这是一篇来自已证抗体库的有关犬 VCL的综述,是根据246篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合VCL 抗体。
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 VCL抗体(CST, 4650)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). NPJ Breast Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 s4
赛信通(上海)生物试剂有限公司 VCL抗体(CST, 4650)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s4). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 VCL抗体(CST, 4650S)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 VCL抗体(Cell Signaling Technology, 4650)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. JCI Insight (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4c
赛信通(上海)生物试剂有限公司 VCL抗体(Cell Signaling, 4650)被用于被用于免疫印迹在小鼠样本上 (图 s4c). iScience (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 VCL抗体(Cell Signaling, 4650)被用于被用于免疫印迹在人类样本上 (图 6d). Mol Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:30; 图 5b
赛信通(上海)生物试剂有限公司 VCL抗体(Cell Signaling, 4650)被用于被用于免疫印迹在小鼠样本上浓度为1:30 (图 5b). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 VCL抗体(Cell signaling, 4650)被用于被用于免疫印迹在人类样本上 (图 2b). Genes (Basel) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 VCL抗体(Cell Signaling, 4650)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Am J Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 VCL抗体(Cell signaling, 4650)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司 VCL抗体(Cell Signaling Technologies, 4650S)被用于被用于免疫印迹在人类样本上 (图 s3). Proc Natl Acad Sci U S A (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 5h
西格玛奥德里奇 VCL抗体(Merck, V9131)被用于被用于免疫印迹在小鼠样本上 (图 5h). elife (2022) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠; 1:200; 图 5b
西格玛奥德里奇 VCL抗体(Sigma, V9264)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5b). PLoS Genet (2022) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:250; 图 4a
西格玛奥德里奇 VCL抗体(Sigma/Aldrich, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 4a). J Cell Mol Med (2022) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:3000; 图 5e
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5e). Cell Rep (2021) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 s5d
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上 (图 s5d). Nat Commun (2021) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 3a
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上 (图 3a). J Cell Biol (2021) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 图 3c
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上 (图 3c). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:1000; 图 1a
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:2000; 图 9e
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 9e). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:1000; 图 1a
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Arch Toxicol (2021) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:1000; 图 1a
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:200; 图 2e
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2e). Nat Commun (2021) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠; 1:400; 图 1a
  • 免疫细胞化学; 人类; 1:400; 图 1a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1a) 和 被用于免疫细胞化学在人类样本上浓度为1:400 (图 1a). elife (2021) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:2000; 图 3a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3a). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 4a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上 (图 4a). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:2000; 图 1a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1a). elife (2020) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:5000; 图 s3-1b
西格玛奥德里奇 VCL抗体(Sigma, hVIN-1)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s3-1b). elife (2020) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:20,000; 图 3b
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 3b). elife (2020) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫组化-冰冻切片; 小鼠; 图 s3
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 3d
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 3d). Science (2020) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:10,000; 图 3b, 3e
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3b, 3e). Mol Oncol (2020) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 7d
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 7d). elife (2020) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:400
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:400. elife (2020) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 4c
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上 (图 4c). elife (2020) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 3a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上 (图 3a). Sci Adv (2020) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:500
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上浓度为1:500. elife (2020) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在小鼠样本上. elife (2020) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 VCL抗体(Sigma, v9131)被用于被用于免疫印迹在人类样本上 (图 1a). Breast Cancer Res (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:10,000; 图 4d, 4f, e2a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4d, 4f, e2a). Nature (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 图 10a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上 (图 10a). elife (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 s3d
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上 (图 s3d). Science (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:10,000; 图 s7a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s7a). Sci Adv (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 s6a
西格玛奥德里奇 VCL抗体(Sigma, V9264)被用于被用于免疫印迹在人类样本上 (图 s6a). Cell (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠; 1:200; 图 5s2b
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5s2b). elife (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 大鼠; 1:15,000; 图 3e
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在大鼠样本上浓度为1:15,000 (图 3e). Am J Physiol Regul Integr Comp Physiol (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:400; 图 5a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 5a). Oncogene (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:2000; 图 2c
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9264)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2c). elife (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 ex4a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 ex4a). Nature (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:2000; 图 2c
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2c). Science (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:250; 图 2b
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 2b). elife (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 1c
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 1c). Cell (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠; 1:400; 图 4a
西格玛奥德里奇 VCL抗体(Sigma, v9131)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 4a). Nat Commun (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:10,000; 图 1a
西格玛奥德里奇 VCL抗体(Sigma, V9264)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1a). Nat Commun (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 1c
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上 (图 1c). Mol Cell (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 图 7a
  • 免疫印迹; 人类; 1:5000; 图 6a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上 (图 7a) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 6a). PLoS Biol (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:10,000; 图 4a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4a). Sci Adv (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇 VCL抗体(SIGMA, V9264)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Rep (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:10,000; 图 3a
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3a). Nat Commun (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:200; 图 4b
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4b) 和 被用于免疫印迹在人类样本上 (图 4b). Nat Cell Biol (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:2500; 图 1i
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 1i). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:1000; 图 3b
西格玛奥德里奇 VCL抗体(Sigma, hVIN-1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Br J Cancer (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 s22c
西格玛奥德里奇 VCL抗体(Sigma, v9131)被用于被用于免疫印迹在小鼠样本上 (图 s22c). Science (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 图 3g
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上 (图 3g). Curr Biol (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 2c
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上 (图 2c). Front Physiol (2018) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:2000; 图 1e
