. TRPV4 Regulates Tight Junctions and Affects Differentiation in a Cell Culture Model of the Corneal Epithelium. J Cell Physiol. 2017;232:1794-1807 pubmed 出版商
  121. Wufuer M, Lee G, Hur W, Jeon B, Kim B, Choi T, et al. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci Rep. 2016;6:37471 pubmed 出版商
  122. Bassett E, Tokarew N, Allemano E, Mazerolle C, Morin K, Mears A, et al. Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. elife. 2016;5: pubmed 出版商
  123. Chehaibi K, le Maire L, Bradoni S, Escolà J, Blanco Vaca F, Slimane M. Effect of PPAR-β/δ agonist GW0742 treatment in the acute phase response and blood-brain barrier permeability following brain injury. Transl Res. 2017;182:27-48 pubmed 出版商
  124. Gao Y, Mruk D, Chen H, Lui W, Lee W, Cheng C. Regulation of the blood-testis barrier by a local axis in the testis: role of laminin ?2 in the basement membrane. FASEB J. 2017;31:584-597 pubmed 出版商
  125. Gautam J, Zhang X, Yao Y. The role of pericytic laminin in blood brain barrier integrity maintenance. Sci Rep. 2016;6:36450 pubmed 出版商
  126. Kantarci H, Gerberding A, Riley B. Spemann organizer gene Goosecoid promotes delamination of neuroblasts from the otic vesicle. Proc Natl Acad Sci U S A. 2016;113:E6840-E6848 pubmed
  127. Cronan M, Beerman R, ROSENBERG A, Saelens J, Johnson M, Oehlers S, et al. Macrophage Epithelial Reprogramming Underlies Mycobacterial Granuloma Formation and Promotes Infection. Immunity. 2016;45:861-876 pubmed 出版商
  128. Keppner A, Malsure S, Nobile A, Auberson M, Bonny O, Hummler E. Altered Prostasin (CAP1/Prss8) Expression Favors Inflammation and Tissue Remodeling in DSS-induced Colitis. Inflamm Bowel Dis. 2016;22:2824-2839 pubmed
  129. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  130. Fujii N, Matsuo Y, Matsunaga T, Endo S, Sakai H, Yamaguchi M, et al. Hypotonic Stress-induced Down-regulation of Claudin-1 and -2 Mediated by Dephosphorylation and Clathrin-dependent Endocytosis in Renal Tubular Epithelial Cells. J Biol Chem. 2016;291:24787-24799 pubmed
  131. Huang L, Cao W, Deng Y, Zhu G, Han Y, Zeng H. Hypertonic saline alleviates experimentally induced cerebral oedema through suppression of vascular endothelial growth factor and its receptor VEGFR2 expression in astrocytes. BMC Neurosci. 2016;17:64 pubmed
  132. Kilic O, Pamies D, Lavell E, Schiapparelli P, Feng Y, Hartung T, et al. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab Chip. 2016;16:4152-4162 pubmed
  133. Neckel P, Mattheus U, Hirt B, Just L, Mack A. Large-scale tissue clearing (PACT): Technical evaluation and new perspectives in immunofluorescence, histology, and ultrastructure. Sci Rep. 2016;6:34331 pubmed 出版商
  134. Tao L, Zhang J, Meraner P, Tovaglieri A, Wu X, Gerhard R, et al. Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature. 2016;538:350-355 pubmed 出版商
  135. Choi Y, Maki T, Mandeville E, Koh S, Hayakawa K, Arai K, et al. Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat Med. 2016;22:1335-1341 pubmed 出版商
  136. Mulay A, Akram K, Williams D, Armes H, Russell C, Hood D, et al. An in vitro model of murine middle ear epithelium. Dis Model Mech. 2016;9:1405-1417 pubmed
  137. Xiong J, Zhou M, Wang Y, Chen L, Xu W, Wang Y, et al. Protein Kinase D2 Protects against Acute Colitis Induced by Dextran Sulfate Sodium in Mice. Sci Rep. 2016;6:34079 pubmed 出版商
  138. Feng X, Zhang D, Wang Y, Fan R, Hong F, Zhang Y, et al. Dopamine enhances duodenal epithelial permeability via the dopamine D5 receptor in rodent. Acta Physiol (Oxf). 2017;220:113-123 pubmed 出版商
  139. Priya R, Wee K, Budnar S, Gomez G, Yap A, Michael M. Coronin 1B supports RhoA signaling at cell-cell junctions through Myosin II. Cell Cycle. 2016;15:3033-3041 pubmed
  140. Gallego Delgado J, Basu Roy U, Ty M, Alique M, Fernandez Arias C, Movila A, et al. Angiotensin receptors and ?-catenin regulate brain endothelial integrity in malaria. J Clin Invest. 2016;126:4016-4029 pubmed 出版商
  141. Shang V, Kendall D, Roberts R. ?9-Tetrahydrocannabinol reverses TNF?-induced increase in airway epithelial cell permeability through CB2 receptors. Biochem Pharmacol. 2016;120:63-71 pubmed 出版商
  142. Kuan W, Bennett N, He X, Skepper J, Martynyuk N, Wijeyekoon R, et al. ?-Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function. Exp Neurol. 2016;285:72-81 pubmed 出版商
  143. Wang M, Nagle R, Knudsen B, Rogers G, Cress A. A basal cell defect promotes budding of prostatic intraepithelial neoplasia. J Cell Sci. 2017;130:104-110 pubmed 出版商
  144. Coburn L, Lopez H, Caldwell B, Moussa E, Yap C, Priya R, et al. Contact inhibition of locomotion and mechanical cross-talk between cell-cell and cell-substrate adhesion determine the pattern of junctional tension in epithelial cell aggregates. Mol Biol Cell. 2016;27:3436-3448 pubmed
  145. Qian Y, Li C, Jiang A, Ge S, Gu P, Fan X, et al. HIV-1 gp120 Glycoprotein Interacting with Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN) Down-Regulates Tight Junction Proteins to Disrupt the Blood Retinal Barrier and Increase Its Permeability. J Biol Chem. 2016;291:22977-22987 pubmed
  146. Ahn C, Shin D, Lee D, Kang S, Seok J, Kang H, et al. Expression of claudins, occludin, junction adhesion molecule A and zona occludens 1 in canine organs. Mol Med Rep. 2016;14:3697-703 pubmed 出版商
  147. Balusu S, Van Wonterghem E, De Rycke R, Raemdonck K, Stremersch S, Gevaert K, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med. 2016;8:1162-1183 pubmed 出版商
  148. de Sousa Rodrigues M, Bekhbat M, Houser M, Chang J, Walker D, Jones D, et al. Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice. Brain Behav Immun. 2017;59:158-172 pubmed 出版商
  149. Yuki T, Tobiishi M, Kusaka Kikushima A, Ota Y, Tokura Y. Impaired Tight Junctions in Atopic Dermatitis Skin and in a Skin-Equivalent Model Treated with Interleukin-17. PLoS ONE. 2016;11:e0161759 pubmed 出版商
  150. Wegwitz F, Lenfert E, Gerstel D, von Ehrenstein L, Einhoff J, Schmidt G, et al. CEACAM1 controls the EMT switch in murine mammary carcinoma in vitro and in vivo. Oncotarget. 2016;7:63730-63746 pubmed 出版商
  151. Lan A, Blais A, Coelho D, Capron J, Maarouf M, Benamouzig R, et al. Dual effects of a high-protein diet on DSS-treated mice during colitis resolution phase. Am J Physiol Gastrointest Liver Physiol. 2016;311:G624-G633 pubmed 出版商
  152. Li N, Lee W, Cheng C. Overexpression of plastin 3 in Sertoli cells disrupts actin microfilament bundle homeostasis and perturbs the tight junction barrier. Spermatogenesis. 2016;6:e1206353 pubmed 出版商
  153. Wardill H, Bowen J, Van Sebille Y, Secombe K, Coller J, Ball I, et al. TLR4-Dependent Claudin-1 Internalization and Secretagogue-Mediated Chloride Secretion Regulate Irinotecan-Induced Diarrhea. Mol Cancer Ther. 2016;15:2767-2779 pubmed
  154. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  155. Wilkinson E, Sidaway J, Cross M. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability. Biol Open. 2016;5:1362-1370 pubmed 出版商
  156. Chen Z, Wang Q, Asmani M, Li Y, Liu C, Li C, et al. Lung Microtissue Array to Screen the Fibrogenic Potential of Carbon Nanotubes. Sci Rep. 2016;6:31304 pubmed 出版商
  157. Huang L, Stuart C, Takeda K, D Agnillo F, Golding B. Poly(I:C) Induces Human Lung Endothelial Barrier Dysfunction by Disrupting Tight Junction Expression of Claudin-5. PLoS ONE. 2016;11:e0160875 pubmed 出版商
  158. Ronaghan N, Shang J, Iablokov V, Zaheer R, Colarusso P, Dion S, et al. The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction. Am J Physiol Gastrointest Liver Physiol. 2016;311:G466-79 pubmed 出版商
  159. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  160. Soayfane Z, Tercé F, Cantiello M, Robenek H, Nauze M, Bézirard V, et al. Exposure to dietary lipid leads to rapid production of cytosolic lipid droplets near the brush border membrane. Nutr Metab (Lond). 2016;13:48 pubmed 出版商
  161. Bernabé Rubio M, Andrés G, Casares Arias J, Fernández Barrera J, Rangel L, Reglero Real N, et al. Novel role for the midbody in primary ciliogenesis by polarized epithelial cells. J Cell Biol. 2016;214:259-73 pubmed 出版商
  162. Thomsen M, Birkelund S, Burkhart A, Stensballe A, Moos T. Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier. J Neurochem. 2017;140:741-754 pubmed 出版商
  163. Babkair H, Yamazaki M, Uddin M, Maruyama S, Abe T, Essa A, et al. Aberrant expression of the tight junction molecules claudin-1 and zonula occludens-1 mediates cell growth and invasion in oral squamous cell carcinoma. Hum Pathol. 2016;57:51-60 pubmed 出版商
  164. Li N, Mruk D, Chen H, Wong C, Lee W, Cheng C. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43. Sci Rep. 2016;6:29667 pubmed 出版商
  165. Grahammer F, Wigge C, Schell C, Kretz O, Patrakka J, Schneider S, et al. A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes. JCI Insight. 2016;1: pubmed 出版商
  166. Zhang Z, Yan J, Shi H. Role of Hypoxia Inducible Factor 1 in Hyperglycemia-Exacerbated Blood-Brain Barrier Disruption in Ischemic Stroke. Neurobiol Dis. 2016;95:82-92 pubmed 出版商
  167. Pollock L, Gupta N, Chen X, Luna E, McDermott B. Supervillin Is a Component of the Hair Cell's Cuticular Plate and the Head Plates of Organ of Corti Supporting Cells. PLoS ONE. 2016;11:e0158349 pubmed 出版商
  168. Dauleh S, Santeramo I, Fielding C, Ward K, Herrmann A, Murray P, et al. Characterisation of Cultured Mesothelial Cells Derived from the Murine Adult Omentum. PLoS ONE. 2016;11:e0158997 pubmed 出版商
  169. Iwasaki Y, Sugita S, Mandai M, Yonemura S, Onishi A, Ito S, et al. Differentiation/Purification Protocol for Retinal Pigment Epithelium from Mouse Induced Pluripotent Stem Cells as a Research Tool. PLoS ONE. 2016;11:e0158282 pubmed 出版商
  170. He Z, Forest F, Gain P, Rageade D, Bernard A, Acquart S, et al. 3D map of the human corneal endothelial cell. Sci Rep. 2016;6:29047 pubmed 出版商
  171. Gao Y, Lui W, Lee W, Cheng C. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells. Sci Rep. 2016;6:28589 pubmed 出版商
  172. Seo H, Jeong H, Joo H, Choi S, Park C, Kim J, et al. Intrinsic FGF2 and FGF5 promotes angiogenesis of human aortic endothelial cells in 3D microfluidic angiogenesis system. Sci Rep. 2016;6:28832 pubmed 出版商
  173. Velandia Romero M, Calderón Peláez M, Castellanos J. In Vitro Infection with Dengue Virus Induces Changes in the Structure and Function of the Mouse Brain Endothelium. PLoS ONE. 2016;11:e0157786 pubmed 出版商
  174. Campos Y, Qiu X, Gomero E, Wakefield R, Horner L, Brutkowski W, et al. Alix-mediated assembly of the actomyosin-tight junction polarity complex preserves epithelial polarity and epithelial barrier. Nat Commun. 2016;7:11876 pubmed 出版商
  175. Folmsbee S, Wilcox D, Tyberghein K, De Bleser P, Tourtellotte W, van Hengel J, et al. ?T-catenin in restricted brain cell types and its potential connection to autism. J Mol Psychiatry. 2016;4:2 pubmed 出版商
  176. Booth J, Duggan E, Patel V, Langer M, Wu W, Braun A, et al. Bacillus anthracis spore movement does not require a carrier cell and is not affected by lethal toxin in human lung models. Microbes Infect. 2016;18:615-626 pubmed 出版商
  177. Li Q, Sodroski C, Lowey B, Schweitzer C, Cha H, Zhang F, et al. Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition. Proc Natl Acad Sci U S A. 2016;113:7620-5 pubmed 出版商
  178. Du C, Narayanan K, Leong M, Ibrahim M, Chua Y, Khoo V, et al. Functional Kidney Bioengineering with Pluripotent Stem-Cell-Derived Renal Progenitor Cells and Decellularized Kidney Scaffolds. Adv Healthc Mater. 2016;5:2080-91 pubmed 出版商
  179. Priego N, Arechederra M, Sequera C, Bragado P, Vázquez Carballo A, Gutierrez Uzquiza A, et al. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38? activation, while it impairs tumor growth through p38?-independent mechanisms. Oncotarget. 2016;7:45060-45078 pubmed 出版商
  180. Guo Y, Wang L, Li B, Xu H, Yang J, Zheng L, et al. Wnt/?-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget. 2016;7:42513-42526 pubmed 出版商
  181. Fernandez Godino R, Garland D, Pierce E. Isolation, culture and characterization of primary mouse RPE cells. Nat Protoc. 2016;11:1206-18 pubmed 出版商
  182. Wang E, Geng A, Maniar A, Mui B, Gong X. Connexin 50 Regulates Surface Ball-and-Socket Structures and Fiber Cell Organization. Invest Ophthalmol Vis Sci. 2016;57:3039-46 pubmed 出版商
  183. Wang X, Fan F, Cao Q. Modified Pulsatilla decoction attenuates oxazolone-induced colitis in mice through suppression of inflammation and epithelial barrier disruption. Mol Med Rep. 2016;14:1173-9 pubmed 出版商
  184. Lee S, Kim H, Kim K, Lee H, Lee S, Lee D. Arhgap17, a RhoGTPase activating protein, regulates mucosal and epithelial barrier function in the mouse colon. Sci Rep. 2016;6:26923 pubmed 出版商
  185. Bai H, Zhu Q, Surcel A, Luo T, Ren Y, Guan B, et al. Yes-associated protein impacts adherens junction assembly through regulating actin cytoskeleton organization. Am J Physiol Gastrointest Liver Physiol. 2016;311:G396-411 pubmed 出版商
  186. Lehner C, Gehwolf R, Ek J, Korntner S, Bauer H, Bauer H, et al. The blood-tendon barrier: identification and characterisation of a novel tissue barrier in tendon blood vessels. Eur Cell Mater. 2016;31:296-311 pubmed