西格玛奥德里奇 VCL抗体(Sigma, V9264)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1e). Ann Rheum Dis (2019) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 2c, s3b, s4d, s12b
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, hVIN-1)被用于被用于免疫印迹在人类样本上 (图 2c, s3b, s4d, s12b). Science (2018) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 犬; 1:1000; 图 2a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 2a). Science (2018) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 3d
西格玛奥德里奇 VCL抗体(Sigma Aldrich, V9131)被用于被用于免疫印迹在小鼠样本上 (图 3d). PLoS Biol (2018) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 s2f
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 s2f). Science (2018) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠; 1:200; 图 4g
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4g). J Cell Biol (2018) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:2000; 图 3a
  • 免疫细胞化学; 犬; 1:2000; 图 s2b
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 3a) 和 被用于免疫细胞化学在犬样本上浓度为1:2000 (图 s2b). J Cell Sci (2018) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 s3a
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, hVIN-1)被用于被用于免疫印迹在人类样本上 (图 s3a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:700; 图 3b
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:700 (图 3b). J Cell Biol (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 犬; 图 5b
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫细胞化学在犬样本上 (图 5b). PLoS ONE (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠; 图 2d
  • 免疫细胞化学; 人类; 1:10,000; 图 2d
西格玛奥德里奇 VCL抗体(Sigma, V-9131)被用于被用于免疫细胞化学在小鼠样本上 (图 2d) 和 被用于免疫细胞化学在人类样本上浓度为1:10,000 (图 2d). Nat Commun (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 1a
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在小鼠样本上 (图 1a). J Neurosci (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇 VCL抗体(Sigma Aldrich, V9264)被用于被用于免疫印迹在人类样本上 (图 3c). Curr Biol (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 s2f
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9264)被用于被用于免疫印迹在小鼠样本上 (图 s2f). Nature (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:400; 图 2e
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2e). Nat Commun (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 2f
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上 (图 2f). Nat Microbiol (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:5000; 图 5d
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5d). PLoS ONE (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:10,000; 图 7c
西格玛奥德里奇 VCL抗体(Sigma, hVIN-1)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 7c). J Clin Invest (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫组化; 人类; 图 4b
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫组化在人类样本上 (图 4b). Oncotarget (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Biol Sex Differ (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:10,000; 图 3c
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3c). Acta Neuropathol Commun (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 鸡; 图 1
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫细胞化学在鸡样本上 (图 1). Mol Biol Cell (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 大鼠; 1:3000; 图 4c
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在大鼠样本上浓度为1:3000 (图 4c). Cell Signal (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:400; 图 1b
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1b). J Cell Biol (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:1000; 图 s6a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6a). Sci Rep (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 7a
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:250,000; 图 2a
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上浓度为1:250,000 (图 2a). Brain (2017) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). Cell Discov (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:400; 图 1a
西格玛奥德里奇 VCL抗体(Sigma, hVin-1)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1a). Sci Rep (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 9a
  • 免疫细胞化学; 小鼠; 图 1b
  • 免疫印迹; 小鼠; 图 1e
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 9a), 被用于免疫细胞化学在小鼠样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上 (图 1e). Oncotarget (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:5000; 图 5a
西格玛奥德里奇 VCL抗体(Sigma, hVIN-1)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5a). Nat Immunol (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠; 图 7a
  • 免疫细胞化学; 人类; 图 3e
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, hVIN1)被用于被用于免疫细胞化学在小鼠样本上 (图 7a) 和 被用于免疫细胞化学在人类样本上 (图 3e). J Cell Biol (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 s4a
  • 免疫印迹; 小鼠; 图 4j
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 s4a) 和 被用于免疫印迹在小鼠样本上 (图 4j). Nature (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫组化-石蜡切片; 斑马鱼; 1:200; 图 7c
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:200 (图 7c). Development (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 图 2a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上 (图 2a). Cell Death Discov (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 图 1
西格玛奥德里奇 VCL抗体(Sigma, V-9131)被用于被用于免疫细胞化学在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 大鼠; 图 1
西格玛奥德里奇 VCL抗体(Sigma, V9264)被用于被用于免疫细胞化学在大鼠样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:500; 图 4d
西格玛奥德里奇 VCL抗体(Sigma, HVIN-1)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4d). Sci Rep (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:6000; 图 1
  • 免疫印迹; 大鼠; 1:6000; 图 1
  • 免疫印迹; 人类; 1:6000; 图 1
西格玛奥德里奇 VCL抗体(Sigma, V9264)被用于被用于免疫印迹在小鼠样本上浓度为1:6000 (图 1), 被用于免疫印迹在大鼠样本上浓度为1:6000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:6000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 1). elife (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:100; 图 1
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠; 1:400; 图 4c
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 4c). Nat Med (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 VCL抗体(Sigma, V9264)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(V284)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 VCL抗体(Sigma, SAB4200080)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上. elife (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:5000; 图 4b
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4b). Nat Commun (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Rep (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 图 1d
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上 (图 1d). J Cell Sci (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:100
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Cancer Res (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠; 1:400; 图 1B
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1B). PLoS ONE (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上 (图 5). Genes Dev (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 大鼠; 图 2c
西格玛奥德里奇 VCL抗体(Sigma, h-VIN1)被用于被用于免疫细胞化学在大鼠样本上 (图 2c). J Biol Chem (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:400; 图 4e
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 4e). Adv Healthc Mater (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 VCL抗体(Sigma, hVIN-1)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Cancer Sci (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:1000; 图 8
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). J Comp Neurol (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:1000; 图 s5
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Cell Rep (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
西格玛奥德里奇 VCL抗体(Sigma, V9264)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). Nat Cell Biol (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:10,000; 图 s4
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s4). Nature (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 图 2a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上 (图 2a). Cell Adh Migr (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5). J Cell Sci (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:1000; 图 4
西格玛奥德里奇 VCL抗体(Sigma, V9264-200UL)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 图 1f
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫细胞化学在人类样本上 (图 1f). J Cell Sci (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:10,000; 图 s1
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:5000; 表 4
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上浓度为1:5000 (表 4). Nat Struct Mol Biol (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 大鼠; 1:250; 图 7c
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250 (图 7c). Biochem J (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 s3
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 s3). Cell Rep (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:1000; 图 s5