  187. Hudish L, Galati D, Ravanelli A, Pearson C, Huang P, Appel B. miR-219 regulates neural progenitors by dampening apical Par protein-dependent Hedgehog signaling. Development. 2016;143:2292-304 pubmed 出版商
  188. Santos A, Durkin C, Helaine S, Boucrot E, Holden D. Clustered Intracellular Salmonella enterica Serovar Typhimurium Blocks Host Cell Cytokinesis. Infect Immun. 2016;84:2149-2158 pubmed 出版商
  189. Baker L, BeGora M, Au Yeung F, Feigin M, Rosenberg A, Lowe S, et al. Scribble is required for pregnancy-induced alveologenesis in the adult mammary gland. J Cell Sci. 2016;129:2307-15 pubmed 出版商
  190. Xu S, Xue X, You K, Fu J. Caveolin-1 regulates the expression of tight junction proteins during hyperoxia-induced pulmonary epithelial barrier breakdown. Respir Res. 2016;17:50 pubmed 出版商
  191. Ramesh S, Singh A, Cibi D, Hausenloy D, Singh M. In Vitro Culture of Epicardial Cells From Mouse Embryonic Heart. J Vis Exp. 2016;: pubmed 出版商
  192. Ding H, Xu Y, Gao D, Wang L. Glioma-associated oncogene homolog 1 promotes epithelial-mesenchymal transition in human renal tubular epithelial cell. Am J Transl Res. 2016;8:662-9 pubmed
  193. Teo W, Merino V, Cho S, Korangath P, Liang X, Wu R, et al. HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24. Oncogene. 2016;35:5539-5551 pubmed 出版商
  194. Vorvis C, Hatziapostolou M, Mahurkar Joshi S, Koutsioumpa M, Williams J, Donahue T, et al. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1124-37 pubmed 出版商
  195. Takeo Y, Kurabayashi N, Nguyen M, Sanada K. The G protein-coupled receptor GPR157 regulates neuronal differentiation of radial glial progenitors through the Gq-IP3 pathway. Sci Rep. 2016;6:25180 pubmed 出版商
  196. Ehlen L, Tödtmann J, Specht S, Kallies R, Papies J, Muller M, et al. Epithelial cell lines of the cotton rat (Sigmodon hispidus) are highly susceptible in vitro models to zoonotic Bunya-, Rhabdo-, and Flaviviruses. Virol J. 2016;13:74 pubmed 出版商
  197. Zoschke C, Ulrich M, Sochorová M, Wolff C, Vavrova K, Ma N, et al. The barrier function of organotypic non-melanoma skin cancer models. J Control Release. 2016;233:10-8 pubmed 出版商
  198. Inada M, Izawa G, Kobayashi W, Ozawa M. 293 cells express both epithelial as well as mesenchymal cell adhesion molecules. Int J Mol Med. 2016;37:1521-7 pubmed 出版商
  199. Hintermann E, Bayer M, Ehser J, Aurrand Lions M, Pfeilschifter J, Imhof B, et al. Murine junctional adhesion molecules JAM-B and JAM-C mediate endothelial and stellate cell interactions during hepatic fibrosis. Cell Adh Migr. 2016;10:419-33 pubmed 出版商
  200. Iwai Takekoshi L, Ramos A, Schaler A, Weinreb S, Blazeski R, Mason C. Retinal pigment epithelial integrity is compromised in the developing albino mouse retina. J Comp Neurol. 2016;524:3696-3716 pubmed 出版商
  201. Hosoya M, Fujioka M, Kobayashi R, Okano H, Ogawa K. Overlapping expression of anion exchangers in the cochlea of a non-human primate suggests functional compensation. Neurosci Res. 2016;110:1-10 pubmed 出版商
  202. Waisbourd Zinman O, Koh H, Tsai S, Lavrut P, Dang C, Zhao X, et al. The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology. 2016;64:880-93 pubmed 出版商
  203. Di Lauro S, Rodriguez Crespo D, Gayoso M, Garcia Gutierrez M, Pastor J, Srivastava G, et al. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Mol Vis. 2016;22:243-53 pubmed
  204. Kim D, Glendining K, Grattan D, Jasoni C. Maternal Obesity in the Mouse Compromises the Blood-Brain Barrier in the Arcuate Nucleus of Offspring. Endocrinology. 2016;157:2229-42 pubmed 出版商
  205. Martovetsky G, Bush K, Nigam S. Kidney versus Liver Specification of SLC and ABC Drug Transporters, Tight Junction Molecules, and Biomarkers. Drug Metab Dispos. 2016;44:1050-60 pubmed 出版商
  206. Guerrera D, Shah J, Vasileva E, Sluysmans S, Méan I, Jond L, et al. PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins. J Biol Chem. 2016;291:11016-29 pubmed 出版商
  207. Sepich D, Solnica Krezel L. Intracellular Golgi Complex organization reveals tissue specific polarity during zebrafish embryogenesis. Dev Dyn. 2016;245:678-91 pubmed 出版商
  208. Kwon J, Jeong S, Choi I, Kim N. ADAM10 Is Involved in Cell Junction Assembly in Early Porcine Embryo Development. PLoS ONE. 2016;11:e0152921 pubmed 出版商
  209. Klinkert K, Rocancourt M, Houdusse A, Echard A. Rab35 GTPase couples cell division with initiation of epithelial apico-basal polarity and lumen opening. Nat Commun. 2016;7:11166 pubmed 出版商
  210. Liu Z, Wang S, Liu J, Wang F, Liu Y, Zhao Y. Leukocyte Infiltration Triggers Seizure Recurrence in a Rat Model of Temporal Lobe Epilepsy. Inflammation. 2016;39:1090-8 pubmed 出版商
  211. Liu W, Cai H, Lin M, Zhu L, Gao L, Zhong R, et al. MicroRNA-107 prevents amyloid-beta induced blood-brain barrier disruption and endothelial cell dysfunction by targeting Endophilin-1. Exp Cell Res. 2016;343:248-257 pubmed 出版商
  212. Wardill H, Gibson R, Van Sebille Y, Secombe K, Logan R, Bowen J. A novel in vitro platform for the study of SN38-induced mucosal damage and the development of Toll-like receptor 4-targeted therapeutic options. Exp Biol Med (Maywood). 2016;241:1386-94 pubmed 出版商
  213. Lee N, Fok K, White A, Wilson N, O Leary C, Cox H, et al. Neogenin recruitment of the WAVE regulatory complex maintains adherens junction stability and tension. Nat Commun. 2016;7:11082 pubmed 出版商
  214. Trembley M, Velasquez L, Small E. Epicardial Outgrowth Culture Assay and Ex Vivo Assessment of Epicardial-derived Cell Migration. J Vis Exp. 2016;: pubmed 出版商
  215. Falcão V, Maschio D, de Fontes C, Oliveira R, Santos Silva J, Almeida A, et al. Reduced insulin secretion function is associated with pancreatic islet redistribution of cell adhesion molecules (CAMS) in diabetic mice after prolonged high-fat diet. Histochem Cell Biol. 2016;146:13-31 pubmed 出版商
  216. Yang C, Demars K, Hawkins K, Candelario Jalil E. Adropin reduces paracellular permeability of rat brain endothelial cells exposed to ischemia-like conditions. Peptides. 2016;81:29-37 pubmed 出版商
  217. Nitzan E, Avraham O, Kahane N, Ofek S, Kumar D, Kalcheim C. Dynamics of BMP and Hes1/Hairy1 signaling in the dorsal neural tube underlies the transition from neural crest to definitive roof plate. BMC Biol. 2016;14:23 pubmed 出版商
  218. Wu W, Zeng Y, Li Z, Li Q, Xu H, Yin Z. Features specific to retinal pigment epithelium cells derived from three-dimensional human embryonic stem cell cultures - a new donor for cell therapy. Oncotarget. 2016;7:22819-33 pubmed 出版商
  219. Domínguez Calderón A, Ávila Flores A, Ponce A, López Bayghen E, Calderón Salinas J, Luis Reyes J, et al. ZO-2 silencing induces renal hypertrophy through a cell cycle mechanism and the activation of YAP and the mTOR pathway. Mol Biol Cell. 2016;27:1581-95 pubmed 出版商
  220. Viringipurampeer I, Metcalfe A, Bashar A, Sivak O, Yanai A, Mohammadi Z, et al. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. Hum Mol Genet. 2016;25:1501-16 pubmed 出版商
  221. Bassey Archibong B, Kwiecien J, Milosavljevic S, Hallett R, Rayner L, Erb M, et al. Kaiso depletion attenuates transforming growth factor-? signaling and metastatic activity of triple-negative breast cancer cells. Oncogenesis. 2016;5:e208 pubmed 出版商
  222. Davey C, Mathewson A, Moens C. PCP Signaling between Migrating Neurons and their Planar-Polarized Neuroepithelial Environment Controls Filopodial Dynamics and Directional Migration. PLoS Genet. 2016;12:e1005934 pubmed 出版商
  223. Kuehn A, Kletting S, de Souza Carvalho Wodarz C, Repnik U, Griffiths G, Fischer U, et al. Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier. ALTEX. 2016;33:251-60 pubmed 出版商
  224. Ji X, Liu Y, Hurd R, Wang J, Fitzmaurice B, Nishina P, et al. Retinal Pigment Epithelium Atrophy 1 (rpea1): A New Mouse Model With Retinal Detachment Caused by a Disruption of Protein Kinase C, θ. Invest Ophthalmol Vis Sci. 2016;57:877-88 pubmed 出版商
  225. Djuric I, Siebrasse J, Schulze U, Granado D, Schlüter M, Kubitscheck U, et al. The C-terminal domain controls the mobility of Crumbs 3 isoforms. Biochim Biophys Acta. 2016;1863:1208-17 pubmed 出版商
  226. Schrade A, Kyrönlahti A, Akinrinade O, Pihlajoki M, Fischer S, Rodriguez V, et al. GATA4 Regulates Blood-Testis Barrier Function and Lactate Metabolism in Mouse Sertoli Cells. Endocrinology. 2016;157:2416-31 pubmed 出版商
  227. Escobedo N, Proulx S, Karaman S, Dillard M, Johnson N, Detmar M, et al. Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice. JCI Insight. 2016;1: pubmed
  228. May Simera H. Evaluation of Planar-Cell-Polarity Phenotypes in Ciliopathy Mouse Mutant Cochlea. J Vis Exp. 2016;:53559 pubmed 出版商
  229. Shukla P, Chaudhry K, Mir H, Gangwar R, Yadav N, Manda B, et al. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation. BMC Cancer. 2016;16:189 pubmed 出版商
  230. Ichise H, Ichise T, Yoshida N. Phospholipase Cγ2 Is Required for Luminal Expansion of the Epididymal Duct during Postnatal Development in Mice. PLoS ONE. 2016;11:e0150521 pubmed 出版商
  231. Stabler C, Caires L, Mondrinos M, Marcinkiewicz C, Lazarovici P, Wolfson M, et al. Enhanced Re-Endothelialization of Decellularized Rat Lungs. Tissue Eng Part C Methods. 2016;22:439-50 pubmed 出版商
  232. Gebala V, Collins R, Geudens I, Phng L, Gerhardt H. Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo. Nat Cell Biol. 2016;18:443-50 pubmed 出版商
  233. Hosoya M, Fujioka M, Ogawa K, Okano H. Distinct Expression Patterns Of Causative Genes Responsible For Hereditary Progressive Hearing Loss In Non-Human Primate Cochlea. Sci Rep. 2016;6:22250 pubmed 出版商
  234. Kai T, Tsukamoto Y, Hijiya N, Tokunaga A, Nakada C, Uchida T, et al. Kidney-specific knockout of Sav1 in the mouse promotes hyperproliferation of renal tubular epithelium through suppression of the Hippo pathway. J Pathol. 2016;239:97-108 pubmed 出版商
  235. McCabe M, Tarulli G, Laven Law G, Matthiesson K, Meachem S, McLachlan R, et al. Gonadotropin suppression in men leads to a reduction in claudin-11 at the Sertoli cell tight junction. Hum Reprod. 2016;31:875-86 pubmed 出版商
  236. Dora K, Stanley C, Al Jaaly E, Fiorentino F, Ascione R, Reeves B, et al. Isolated Human Pulmonary Artery Structure and Function Pre- and Post-Cardiopulmonary Bypass Surgery. J Am Heart Assoc. 2016;5: pubmed 出版商
  237. Skardal A, Devarasetty M, Forsythe S, Atala A, Soker S. A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnol Bioeng. 2016;113:2020-32 pubmed 出版商
  238. Fang Z, He Q, Li Q, Chen X, Baral S, Jin H, et al. MicroRNA-150 regulates blood-brain barrier permeability via Tie-2 after permanent middle cerebral artery occlusion in rats. FASEB J. 2016;30:2097-107 pubmed 出版商
  239. Ibrahim A, Mander S, Hussein K, Elsherbiny N, Smith S, Al Shabrawey M, et al. Hyperhomocysteinemia disrupts retinal pigment epithelial structure and function with features of age-related macular degeneration. Oncotarget. 2016;7:8532-45 pubmed 出版商
  240. Chojnacka K, Bilinska B, Mruk D. Interleukin 1alpha-induced disruption of the Sertoli cell cytoskeleton affects gap junctional communication. Cell Signal. 2016;28:469-480 pubmed 出版商
  241. Sreekanthreddy P, Gromnicova R, Davies H, Phillips J, Romero I, Male D. A three-dimensional model of the human blood-brain barrier to analyse the transport of nanoparticles and astrocyte/endothelial interactions. F1000Res. 2015;4:1279 pubmed 出版商
  242. Cai J, Liu W, Hao J, Chen M, Li G. Increased expression of dermatopontin and its implications for testicular dysfunction in mice. Mol Med Rep. 2016;13:2431-8 pubmed 出版商
  243. Raredon M, Ghaedi M, Calle E, Niklason L. A Rotating Bioreactor for Scalable Culture and Differentiation of Respiratory Epithelium. Cell Med. 2015;7:109-21 pubmed 出版商
  244. Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS. 2016;13:2 pubmed 出版商
  245. Li H, Ruberu K, Karl T, Garner B. Cerebral Apolipoprotein-D Is Hypoglycosylated Compared to Peripheral Tissues and Is Variably Expressed in Mouse and Human Brain Regions. PLoS ONE. 2016;11:e0148238 pubmed 出版商
  246. Wiltshire R, Nelson V, Kho D, Angel C, O Carroll S, Graham E. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors. Sci Rep. 2016;6:19814 pubmed 出版商
  247. Gaide Chevronnay H, Janssens V, Van Der Smissen P, Rocca C, Liao X, Refetoff S, et al. Hematopoietic Stem Cells Transplantation Can Normalize Thyroid Function in a Cystinosis Mouse Model. Endocrinology. 2016;157:1363-71 pubmed 出版商
  248. Grego Bessa J, Bloomekatz J, Castel P, Omelchenko T, Baselga J, Anderson K. The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium. elife. 2016;5:e12034 pubmed 出版商
  249. Shang V, O Sullivan S, Kendall D, Roberts R. The endogenous cannabinoid anandamide increases human airway epithelial cell permeability through an arachidonic acid metabolite. Pharmacol Res. 2016;105:152-63 pubmed 出版商
  250. Salomon J, Spahn S, Wang X, Füllekrug J, Bertrand C, Mall M. Generation and functional characterization of epithelial cells with stable expression of SLC26A9 Cl- channels. Am J Physiol Lung Cell Mol Physiol. 2016;310:L593-602 pubmed 出版商
  251. Forest F, Thuret G, Gain P, Dumollard J, Peoc h M, Perrache C, et al. Optimization of immunostaining on flat-mounted human corneas. Mol Vis. 2015;21:1345-56 pubmed
  252. Tien S, Lee H, Yang Y, Lin M, Chen Y, Chang Z. The Shp2-induced epithelial disorganization defect is reversed by HDAC6 inhibition independent of Cdc42. Nat Commun. 2016;7:10420 pubmed 出版商
  253. Loebel D, Plageman T, Tang T, Jones V, Muccioli M, Tam P. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction. Biol Open. 2016;5:130-9 pubmed 出版商
  254. Bertoldo M, Guibert E, Faure M, Guillou F, Ramé C, Nadal Desbarats L, et al. Specific deletion of AMP-activated protein kinase (α1AMPK) in mouse Sertoli cells modifies germ cell quality. Mol Cell Endocrinol. 2016;423:96-112 pubmed 出版商
  255. Liu Y, Su X, Hao J, Chen M, Liu W, Liao X, et al. Overexpression of PRL7D1 in Leydig Cells Causes Male Reproductive Dysfunction in Mice. Int J Mol Sci. 2016;17: pubmed 出版商
  256. Kitayama M, Mizutani K, Maruoka M, Mandai K, Sakakibara S, Ueda Y, et al. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development. J Biol Chem. 2016;291:5817-31 pubmed 出版商
  257. Yang S, Krug S, Heitmann J, Hu L, Reinhold A, Sauer S, et al. Analgesic drug delivery via recombinant tissue plasminogen activator and microRNA-183-triggered opening of the blood-nerve barrier. Biomaterials. 2016;82:20-33 pubmed 出版商
  258. Egan C, Sodhi C, Good M, Lin J, Jia H, Yamaguchi Y, et al. Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis. J Clin Invest. 2016;126:495-508 pubmed
  259. Gonçalves S, Rodrigues I, Padrão J, Silva J, Sencadas V, Lanceros Méndez S, et al. Acetylated bacterial cellulose coated with urinary bladder matrix as a substrate for retinal pigment epithelium. Colloids Surf B Biointerfaces. 2016;139:1-9 pubmed 出版商
  260. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  261. Li N, Mruk D, Mok K, Li M, Wong C, Lee W, et al. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption. FASEB J. 2016;30:1436-52 pubmed 出版商
  262. Smith K, Zhou B, Avdulov S, Benyumov A, Peterson M, Liu Y, et al. Transforming Growth Factor-β1 Induced Epithelial Mesenchymal Transition is blocked by a chemical antagonist of translation factor eIF4E. Sci Rep. 2015;5:18233 pubmed 出版商
  263. Shi Y, Liu T, Fu J, Xu W, Wu L, Hou A, et al. Vitamin D/VDR signaling attenuates lipopolysaccharide‑induced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier. Mol Med Rep. 2016;13:1186-94 pubmed 出版商
  264. Pak J, Lee E, CRAFT C. The retinal phenotype of Grk1-/- is compromised by a Crb1 rd8 mutation. Mol Vis. 2015;21:1281-94 pubmed
  265. Kim H, Cronin M, Ahrens K, Papastavros V, Santoro D, Marsella R. A comparative study of epidermal tight junction proteins in a dog model of atopic dermatitis. Vet Dermatol. 2016;27:40-e11 pubmed 出版商
  266. Stefanitsch C, Lawrence A, Olverling A, Nilsson I, Fredriksson L. tPA Deficiency in Mice Leads to Rearrangement in the Cerebrovascular Tree and Cerebroventricular Malformations. Front Cell Neurosci. 2015;9:456 pubmed 出版商
  267. Frankowski J, Demars K, Ahmad A, Hawkins K, Yang C, Leclerc J, et al. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep. 2015;5:17956 pubmed 出版商
  268. Heuser S, Hufbauer M, Marx B, Tok A, Majewski S, Pfister H, et al. The levels of epithelial anchor proteins β-catenin and zona occludens-1 are altered by E7 of human papillomaviruses 5 and 8. J Gen Virol. 2016;97:463-72 pubmed 出版商
  269. Heller J, Kwok J, Vecino E, Martin K, Fawcett J. A Method for the Isolation and Culture of Adult Rat Retinal Pigment Epithelial (RPE) Cells to Study Retinal Diseases. Front Cell Neurosci. 2015;9:449 pubmed 出版商
  270. Yoshie S, Imaizumi M, Nakamura R, Otsuki K, Ikeda M, Nomoto Y, et al. Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells. Cell Tissue Res. 2016;364:319-30 pubmed 出版商
  271. Bergen A, Kaing S, ten Brink J, Gorgels T, Janssen S. Gene expression and functional annotation of human choroid plexus epithelium failure in Alzheimer's disease. BMC Genomics. 2015;16:956 pubmed 出版商
  272. Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho Maschler S. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics. 2015;16:944 pubmed 出版商
  273. Dixon D, Coates J, Del Carpio Pons A, Horabin J, Walker A, Abdul N, et al. A potential mode of action for Anakinra in patients with arthrofibrosis following total knee arthroplasty. Sci Rep. 2015;5:16466 pubmed 出版商
  274. Koudelkova P, Weber G, Mikulits W. Liver Sinusoidal Endothelial Cells Escape Senescence by Loss of p19ARF. PLoS ONE. 2015;10:e0142134 pubmed 出版商
  275. Stebbins M, Wilson H, Canfield S, Qian T, Palecek S, Shusta E. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods. 2016;101:93-102 pubmed 出版商
  276. Rohnalter V, Roth K, Finkernagel F, Adhikary T, Obert J, Dorzweiler K, et al. A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype. Oncotarget. 2015;6:40005-25 pubmed 出版商
  277. Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med. 2015;21:1364-71 pubmed 出版商
  278. Freedman B, Brooks C, Lam A, Fu H, Morizane R, Agrawal V, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;6:8715 pubmed 出版商
  279. Bizet A, Becker Heck A, Ryan R, Weber K, Filhol E, Krug P, et al. Mutations in TRAF3IP1/IFT54 reveal a new role for IFT proteins in microtubule stabilization. Nat Commun. 2015;6:8666 pubmed 出版商
  280. Fujimura K, Choi S, Wyse M, Strnadel J, Wright T, Klemke R. Eukaryotic Translation Initiation Factor 5A (EIF5A) Regulates Pancreatic Cancer Metastasis by Modulating RhoA and Rho-associated Kinase (ROCK) Protein Expression Levels. J Biol Chem. 2015;290:29907-19 pubmed 出版商
  281. Abu Siniyeh A, Owen D, Benzing C, Rinkwitz S, Becker T, Majumdar A, et al. The aPKC/Par3/Par6 Polarity Complex and Membrane Order Are Functionally Interdependent in Epithelia During Vertebrate Organogenesis. Traffic. 2016;17:66-79 pubmed 出版商
  282. Arya P, Rainey M, Bhattacharyya S, Mohapatra B, George M, Kuracha M, et al. The endocytic recycling regulatory protein EHD1 Is required for ocular lens development. Dev Biol. 2015;408:41-55 pubmed 出版商
  283. Martínez Revollar G, Garay E, Martín Tapia D, Nava P, Huerta M, Lopez Bayghen E, et al. Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways. Exp Cell Res. 2015;339:67-80 pubmed 出版商
  284. Shadforth A, Suzuki S, Theodoropoulos C, Richardson N, Chirila T, Harkin D. A Bruch's membrane substitute fabricated from silk fibroin supports the function of retinal pigment epithelial cells in vitro. J Tissue Eng Regen Med. 2017;11:1915-1924 pubmed 出版商
  285. Wardill H, Logan R, Bowen J, Van Sebille Y, Gibson R. Tight junction defects are seen in the buccal mucosa of patients receiving standard dose chemotherapy for cancer. Support Care Cancer. 2016;24:1779-88 pubmed 出版商
  286. Barrows D, Schoenfeld S, Hodakoski C, Silkov A, Honig B, Couvillon A, et al. p21-activated Kinases (PAKs) Mediate the Phosphorylation of PREX2 Protein to Initiate Feedback Inhibition of Rac1 GTPase. J Biol Chem. 2015;290:28915-31 pubmed 出版商
  287. Straccia M, Garcia Díaz Barriga G, Sanders P, Bombau G, Carrere J, Mairal P, et al. Quantitative high-throughput gene expression profiling of human striatal development to screen stem cell-derived medium spiny neurons. Mol Ther Methods Clin Dev. 2015;2:15030 pubmed 出版商
  288. Bruurs L, Donker L, Zwakenberg S, Zwartkruis F, Begthel H, Knisely A, et al. ATP8B1-mediated spatial organization of Cdc42 signaling maintains singularity during enterocyte polarization. J Cell Biol. 2015;210:1055-63 pubmed 出版商
  289. Nagaoka K, Fujii K, Zhang H, Usuda K, Watanabe G, Ivshina M, et al. CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis. Oncogene. 2016;35:2893-901 pubmed 出版商
  290. Dang Y, Wu W, Xu Y, Mu Y, Xu K, Wu H, et al. Effects of low-level laser irradiation on proliferation and functional protein expression in human RPE cells. Lasers Med Sci. 2015;30:2295-302 pubmed 出版商
  291. Liu R, Yang Y, Shen J, Chen H, Zhang Q, Ba R, et al. Fstl1 is involved in the regulation of radial glial scaffold development. Mol Brain. 2015;8:53 pubmed 出版商
  292. Valere K, Rapista A, Eugenin E, Lu W, Chang T. Human Alpha-Defensin HNP1 Increases HIV Traversal of the Epithelial Barrier: A Potential Role in STI-Mediated Enhancement of HIV Transmission. Viral Immunol. 2015;28:609-15 pubmed 出版商
  293. Pearson H, McGlinn E, Phesse T, Schlüter H, Srikumar A, Gödde N, et al. The polarity protein Scrib mediates epidermal development and exerts a tumor suppressive function during skin carcinogenesis. Mol Cancer. 2015;14:169 pubmed 出版商
  294. Priya R, Gomez G, Budnar S, Verma S, Cox H, Hamilton N, et al. Feedback regulation through myosin II confers robustness on RhoA signalling at E-cadherin junctions. Nat Cell Biol. 2015;17:1282-93 pubmed 出版商
  295. Zhao Y, Zhao L, Wang P, Miao Y, Liu Y, Wang Z, et al. Overexpression of miR-18a negatively regulates myocyte enhancer factor 2D to increase the permeability of the blood-tumor barrier via Krüppel-like factor 4-mediated downregulation of zonula occluden-1, claudin-5, and occludin. J Neurosci Res. 2015;93:1891-902 pubmed 出版商
  296. Thuringer D, Berthenet K, Cronier L, Solary E, Garrido C. Primary tumor- and metastasis-derived colon cancer cells differently modulate connexin expression and function in human capillary endothelial cells. Oncotarget. 2015;6:28800-15 pubmed 出版商
  297. Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif A, Spinrad A, et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer's disease pathology. Nat Commun. 2015;6:7967 pubmed 出版商
  298. Shirato K, Ujike M, Kawase M, Matsuyama S. Identification of CCL2, RARRES2 and EFNB2 as host cell factors that influence the multistep replication of respiratory syncytial virus. Virus Res. 2015;210:213-26 pubmed 出版商
  299. Li C, Shyu M, Jhan C, Cheng Y, Tsai C, Liu C, et al. Gold Nanoparticles Increase Endothelial Paracellular Permeability by Altering Components of Endothelial Tight Junctions, and Increase Blood-Brain Barrier Permeability in Mice. Toxicol Sci. 2015;148:192-203 pubmed 出版商
  300. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed 出版商
  301. Smith N, Hinley J, Varley C, Eardley I, Trejdosiewicz L, Southgate J. The human urothelial tight junction: claudin 3 and the ZO-1α+ switch. Bladder (San Franc). 2015;2:e9 pubmed
  302. Archibald A, Al Masri M, Liew Spilger A, McCaffrey L. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell. 2015;26:3578-95 pubmed 出版商
  303. Liu W, Zhong Z, Cao L, Li H, Zhang T, Lin W. Paclitaxel-induced lung injury and its amelioration by parecoxib sodium. Sci Rep. 2015;5:12977 pubmed 出版商
  304. Thomsen L, Burkhart A, Moos T. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes. PLoS ONE. 2015;10:e0134765 pubmed 出版商
  305. Kim J, Ko A, Hyun H, Kang T. ETB receptor-mediated MMP-9 activation induces vasogenic edema via ZO-1 protein degradation following status epilepticus. Neuroscience. 2015;304:355-67 pubmed 出版商
  306. de Vallière C, Vidal S, Clay I, Jurisic G, Tcymbarevich I, Lang S, et al. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment. Am J Physiol Gastrointest Liver Physiol. 2015;309:G475-90 pubmed 出版商
  307. Meadows S, Cleaver O. Annexin A3 Regulates Early Blood Vessel Formation. PLoS ONE. 2015;10:e0132580 pubmed 出版商
  308. Kontro H, Cannino G, Rustin P, Dufour E, Kainulainen H. DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells. PLoS ONE. 2015;10:e0131990 pubmed 出版商
  309. Sahu S, Garding A, Tiwari N, Thakurela S, Toedling J, Gebhard S, et al. JNK-dependent gene regulatory circuitry governs mesenchymal fate. EMBO J. 2015;34:2162-81 pubmed 出版商
  310. O Carroll S, Kho D, Wiltshire R, Nelson V, Rotimi O, Johnson R, et al. Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. J Neuroinflammation. 2015;12:131 pubmed 出版商
  311. Maggiorani D, Dissard R, Belloy M, Saulnier Blache J, Casemayou A, Ducassé L, et al. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells. PLoS ONE. 2015;10:e0131416 pubmed 出版商
  312. Atsuta Y, Takahashi Y. FGF8 coordinates tissue elongation and cell epithelialization during early kidney tubulogenesis. Development. 2015;142:2329-37 pubmed 出版商
  313. O Shaughnessy Kirwan A, Signolet J, Costello I, Gharbi S, Hendrich B. Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development. 2015;142:2586-97 pubmed 出版商
  314. Sugiyama Y, Shelley E, Badouel C, McNeill H, McAvoy J. Atypical Cadherin Fat1 Is Required for Lens Epithelial Cell Polarity and Proliferation but Not for Fiber Differentiation. Invest Ophthalmol Vis Sci. 2015;56:4099-107 pubmed 出版商
  315. Preuße K, Tveriakhina L, Schuster Gossler K, Gaspar C, Rosa A, Henrique D, et al. Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo. PLoS Genet. 2015;11:e1005328 pubmed 出版商
  316. Goichon A, Bertrand J, Chan P, Lecleire S, Coquard A, Cailleux A, et al. Enteral delivery of proteins enhances the expression of proteins involved in the cytoskeleton and protein biosynthesis in human duodenal mucosa. Am J Clin Nutr. 2015;102:359-67 pubmed 出版商
  317. Liu K, Chuang S, Long C, Lee Y, Wang C, Lu M, et al. Ketamine-induced ulcerative cystitis and bladder apoptosis involve oxidative stress mediated by mitochondria and the endoplasmic reticulum. Am J Physiol Renal Physiol. 2015;309:F318-31 pubmed 出版商