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). J Cell Biol (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4
西格玛奥德里奇 VCL抗体(Sigma Aldrich, V9264)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4). Biotechnol Bioeng (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, hVIN-1)被用于被用于免疫印迹在人类样本上 (图 2). EMBO Mol Med (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 图 2
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫细胞化学在人类样本上 (图 2). Oncogene (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 2d
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, hVIN-1)被用于被用于免疫印迹在人类样本上 (图 2d). Cell Cycle (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 s4
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上 (图 s4). Mol Biol Cell (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 3e
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上 (图 3e). Cell Metab (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 VCL抗体(Sigma, hVIN-1)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 1c
西格玛奥德里奇 VCL抗体(Sigma, V9264)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:400; 图 6
  • 免疫印迹; 人类; 1:1000; 图 5
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Cell Biol (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 s6c
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 s6c). Nat Commun (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 VCL抗体(Sigma, V9264)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 大鼠; 图 8
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在大鼠样本上 (图 8). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; fishes ; 1:800; 图 3D
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在fishes 样本上浓度为1:800 (图 3D). Biophys J (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:1000; 表 1
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Sci (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠; 图 3
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在小鼠样本上 (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; moga; 1:800; 图 3a
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在moga样本上浓度为1:800 (图 3a). Cell Struct Funct (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 2c
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇 VCL抗体(Sigma, V9264)被用于被用于免疫印迹在小鼠样本上 (图 5). J Cell Biol (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:50; 图 1a
西格玛奥德里奇 VCL抗体(Sigma, hVin-1)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1a). elife (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 3). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:10,000; 图 1
  • 免疫印迹; 小鼠; 1:10,000; 图 3
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9264)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 3b
西格玛奥德里奇 VCL抗体(Sigma, 9264)被用于被用于免疫印迹在小鼠样本上 (图 3b). EMBO Mol Med (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫组化; 人类; 1:5000; 表 1
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫组化在人类样本上浓度为1:5000 (表 1). J Anat (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:1000; 图 2
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9264)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Genet (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫组化; 小鼠; 1:100; 表 2
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫组化在小鼠样本上浓度为1:100 (表 2). Dev Biol (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 s8
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9264)被用于被用于免疫印迹在人类样本上 (图 s8). PLoS Genet (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 s1
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在小鼠样本上 (图 s1) 和 被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:200; 图 s3d
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s3d). Nat Commun (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上 (图 5). Front Oncol (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:200; 图 4
  • 免疫印迹; 人类; 1:4000; 图 s3
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:4000 (图 s3). Nat Cell Biol (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:400; 图 6
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 6). J Cell Sci (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 VCL抗体(Sigma, V9264)被用于被用于免疫印迹在小鼠样本上 (图 3). elife (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上 (图 5). PLoS Genet (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:400; 图 5
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 5). Nat Cell Biol (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:5000; 图 4
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 4). PLoS Genet (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:10,000; 图 3a
西格玛奥德里奇 VCL抗体(Sigma Aldrich, HVIN-1)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3a). Oncotarget (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 图 3c
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9264)被用于被用于免疫细胞化学在人类样本上 (图 3c). J Cell Biol (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在小鼠样本上 (图 3). Nat Struct Mol Biol (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 大鼠; 1:5000
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Mol Cell Biol (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 仓鼠; 1:500; 图 10
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在仓鼠样本上浓度为1:500 (图 10). J Cell Biol (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:1000; 图 2
西格玛奥德里奇 VCL抗体(Sigma, hVIN-1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上. Gene Ther (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 家羊; 1:5000
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在家羊样本上浓度为1:5000. J Sci Food Agric (2016) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 大鼠; 图 5c
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9264)被用于被用于免疫细胞化学在大鼠样本上 (图 5c). J Cell Biol (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 图 4
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类
西格玛奥德里奇 VCL抗体(Sigma, hVIN-1)被用于被用于免疫细胞化学在人类样本上. Exp Dermatol (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上. Integr Biol (Camb) (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 牛
  • 免疫印迹; 犬
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在牛样本上 和 被用于免疫印迹在犬样本上. Int J Mol Med (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:100
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Biomaterials (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:1000; 图 4
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:100
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Eur Cell Mater (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:10,000; 图 6
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 仓鼠; 1:1000; 图 2
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在仓鼠样本上浓度为1:1000 (图 2). Biotechnol J (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类
西格玛奥德里奇 VCL抗体(Sigma-CAldrich, V9131)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:15,000; 图 3c
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上浓度为1:15,000 (图 3c). Nat Neurosci (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫组化; 人类; 1:200
西格玛奥德里奇 VCL抗体(Sigma Aldrich, V9264)被用于被用于免疫组化在人类样本上浓度为1:200. Ann Biomed Eng (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 图 s5
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上 (图 s5). Oncotarget (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 6). Cancer Cell (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:2000; 图 s5
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s5). Nat Cell Biol (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, hVIN-1)被用于被用于免疫印迹在人类样本上. J Virol (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 s3a
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Cell Death Differ (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫组化-冰冻切片; 小鼠; 图 3
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上. Neurobiol Dis (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:50,000
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上浓度为1:50,000. PLoS ONE (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:1000; 图 4
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Genes Dev (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, hVIN1)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. J Cell Physiol (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; African green monkey; 图 s2c
西格玛奥德里奇 VCL抗体(Sigma, V9264)被用于被用于免疫细胞化学在African green monkey样本上 (图 s2c). Nature (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类
西格玛奥德里奇 VCL抗体(Sigma, # V9131)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 VCL抗体(Sigma, hVIN-1)被用于被用于免疫细胞化学在小鼠样本上. Exp Cell Res (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 大鼠
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, hVin-1)被用于被用于免疫细胞化学在大鼠样本上. Matrix Biol (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 3). Mol Pharm (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 1:15,000