  318. Krivega M, Essahib W, Van de Velde H. WNT3 and membrane-associated β-catenin regulate trophectoderm lineage differentiation in human blastocysts. Mol Hum Reprod. 2015;21:711-22 pubmed 出版商
  319. Chang C, Lin C, Lu C, Martel J, Ko Y, Ojcius D, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun. 2015;6:7489 pubmed 出版商
  320. Ek C, D Angelo B, Lehner C, Nathanielsz P, Li C, Mallard C. Expression of tight junction proteins and transporters for xenobiotic metabolism at the blood-CSF barrier during development in the nonhuman primate (P. hamadryas). Reprod Toxicol. 2015;56:32-44 pubmed 出版商
  321. Cai H, Xue Y, Wang P, Wang Z, Li Z, Hu Y, et al. The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144. Oncotarget. 2015;6:19759-79 pubmed
  322. Kasper J, Hermanns M, Unger R, Kirkpatrick C. A responsive human triple-culture model of the air-blood barrier: incorporation of different macrophage phenotypes. J Tissue Eng Regen Med. 2017;11:1285-1297 pubmed 出版商
  323. Schell C, Kretz O, Bregenzer A, Rogg M, Helmstädter M, Lisewski U, et al. Podocyte-Specific Deletion of Murine CXADR Does Not Impair Podocyte Development, Function or Stress Response. PLoS ONE. 2015;10:e0129424 pubmed 出版商
  324. Rode K, Sieme H, Richterich P, Brehm R. Characterization of the equine blood-testis barrier during tubular development in normal and cryptorchid stallions. Theriogenology. 2015;84:763-72 pubmed 出版商
  325. Vainio I, Abu Khamidakh A, Paci M, Skottman H, Juuti Uusitalo K, Hyttinen J, et al. Computational Model of Ca2+ Wave Propagation in Human Retinal Pigment Epithelial ARPE-19 Cells. PLoS ONE. 2015;10:e0128434 pubmed 出版商
  326. Morita S, Furube E, Mannari T, Okuda H, Tatsumi K, Wanaka A, et al. Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain. Cell Tissue Res. 2016;363:497-511 pubmed 出版商
  327. Li N, Mruk D, Wong C, Lee W, Han D, Cheng C. Actin-bundling protein plastin 3 is a regulator of ectoplasmic specialization dynamics during spermatogenesis in the rat testis. FASEB J. 2015;29:3788-805 pubmed 出版商
  328. Hyun Jo D, Lee R, Hyoung Kim J, Oh Jun H, Geol Lee T, Hun Kim J. Real-time estimation of paracellular permeability of cerebral endothelial cells by capacitance sensor array. Sci Rep. 2015;5:11014 pubmed 出版商
  329. Coulson Thomas V, Chang S, Yeh L, Coulson Thomas Y, Yamaguchi Y, Esko J, et al. Loss of corneal epithelial heparan sulfate leads to corneal degeneration and impaired wound healing. Invest Ophthalmol Vis Sci. 2015;56:3004-14 pubmed 出版商
  330. Suárez Causado A, Caballero Díaz D, Bertrán E, Roncero C, Addante A, García Álvaro M, et al. HGF/c-Met signaling promotes liver progenitor cell migration and invasion by an epithelial-mesenchymal transition-independent, phosphatidyl inositol-3 kinase-dependent pathway in an in vitro model. Biochim Biophys Acta. 2015;1853:2453-63 pubmed 出版商
  331. Son Y, Heo K, Bae M, Lee C, Cho W, Kim S, et al. Injury to the blood-testis barrier after low-dose-rate chronic radiation exposure in mice. Radiat Prot Dosimetry. 2015;167:316-20 pubmed 出版商
  332. Cong X, Zhang Y, Li J, Mei M, Ding C, Xiang R, et al. Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells. J Cell Sci. 2015;128:2271-86 pubmed 出版商
  333. Breznau E, Semack A, Higashi T, Miller A. MgcRacGAP restricts active RhoA at the cytokinetic furrow and both RhoA and Rac1 at cell-cell junctions in epithelial cells. Mol Biol Cell. 2015;26:2439-55 pubmed 出版商
  334. Ghatak S, Chan Y, Khanna S, Banerjee J, Weist J, Roy S, et al. Barrier Function of the Repaired Skin Is Disrupted Following Arrest of Dicer in Keratinocytes. Mol Ther. 2015;23:1201-1210 pubmed 出版商
  335. Giribaldi M, Muñoz A, Halvorsen K, Patel A, Rai P. MTH1 expression is required for effective transformation by oncogenic HRAS. Oncotarget. 2015;6:11519-29 pubmed
  336. Overgaard C, Schlingmann B, Dorsainvil White S, Ward C, Fan X, Swarnakar S, et al. The relative balance of GM-CSF and TGF-β1 regulates lung epithelial barrier function. Am J Physiol Lung Cell Mol Physiol. 2015;308:L1212-23 pubmed 出版商
  337. Karbalaie K, Tanhaei S, Rabiei F, Kiani Esfahani A, Masoudi N, Nasr Esfahani M, et al. Stem cells from human exfoliated deciduous tooth exhibit stromal-derived inducing activity and lead to generation of neural crest cells from human embryonic stem cells. Cell J. 2015;17:37-48 pubmed
  338. Wu S, Yi J, Zhang Y, Zhou J, Sun J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep. 2015;3: pubmed 出版商
  339. Ward C, Schlingmann B, Stecenko A, Guidot D, Koval M. NF-κB inhibitors impair lung epithelial tight junctions in the absence of inflammation. Tissue Barriers. 2015;3:e982424 pubmed 出版商
  340. Charest J, Okamoto T, Kitano K, Yasuda A, Gilpin S, Mathisen D, et al. Design and validation of a clinical-scale bioreactor for long-term isolated lung culture. Biomaterials. 2015;52:79-87 pubmed 出版商
  341. Zhang J, Chen S, Hou Z, Cai J, Dong M, Shi X. Lipopolysaccharide-induced middle ear inflammation disrupts the cochlear intra-strial fluid-blood barrier through down-regulation of tight junction proteins. PLoS ONE. 2015;10:e0122572 pubmed 出版商
  342. Bazellières E, Conte V, Elosegui Artola A, Serra Picamal X, Bintanel Morcillo M, Roca Cusachs P, et al. Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat Cell Biol. 2015;17:409-20 pubmed 出版商
  343. Muramatsu R, Kuroda M, Matoba K, Lin H, Takahashi C, Koyama Y, et al. Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system. J Biol Chem. 2015;290:11515-25 pubmed 出版商
  344. Melo E, Kasper J, Unger R, Farré R, Kirkpatrick C. Development of a Bronchial Wall Model: Triple Culture on a Decellularized Porcine Trachea. Tissue Eng Part C Methods. 2015;21:909-21 pubmed 出版商
  345. Skardal A, Devarasetty M, Rodman C, Atala A, Soker S. Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro. Ann Biomed Eng. 2015;43:2361-73 pubmed 出版商
  346. Lee J, Choi H, Na W, Ju B, Yune T. 17β-estradiol inhibits MMP-9 and SUR1/TrpM4 expression and activation and thereby attenuates BSCB disruption/hemorrhage after spinal cord injury in male rats. Endocrinology. 2015;156:1838-50 pubmed 出版商
  347. Kageyama T, Hayashi R, Hara S, Yoshikawa K, Ishikawa Y, Yamato M, et al. Spontaneous acquisition of infinite proliferative capacity by a rabbit corneal endothelial cell line with maintenance of phenotypic and physiological characteristics. J Tissue Eng Regen Med. 2017;11:1057-1064 pubmed 出版商
  348. Hue C, Cho F, Cao S, Dale Bass C, Meaney D, Morrison B. Dexamethasone potentiates in vitro blood-brain barrier recovery after primary blast injury by glucocorticoid receptor-mediated upregulation of ZO-1 tight junction protein. J Cereb Blood Flow Metab. 2015;35:1191-8 pubmed 出版商
  349. Sohet F, Lin C, Munji R, Lee S, Ruderisch N, Soung A, et al. LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation. J Cell Biol. 2015;208:703-11 pubmed 出版商
  350. Grego Bessa J, Hildebrand J, Anderson K. Morphogenesis of the mouse neural plate depends on distinct roles of cofilin 1 in apical and basal epithelial domains. Development. 2015;142:1305-14 pubmed 出版商
  351. Islam S, Mokhtari R, Noman A, Uddin M, Rahman M, Azadi M, et al. Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer. Mol Carcinog. 2016;55:537-51 pubmed 出版商
  352. Walker M, Evock Clover C, Elsasser T, Connor E. Short communication: Glucagon-like peptide-2 and coccidiosis alter tight junction gene expression in the gastrointestinal tract of dairy calves. J Dairy Sci. 2015;98:3432-7 pubmed 出版商
  353. ErLin S, WenJie W, LiNing W, BingXin L, MingDe L, Yan S, et al. Musashi-1 maintains blood-testis barrier structure during spermatogenesis and regulates stress granule formation upon heat stress. Mol Biol Cell. 2015;26:1947-56 pubmed 出版商
  354. Wu J, Peng D, Zhang Y, Lu Z, Voehler M, Sanders C, et al. Biophysical characterization of interactions between the C-termini of peripheral nerve claudins and the PDZ₁ domain of zonula occludens. Biochem Biophys Res Commun. 2015;459:87-93 pubmed 出版商
  355. Licht T, Dor Wollman T, Ben Zvi A, Rothe G, Keshet E. Vessel maturation schedule determines vulnerability to neuronal injuries of prematurity. J Clin Invest. 2015;125:1319-28 pubmed 出版商
  356. Benoit B, Laugerette F, Plaisancié P, Géloën A, Bodennec J, Estienne M, et al. Increasing fat content from 20 to 45 wt% in a complex diet induces lower endotoxemia in parallel with an increased number of intestinal goblet cells in mice. Nutr Res. 2015;35:346-56 pubmed 出版商
  357. Narita K, Sasamoto S, Koizumi S, Okazaki S, Nakamura H, Inoue T, et al. TRPV4 regulates the integrity of the blood-cerebrospinal fluid barrier and modulates transepithelial protein transport. FASEB J. 2015;29:2247-59 pubmed 出版商
  358. Momeny M, Saunus J, Marturana F, McCart Reed A, Black D, Sala G, et al. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget. 2015;6:3932-46 pubmed
  359. Wong A, Chin S, Xia S, Garner J, Bear C, Rossant J. Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells. Nat Protoc. 2015;10:363-81 pubmed 出版商
  360. Ohlemacher S, Iglesias C, Sridhar A, Gamm D, Meyer J. Generation of highly enriched populations of optic vesicle-like retinal cells from human pluripotent stem cells. Curr Protoc Stem Cell Biol. 2015;32:1H.8.1-20 pubmed 出版商
  361. Hauser P, Vangordon S, Seavey J, Sofinowski T, Ramadan M, Abdullah S, et al. Abnormalities in Expression of Structural, Barrier and Differentiation Related Proteins, and Chondroitin Sulfate in Feline and Human Interstitial Cystitis. J Urol. 2015;194:571-7 pubmed 出版商
  362. Ek C, D Angelo B, Baburamani A, Lehner C, Leverin A, Smith P, et al. Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia. J Cereb Blood Flow Metab. 2015;35:818-27 pubmed 出版商
  363. Peng H, Li C, Kadow S, Henry B, Steinmann J, Becker K, et al. Acid sphingomyelinase inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis. J Mol Med (Berl). 2015;93:675-89 pubmed 出版商
  364. Ilina P, Partti S, Niklander J, Ruponen M, Lou Y, Yliperttula M. Effect of differentiation on endocytic profiles of endothelial and epithelial cell culture models. Exp Cell Res. 2015;332:89-101 pubmed 出版商
  365. Boatright J, Dalal N, Chrenek M, Gardner C, Ziesel A, Jiang Y, et al. Methodologies for analysis of patterning in the mouse RPE sheet. Mol Vis. 2015;21:40-60 pubmed
  366. Rother J, Büchsenschütz Göbeler M, Nöding H, Steltenkamp S, Samwer K, Janshoff A. Cytoskeleton remodelling of confluent epithelial cells cultured on porous substrates. J R Soc Interface. 2015;12: pubmed 出版商
  367. Suzuki T, Kono T, Bochimoto H, Hira Y, Watanabe T, Furukawa H. An injured tissue affects the opposite intact peritoneum during postoperative adhesion formation. Sci Rep. 2015;5:7668 pubmed 出版商
  368. Lee S, Kwon J, Choi I, Kim N. Expression and function of transcription factor AP-2? in early embryonic development of porcine parthenotes. Reprod Fertil Dev. 2015;: pubmed 出版商
  369. López Escobar B, Cano D, Rojas A, De Felipe B, Palma F, Sánchez Alcázar J, et al. The effect of maternal diabetes on the Wnt-PCP pathway during embryogenesis as reflected in the developing mouse eye. Dis Model Mech. 2015;8:157-68 pubmed 出版商
  370. Watari A, Hashegawa M, Yagi K, Kondoh M. Homoharringtonine increases intestinal epithelial permeability by modulating specific claudin isoforms in Caco-2 cell monolayers. Eur J Pharm Biopharm. 2015;89:232-8 pubmed 出版商
  371. Park D, Cerrone M, Morley G, Vasquez C, Fowler S, Liu N, et al. Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias. J Clin Invest. 2015;125:403-12 pubmed 出版商
  372. Nacer A, Movila A, Sohet F, Girgis N, Gundra U, Loke P, et al. Experimental cerebral malaria pathogenesis--hemodynamics at the blood brain barrier. PLoS Pathog. 2014;10:e1004528 pubmed 出版商
  373. Cai H, Liu W, Xue Y, Shang X, Liu J, Li Z, et al. Roundabout 4 regulates blood-tumor barrier permeability through the modulation of ZO-1, Occludin, and Claudin-5 expression. J Neuropathol Exp Neurol. 2015;74:25-37 pubmed 出版商
  374. Tang E, Mok K, Lee W, Cheng C. EB1 regulates tubulin and actin cytoskeletal networks at the sertoli cell blood-testis barrier in male rats: an in vitro study. Endocrinology. 2015;156:680-93 pubmed 出版商
  375. Kapodistria K, Tsilibary E, Politis P, Moustardas P, Charonis A, Kitsiou P. Nephrin, a transmembrane protein, is involved in pancreatic beta-cell survival signaling. Mol Cell Endocrinol. 2015;400:112-28 pubmed 出版商
  376. Raiko L, Leinonen P, Hägg P, Peltonen J, Oikarinen A, Peltonen S. Tight junctions in Hailey-Hailey and Darier's diseases. Dermatol Reports. 2009;1:e1 pubmed 出版商
  377. Chang K, Zollinger D, Susuki K, Sherman D, Makara M, Brophy P, et al. Glial ankyrins facilitate paranodal axoglial junction assembly. Nat Neurosci. 2014;17:1673-81 pubmed 出版商
  378. Mooren O, Li J, Nawas J, Cooper J. Endothelial cells use dynamic actin to facilitate lymphocyte transendothelial migration and maintain the monolayer barrier. Mol Biol Cell. 2014;25:4115-29 pubmed 出版商
  379. Kim K, Ossipova O, Sokol S. Neural crest specification by inhibition of the ROCK/Myosin II pathway. Stem Cells. 2015;33:674-85 pubmed 出版商
  380. Griner N, Young D, Chaudhary P, Mohamed A, Huang W, Chen Y, et al. ERG oncoprotein inhibits ANXA2 expression and function in prostate cancer. Mol Cancer Res. 2015;13:368-79 pubmed 出版商
  381. Gegg M, Böttcher A, Burtscher I, Hasenoeder S, Van Campenhout C, Aichler M, et al. Flattop regulates basal body docking and positioning in mono- and multiciliated cells. elife. 2014;3: pubmed 出版商
  382. Casselbrant A, Elias E, Fändriks L, Wallenius V. Expression of tight-junction proteins in human proximal small intestinal mucosa before and after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis. 2015;11:45-53 pubmed 出版商
  383. Landy J, Al Hassi H, Ronde E, English N, Mann E, Bernardo D, et al. Innate immune factors in the development and maintenance of pouchitis. Inflamm Bowel Dis. 2014;20:1942-9 pubmed 出版商
  384. Visconti B, Paolino G, Carotti S, Pendolino A, Morini S, Richetta A, et al. Immunohistochemical expression of VDR is associated with reduced integrity of tight junction complex in psoriatic skin. J Eur Acad Dermatol Venereol. 2015;29:2038-42 pubmed 出版商
  385. Mok K, Mruk D, Cheng C. rpS6 regulates blood-testis barrier dynamics through Akt-mediated effects on MMP-9. J Cell Sci. 2014;127:4870-82 pubmed 出版商
  386. Yao C, Vanderpool K, Delfiner M, Eddy V, Lucaci A, Soto Riveros C, et al. Electrical synaptic transmission in developing zebrafish: properties and molecular composition of gap junctions at a central auditory synapse. J Neurophysiol. 2014;112:2102-13 pubmed 出版商
  387. Sojka S, Amin N, Gibbs D, Christine K, Charpentier M, Conlon F. Congenital heart disease protein 5 associates with CASZ1 to maintain myocardial tissue integrity. Development. 2014;141:3040-9 pubmed 出版商
  388. Hagel C, Krasemann S, Löffler J, Puschel K, Magnus T, Glatzel M. Upregulation of Shiga toxin receptor CD77/Gb3 and interleukin-1? expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms. Brain Pathol. 2015;25:146-56 pubmed 出版商
  389. Spadaro D, Tapia R, Jond L, Sudol M, Fanning A, Citi S. ZO proteins redundantly regulate the transcription factor DbpA/ZONAB. J Biol Chem. 2014;289:22500-11 pubmed 出版商
  390. McEwen A, Maher M, Mo R, Gottardi C. E-cadherin phosphorylation occurs during its biosynthesis to promote its cell surface stability and adhesion. Mol Biol Cell. 2014;25:2365-74 pubmed 出版商
  391. Glotfelty L, Zahs A, Hodges K, Shan K, Alto N, Hecht G. Enteropathogenic E. coli effectors EspG1/G2 disrupt microtubules, contribute to tight junction perturbation and inhibit restoration. Cell Microbiol. 2014;16:1767-83 pubmed 出版商
  392. Herrera A, Saade M, Menendez A, Marti E, Pons S. Sustained Wnt/?-catenin signalling causes neuroepithelial aberrations through the accumulation of aPKC at the apical pole. Nat Commun. 2014;5:4168 pubmed 出版商
  393. Mashukova A, Kozhekbaeva Z, Forteza R, Dulam V, Figueroa Y, Warren R, et al. The BAG-1 isoform BAG-1M regulates keratin-associated Hsp70 chaperoning of aPKC in intestinal cells during activation of inflammatory signaling. J Cell Sci. 2014;127:3568-77 pubmed 出版商
  394. Ferrer M, Corneo B, Davis J, Wan Q, Miyagishima K, King R, et al. A multiplex high-throughput gene expression assay to simultaneously detect disease and functional markers in induced pluripotent stem cell-derived retinal pigment epithelium. Stem Cells Transl Med. 2014;3:911-22 pubmed 出版商
  395. Durak O, de Anda F, Singh K, Leussis M, Petryshen T, Sklar P, et al. Ankyrin-G regulates neurogenesis and Wnt signaling by altering the subcellular localization of ?-catenin. Mol Psychiatry. 2015;20:388-97 pubmed 出版商
  396. Giusti S, Sbrana T, La Marca M, Di Patria V, Martinucci V, Tirella A, et al. A novel dual-flow bioreactor simulates increased fluorescein permeability in epithelial tissue barriers. Biotechnol J. 2014;9:1175-84 pubmed 出版商
  397. Araya C, Tawk M, Girdler G, Costa M, Carmona Fontaine C, Clarke J. Mesoderm is required for coordinated cell movements within zebrafish neural plate in vivo. Neural Dev. 2014;9:9 pubmed 出版商
  398. Doughton G, Wei J, Tapon N, Welham M, Chalmers A. Formation of a polarised primitive endoderm layer in embryoid bodies requires fgfr/erk signalling. PLoS ONE. 2014;9:e95434 pubmed 出版商
  399. Satoh D, Hirose T, Harita Y, Daimon C, Harada T, Kurihara H, et al. aPKC? maintains the integrity of the glomerular slit diaphragm through trafficking of nephrin to the cell surface. J Biochem. 2014;156:115-28 pubmed 出版商
  400. Gross C, Aggarwal S, Kumar S, Tian J, Kása A, Bogatcheva N, et al. Sox18 preserves the pulmonary endothelial barrier under conditions of increased shear stress. J Cell Physiol. 2014;229:1802-16 pubmed 出版商
  401. Balk Møller E, Kim J, Hopkinson B, Timmermans Wielenga V, Petersen O, Villadsen R. A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. Am J Pathol. 2014;184:1198-208 pubmed 出版商
  402. Retana C, Sanchez E, Perez Lopez A, Cruz A, Lagunas J, Cruz C, et al. Alterations of intercellular junctions in peritoneal mesothelial cells from patients undergoing dialysis: effect of retinoic Acid. Perit Dial Int. 2015;35:275-87 pubmed 出版商
  403. Prin F, Serpente P, Itasaki N, Gould A. Hox proteins drive cell segregation and non-autonomous apical remodelling during hindbrain segmentation. Development. 2014;141:1492-502 pubmed 出版商
  404. Alvers A, Ryan S, Scherz P, Huisken J, Bagnat M. Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling. Development. 2014;141:1110-9 pubmed 出版商
  405. Fong J, Nimlamool W, Falk M. EGF induces efficient Cx43 gap junction endocytosis in mouse embryonic stem cell colonies via phosphorylation of Ser262, Ser279/282, and Ser368. FEBS Lett. 2014;588:836-44 pubmed 出版商
  406. Lee J, Lee M. Decreased expression of zonula occludens-1 and occludin in the bladder urothelium of patients with interstitial cystitis/painful bladder syndrome. J Formos Med Assoc. 2014;113:17-22 pubmed 出版商
  407. Liu Z, Yu N, Holz F, Yang F, Stanzel B. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837-50 pubmed 出版商
  408. Rigano L, Dowd G, Wang Y, Ireton K. Listeria monocytogenes antagonizes the human GTPase Cdc42 to promote bacterial spread. Cell Microbiol. 2014;16:1068-79 pubmed 出版商
  409. Neugebauer J, Yost H. FGF signaling is required for brain left-right asymmetry and brain midline formation. Dev Biol. 2014;386:123-34 pubmed 出版商
  410. Wang Y, Pan L, Moens C, Appel B. Notch3 establishes brain vascular integrity by regulating pericyte number. Development. 2014;141:307-17 pubmed 出版商
  411. Bastiaans J, van Meurs J, van Holten Neelen C, Nagtzaam N, van Hagen P, Chambers R, et al. Thrombin induces epithelial-mesenchymal transition and collagen production by retinal pigment epithelial cells via autocrine PDGF-receptor signaling. Invest Ophthalmol Vis Sci. 2013;54:8306-14 pubmed 出版商
  412. Robert J, Weber B, Frese L, Emmert M, Schmidt D, von Eckardstein A, et al. A three-dimensional engineered artery model for in vitro atherosclerosis research. PLoS ONE. 2013;8:e79821 pubmed 出版商
  413. Andersen M, Krzystanek K, Petersen F, Bomholtz S, Olesen S, Abriel H, et al. A phosphoinositide 3-kinase (PI3K)-serum- and glucocorticoid-inducible kinase 1 (SGK1) pathway promotes Kv7.1 channel surface expression by inhibiting Nedd4-2 protein. J Biol Chem. 2013;288:36841-54 pubmed 出版商
  414. Lee R, Nagai H, Nakaya Y, Sheng G, Trainor P, Weston J, et al. Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme. Development. 2013;140:4890-902 pubmed 出版商
  415. Lázaro Diéguez F, Cohen D, Fernandez D, Hodgson L, Van IJzendoorn S, Müsch A. Par1b links lumen polarity with LGN-NuMA positioning for distinct epithelial cell division phenotypes. J Cell Biol. 2013;203:251-64 pubmed 出版商
  416. Whiteman E, Fan S, Harder J, Walton K, Liu C, Soofi A, et al. Crumbs3 is essential for proper epithelial development and viability. Mol Cell Biol. 2014;34:43-56 pubmed 出版商
  417. Elamin E, Masclee A, Dekker J, Pieters H, Jonkers D. Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers. J Nutr. 2013;143:1872-81 pubmed 出版商
  418. Schumacher J, Bloomekatz J, Garavito Aguilar Z, Yelon D. tal1 Regulates the formation of intercellular junctions and the maintenance of identity in the endocardium. Dev Biol. 2013;383:214-26 pubmed 出版商
  419. Oie Y, Nozaki T, Takayanagi H, Hara S, Hayashi R, Takeda S, et al. Development of a cell sheet transportation technique for regenerative medicine. Tissue Eng Part C Methods. 2014;20:373-82 pubmed 出版商
  420. Isojima T, Harita Y, Furuyama M, Sugawara N, Ishizuka K, Horita S, et al. LMX1B mutation with residual transcriptional activity as a cause of isolated glomerulopathy. Nephrol Dial Transplant. 2014;29:81-8 pubmed 出版商
  421. Wittchen E, Nishimura E, McCloskey M, Wang H, Quilliam L, Chrzanowska Wodnicka M, et al. Rap1 GTPase activation and barrier enhancement in rpe inhibits choroidal neovascularization in vivo. PLoS ONE. 2013;8:e73070 pubmed 出版商
  422. Guichard A, Cruz Moreno B, Cruz Moreno B, Aguilar B, van Sorge N, Kuang J, et al. Cholera toxin disrupts barrier function by inhibiting exocyst-mediated trafficking of host proteins to intestinal cell junctions. Cell Host Microbe. 2013;14:294-305 pubmed 出版商
  423. Freedman B, Lam A, Sundsbak J, Iatrino R, Su X, Koon S, et al. Reduced ciliary polycystin-2 in induced pluripotent stem cells from polycystic kidney disease patients with PKD1 mutations. J Am Soc Nephrol. 2013;24:1571-86 pubmed 出版商
  424. Warnke P, Alamein M, Skabo S, Stephens S, BOURKE R, Heiner P, et al. Primordium of an artificial Bruch's membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers. Acta Biomater. 2013;9:9414-22 pubmed 出版商
  425. Liu Z, Meyer C, Fimmers R, Stanzel B. Indocyanine green concentrations used in chromovitrectomy cause a reversible functional alteration in the outer blood-retinal barrier. Acta Ophthalmol. 2014;92:e147-55 pubmed 出版商
  426. Wong E, Cheng C. NC1 domain of collagen ?3(IV) derived from the basement membrane regulates Sertoli cell blood-testis barrier dynamics. Spermatogenesis. 2013;3:e25465 pubmed
  427. Dunphy K, Seo J, Kim D, Roberts A, Tao L, DiRenzo J, et al. Oncogenic transformation of mammary epithelial cells by transforming growth factor beta independent of mammary stem cell regulation. Cancer Cell Int. 2013;13:74 pubmed 出版商
  428. Siljamäki E, Raiko L, Toriseva M, Nissinen L, Näreoja T, Peltonen J, et al. p38? mitogen-activated protein kinase regulates the expression of tight junction protein ZO-1 in differentiating human epidermal keratinocytes. Arch Dermatol Res. 2014;306:131-41 pubmed 出版商
  429. Kinoshita S, Kawasaki S, Kitazawa K, Shinomiya K. Establishment of a human conjunctival epithelial cell line lacking the functional TACSTD2 gene (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 2012;110:166-77 pubmed
  430. Garriock R, Mikawa T, Yamaguchi T. Isolation and culture of mouse proepicardium using serum-free conditions. Methods. 2014;66:365-9 pubmed 出版商
  431. Elsum I, Martin C, Humbert P. Scribble regulates an EMT polarity pathway through modulation of MAPK-ERK signaling to mediate junction formation. J Cell Sci. 2013;126:3990-9 pubmed 出版商
  432. Murakami K, Kurihara C, Oka T, Shimoike T, Fujii Y, Takai Todaka R, et al. Norovirus binding to intestinal epithelial cells is independent of histo-blood group antigens. PLoS ONE. 2013;8:e66534 pubmed 出版商
  433. Lüthje P, Brauner H, Ramos N, Övregaard A, Gläser R, Hirschberg A, et al. Estrogen supports urothelial defense mechanisms. Sci Transl Med. 2013;5:190ra80 pubmed 出版商
  434. Wallingford M, Angelo J, Mager J. Morphogenetic analysis of peri-implantation development. Dev Dyn. 2013;242:1110-20 pubmed 出版商
  435. Jordan N, Prat A, Abell A, Zawistowski J, Sciaky N, Karginova O, et al. SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c controls epithelial-mesenchymal transition by inducing Wnt5a signaling. Mol Cell Biol. 2013;33:3011-25 pubmed 出版商
  436. Herder C, Swiercz J, Müller C, Peravali R, Quiring R, Offermanns S, et al. ArhGEF18 regulates RhoA-Rock2 signaling to maintain neuro-epithelial apico-basal polarity and proliferation. Development. 2013;140:2787-97 pubmed 出版商
  437. Carrasco Pozo C, Morales P, Gotteland M. Polyphenols protect the epithelial barrier function of Caco-2 cells exposed to indomethacin through the modulation of occludin and zonula occludens-1 expression. J Agric Food Chem. 2013;61:5291-7 pubmed 出版商
  438. Xu X, Jin D, Durgan J, Hall A. LKB1 controls human bronchial epithelial morphogenesis through p114RhoGEF-dependent RhoA activation. Mol Cell Biol. 2013;33:2671-82 pubmed 出版商
  439. Szczepkowska A, Lagaraine C, Robert V, Dufourny L, Thiery J, Skipor J. Effect of a two-week treatment with a low dose of 2,2'4,4',5,5'-hexachlorobiphenyl (PCB153) on tight junction protein expression in ovine choroid plexus during long and short photoperiods. Neurotoxicol Teratol. 2013;37:63-7 pubmed 出版商
  440. Qian X, Mruk D, Cheng C. Rai14 (retinoic acid induced protein 14) is involved in regulating f-actin dynamics at the ectoplasmic specialization in the rat testis*. PLoS ONE. 2013;8:e60656 pubmed 出版商
  441. Lin M, Shang D, Sun W, Li B, Xu X, Fang W, et al. Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells through human brain microvascular endothelial cell monolayers. Brain Res. 2013;1513:1-8 pubmed 出版商