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9264)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000. J Proteome Res (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上 (图 5). J Med Chem (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, hVIN-1)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; African green monkey
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫细胞化学在African green monkey样本上. Soft Matter (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 6
  • 免疫细胞化学; African green monkey; 图 s1
西格玛奥德里奇 VCL抗体(Sigma, V9264)被用于被用于免疫细胞化学在人类样本上 (图 2), 被用于免疫印迹在人类样本上 (图 6) 和 被用于免疫细胞化学在African green monkey样本上 (图 s1). PLoS ONE (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类
西格玛奥德里奇 VCL抗体(Sigma Aldrich, hVIN1)被用于被用于免疫细胞化学在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠; 1:400
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400. Adv Funct Mater (2013) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在人类样本上 (图 1). J Leukoc Biol (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫组化; 人类; 1:100
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫组化在人类样本上浓度为1:100. J Invest Dermatol (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 大鼠; 1:10,000
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000. Pflugers Arch (2015) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫印迹在小鼠样本上 (图 3). J Neurosci (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 1:700; 图 3
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上浓度为1:700 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:100,000; 图 6
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在人类样本上浓度为1:100,000 (图 6). J Cell Sci (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 小鼠
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类
西格玛奥德里奇 VCL抗体(Sigma, V9264)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. FEBS Lett (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫组化; 大鼠; 1:500
西格玛奥德里奇 VCL抗体(Sigma, V9264)被用于被用于免疫组化在大鼠样本上浓度为1:500. Cell Tissue Res (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 大鼠
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在大鼠样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫组化-冰冻切片; 小鼠; 图 6
  • 免疫沉淀; 小鼠; 图 5, 7
  • 免疫印迹; 小鼠; 图 5, 7
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6), 被用于免疫沉淀在小鼠样本上 (图 5, 7) 和 被用于免疫印迹在小鼠样本上 (图 5, 7). J Cell Sci (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类; 5 ug/ml; 图 2
西格玛奥德里奇 VCL抗体(Sigma, V9264)被用于被用于免疫细胞化学在人类样本上浓度为5 ug/ml (图 2). Mol Biol Cell (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 人类
西格玛奥德里奇 VCL抗体(Sigma, V9131)被用于被用于免疫细胞化学在人类样本上. J Biomed Mater Res A (2014) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V-9131)被用于被用于免疫印迹在人类样本上浓度为1:5000. Genes Dev (2013) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠
  • 免疫细胞化学; 大鼠
  • 免疫细胞化学; 人类
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, hVIN1)被用于被用于免疫细胞化学在小鼠样本上, 被用于免疫细胞化学在大鼠样本上 和 被用于免疫细胞化学在人类样本上. Biol Cell (2013) ncbi
小鼠 单克隆(hVIN-1)
  • 免疫细胞化学; 小鼠; 1:100
西格玛奥德里奇 VCL抗体(Sigma-Aldrich, V9131)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. J Biomed Mater Res A (2012) ncbi
文章列表
  1. Kennedy L, Glesaaen E, Palibrk V, Pannone M, Wang W, Al Jabri A, et al. Lactate receptor HCAR1 regulates neurogenesis and microglia activation after neonatal hypoxia-ischemia. elife. 2022;11: pubmed 出版商
  2. Inubushi T, Nakanishi Y, Abe M, Takahata Y, Nishimura R, Kurosaka H, et al. The cell surface hyaluronidase TMEM2 plays an essential role in mouse neural crest cell development and survival. PLoS Genet. 2022;18:e1009765 pubmed 出版商
  3. Choi J, Maddala R, Karnam S, Skiba N, Vann R, Challa P, et al. Role of vasorin, an anti-apoptotic, anti-TGF-β and hypoxia-induced glycoprotein in the trabecular meshwork cells and glaucoma. J Cell Mol Med. 2022;26:2063-2075 pubmed 出版商
  4. Ma S, Mangala L, Hu W, Bayaktar E, Yokoi A, Hu W, et al. CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance. Cell Rep. 2021;36:109549 pubmed 出版商
  5. Joh D, Heggestad J, Zhang S, Anderson G, Bhattacharyya J, Wardell S, et al. Cellphone enabled point-of-care assessment of breast tumor cytology and molecular HER2 expression from fine-needle aspirates. NPJ Breast Cancer. 2021;7:85 pubmed 出版商
  6. Hamm M, Sohier P, Petit V, Raymond J, Delmas V, Le Coz M, et al. BRN2 is a non-canonical melanoma tumor-suppressor. Nat Commun. 2021;12:3707 pubmed 出版商
  7. Garcia Garcia S, Rodrigo Faus M, Fonseca N, Manzano S, Gyorffy B, Ocana A, et al. HGK promotes metastatic dissemination in prostate cancer. Sci Rep. 2021;11:12287 pubmed 出版商
  8. Leon K, Buj R, Lesko E, Dahl E, Chen C, Tangudu N, et al. DOT1L modulates the senescence-associated secretory phenotype through epigenetic regulation of IL1A. J Cell Biol. 2021;220: pubmed 出版商
  9. Shi X, Wen Z, Wang Y, Liu Y, Shi K, Jiu Y. Feedback-Driven Mechanisms Between Phosphorylated Caveolin-1 and Contractile Actin Assemblies Instruct Persistent Cell Migration. Front Cell Dev Biol. 2021;9:665919 pubmed 出版商
  10. Tan A, PRASAD R, Jho E. TFEB regulates pluripotency transcriptional network in mouse embryonic stem cells independent of autophagy-lysosomal biogenesis. Cell Death Dis. 2021;12:343 pubmed 出版商
  11. Huang J, Zhang Q, Shen J, Chen X, Ma S. Multi-omics analysis identifies potential mechanisms of AURKB in mediating poor outcome of lung adenocarcinoma. Aging (Albany NY). 2021;13:5946-5966 pubmed 出版商
  12. Das Y, Swinkels D, Kocherlakota S, Vinckier S, Vaz F, Wever E, et al. Peroxisomal Multifunctional Protein 2 Deficiency Perturbs Lipid Homeostasis in the Retina and Causes Visual Dysfunction in Mice. Front Cell Dev Biol. 2021;9:632930 pubmed 出版商
  13. Lasch A, Marx Stoelting P, Braeuning A, Lichtenstein D. More than additive effects on liver triglyceride accumulation by combinations of steatotic and non-steatotic pesticides in HepaRG cells. Arch Toxicol. 2021;95:1397-1411 pubmed 出版商
  14. Buj R, Leon K, Anguelov M, Aird K. Suppression of p16 alleviates the senescence-associated secretory phenotype. Aging (Albany NY). 2021;13:3290-3312 pubmed 出版商
  15. Ramirez Martinez A, Zhang Y, Chen K, Kim J, Cenik B, McAnally J, et al. The nuclear envelope protein Net39 is essential for muscle nuclear integrity and chromatin organization. Nat Commun. 2021;12:690 pubmed 出版商
  16. Lehtimäki J, Rajakylä E, Tojkander S, Lappalainen P. Generation of stress fibers through myosin-driven reorganization of the actin cortex. elife. 2021;10: pubmed 出版商
  17. Price N, Zhang X, Fernández Tussy P, Singh A, Burnap S, Rotllan N, et al. Loss of hepatic miR-33 improves metabolic homeostasis and liver function without altering body weight or atherosclerosis. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  18. Chibaya L, Karim B, Zhang H, Jones S. Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  19. Nason S, Antipenko J, Presedo N, Cunningham S, Pierre T, Kim T, et al. Glucagon receptor signaling regulates weight loss via central KLB receptor complexes. JCI Insight. 2021;6: pubmed 出版商
  20. Pavlova N, King B, Josselsohn R, Violante S, Macera V, Vardhana S, et al. Translation in amino-acid-poor environments is limited by tRNAGln charging. elife. 2020;9: pubmed 出版商
  21. Crespo M, González Terán B, Nikolic I, Mora A, Folgueira C, Rodriguez E, et al. Neutrophil infiltration regulates clock-gene expression to organize daily hepatic metabolism. elife. 2020;9: pubmed 出版商
  22. Terrey M, Adamson S, Gibson A, Deng T, Ishimura R, Chuang J, et al. GTPBP1 resolves paused ribosomes to maintain neuronal homeostasis. elife. 2020;9: pubmed 出版商
  23. Schuld J, Orfanos Z, Chevessier F, Eggers B, Heil L, Uszkoreit J, et al. Homozygous expression of the myofibrillar myopathy-associated p.W2710X filamin C variant reveals major pathomechanisms of sarcomeric lesion formation. Acta Neuropathol Commun. 2020;8:154 pubmed 出版商
  24. Barnat M, Capizzi M, Aparicio E, Boluda S, Wennagel D, Kacher R, et al. Huntington's disease alters human neurodevelopment. Science. 2020;369:787-793 pubmed 出版商
  25. Thomsen E, Rovsing A, Anderson M, Due H, Huang J, Luo Y, et al. Identification of BLNK and BTK as mediators of rituximab-induced programmed cell death by CRISPR screens in GCB-subtype diffuse large B-cell lymphoma. Mol Oncol. 2020;: pubmed 出版商
  26. Damiano Guercio J, Kurzawa L, Mueller J, Dimchev G, Schaks M, Nemethova M, et al. Loss of Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent adhesion. elife. 2020;9: pubmed 出版商
  27. D Souza R, Lim J, Turgut A, Servage K, Zhang J, Orth K, et al. Calcium-stimulated disassembly of focal adhesions mediated by an ORP3/IQSec1 complex. elife. 2020;9: pubmed 出版商
  28. Chu S, Chabon J, Matovina C, Minehart J, Chen B, Zhang J, et al. Loss of H3K36 Methyltransferase SETD2 Impairs V(D)J Recombination during Lymphoid Development. iScience. 2020;23:100941 pubmed 出版商
  29. Atashpaz S, Samadi Shams S, Gonzalez J, Sebestyén E, Arghavanifard N, Gnocchi A, et al. ATR expands embryonic stem cell fate potential in response to replication stress. elife. 2020;9: pubmed 出版商
  30. Zhang Y, Li H, Min Y, Sanchez Ortiz E, Huang J, Mireault A, et al. Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Sci Adv. 2020;6:eaay6812 pubmed 出版商
  31. Mukherjee A, Singh R, Udayan S, Biswas S, Reddy P, Manmadhan S, et al. A Fyn biosensor reveals pulsatile, spatially localized kinase activity and signaling crosstalk in live mammalian cells. elife. 2020;9: pubmed 出版商
  32. Goswami D, Chen D, Yang Y, Gudla P, Columbus J, Worthy K, et al. Membrane interactions of the globular domain and the hypervariable region of KRAS4b define its unique diffusion behavior. elife. 2020;9: pubmed 出版商
  33. Patel H, Tao N, Lee K, Huerta M, Arlt H, Mullarkey T, et al. Elacestrant (RAD1901) exhibits anti-tumor activity in multiple ER+ breast cancer models resistant to CDK4/6 inhibitors. Breast Cancer Res. 2019;21:146 pubmed 出版商
  34. Ramírez C, Hauser A, Vucic E, Bar Sagi D. Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis. Nature. 2019;576:477-481 pubmed 出版商
  35. Luxan G, Stewen J, Díaz N, Kato K, Maney S, Aravamudhan A, et al. Endothelial EphB4 maintains vascular integrity and transport function in adult heart. elife. 2019;8: pubmed 出版商
  36. de Morrée A, Klein J, Gan Q, Farup J, Urtasun A, Kanugovi A, et al. Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function. Science. 2019;366:734-738 pubmed 出版商
  37. Perera O, Sobinoff A, Teber E, Harman A, Maritz M, Yang S, et al. Telomerase promotes formation of a telomere protective complex in cancer cells. Sci Adv. 2019;5:eaav4409 pubmed 出版商
  38. Lundby A, Franciosa G, Emdal K, Refsgaard J, Gnosa S, Bekker Jensen D, et al. Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell. 2019;179:543-560.e26 pubmed 出版商
  39. Laurin M, Gomez N, Levorse J, Sendoel A, Sribour M, Fuchs E. An RNAi screen unravels the complexities of Rho GTPase networks in skin morphogenesis. elife. 2019;8: pubmed 出版商
  40. Presby D, Checkley L, Jackman M, Higgins J, Jones K, Giles E, et al. Regular exercise potentiates energetically expensive hepatic de novo lipogenesis during early weight regain. Am J Physiol Regul Integr Comp Physiol. 2019;317:R684-R695 pubmed 出版商
  41. Marcus J, Bejerano Sagie M, Patterson N, Bagchi S, Verkhusha V, Connolly D, et al. Septin 9 isoforms promote tumorigenesis in mammary epithelial cells by increasing migration and ECM degradation through metalloproteinase secretion at focal adhesions. Oncogene. 2019;38:5839-5859 pubmed 出版商
  42. Carvalho J, Fortunato I, Fonseca C, Pezzarossa A, Barbacena P, Domínguez Cejudo M, et al. Non-canonical Wnt signaling regulates junctional mechanocoupling during angiogenic collective cell migration. elife. 2019;8: pubmed 出版商
  43. Parolia A, Cieslik M, Chu S, Xiao L, Ouchi T, Zhang Y, et al. Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature. 2019;: pubmed 出版商
  44. Chaves Pérez A, Yilmaz M, Perna C, de la Rosa S, Djouder N. URI is required to maintain intestinal architecture during ionizing radiation. Science. 2019;364: pubmed 出版商
  45. Bayer S, Grither W, Brenot A, Hwang P, Barcus C, Ernst M, et al. DDR2 controls breast tumor stiffness and metastasis by regulating integrin mediated mechanotransduction in CAFs. elife. 2019;8: pubmed 出版商
  46. Gregersen L, Mitter R, Ugalde A, Nojima T, Proudfoot N, Agami R, et al. SCAF4 and SCAF8, mRNA Anti-Terminator Proteins. Cell. 2019;: pubmed 出版商
  47. Kang H, Yang B, Zhang K, Pan Q, Yuan W, Li G, et al. Immunoregulation of macrophages by dynamic ligand presentation via ligand-cation coordination. Nat Commun. 2019;10:1696 pubmed 出版商
  48. Araiz C, Yan A, Bettedi L, Samuelson I, Virtue S, McGavigan A, et al. Enhanced β-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110α inactivation in adipose tissue. Nat Commun. 2019;10:1546 pubmed 出版商
  49. Baluapuri A, Hofstetter J, Dudvarski Stankovic N, Endres T, Bhandare P, Vos S, et al. MYC Recruits SPT5 to RNA Polymerase II to Promote Processive Transcription Elongation. Mol Cell. 2019;74:674-687.e11 pubmed 出版商
  50. Miller C, Lou H, Simpson C, van de Kooij B, Ha B, Fisher O, et al. Comprehensive profiling of the STE20 kinase family defines features essential for selective substrate targeting and signaling output. PLoS Biol. 2019;17:e2006540 pubmed 出版商
  51. Aranda S, Alcaine Colet A, Blanco E, Borras E, Caillot C, Sabidó E, et al. Chromatin capture links the metabolic enzyme AHCY to stem cell proliferation. Sci Adv. 2019;5:eaav2448 pubmed 出版商
  52. Gentili M, Lahaye X, Nadalin F, Nader G, Puig Lombardi E, Hervé S, et al. The N-Terminal Domain of cGAS Determines Preferential Association with Centromeric DNA and Innate Immune Activation in the Nucleus. Cell Rep. 2019;26:2377-2393.e13 pubmed 出版商
  53. Kurelac I, Iommarini L, Vatrinet R, Amato L, De Luise M, Leone G, et al. Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses. Nat Commun. 2019;10:903 pubmed 出版商
  54. Moro A, Driscoll T, Boraas L, Armero W, Kasper D, Baeyens N, et al. MicroRNA-dependent regulation of biomechanical genes establishes tissue stiffness homeostasis. Nat Cell Biol. 2019;21:348-358 pubmed 出版商
  55. Chun J, Zhang J, Wilkins M, Subramanian B, Riella C, Magraner J, et al. Recruitment of APOL1 kidney disease risk variants to lipid droplets attenuates cell toxicity. Proc Natl Acad Sci U S A. 2019;116:3712-3721 pubmed 出版商
  56. Martin V, Chiriaco C, Modica C, Acquadro A, Cortese M, Galimi F, et al. Met inhibition revokes IFNγ-induction of PD-1 ligands in MET-amplified tumours. Br J Cancer. 2019;120:527-536 pubmed 出版商
  57. Nicetto D, Donahue G, Jain T, Peng T, Sidoli S, Sheng L, et al. H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification. Science. 2019;363:294-297 pubmed 出版商
  58. Jiu Y, Kumari R, Fenix A, Schaible N, Liu X, Varjosalo M, et al. Myosin-18B Promotes the Assembly of Myosin II Stacks for Maturation of Contractile Actomyosin Bundles. Curr Biol. 2019;29:81-92.e5 pubmed 出版商
  59. Degen M, Wiederkehr A, La Scala G, Carmann C, Schnyder I, Katsaros C. Keratinocytes Isolated From Individual Cleft Lip/Palate Patients Display Variations in Their Differentiation Potential in vitro. Front Physiol. 2018;9:1703 pubmed 出版商
  60. Schlenner S, Pasciuto E, Lagou V, Burton O, Prezzemolo T, Junius S, et al. NFIL3 mutations alter immune homeostasis and sensitise for arthritis pathology. Ann Rheum Dis. 2019;78:342-349 pubmed 出版商
  61. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362: pubmed 出版商
  62. Amoasii L, Hildyard J, Li H, Sanchez Ortiz E, Mireault A, Caballero D, et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science. 2018;362:86-91 pubmed 出版商
  63. Matesanz N, Nikolic I, Leiva M, Pulgarín Alfaro M, Santamans A, Bernardo E, et al. p38α blocks brown adipose tissue thermogenesis through p38δ inhibition. PLoS Biol. 2018;16:e2004455 pubmed 出版商
  64. Muhar M, Ebert A, Neumann T, Umkehrer C, Jude J, Wieshofer C, et al. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science. 2018;360:800-805 pubmed 出版商
  65. Hoefert J, Bjerke G, Wang D, Yi R. The microRNA-200 family coordinately regulates cell adhesion and proliferation in hair morphogenesis. J Cell Biol. 2018;217:2185-2204 pubmed 出版商
  66. Huang T, Fowler F, Chen C, Shen Z, SLECKMAN B, Tyler J. The Histone Chaperones ASF1 and CAF-1 Promote MMS22L-TONSL-Mediated Rad51 Loading onto ssDNA during Homologous Recombination in Human Cells. Mol Cell. 2018;69:879-892.e5 pubmed 出版商
  67. Ibar C, Kirichenko E, Keepers B, Enners E, Fleisch K, Irvine K. Tension-dependent regulation of mammalian Hippo signaling through LIMD1. J Cell Sci. 2018;131: pubmed 出版商
  68. Ong D, Hu B, Ho Y, Sauvé C, Bristow C, Wang Q, et al. PAF promotes stemness and radioresistance of glioma stem cells. Proc Natl Acad Sci U S A. 2017;114:E9086-E9095 pubmed 出版商
  69. Lehtimäki J, Fenix A, Kotila T, Balistreri G, Paavolainen L, Varjosalo M, et al. UNC-45a promotes myosin folding and stress fiber assembly. J Cell Biol. 2017;216:4053-4072 pubmed 出版商
  70. Fredriksson Lidman K, Van Itallie C, Tietgens A, Anderson J. Sorbin and SH3 domain-containing protein 2 (SORBS2) is a component of the acto-myosin ring at the apical junctional complex in epithelial cells. PLoS ONE. 2017;12:e0185448 pubmed 出版商
  71. Huet Calderwood C, Rivera Molina F, Iwamoto D, Kromann E, Toomre D, Calderwood D. Novel ecto-tagged integrins reveal their trafficking in live cells. Nat Commun. 2017;8:570 pubmed 出版商
  72. Yang Y, Yang S, Guo J, Cui Y, Tang B, Li X, et al. Synergistic Toxicity of Polyglutamine-Expanded TATA-Binding Protein in Glia and Neuronal Cells: Therapeutic Implications for Spinocerebellar Ataxia 17. J Neurosci. 2017;37:9101-9115 pubmed 出版商
  73. Joachim J, Razi M, Judith D, Wirth M, Calamita E, Encheva V, et al. Centriolar Satellites Control GABARAP Ubiquitination and GABARAP-Mediated Autophagy. Curr Biol. 2017;27:2123-2136.e7 pubmed 出版商
  74. Emmett M, Lim H, Jager J, Richter H, Adlanmerini M, Peed L, et al. Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge. Nature. 2017;546:544-548 pubmed 出版商