  442. Sugimoto J, Sugimoto M, BERNSTEIN H, Jinno Y, Schust D. A novel human endogenous retroviral protein inhibits cell-cell fusion. Sci Rep. 2013;3:1462 pubmed 出版商
  443. Fiorentino M, Lammers K, Levine M, Sztein M, Fasano A. In vitro Intestinal Mucosal Epithelial Responses to Wild-Type Salmonella Typhi and Attenuated Typhoid Vaccines. Front Immunol. 2013;4:17 pubmed 出版商
  444. Kirschner N, Rosenthal R, Furuse M, Moll I, Fromm M, Brandner J. Contribution of tight junction proteins to ion, macromolecule, and water barrier in keratinocytes. J Invest Dermatol. 2013;133:1161-9 pubmed 出版商
  445. Rachow S, Zorn Kruppa M, Ohnemus U, Kirschner N, Vidal Y Sy S, von den Driesch P, et al. Occludin is involved in adhesion, apoptosis, differentiation and Ca2+-homeostasis of human keratinocytes: implications for tumorigenesis. PLoS ONE. 2013;8:e55116 pubmed 出版商
  446. Abu Khamidakh A, Juuti Uusitalo K, Larsson K, Skottman H, Hyttinen J. Intercellular Ca(2+) wave propagation in human retinal pigment epithelium cells induced by mechanical stimulation. Exp Eye Res. 2013;108:129-39 pubmed 出版商
  447. Lydka M, Bilinska B, Cheng C, Mruk D. Tumor necrosis factor ?-mediated restructuring of the Sertoli cell barrier in vitro involves matrix metalloprotease 9 (MMP9), membrane-bound intercellular adhesion molecule-1 (ICAM-1) and the actin cytoskeleton. Spermatogenesis. 2012;2:294-303 pubmed
  448. Bouyer P, Tang X, Weber C, Shen L, Turner J, Matthews J. Capsaicin induces NKCC1 internalization and inhibits chloride secretion in colonic epithelial cells independently of TRPV1. Am J Physiol Gastrointest Liver Physiol. 2013;304:G142-56 pubmed 出版商
  449. Antonica F, Kasprzyk D, Opitz R, Iacovino M, Liao X, Dumitrescu A, et al. Generation of functional thyroid from embryonic stem cells. Nature. 2012;491:66-71 pubmed 出版商
  450. Langer M, Duggan E, Booth J, Patel V, Zander R, Silasi Mansat R, et al. Bacillus anthracis lethal toxin reduces human alveolar epithelial barrier function. Infect Immun. 2012;80:4374-87 pubmed 出版商
  451. Cheung T, Ganatra M, Peters E, Truskey G. Effect of cellular senescence on the albumin permeability of blood-derived endothelial cells. Am J Physiol Heart Circ Physiol. 2012;303:H1374-83 pubmed 出版商
  452. Termén S, Tan E, Heldin C, Moustakas A. p53 regulates epithelial-mesenchymal transition induced by transforming growth factor ?. J Cell Physiol. 2013;228:801-13 pubmed 出版商
  453. Vassilev V, Mandai M, Yonemura S, Takeichi M. Loss of N-cadherin from the endothelium causes stromal edema and epithelial dysgenesis in the mouse cornea. Invest Ophthalmol Vis Sci. 2012;53:7183-93 pubmed 出版商
  454. Scudieri P, Caci E, Bruno S, Ferrera L, Schiavon M, Sondo E, et al. Association of TMEM16A chloride channel overexpression with airway goblet cell metaplasia. J Physiol. 2012;590:6141-55 pubmed 出版商
  455. Iden S, van Riel W, Schäfer R, Song J, Hirose T, Ohno S, et al. Tumor type-dependent function of the par3 polarity protein in skin tumorigenesis. Cancer Cell. 2012;22:389-403 pubmed 出版商
  456. Castellani S, Guerra L, Favia M, Di Gioia S, Casavola V, Conese M. NHERF1 and CFTR restore tight junction organisation and function in cystic fibrosis airway epithelial cells: role of ezrin and the RhoA/ROCK pathway. Lab Invest. 2012;92:1527-40 pubmed 出版商
  457. Cunliffe H, Jiang Y, Fornace K, Yang F, Meltzer P. PAR6B is required for tight junction formation and activated PKC? localization in breast cancer. Am J Cancer Res. 2012;2:478-91 pubmed
  458. Cantara S, Soscia D, Sequeira S, Jean Gilles R, Castracane J, Larsen M. Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity. Biomaterials. 2012;33:8372-82 pubmed 出版商
  459. Kalive M, Zhang W, Chen Y, Capco D. Human intestinal epithelial cells exhibit a cellular response indicating a potential toxicity upon exposure to hematite nanoparticles. Cell Biol Toxicol. 2012;28:343-68 pubmed 出版商
  460. Sanyas I, Bozon M, Moret F, Castellani V. Motoneuronal Sema3C is essential for setting stereotyped motor tract positioning in limb-derived chemotropic semaphorins. Development. 2012;139:3633-43 pubmed 出版商
  461. Subrizi A, Hiidenmaa H, Ilmarinen T, Nymark S, Dubruel P, Uusitalo H, et al. Generation of hESC-derived retinal pigment epithelium on biopolymer coated polyimide membranes. Biomaterials. 2012;33:8047-54 pubmed 出版商
  462. Magudia K, Lahoz A, Hall A. K-Ras and B-Raf oncogenes inhibit colon epithelial polarity establishment through up-regulation of c-myc. J Cell Biol. 2012;198:185-94 pubmed 出版商
  463. Moran G, O NEILL C, McLaughlin J. GLP-2 enhances barrier formation and attenuates TNF?-induced changes in a Caco-2 cell model of the intestinal barrier. Regul Pept. 2012;178:95-101 pubmed 出版商
  464. Mühlfeld S, Domanova O, Berlage T, Stross C, Helmer A, Keitel V, et al. Short-term feedback regulation of bile salt uptake by bile salts in rodent liver. Hepatology. 2012;56:2387-97 pubmed 出版商
  465. Kuo K, Zhu H, McNamara P, Leggas M. Localization and functional characterization of the rat Oatp4c1 transporter in an in vitro cell system and rat tissues. PLoS ONE. 2012;7:e39641 pubmed 出版商
  466. Kajiho Y, Harita Y, Kurihara H, Horita S, Matsunaga A, Tsurumi H, et al. SIRP? interacts with nephrin at the podocyte slit diaphragm. FEBS J. 2012;279:3010-21 pubmed 出版商
  467. Shibasaki T, Tokunaga A, Sakamoto R, Sagara H, Noguchi S, Sasaoka T, et al. PTB deficiency causes the loss of adherens junctions in the dorsal telencephalon and leads to lethal hydrocephalus. Cereb Cortex. 2013;23:1824-35 pubmed 出版商
  468. Hartsock A, Nelson W. Competitive regulation of E-cadherin juxtamembrane domain degradation by p120-catenin binding and Hakai-mediated ubiquitination. PLoS ONE. 2012;7:e37476 pubmed 出版商
  469. Ohmura T, Shioi G, Hirano M, Aizawa S. Neural tube defects by NUAK1 and NUAK2 double mutation. Dev Dyn. 2012;241:1350-64 pubmed 出版商
  470. Keay S, Leitzell S, Ochrzcin A, Clements G, Zhan M, Johnson D. A mouse model for interstitial cystitis/painful bladder syndrome based on APF inhibition of bladder epithelial repair: a pilot study. BMC Urol. 2012;12:17 pubmed
  471. Tang E, Xiao X, Mruk D, Qian X, Mok K, Jenardhanan P, et al. Microtubule affinity-regulating kinase 4 (MARK4) is a component of the ectoplasmic specialization in the rat testis. Spermatogenesis. 2012;2:117-126 pubmed
  472. Raiko L, Siljamäki E, Mahoney M, Putaala H, Suominen E, Peltonen J, et al. Hailey-Hailey disease and tight junctions: Claudins 1 and 4 are regulated by ATP2C1 gene encoding Ca(2+) /Mn(2+) ATPase SPCA1 in cultured keratinocytes. Exp Dermatol. 2012;21:586-91 pubmed 出版商
  473. Saund R, Kanai Azuma M, Kanai Y, Kim I, Lucero M, Saijoh Y. Gut endoderm is involved in the transfer of left-right asymmetry from the node to the lateral plate mesoderm in the mouse embryo. Development. 2012;139:2426-35 pubmed 出版商
  474. Adijanto J, Castorino J, Wang Z, Maminishkis A, Grunwald G, Philp N. Microphthalmia-associated transcription factor (MITF) promotes differentiation of human retinal pigment epithelium (RPE) by regulating microRNAs-204/211 expression. J Biol Chem. 2012;287:20491-503 pubmed 出版商
  475. Rowland T, Blaschke A, Buchholz D, Hikita S, Johnson L, Clegg D. Differentiation of human pluripotent stem cells to retinal pigmented epithelium in defined conditions using purified extracellular matrix proteins. J Tissue Eng Regen Med. 2013;7:642-53 pubmed 出版商
  476. Jiang X, Guo M, Su J, Lu B, Ma D, Zhang R, et al. Simvastatin blocks blood-brain barrier disruptions induced by elevated cholesterol both in vivo and in vitro. Int J Alzheimers Dis. 2012;2012:109324 pubmed 出版商
  477. Cammas L, Wolfe J, Choi S, Dedhar S, Beggs H. Integrin-linked kinase deletion in the developing lens leads to capsule rupture, impaired fiber migration and non-apoptotic epithelial cell death. Invest Ophthalmol Vis Sci. 2012;53:3067-81 pubmed 出版商
  478. Ting L, Jahn J, Jung J, Shuman B, Feghhi S, Han S, et al. Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions. Am J Physiol Heart Circ Physiol. 2012;302:H2220-9 pubmed 出版商
  479. Ritchie J, Rui H, Zhou X, Iida T, Kodoma T, Ito S, et al. Inflammation and disintegration of intestinal villi in an experimental model for Vibrio parahaemolyticus-induced diarrhea. PLoS Pathog. 2012;8:e1002593 pubmed 出版商
  480. Liu K, Jacobs D, Dunn B, Fanning A, Cheney R. Myosin-X functions in polarized epithelial cells. Mol Biol Cell. 2012;23:1675-87 pubmed 出版商
  481. Dukes J, Whitley P, Chalmers A. The PIKfyve inhibitor YM201636 blocks the continuous recycling of the tight junction proteins claudin-1 and claudin-2 in MDCK cells. PLoS ONE. 2012;7:e28659 pubmed 出版商
  482. Parrilla M, Lillo C, Herrero Turrion M, Arevalo R, Aijón J, Lara J, et al. Characterization of Pax2 expression in the goldfish optic nerve head during retina regeneration. PLoS ONE. 2012;7:e32348 pubmed 出版商
  483. Paschoud S, Guillemot L, Citi S. Distinct domains of paracingulin are involved in its targeting to the actin cytoskeleton and regulation of apical junction assembly. J Biol Chem. 2012;287:13159-69 pubmed 出版商
  484. Shi Y, Kirwan P, Smith J, Robinson H, Livesey F. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci. 2012;15:477-86, S1 pubmed 出版商
  485. Kim J, Rubin N, Huang Y, Tuan T, Lien C. In vitro culture of epicardial cells from adult zebrafish heart on a fibrin matrix. Nat Protoc. 2012;7:247-55 pubmed 出版商
  486. He Z, Campolmi N, Ha Thi B, Dumollard J, Peoc h M, Garraud O, et al. Optimization of immunolocalization of cell cycle proteins in human corneal endothelial cells. Mol Vis. 2011;17:3494-511 pubmed
  487. Ortega Cava C, Raja S, Laiq Z, Bailey T, Luan H, Mohapatra B, et al. Continuous requirement of ErbB2 kinase activity for loss of cell polarity and lumen formation in a novel ErbB2/Neu-driven murine cell line model of metastatic breast cancer. J Carcinog. 2011;10:29 pubmed 出版商
  488. Schneckenleithner C, Bago Horvath Z, Dolznig H, Neugebauer N, Kollmann K, Kolbe T, et al. Putting the brakes on mammary tumorigenesis: loss of STAT1 predisposes to intraepithelial neoplasias. Oncotarget. 2011;2:1043-54 pubmed
  489. Sarró E, Jacobs Cachá C, Itarte E, Meseguer A. A pharmacologically-based array to identify targets of cyclosporine A-induced toxicity in cultured renal proximal tubule cells. Toxicol Appl Pharmacol. 2012;258:275-87 pubmed 出版商
  490. Kelava I, Reillo I, Murayama A, Kalinka A, Stenzel D, Tomancak P, et al. Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus. Cereb Cortex. 2012;22:469-81 pubmed 出版商
  491. Brysse A, Mestdagt M, Polette M, Luczka E, Hunziker W, Noel A, et al. Regulation of CXCL8/IL-8 expression by zonula occludens-1 in human breast cancer cells. Mol Cancer Res. 2012;10:121-32 pubmed 出版商
  492. Gendron R, Armstrong E, Paradis H, Haines L, Desjardins M, Short C, et al. Osmotic pressure-adaptive responses in the eye tissues of rainbow smelt (Osmerus mordax). Mol Vis. 2011;17:2596-604 pubmed
  493. Knauf F, Ko N, Jiang Z, Robertson W, Van Itallie C, Anderson J, et al. Net intestinal transport of oxalate reflects passive absorption and SLC26A6-mediated secretion. J Am Soc Nephrol. 2011;22:2247-55 pubmed 出版商
  494. Münzel E, Schaefer K, Obirei B, Kremmer E, Burton E, Kuscha V, et al. Claudin k is specifically expressed in cells that form myelin during development of the nervous system and regeneration of the optic nerve in adult zebrafish. Glia. 2012;60:253-70 pubmed 出版商
  495. Cheung I, Bagnat M, Ma T, Datta A, Evason K, Moore J, et al. Regulation of intrahepatic biliary duct morphogenesis by Claudin 15-like b. Dev Biol. 2012;361:68-78 pubmed 出版商
  496. Koning H, Sayers I, Stewart C, de Jong D, ten Hacken N, Postma D, et al. Characterization of protocadherin-1 expression in primary bronchial epithelial cells: association with epithelial cell differentiation. FASEB J. 2012;26:439-48 pubmed 出版商
  497. Chai Z, Goodenough D, Paul D. Cx50 requires an intact PDZ-binding motif and ZO-1 for the formation of functional intercellular channels. Mol Biol Cell. 2011;22:4503-12 pubmed 出版商
  498. Subramaniam R, Hinley J, Stahlschmidt J, Southgate J. Tissue engineering potential of urothelial cells from diseased bladders. J Urol. 2011;186:2014-20 pubmed 出版商
  499. Edelstein A, Fink D, Musch M, Valuckaite V, Zaborina O, Grubjesic S, et al. Protective effects of nonionic triblock copolymers on bile acid-mediated epithelial barrier disruption. Shock. 2011;36:451-7 pubmed 出版商
  500. Carman A, Mills J, Krenz A, Kim D, Bynoe M. Adenosine receptor signaling modulates permeability of the blood-brain barrier. J Neurosci. 2011;31:13272-80 pubmed 出版商
  501. Calame M, Cachafeiro M, Philippe S, Schouwey K, Tekaya M, Wanner D, et al. Retinal degeneration progression changes lentiviral vector cell targeting in the retina. PLoS ONE. 2011;6:e23782 pubmed 出版商
  502. Grosse A, Pressprich M, Curley L, Hamilton K, Margolis B, Hildebrand J, et al. Cell dynamics in fetal intestinal epithelium: implications for intestinal growth and morphogenesis. Development. 2011;138:4423-32 pubmed 出版商
  503. Gao W, Xu L, Guan R, Liu X, Han Y, Wu Q, et al. Wdr18 is required for Kupffer's vesicle formation and regulation of body asymmetry in zebrafish. PLoS ONE. 2011;6:e23386 pubmed 出版商