  75. Nardone G, Oliver De La Cruz J, Vrbsky J, Martini C, Pribyl J, Skladal P, et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat Commun. 2017;8:15321 pubmed 出版商
  76. van Wijk S, Fricke F, Herhaus L, Gupta J, Hötte K, Pampaloni F, et al. Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-?B and restricts bacterial proliferation. Nat Microbiol. 2017;2:17066 pubmed 出版商
  77. Thamotharan S, Chu A, Kempf K, Janzen C, Grogan T, Elashoff D, et al. Differential microRNA expression in human placentas of term intra-uterine growth restriction that regulates target genes mediating angiogenesis and amino acid transport. PLoS ONE. 2017;12:e0176493 pubmed 出版商
  78. Olvedy M, Tisserand J, Luciani F, Boeckx B, Wouters J, Lopez S, et al. Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma. J Clin Invest. 2017;127:2310-2325 pubmed 出版商
  79. Riemer P, Rydenfelt M, Marks M, van Eunen K, Thedieck K, Herrmann B, et al. Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. J Cell Biol. 2017;216:1567-1577 pubmed 出版商
  80. Jeong S, Lim S, Schevzov G, Gunning P, Helfman D. Loss of Tpm4.1 leads to disruption of cell-cell adhesions and invasive behavior in breast epithelial cells via increased Rac1 signaling. Oncotarget. 2017;8:33544-33559 pubmed 出版商
  81. Umar S, Partow Navid R, Ruffenach G, Iorga A, Moazeni S, Eghbali M. Severe pulmonary hypertension in aging female apolipoprotein E-deficient mice is rescued by estrogen replacement therapy. Biol Sex Differ. 2017;8:9 pubmed 出版商
  82. Amici D, Pinal Fernández I, Mázala D, Lloyd T, Corse A, Christopher Stine L, et al. Calcium dysregulation, functional calpainopathy, and endoplasmic reticulum stress in sporadic inclusion body myositis. Acta Neuropathol Commun. 2017;5:24 pubmed 出版商
  83. Boswell B, Korol A, West Mays J, Musil L. Dual function of TGF? in lens epithelial cell fate: implications for secondary cataract. Mol Biol Cell. 2017;28:907-921 pubmed 出版商
  84. Dukic A, Haugen L, Pidoux G, Leithe E, Bakke O, Tasken K. A protein kinase A-ezrin complex regulates connexin 43 gap junction communication in liver epithelial cells. Cell Signal. 2017;32:1-11 pubmed 出版商
  85. Rafiq N, Lieu Z, Jiang T, Yu C, Matsudaira P, Jones G, et al. Podosome assembly is controlled by the GTPase ARF1 and its nucleotide exchange factor ARNO. J Cell Biol. 2017;216:181-197 pubmed 出版商
  86. Fiszer A, Wroblewska J, Nowak B, Krzyzosiak W. Mutant CAG Repeats Effectively Targeted by RNA Interference in SCA7 Cells. Genes (Basel). 2016;7: pubmed 出版商
  87. Eggenschwiler R, Moslem M, Fráguas M, Galla M, Papp O, Naujock M, et al. Improved bi-allelic modification of a transcriptionally silent locus in patient-derived iPSC by Cas9 nickase. Sci Rep. 2016;6:38198 pubmed 出版商
  88. Jørgensen L, Jepsen P, Boysen A, Dalgaard L, Hvid L, Ørtenblad N, et al. SPARC Interacts with Actin in Skeletal Muscle in Vitro and in Vivo. Am J Pathol. 2017;187:457-474 pubmed 出版商
  89. Amigo Jiménez I, Bailón E, Aguilera Montilla N, García Marco J, García Pardo A. Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Oncotarget. 2016;7:83359-83377 pubmed 出版商
  90. Puschmann A, Fiesel F, Caulfield T, Hudec R, Ando M, Truban D, et al. Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism. Brain. 2017;140:98-117 pubmed 出版商
  91. Beyer S, Pontis J, Schirwis E, Battisti V, Rudolf A, Le Grand F, et al. Canonical Wnt signalling regulates nuclear export of Setdb1 during skeletal muscle terminal differentiation. Cell Discov. 2016;2:16037 pubmed
  92. Cain S, Mularczyk E, Singh M, Massam Wu T, Kielty C. ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions. Sci Rep. 2016;6:35956 pubmed 出版商
  93. Kishi T, Mayanagi T, Iwabuchi S, Akasaka T, Sobue K. Myocardin-related transcription factor A (MRTF-A) activity-dependent cell adhesion is correlated to focal adhesion kinase (FAK) activity. Oncotarget. 2016;7:72113-72130 pubmed 出版商
  94. King B, Boccalatte F, Moran Crusio K, Wolf E, Wang J, Kayembe C, et al. The ubiquitin ligase Huwe1 regulates the maintenance and lymphoid commitment of hematopoietic stem cells. Nat Immunol. 2016;17:1312-1321 pubmed 出版商
  95. Binamé F, Bidaud Meynard A, Magnan L, Piquet L, Montibus B, Chabadel A, et al. Cancer-associated mutations in the protrusion-targeting region of p190RhoGAP impact tumor cell migration. J Cell Biol. 2016;214:859-73 pubmed 出版商
  96. Wang D, Kon N, Lasso G, Jiang L, Leng W, Zhu W, et al. Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode. Nature. 2016;538:118-122 pubmed 出版商
  97. Cheng F, Miao L, Wu Q, Gong X, Xiong J, Zhang J. Vinculin b deficiency causes epicardial hyperplasia and coronary vessel disorganization in zebrafish. Development. 2016;143:3522-3531 pubmed
  98. Chien J, Tsen S, Chien C, Liu H, Tung C, Lin C. ?TAT1 downregulation induces mitotic catastrophe in HeLa and A549 cells. Cell Death Discov. 2016;2:16006 pubmed 出版商
  99. Fokkelman M, BalcıoÄŸlu H, Klip J, Yan K, Verbeek F, Danen E, et al. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour. Sci Rep. 2016;6:31707 pubmed 出版商
  100. Harizanova J, Fermin Y, Malik Sheriff R, Wieczorek J, Ickstadt K, Grecco H, et al. Highly Multiplexed Imaging Uncovers Changes in Compositional Noise within Assembling Focal Adhesions. PLoS ONE. 2016;11:e0160591 pubmed 出版商
  101. Ryskamp D, Frye A, Phuong T, Yarishkin O, Jo A, Xu Y, et al. TRPV4 regulates calcium homeostasis, cytoskeletal remodeling, conventional outflow and intraocular pressure in the mammalian eye. Sci Rep. 2016;6:30583 pubmed 出版商
  102. Stammler A, Lüftner B, Kliesch S, Weidner W, Bergmann M, Middendorff R, et al. Highly Conserved Testicular Localization of Claudin-11 in Normal and Impaired Spermatogenesis. PLoS ONE. 2016;11:e0160349 pubmed 出版商
  103. Coppo M, Chinenov Y, Sacta M, Rogatsky I. The transcriptional coregulator GRIP1 controls macrophage polarization and metabolic homeostasis. Nat Commun. 2016;7:12254 pubmed 出版商
  104. Lorenzin F, Benary U, Baluapuri A, Walz S, Jung L, von Eyss B, et al. Different promoter affinities account for specificity in MYC-dependent gene regulation. elife. 2016;5: pubmed 出版商
  105. Cao J, Wu L, Zhang S, Lu M, Cheung W, Cai W, et al. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res. 2016;44:e149 pubmed
  106. Dorland Y, Malinova T, van Stalborch A, Grieve A, van Geemen D, Jansen N, et al. The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions. Nat Commun. 2016;7:12210 pubmed 出版商
  107. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  108. Kudová J, Prochazkova J, Vašíček O, Perecko T, Sedláčková M, Pesl M, et al. HIF-1alpha Deficiency Attenuates the Cardiomyogenesis of Mouse Embryonic Stem Cells. PLoS ONE. 2016;11:e0158358 pubmed 出版商
  109. Radzisheuskaya A, Shlyueva D, Muller I, Helin K. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression. Nucleic Acids Res. 2016;44:e141 pubmed
  110. Dejesus R, Moretti F, McAllister G, Wang Z, Bergman P, Liu S, et al. Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62. elife. 2016;5: pubmed 出版商
  111. Yang D, Yuan Q, Balakrishnan A, Bantel H, Klusmann J, Manns M, et al. MicroRNA-125b-5p mimic inhibits acute liver failure. Nat Commun. 2016;7:11916 pubmed 出版商
  112. Kemper K, Krijgsman O, Kong X, Cornelissen Steijger P, Shahrabi A, Weeber F, et al. BRAF(V600E) Kinase Domain Duplication Identified in Therapy-Refractory Melanoma Patient-Derived Xenografts. Cell Rep. 2016;16:263-277 pubmed 出版商
  113. Daubon T, Spuul P, Alonso F, Fremaux I, Genot E. VEGF-A stimulates podosome-mediated collagen-IV proteolysis in microvascular endothelial cells. J Cell Sci. 2016;129:2586-98 pubmed 出版商
  114. Cichon M, Moruzzi M, Shqau T, Miller E, Mehner C, Ethier S, et al. MYC Is a Crucial Mediator of TGF?-Induced Invasion in Basal Breast Cancer. Cancer Res. 2016;76:3520-30 pubmed 出版商
  115. Chen L, DeWispelaere A, Dastvan F, Osborne W, Blechner C, Windhorst S, et al. Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity. PLoS ONE. 2016;11:e0155726 pubmed 出版商
  116. Geissler R, Simkin A, Floss D, Patel R, Fogarty E, Scheller J, et al. A widespread sequence-specific mRNA decay pathway mediated by hnRNPs A1 and A2/B1. Genes Dev. 2016;30:1070-85 pubmed 出版商
  117. Boateng L, Bennin D, de Oliveira S, Huttenlocher A. Mammalian Actin-binding Protein-1/Hip-55 Interacts with FHL2 and Negatively Regulates Cell Invasion. J Biol Chem. 2016;291:13987-98 pubmed 出版商
  118. Razafiarison T, Silvan U, Meier D, Snedeker J. Surface-Driven Collagen Self-Assembly Affects Early Osteogenic Stem Cell Signaling. Adv Healthc Mater. 2016;5:1481-92 pubmed 出版商
  119. Senda Y, Murata Kamiya N, Hatakeyama M. C-terminal Src kinase-mediated EPIYA phosphorylation of Pragmin creates a feed-forward C-terminal Src kinase activation loop that promotes cell motility. Cancer Sci. 2016;107:972-80 pubmed 出版商
  120. Iwai Takekoshi L, Ramos A, Schaler A, Weinreb S, Blazeski R, Mason C. Retinal pigment epithelial integrity is compromised in the developing albino mouse retina. J Comp Neurol. 2016;524:3696-3716 pubmed 出版商
  121. Conway A, Van Nostrand E, Pratt G, Aigner S, Wilbert M, Sundararaman B, et al. Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival. Cell Rep. 2016;15:666-679 pubmed 出版商
  122. Elosegui Artola A, Oria R, Chen Y, Kosmalska A, Pérez González C, Castro N, et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol. 2016;18:540-8 pubmed 出版商
  123. Kumar A, Jagadeeshan S, Subramanian A, Chidambaram S, Surabhi R, Singhal M, et al. Molecular Mechanism of Regulation of MTA1 Expression by Granulocyte Colony-stimulating Factor. J Biol Chem. 2016;291:12310-21 pubmed 出版商
  124. Garrel G, Racine C, L hôte D, Denoyelle C, Guigon C, di Clemente N, et al. Anti-Müllerian hormone: a new actor of sexual dimorphism in pituitary gonadotrope activity before puberty. Sci Rep. 2016;6:23790 pubmed 出版商
  125. Leucci E, Vendramin R, Spinazzi M, Laurette P, Fiers M, Wouters J, et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature. 2016;531:518-22 pubmed 出版商
  126. Schaufler V, Czichos Medda H, Hirschfeld Warnecken V, Neubauer S, Rechenmacher F, Medda R, et al. Selective binding and lateral clustering of ?5?1 and ?v?3 integrins: Unraveling the spatial requirements for cell spreading and focal adhesion assembly. Cell Adh Migr. 2016;10:505-515 pubmed
  127. Panousopoulou E, Hobbs C, Mason I, Green J, Formstone C. Epiboly generates the epidermal basal monolayer and spreads the nascent mammalian skin to enclose the embryonic body. J Cell Sci. 2016;129:1915-27 pubmed 出版商
  128. Obino D, Farina F, Malbec O, Sáez P, Maurin M, Gaillard J, et al. Actin nucleation at the centrosome controls lymphocyte polarity. Nat Commun. 2016;7:10969 pubmed 出版商
  129. Muhamed I, Wu J, Sehgal P, Kong X, Tajik A, Wang N, et al. E-cadherin-mediated force transduction signals regulate global cell mechanics. J Cell Sci. 2016;129:1843-54 pubmed 出版商
  130. Hein J, Nilsson J. Interphase APC/C-Cdc20 inhibition by cyclin A2-Cdk2 ensures efficient mitotic entry. Nat Commun. 2016;7:10975 pubmed 出版商
  131. Wollscheid H, Biancospino M, He F, Magistrati E, Molteni E, Lupia M, et al. Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain. Nat Struct Mol Biol. 2016;23:300-308 pubmed 出版商
  132. Bengtsson E, Lindblom K, Tillgren V, Aspberg A. The leucine-rich repeat protein PRELP binds fibroblast cell-surface proteoglycans and enhances focal adhesion formation. Biochem J. 2016;473:1153-64 pubmed 出版商
  133. Wild T, Larsen M, Narita T, Schou J, Nilsson J, Choudhary C. The Spindle Assembly Checkpoint Is Not Essential for Viability of Human Cells with Genetically Lowered APC/C Activity. Cell Rep. 2016;14:1829-40 pubmed 出版商
  134. Kenific C, Stehbens S, Goldsmith J, Leidal A, Faure N, Ye J, et al. NBR1 enables autophagy-dependent focal adhesion turnover. J Cell Biol. 2016;212:577-90 pubmed 出版商
  135. Skardal A, Devarasetty M, Forsythe S, Atala A, Soker S. A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnol Bioeng. 2016;113:2020-32 pubmed 出版商
  136. Baietti M, Simíček M, Abbasi Asbagh L, Radaelli E, Lievens S, Crowther J, et al. OTUB1 triggers lung cancer development by inhibiting RAS monoubiquitination. EMBO Mol Med. 2016;8:288-303 pubmed 出版商
  137. Kim D, Helfman D. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene. 2016;35:4495-508 pubmed 出版商
  138. Haikala H, Klefström J, Eilers M, Wiese K. MYC-induced apoptosis in mammary epithelial cells is associated with repression of lineage-specific gene signatures. Cell Cycle. 2016;15:316-23 pubmed 出版商
  139. Cekan P, Hasegawa K, Pan Y, Tubman E, Odde D, Chen J, et al. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence. Mol Biol Cell. 2016;27:1346-57 pubmed 出版商
  140. Davidson S, Papagiannakopoulos T, Olenchock B, Heyman J, Keibler M, Luengo A, et al. Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer. Cell Metab. 2016;23:517-28 pubmed 出版商
  141. Kumar J, Wei B, Madigan J, Simpson R, Hall M, Gottesman M. Bioluminescent imaging of ABCG2 efflux activity at the blood-placenta barrier. Sci Rep. 2016;6:20418 pubmed 出版商
  142. Heir P, Srikumar T, Bikopoulos G, Bunda S, Poon B, Lee J, et al. Oxygen-dependent Regulation of Erythropoietin Receptor Turnover and Signaling. J Biol Chem. 2016;291:7357-72 pubmed 出版商
  143. Horton E, Humphries J, Stutchbury B, Jacquemet G, Ballestrem C, Barry S, et al. Modulation of FAK and Src adhesion signaling occurs independently of adhesion complex composition. J Cell Biol. 2016;212:349-64 pubmed 出版商
  144. Walter D, Hoffmann S, Komseli E, Rappsilber J, Gorgoulis V, Sørensen C. SCF(Cyclin F)-dependent degradation of CDC6 suppresses DNA re-replication. Nat Commun. 2016;7:10530 pubmed 出版商
  145. Craney A, Kelly A, Jia L, Fedrigo I, Yu H, Rape M. Control of APC/C-dependent ubiquitin chain elongation by reversible phosphorylation. Proc Natl Acad Sci U S A. 2016;113:1540-5 pubmed 出版商
  146. Grassilli E, Pisano F, Cialdella A, Bonomo S, Missaglia C, Cerrito M, et al. A novel oncogenic BTK isoform is overexpressed in colon cancers and required for RAS-mediated transformation. Oncogene. 2016;35:4368-78 pubmed 出版商
  147. Iorga A, Li J, Sharma S, Umar S, Bopassa J, Nadadur R, et al. Rescue of Pressure Overload-Induced Heart Failure by Estrogen Therapy. J Am Heart Assoc. 2016;5: pubmed 出版商
  148. Nakata T, Okimura C, Mizuno T, Iwadate Y. The Role of Stress Fibers in the Shape Determination Mechanism of Fish Keratocytes. Biophys J. 2016;110:481-492 pubmed 出版商
  149. Bertoldo M, Guibert E, Faure M, Guillou F, Ramé C, Nadal Desbarats L, et al. Specific deletion of AMP-activated protein kinase (α1AMPK) in mouse Sertoli cells modifies germ cell quality. Mol Cell Endocrinol. 2016;423:96-112 pubmed 出版商
  150. Dave J, Abbey C, Duran C, Seo H, Johnson G, Bayless K. Hic-5 mediates the initiation of endothelial sprouting by regulating a key surface metalloproteinase. J Cell Sci. 2016;129:743-56 pubmed 出版商
  151. Kitayama M, Mizutani K, Maruoka M, Mandai K, Sakakibara S, Ueda Y, et al. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development. J Biol Chem. 2016;291:5817-31 pubmed 出版商
  152. Sonoda A, Okimura C, Iwadate Y. Shape and Area of Keratocytes Are Related to the Distribution and Magnitude of Their Traction Forces. Cell Struct Funct. 2016;41:33-43 pubmed 出版商
  153. Vergani E, Di Guardo L, Dugo M, Rigoletto S, Tragni G, Ruggeri R, et al. Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget. 2016;7:4428-41 pubmed 出版商
  154. Giampietro C, Disanza A, Bravi L, Barrios Rodiles M, Corada M, Frittoli E, et al. The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling. J Cell Biol. 2015;211:1177-92 pubmed 出版商
  155. Tojkander S, Gateva G, Husain A, Krishnan R, Lappalainen P. Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly. elife. 2015;4:e06126 pubmed 出版商
  156. Zhang C, Li X, Adelmant G, Dobbins J, Geisen C, Oser M, et al. Peptidic degron in EID1 is recognized by an SCF E3 ligase complex containing the orphan F-box protein FBXO21. Proc Natl Acad Sci U S A. 2015;112:15372-7 pubmed 出版商
  157. Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, et al. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun. 2015;6:8859 pubmed 出版商
  158. Cuttano R, Rudini N, Bravi L, Corada M, Giampietro C, Papa E, et al. KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med. 2016;8:6-24 pubmed 出版商
  159. Shah F, Berggren D, Holmlund T, Levring Jäghagen E, StÃ¥l P. Unique expression of cytoskeletal proteins in human soft palate muscles. J Anat. 2016;228:487-94 pubmed 出版商
  160. Harley M, Murina O, Leitch A, Higgs M, Bicknell L, Yigit G, et al. TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism. Nat Genet. 2016;48:36-43 pubmed 出版商
  161. Schill E, Lake J, Tusheva O, Nagy N, Bery S, Foster L, et al. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse. Dev Biol. 2016;409:473-88 pubmed 出版商
  162. García Rubio M, Pérez Calero C, Barroso S, Tumini E, Herrera Moyano E, Rosado I, et al. The Fanconi Anemia Pathway Protects Genome Integrity from R-loops. PLoS Genet. 2015;11:e1005674 pubmed 出版商
  163. Hu X, Garcia C, Fazli L, Gleave M, Vitek M, Jansen M, et al. Inhibition of Pten deficient Castration Resistant Prostate Cancer by Targeting of the SET - PP2A Signaling axis. Sci Rep. 2015;5:15182 pubmed 出版商
  164. Doyle A, Carvajal N, Jin A, Matsumoto K, Yamada K. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nat Commun. 2015;6:8720 pubmed 出版商
  165. Amigo Jiménez I, Bailón E, Aguilera Montilla N, Terol M, García Marco J, García Pardo A. Bone marrow stroma-induced resistance of chronic lymphocytic leukemia cells to arsenic trioxide involves Mcl-1 upregulation and is overcome by inhibiting the PI3Kδ or PKCβ signaling pathways. Oncotarget. 2015;6:44832-48 pubmed 出版商
  166. Nikonova A, Deneka A, Eckman L, Kopp M, Hensley H, Egleston B, et al. Opposing Effects of Inhibitors of Aurora-A and EGFR in Autosomal-Dominant Polycystic Kidney Disease. Front Oncol. 2015;5:228 pubmed 出版商