  504. Ohta H, Yamaguchi T, Rajapakshage B, Murakami M, Sasaki N, Nakamura K, et al. Expression and subcellular localization of apical junction proteins in canine duodenal and colonic mucosa. Am J Vet Res. 2011;72:1046-51 pubmed 出版商
  505. Smith N, Varley C, Eardley I, Feather S, Trejdosiewicz L, Southgate J. Toll-like receptor responses of normal human urothelial cells to bacterial flagellin and lipopolysaccharide. J Urol. 2011;186:1084-92 pubmed 出版商
  506. Mandel I, Paperna T, Glass Marmor L, Volkowich A, Badarny S, Schwartz I, et al. Tight junction proteins expression and modulation in immune cells and multiple sclerosis. J Cell Mol Med. 2012;16:765-75 pubmed 出版商
  507. Dukes J, Fish L, Richardson J, Blaikley E, Burns S, Caunt C, et al. Functional ESCRT machinery is required for constitutive recycling of claudin-1 and maintenance of polarity in vertebrate epithelial cells. Mol Biol Cell. 2011;22:3192-205 pubmed 出版商
  508. Belgiovine C, Chiodi I, Mondello C. Relocalization of cell adhesion molecules during neoplastic transformation of human fibroblasts. Int J Oncol. 2011;39:1199-204 pubmed 出版商
  509. Watanabe R, Hayashi R, Kimura Y, Tanaka Y, Kageyama T, Hara S, et al. A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation. Tissue Eng Part A. 2011;17:2213-9 pubmed 出版商
  510. Lagaraine C, Skipor J, Szczepkowska A, Dufourny L, Thiery J. Tight junction proteins vary in the choroid plexus of ewes according to photoperiod. Brain Res. 2011;1393:44-51 pubmed 出版商
  511. Llaurado M, Abal M, Castellvi J, Cabrera S, Gil Moreno A, Pérez Benavente A, et al. ETV5 transcription factor is overexpressed in ovarian cancer and regulates cell adhesion in ovarian cancer cells. Int J Cancer. 2012;130:1532-43 pubmed 出版商
  512. Rhett J, Jourdan J, Gourdie R. Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1. Mol Biol Cell. 2011;22:1516-28 pubmed 出版商
  513. Butt O, Buehler P, D Agnillo F. Blood-brain barrier disruption and oxidative stress in guinea pig after systemic exposure to modified cell-free hemoglobin. Am J Pathol. 2011;178:1316-28 pubmed 出版商
  514. Wu W, Huang Q, He F, Xiao M, Pang S, Guo X, et al. Roles of mitogen-activated protein kinases in the modulation of endothelial cell function following thermal injury. Shock. 2011;35:618-25 pubmed 出版商
  515. Tanigawa S, Wang H, Yang Y, Sharma N, Tarasova N, Ajima R, et al. Wnt4 induces nephronic tubules in metanephric mesenchyme by a non-canonical mechanism. Dev Biol. 2011;352:58-69 pubmed 出版商
  516. Iqbal M, Gibb W, Matthews S. Corticosteroid regulation of P-glycoprotein in the developing blood-brain barrier. Endocrinology. 2011;152:1067-79 pubmed 出版商
  517. Andersen M, Olesen S, Rasmussen H. Kv7.1 surface expression is regulated by epithelial cell polarization. Am J Physiol Cell Physiol. 2011;300:C814-24 pubmed 出版商
  518. Larsen H, Aure M, Peters S, Larsen M, Messelt E, Kanli Galtung H. Localization of AQP5 during development of the mouse submandibular salivary gland. J Mol Histol. 2011;42:71-81 pubmed 出版商
  519. Hilgen G, von Maltzahn J, Willecke K, Weiler R, Dedek K. Subcellular distribution of connexin45 in OFF bipolar cells of the mouse retina. J Comp Neurol. 2011;519:433-50 pubmed 出版商
  520. Kirschner N, Haftek M, Niessen C, Behne M, Furuse M, Moll I, et al. CD44 regulates tight-junction assembly and barrier function. J Invest Dermatol. 2011;131:932-43 pubmed 出版商
  521. Maria O, Zeitouni A, Gologan O, Tran S. Matrigel improves functional properties of primary human salivary gland cells. Tissue Eng Part A. 2011;17:1229-38 pubmed 出版商
  522. Paschoud S, Yu D, Pulimeno P, Jond L, Turner J, Citi S. Cingulin and paracingulin show similar dynamic behaviour, but are recruited independently to junctions. Mol Membr Biol. 2011;28:123-35 pubmed 出版商
  523. Liu M, Sakamaki T, Casimiro M, Willmarth N, Quong A, Ju X, et al. The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res. 2010;70:10464-73 pubmed 出版商
  524. Kranjec C, Banks L. A systematic analysis of human papillomavirus (HPV) E6 PDZ substrates identifies MAGI-1 as a major target of HPV type 16 (HPV-16) and HPV-18 whose loss accompanies disruption of tight junctions. J Virol. 2011;85:1757-64 pubmed 出版商
  525. Ingthorsson S, Halldorsson T, Sigurdsson V, Friðriksdottir A, Bodvarsdottir S, Steinarsdottir M, et al. Selection for EGFR gene amplification in a breast epithelial cell line with basal-like phenotype and hereditary background. In Vitro Cell Dev Biol Anim. 2011;47:139-48 pubmed 出版商
  526. Haarmann A, Deiss A, Prochaska J, Foerch C, Weksler B, Romero I, et al. Evaluation of soluble junctional adhesion molecule-A as a biomarker of human brain endothelial barrier breakdown. PLoS ONE. 2010;5:e13568 pubmed 出版商
  527. Wassmer S, Moxon C, Taylor T, Grau G, Molyneux M, Craig A. Vascular endothelial cells cultured from patients with cerebral or uncomplicated malaria exhibit differential reactivity to TNF. Cell Microbiol. 2011;13:198-209 pubmed 出版商
  528. Wallace S, Magalhaes A, Hall A. The Rho target PRK2 regulates apical junction formation in human bronchial epithelial cells. Mol Cell Biol. 2011;31:81-91 pubmed 出版商
  529. Aman A, Nguyen M, Piotrowski T. Wnt/β-catenin dependent cell proliferation underlies segmented lateral line morphogenesis. Dev Biol. 2011;349:470-82 pubmed 出版商
  530. Garavito Aguilar Z, Riley H, Yelon D. Hand2 ensures an appropriate environment for cardiac fusion by limiting Fibronectin function. Development. 2010;137:3215-20 pubmed 出版商
  531. Boassa D, Solan J, Papas A, Thornton P, Lampe P, Sosinsky G. Trafficking and recycling of the connexin43 gap junction protein during mitosis. Traffic. 2010;11:1471-86 pubmed 出版商
  532. Su L, Cheng C, Mruk D. Adjudin-mediated Sertoli-germ cell junction disassembly affects Sertoli cell barrier function in vitro and in vivo. Int J Biochem Cell Biol. 2010;42:1864-75 pubmed 出版商
  533. Hirota Y, Meunier A, Huang S, Shimozawa T, Yamada O, Kida Y, et al. Planar polarity of multiciliated ependymal cells involves the anterior migration of basal bodies regulated by non-muscle myosin II. Development. 2010;137:3037-46 pubmed 出版商
  534. Nakatsukasa M, Kawasaki S, Yamasaki K, Fukuoka H, Matsuda A, Tsujikawa M, et al. Tumor-associated calcium signal transducer 2 is required for the proper subcellular localization of claudin 1 and 7: implications in the pathogenesis of gelatinous drop-like corneal dystrophy. Am J Pathol. 2010;177:1344-55 pubmed 出版商
  535. Ponsaerts R, De Vuyst E, Retamal M, D hondt C, Vermeire D, Wang N, et al. Intramolecular loop/tail interactions are essential for connexin 43-hemichannel activity. FASEB J. 2010;24:4378-95 pubmed 出版商
  536. Wallace S, Durgan J, Jin D, Hall A. Cdc42 regulates apical junction formation in human bronchial epithelial cells through PAK4 and Par6B. Mol Biol Cell. 2010;21:2996-3006 pubmed 出版商
  537. Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, et al. A MicroRNA targeting dicer for metastasis control. Cell. 2010;141:1195-207 pubmed 出版商
  538. Oie Y, Hayashi R, Takagi R, Yamato M, Takayanagi H, Tano Y, et al. A novel method of culturing human oral mucosal epithelial cell sheet using post-mitotic human dermal fibroblast feeder cells and modified keratinocyte culture medium for ocular surface reconstruction. Br J Ophthalmol. 2010;94:1244-50 pubmed 出版商
  539. Fietz S, Kelava I, Vogt J, Wilsch Bräuninger M, Stenzel D, Fish J, et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci. 2010;13:690-9 pubmed 出版商
  540. Mazumdar K, Alvarez X, Borda J, Dufour J, Martin E, Bethune M, et al. Visualization of transepithelial passage of the immunogenic 33-residue peptide from alpha-2 gliadin in gluten-sensitive macaques. PLoS ONE. 2010;5:e10228 pubmed 出版商
  541. Morishige N, Ko J, Morita Y, Nishida T. Expression of semaphorin 3A in the rat corneal epithelium during wound healing. Biochem Biophys Res Commun. 2010;395:451-7 pubmed 出版商
  542. Jeanes A, Smutny M, Leerberg J, Yap A. Phosphatidylinositol 3'-kinase signalling supports cell height in established epithelial monolayers. J Mol Histol. 2009;40:395-405 pubmed 出版商
  543. Lesimple P, Liao J, Robert R, Gruenert D, Hanrahan J. Cystic fibrosis transmembrane conductance regulator trafficking modulates the barrier function of airway epithelial cell monolayers. J Physiol. 2010;588:1195-209 pubmed 出版商
  544. Karim M, Biswas S, Bhattacherjee P, Paterson C. Comparison of tight junction protein expression in the ciliary epithelia of mouse, rabbit, cat and human eyes. Biotech Histochem. 2011;86:161-7 pubmed 出版商
  545. Semenov O, Koestenbauer S, Riegel M, Zech N, Zimmermann R, Zisch A, et al. Multipotent mesenchymal stem cells from human placenta: critical parameters for isolation and maintenance of stemness after isolation. Am J Obstet Gynecol. 2010;202:193.e1-193.e13 pubmed 出版商
  546. Joannes A, Bonnomet A, Bindels S, Polette M, Gilles C, Burlet H, et al. Fhit regulates invasion of lung tumor cells. Oncogene. 2010;29:1203-13 pubmed 出版商
  547. Sadowska G, Malaeb S, Stonestreet B. Maternal glucocorticoid exposure alters tight junction protein expression in the brain of fetal sheep. Am J Physiol Heart Circ Physiol. 2010;298:H179-88 pubmed 出版商
  548. Sugiyama Y, Akimoto K, Robinson M, Ohno S, Quinlan R. A cell polarity protein aPKClambda is required for eye lens formation and growth. Dev Biol. 2009;336:246-56 pubmed 出版商
  549. Rajabian T, Gavicherla B, Heisig M, Müller Altrock S, Goebel W, Gray Owen S, et al. The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria. Nat Cell Biol. 2009;11:1212-8 pubmed 出版商
  550. Ignáth I, Hegyi P, Venglovecz V, Székely C, Carr G, Hasegawa M, et al. CFTR expression but not Cl- transport is involved in the stimulatory effect of bile acids on apical Cl-/HCO3- exchange activity in human pancreatic duct cells. Pancreas. 2009;38:921-9 pubmed 出版商
  551. Hayashi R, Yamato M, Takayanagi H, Oie Y, Kubota A, Hori Y, et al. Validation system of tissue-engineered epithelial cell sheets for corneal regenerative medicine. Tissue Eng Part C Methods. 2010;16:553-60 pubmed 出版商
  552. Shimazaki J, Higa K, Kato N, Satake Y. Barrier function of cultivated limbal and oral mucosal epithelial cell sheets. Invest Ophthalmol Vis Sci. 2009;50:5672-80 pubmed 出版商
  553. Matsumoto M, Oyamada K, Takahashi H, Sato T, Hatakeyama S, Nakayama K. Large-scale proteomic analysis of tyrosine-phosphorylation induced by T-cell receptor or B-cell receptor activation reveals new signaling pathways. Proteomics. 2009;9:3549-63 pubmed 出版商
  554. Natoli M, Felsani A, Ferruzza S, Sambuy Y, Canali R, Scarino M. Mechanisms of defence from Fe(II) toxicity in human intestinal Caco-2 cells. Toxicol In Vitro. 2009;23:1510-5 pubmed 出版商
  555. Sobarzo C, Lustig L, Ponzio R, Suescun M, Denduchis B. Effects of di(2-ethylhexyl) phthalate on gap and tight junction protein expression in the testis of prepubertal rats. Microsc Res Tech. 2009;72:868-77 pubmed 出版商
  556. Montero Balaguer M, Swirsding K, Orsenigo F, Cotelli F, Mione M, Dejana E. Stable vascular connections and remodeling require full expression of VE-cadherin in zebrafish embryos. PLoS ONE. 2009;4:e5772 pubmed 出版商
  557. Roberts R, Appel B. Apical polarity protein PrkCi is necessary for maintenance of spinal cord precursors in zebrafish. Dev Dyn. 2009;238:1638-48 pubmed 出版商
  558. Rehermann M, Marichal N, RUSSO R, TRUJILLO CENOZ O. Neural reconnection in the transected spinal cord of the freshwater turtle Trachemys dorbignyi. J Comp Neurol. 2009;515:197-214 pubmed 出版商
  559. Cukierman L, Meertens L, Bertaux C, Kajumo F, Dragic T. Residues in a highly conserved claudin-1 motif are required for hepatitis C virus entry and mediate the formation of cell-cell contacts. J Virol. 2009;83:5477-84 pubmed 出版商
  560. Elwi A, Damaraju V, Kuzma M, Mowles D, Baldwin S, Young J, et al. Transepithelial fluxes of adenosine and 2'-deoxyadenosine across human renal proximal tubule cells: roles of nucleoside transporters hENT1, hENT2, and hCNT3. Am J Physiol Renal Physiol. 2009;296:F1439-51 pubmed 出版商
  561. Li H, Collier J, Shawki A, Rudra J, Li E, Mackenzie B, et al. Sequence- or position-specific mutations in the carboxyl-terminal FL motif of the kidney sodium bicarbonate cotransporter (NBC1) disrupt its basolateral targeting and alpha-helical structure. J Membr Biol. 2009;228:111-24 pubmed 出版商
  562. Huber T, Hartleben B, Winkelmann K, Schneider L, Becker J, Leitges M, et al. Loss of podocyte aPKClambda/iota causes polarity defects and nephrotic syndrome. J Am Soc Nephrol. 2009;20:798-806 pubmed 出版商
  563. Neugebauer J, Amack J, Peterson A, Bisgrove B, Yost H. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature. 2009;458:651-4 pubmed 出版商
  564. Burtscher I, Lickert H. Foxa2 regulates polarity and epithelialization in the endoderm germ layer of the mouse embryo. Development. 2009;136:1029-38 pubmed 出版商
  565. Alanne M, Pummi K, Heape A, Grenman R, Peltonen J, Peltonen S. Tight junction proteins in human Schwann cell autotypic junctions. J Histochem Cytochem. 2009;57:523-9 pubmed 出版商
  566. Takaoka M, Nakamura T, Sugai H, Bentley A, Nakajima N, Yokoi N, et al. Novel sutureless keratoplasty with a chemically defined bioadhesive. Invest Ophthalmol Vis Sci. 2009;50:2679-85 pubmed 出版商
  567. McLaughlin J, Lambert D, Padfield P, Burt J, O Neill C. The mycotoxin patulin, modulates tight junctions in caco-2 cells. Toxicol In Vitro. 2009;23:83-9 pubmed 出版商
  568. Catanuto P, Espinosa Heidmann D, Pereira Simon S, Sanchez P, Salas P, Hernandez E, et al. Mouse retinal pigmented epithelial cell lines retain their phenotypic characteristics after transfection with human papilloma virus: a new tool to further the study of RPE biology. Exp Eye Res. 2009;88:99-105 pubmed 出版商
  569. Dunworth W, Fritz Six K, Caron K. Adrenomedullin stabilizes the lymphatic endothelial barrier in vitro and in vivo. Peptides. 2008;29:2243-9 pubmed 出版商
  570. Yang W, Hood B, Chadwick S, Liu S, Watkins S, Luo G, et al. Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology. 2008;48:1396-403 pubmed 出版商
  571. Neuhaus W, Wirth M, Plattner V, Germann B, Gabor F, Noe C. Expression of Claudin-1, Claudin-3 and Claudin-5 in human blood-brain barrier mimicking cell line ECV304 is inducible by glioma-conditioned media. Neurosci Lett. 2008;446:59-64 pubmed 出版商
  572. Chen X, Lan X, Roche I, Liu R, Geiger J. Caffeine protects against MPTP-induced blood-brain barrier dysfunction in mouse striatum. J Neurochem. 2008;107:1147-57 pubmed 出版商
  573. Aono S, Hirai Y. Phosphorylation of claudin-4 is required for tight junction formation in a human keratinocyte cell line. Exp Cell Res. 2008;314:3326-39 pubmed 出版商
  574. Nokes R, Fields I, Collins R, FOLSCH H. Rab13 regulates membrane trafficking between TGN and recycling endosomes in polarized epithelial cells. J Cell Biol. 2008;182:845-53 pubmed 出版商
  575. Rubenwolf P, Georgopoulos N, Clements L, Feather S, Holland P, Thomas D, et al. Expression and localisation of aquaporin water channels in human urothelium in situ and in vitro. Eur Urol. 2009;56:1013-23 pubmed 出版商
  576. Cain S, Martinez G, Kokkinos M, Turner K, Richardson R, Abud H, et al. Differential requirement for beta-catenin in epithelial and fiber cells during lens development. Dev Biol. 2008;321:420-33 pubmed 出版商
  577. McCaffrey G, Seelbach M, Staatz W, Nametz N, Quigley C, Campos C, et al. Occludin oligomeric assembly at tight junctions of the blood-brain barrier is disrupted by peripheral inflammatory hyperalgesia. J Neurochem. 2008;106:2395-409 pubmed 出版商
  578. Kishikawa M, Suzuki A, Ohno S. aPKC enables development of zonula adherens by antagonizing centripetal contraction of the circumferential actomyosin cables. J Cell Sci. 2008;121:2481-92 pubmed 出版商
  579. Roberts L, Black D, Raman C, Woodford K, Zhou M, Haggerty J, et al. Subcellular localization of transporters along the rat blood-brain barrier and blood-cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience. 2008;155:423-38 pubmed 出版商
  580. Norsted E, Gömüç B, Meister B. Protein components of the blood-brain barrier (BBB) in the mediobasal hypothalamus. J Chem Neuroanat. 2008;36:107-21 pubmed 出版商
  581. Bouschbacher M, Bomsel M, Verronèse E, Gofflo S, Ganor Y, Dezutter Dambuyant C, et al. Early events in HIV transmission through a human reconstructed vaginal mucosa. AIDS. 2008;22:1257-66 pubmed 出版商
  582. Sugiyama Y, Prescott A, Tholozan F, Ohno S, Quinlan R. Expression and localisation of apical junctional complex proteins in lens epithelial cells. Exp Eye Res. 2008;87:64-70 pubmed 出版商
  583. Birnie R, Bryce S, Roome C, Dussupt V, Droop A, Lang S, et al. Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol. 2008;9:R83 pubmed 出版商
  584. Turner A, Subramaniam R, Thomas D, Southgate J. Generation of a functional, differentiated porcine urothelial tissue in vitro. Eur Urol. 2008;54:1423-32 pubmed 出版商
  585. Chen X, Gawryluk J, Wagener J, Ghribi O, Geiger J. Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer's disease. J Neuroinflammation. 2008;5:12 pubmed 出版商
  586. Morishige N, Ko J, Liu Y, Chikama T, Nishida T. Localization of semaphorin 3A in the rat cornea. Exp Eye Res. 2008;86:669-74 pubmed 出版商
  587. Yang W, Qiu C, Biswas N, Jin J, Watkins S, Montelaro R, et al. Correlation of the tight junction-like distribution of Claudin-1 to the cellular tropism of hepatitis C virus. J Biol Chem. 2008;283:8643-53 pubmed 出版商
  588. Li J, Levin M, Xiong Y, Petrenko N, Patel V, Radice G. N-cadherin haploinsufficiency affects cardiac gap junctions and arrhythmic susceptibility. J Mol Cell Cardiol. 2008;44:597-606 pubmed 出版商
  589. Imayasu M, Shiraishi A, Ohashi Y, Shimada S, Cavanagh H. Effects of multipurpose solutions on corneal epithelial tight junctions. Eye Contact Lens. 2008;34:50-5 pubmed 出版商
  590. Paschoud S, Citi S. Inducible overexpression of cingulin in stably transfected MDCK cells does not affect tight junction organization and gene expression. Mol Membr Biol. 2008;25:1-13 pubmed
  591. Konno D, Shioi G, Shitamukai A, Mori A, Kiyonari H, Miyata T, et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol. 2008;10:93-101 pubmed
  592. Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, et al. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev. 2008;125:270-83 pubmed
  593. Kawaguchi M, Bader D, Wilm B. Serosal mesothelium retains vasculogenic potential. Dev Dyn. 2007;236:2973-9 pubmed
  594. McCaffrey G, Staatz W, Quigley C, Nametz N, Seelbach M, Campos C, et al. Tight junctions contain oligomeric protein assembly critical for maintaining blood-brain barrier integrity in vivo. J Neurochem. 2007;103:2540-55 pubmed 出版商
  595. Weber K, Fischer R, Fowler V. Tmod3 regulates polarized epithelial cell morphology. J Cell Sci. 2007;120:3625-32 pubmed
  596. Roberts C, Rivera B, Grzybowski D, Mahmoud A, Weber P. Effect of low fluence diode laser irradiation on the hydraulic conductivity of perfused trabecular meshwork endothelial cell monolayers. Curr Eye Res. 2007;32:625-38 pubmed
  597. Kostin S. Zonula occludens-1 and connexin 43 expression in the failing human heart. J Cell Mol Med. 2007;11:892-5 pubmed
  598. Mandell K, Berglin L, Severson E, Edelhauser H, Parkos C. Expression of JAM-A in the human corneal endothelium and retinal pigment epithelium: localization and evidence for role in barrier function. Invest Ophthalmol Vis Sci. 2007;48:3928-36 pubmed
  599. Ciolofan C, Lynn B, Wellershaus K, Willecke K, Nagy J. Spatial relationships of connexin36, connexin57 and zonula occludens-1 in the outer plexiform layer of mouse retina. Neuroscience. 2007;148:473-88 pubmed
  600. Skowron zwarg M, Boland S, Caruso N, Coraux C, Marano F, Tournier F. Interleukin-13 interferes with CFTR and AQP5 expression and localization during human airway epithelial cell differentiation. Exp Cell Res. 2007;313:2695-702 pubmed
  601. Cai Z, Blumbergs P, Finnie J, Manavis J, Thompson P. Novel fibroblastic onion bulbs in a demyelinating avian peripheral neuropathy produced by riboflavin deficiency. Acta Neuropathol. 2007;114:187-94 pubmed
  602. Peltonen S, Riehokainen J, Pummi K, Peltonen J. Tight junction components occludin, ZO-1, and claudin-1, -4 and -5 in active and healing psoriasis. Br J Dermatol. 2007;156:466-72 pubmed
  603. Endemann M, Bergmeister H, Bidmon B, Boehm M, Csaicsich D, Malaga Dieguez L, et al. Evidence for HSP-mediated cytoskeletal stabilization in mesothelial cells during acute experimental peritoneal dialysis. Am J Physiol Renal Physiol. 2007;292:F47-56 pubmed
  604. Akoyev V, Takemoto D. ZO-1 is required for protein kinase C gamma-driven disassembly of connexin 43. Cell Signal. 2007;19:958-67 pubmed
  605. Otani T, Ichii T, Aono S, Takeichi M. Cdc42 GEF Tuba regulates the junctional configuration of simple epithelial cells. J Cell Biol. 2006;175:135-46 pubmed
  606. Hajj R, Baranek T, Le Naour R, Lesimple P, Puchelle E, Coraux C. Basal cells of the human adult airway surface epithelium retain transit-amplifying cell properties. Stem Cells. 2007;25:139-48 pubmed
  607. Anstrom J, Thore C, Moody D, Brown W. Immunolocalization of tight junction proteins in blood vessels in human germinal matrix and cortex. Histochem Cell Biol. 2007;127:205-13 pubmed
  608. Guezguez B, Vigneron P, Alais S, Jaffredo T, Gavard J, Mège R, et al. A dileucine motif targets MCAM-l cell adhesion molecule to the basolateral membrane in MDCK cells. FEBS Lett. 2006;580:3649-56 pubmed
  609. Mandell K, Holley G, Parkos C, Edelhauser H. Antibody blockade of junctional adhesion molecule-A in rabbit corneal endothelial tight junctions produces corneal swelling. Invest Ophthalmol Vis Sci. 2006;47:2408-16 pubmed
  610. Ciolofan C, Li X, Olson C, Kamasawa N, Gebhardt B, Yasumura T, et al. Association of connexin36 and zonula occludens-1 with zonula occludens-2 and the transcription factor zonula occludens-1-associated nucleic acid-binding protein at neuronal gap junctions in rodent retina. Neuroscience. 2006;140:433-51 pubmed
  611. Imai F, Hirai S, Akimoto K, Koyama H, Miyata T, Ogawa M, et al. Inactivation of aPKClambda results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex. Development. 2006;133:1735-44 pubmed
  612. Sarkar O, Xia W, Mruk D. Adjudin-mediated junction restructuring in the seminiferous epithelium leads to displacement of soluble guanylate cyclase from adherens junctions. J Cell Physiol. 2006;208:175-87 pubmed
  613. Hirose T, Karasawa M, Sugitani Y, Fujisawa M, Akimoto K, Ohno S, et al. PAR3 is essential for cyst-mediated epicardial development by establishing apical cortical domains. Development. 2006;133:1389-98 pubmed
  614. Nguyen M, Rivera C, Griep A. Localization of PDZ domain containing proteins Discs Large-1 and Scribble in the mouse eye. Mol Vis. 2005;11:1183-99 pubmed
  615. Hyenne V, Louvet Vallee S, El Amraoui A, Petit C, Maro B, Simmler M. Vezatin, a protein associated to adherens junctions, is required for mouse blastocyst morphogenesis. Dev Biol. 2005;287:180-91 pubmed
  616. Pummi K, Aho H, Laato M, Peltonen J, Peltonen S. Tight junction proteins and perineurial cells in neurofibromas. J Histochem Cytochem. 2006;54:53-61 pubmed
  617. Slattery C, Campbell E, McMorrow T, Ryan M. Cyclosporine A-induced renal fibrosis: a role for epithelial-mesenchymal transition. Am J Pathol. 2005;167:395-407 pubmed
  618. Xia W, Wong C, Lee N, Lee W, Cheng C. Disruption of Sertoli-germ cell adhesion function in the seminiferous epithelium of the rat testis can be limited to adherens junctions without affecting the blood-testis barrier integrity: an in vivo study using an androgen suppression model. J Cell Physiol. 2005;205:141-57 pubmed
  619. Li X, Olson C, Lu S, Nagy J. Association of connexin36 with zonula occludens-1 in HeLa cells, betaTC-3 cells, pancreas, and adrenal gland. Histochem Cell Biol. 2004;122:485-98 pubmed
  620. Zeng R, Li X, Gorodeski G. Estrogen abrogates transcervical tight junctional resistance by acceleration of occludin modulation. J Clin Endocrinol Metab. 2004;89:5145-55 pubmed
  621. Moeller M, Soofi A, Braun G, Li X, Watzl C, Kriz W, et al. Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization. EMBO J. 2004;23:3769-79 pubmed
  622. Pummi K, Heape A, Grenman R, Peltonen J, Peltonen S. Tight junction proteins ZO-1, occludin, and claudins in developing and adult human perineurium. J Histochem Cytochem. 2004;52:1037-46 pubmed
  623. Parker L, Schmidt M, Jin S, Gray A, Beis D, Pham T, et al. The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature. 2004;428:754-8 pubmed
  624. Slobodov G, Feloney M, Gran C, Kyker K, Hurst R, Culkin D. Abnormal expression of molecular markers for bladder impermeability and differentiation in the urothelium of patients with interstitial cystitis. J Urol. 2004;171:1554-8 pubmed
  625. Watanabe T, Miyatani S, Katoh I, Kobayashi S, Ikawa Y. Expression of a novel secretory form (Crb1s) of mouse Crumbs homologue Crb1 in skin development. Biochem Biophys Res Commun. 2004;313:263-70 pubmed
  626. Berryman M, Goldenring J. CLIC4 is enriched at cell-cell junctions and colocalizes with AKAP350 at the centrosome and midbody of cultured mammalian cells. Cell Motil Cytoskeleton. 2003;56:159-72 pubmed
  627. Malminen M, Koivukangas V, Peltonen J, Karvonen S, Oikarinen A, Peltonen S. Immunohistological distribution of the tight junction components ZO-1 and occludin in regenerating human epidermis. Br J Dermatol. 2003;149:255-60 pubmed
  628. Siu M, Mruk D, Lee W, Cheng C. Adhering junction dynamics in the testis are regulated by an interplay of beta 1-integrin and focal adhesion complex-associated proteins. Endocrinology. 2003;144:2141-63 pubmed
  629. Lau A, Mruk D. Rab8B GTPase and junction dynamics in the testis. Endocrinology. 2003;144:1549-63 pubmed
  630. Manabe N, Hirai S, Imai F, Nakanishi H, Takai Y, Ohno S. Association of ASIP/mPAR-3 with adherens junctions of mouse neuroepithelial cells. Dev Dyn. 2002;225:61-9 pubmed
  631. Tavelin S, Gråsjö J, Taipalensuu J, Ocklind G, Artursson P. Applications of epithelial cell culture in studies of drug transport. Methods Mol Biol. 2002;188:233-72 pubmed
  632. Pummi K, Malminen M, Aho H, Karvonen S, Peltonen J, Peltonen S. Epidermal tight junctions: ZO-1 and occludin are expressed in mature, developing, and affected skin and in vitro differentiating keratinocytes. J Invest Dermatol. 2001;117:1050-8 pubmed