  167. Austen K, Ringer P, Mehlich A, Chrostek Grashoff A, Kluger C, Klingner C, et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat Cell Biol. 2015;17:1597-606 pubmed 出版商
  168. Osmanagic Myers S, Rus S, Wolfram M, Brunner D, Goldmann W, Bonakdar N, et al. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks. J Cell Sci. 2015;128:4138-50 pubmed 出版商
  169. Freedman T, Tan Y, Skrzypczynska K, Manz B, Sjaastad F, Goodridge H, et al. LynA regulates an inflammation-sensitive signaling checkpoint in macrophages. elife. 2015;4: pubmed 出版商
  170. Fuchs M, Luthold C, Guilbert S, Varlet A, Lambert H, Jetté A, et al. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis. PLoS Genet. 2015;11:e1005582 pubmed 出版商
  171. Horton E, Byron A, Askari J, Ng D, Millon Frémillon A, Robertson J, et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat Cell Biol. 2015;17:1577-1587 pubmed 出版商
  172. Meng Z, Moroishi T, Mottier Pavie V, Plouffe S, Hansen C, Hong A, et al. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun. 2015;6:8357 pubmed 出版商
  173. Castella M, Jacquemont C, Thompson E, Yeo J, Cheung R, Huang J, et al. FANCI Regulates Recruitment of the FA Core Complex at Sites of DNA Damage Independently of FANCD2. PLoS Genet. 2015;11:e1005563 pubmed 出版商
  174. Setti M, Osti D, Richichi C, Ortensi B, Del Bene M, Fornasari L, et al. Extracellular vesicle-mediated transfer of CLIC1 protein is a novel mechanism for the regulation of glioblastoma growth. Oncotarget. 2015;6:31413-27 pubmed 出版商
  175. Leyme A, Marivin A, Perez Gutierrez L, Nguyen L, Garcia Marcos M. Integrins activate trimeric G proteins via the nonreceptor protein GIV/Girdin. J Cell Biol. 2015;210:1165-84 pubmed 出版商
  176. Doldi V, Callari M, Giannoni E, D Aiuto F, Maffezzini M, Valdagni R, et al. Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation. Oncotarget. 2015;6:31441-60 pubmed 出版商
  177. Park E, Kim N, Ficarro S, Zhang Y, Lee B, Cho A, et al. Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6. Nat Struct Mol Biol. 2015;22:703-711 pubmed 出版商
  178. Chichger H, Braza J, Duong H, Stark M, Harrington E. Neovascularization in the pulmonary endothelium is regulated by the endosome: Rab4-mediated trafficking and p18-dependent signaling. Am J Physiol Lung Cell Mol Physiol. 2015;309:L700-9 pubmed 出版商
  179. González Loyola A, Fernández Miranda G, Trakala M, Partida D, Samejima K, Ogawa H, et al. Aurora B Overexpression Causes Aneuploidy and p21Cip1 Repression during Tumor Development. Mol Cell Biol. 2015;35:3566-78 pubmed 出版商
  180. Newell Litwa K, Badoual M, Asmussen H, Patel H, Whitmore L, Horwitz A. ROCK1 and 2 differentially regulate actomyosin organization to drive cell and synaptic polarity. J Cell Biol. 2015;210:225-42 pubmed 出版商
  181. Haraguchi M, Sato M, Ozawa M. CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1) Reveals Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1) Cells. PLoS ONE. 2015;10:e0132260 pubmed 出版商
  182. Lachmann N, Brennig S, Hillje R, Schermeier H, Phaltane R, Dahlmann J, et al. Tightly regulated 'all-in-one' lentiviral vectors for protection of human hematopoietic cells from anticancer chemotherapy. Gene Ther. 2015;22:883-92 pubmed 出版商
  183. Cáceres M, Ortiz L, Recabarren T, Romero A, Colombo A, Leiva Salcedo E, et al. TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility. PLoS ONE. 2015;10:e0130540 pubmed 出版商
  184. Girard M, Dohme Meier F, Silacci P, Ampuero Kragten S, Kreuzer M, Bee G. Forage legumes rich in condensed tannins may increase n-3 fatty acid levels and sensory quality of lamb meat. J Sci Food Agric. 2016;96:1923-33 pubmed 出版商
  185. Jiang J, Zhang Z, Yuan X, Poo M. Spatiotemporal dynamics of traction forces show three contraction centers in migratory neurons. J Cell Biol. 2015;209:759-74 pubmed 出版商
  186. Poulter N, Pollitt A, Davies A, Malinova D, Nash G, Hannon M, et al. Platelet actin nodules are podosome-like structures dependent on Wiskott-Aldrich syndrome protein and ARP2/3 complex. Nat Commun. 2015;6:7254 pubmed 出版商
  187. Koh L, Ng B, Bertrand J, Thierry F. Transcriptional control of late differentiation in human keratinocytes by TAp63 and Notch. Exp Dermatol. 2015;24:754-60 pubmed 出版商
  188. Alonso Curbelo D, Osterloh L, Cañón E, Calvo T, Martínez Herranz R, Karras P, et al. RAB7 counteracts PI3K-driven macropinocytosis activated at early stages of melanoma development. Oncotarget. 2015;6:11848-62 pubmed
  189. Kiss A, Gong X, Kowalewski J, Shafqat Abbasi H, Strömblad S, Lock J. Non-monotonic cellular responses to heterogeneity in talin protein expression-level. Integr Biol (Camb). 2015;7:1171-85 pubmed 出版商
  190. Izawa G, Kobayashi W, Haraguchi M, Sudo A, Ozawa M. The ectopic expression of Snail in MDBK cells does not induce epithelial-mesenchymal transition. Int J Mol Med. 2015;36:166-72 pubmed 出版商
  191. Lavenus S, Poxson D, Ogievetsky N, Dordick J, Siegel R. Stem cell behavior on tailored porous oxide surface coatings. Biomaterials. 2015;55:96-109 pubmed 出版商
  192. Isogai T, van der Kammen R, Innocenti M. SMIFH2 has effects on Formins and p53 that perturb the cell cytoskeleton. Sci Rep. 2015;5:9802 pubmed 出版商
  193. Sato S, Kawamata Y, Takahashi A, Imai Y, Hanyu A, Okuma A, et al. Ablation of the p16(INK4a) tumour suppressor reverses ageing phenotypes of klotho mice. Nat Commun. 2015;6:7035 pubmed 出版商
  194. Pendegrass C, Lancashire H, Fontaine C, Chan G, Hosseini P, Blunn G. Intraosseous transcutaneous amputation prostheses versus dental implants: a comparison between keratinocyte and gingival epithelial cell adhesion in vitro. Eur Cell Mater. 2015;29:237-49 pubmed
  195. Laurent A, Calabrese M, Warnatz H, Yaspo M, Tkachuk V, Torres M, et al. ChIP-Seq and RNA-Seq analyses identify components of the Wnt and Fgf signaling pathways as Prep1 target genes in mouse embryonic stem cells. PLoS ONE. 2015;10:e0122518 pubmed 出版商
  196. Grav L, Lee J, Gerling S, Kallehauge T, Hansen A, Kol S, et al. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnol J. 2015;10:1446-56 pubmed 出版商
  197. Fukumoto M, Kurisu S, Yamada T, Takenawa T. α-Actinin-4 enhances colorectal cancer cell invasion by suppressing focal adhesion maturation. PLoS ONE. 2015;10:e0120616 pubmed 出版商
  198. Mulens Arias V, Rojas J, Pérez Yagüe S, Morales M, Barber D. Polyethylenimine-coated SPIONs trigger macrophage activation through TLR-4 signaling and ROS production and modulate podosome dynamics. Biomaterials. 2015;52:494-506 pubmed 出版商
  199. Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Müller K, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci. 2015;18:631-6 pubmed 出版商
  200. Skardal A, Devarasetty M, Rodman C, Atala A, Soker S. Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro. Ann Biomed Eng. 2015;43:2361-73 pubmed 出版商
  201. Le A, Huang Y, Pingle S, Kesari S, Wang H, Yong R, et al. Plexin-B2 promotes invasive growth of malignant glioma. Oncotarget. 2015;6:7293-304 pubmed
  202. Wilson F, Johannessen C, Piccioni F, Tamayo P, Kim J, Van Allen E, et al. A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell. 2015;27:397-408 pubmed 出版商
  203. Mo J, Meng Z, Kim Y, Park H, Hansen C, Kim S, et al. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol. 2015;17:500-10 pubmed 出版商
  204. Nakahara T, Tanaka K, Ohno S, Egawa N, Yugawa T, Kiyono T. Activation of NF-κB by human papillomavirus 16 E1 limits E1-dependent viral replication through degradation of E1. J Virol. 2015;89:5040-59 pubmed 出版商
  205. Woo J, Zhao X, Khan H, Penn C, Wang X, Joly Amado A, et al. Slingshot-Cofilin activation mediates mitochondrial and synaptic dysfunction via Aβ ligation to β1-integrin conformers. Cell Death Differ. 2015;22:921-34 pubmed 出版商
  206. Gravez B, Tarjus A, Pelloux V, Ouvrard Pascaud A, Delcayre C, Samuel J, et al. Aldosterone promotes cardiac endothelial cell proliferation in vivo. J Am Heart Assoc. 2015;4:e001266 pubmed 出版商
  207. Ehret F, Vogler S, Pojar S, Elliott D, Bradke F, Steiner B, et al. Mouse model of CADASIL reveals novel insights into Notch3 function in adult hippocampal neurogenesis. Neurobiol Dis. 2015;75:131-41 pubmed 出版商
  208. Chiba T, Sakurada T, Watanabe R, Yamaguchi K, Kimura Y, Kioka N, et al. Fomiroid A, a novel compound from the mushroom Fomitopsis nigra, inhibits NPC1L1-mediated cholesterol uptake via a mode of action distinct from that of ezetimibe. PLoS ONE. 2014;9:e116162 pubmed 出版商
  209. Wurm S, Zhang J, Guinea Viniegra J, García F, Muñoz J, Bakiri L, et al. Terminal epidermal differentiation is regulated by the interaction of Fra-2/AP-1 with Ezh2 and ERK1/2. Genes Dev. 2015;29:144-56 pubmed 出版商
  210. Ng D, Humphries J, Byron A, Millon Frémillon A, Humphries M. Microtubule-dependent modulation of adhesion complex composition. PLoS ONE. 2014;9:e115213 pubmed 出版商
  211. Kalwa H, Storch U, Demleitner J, Fiedler S, Mayer T, Kannler M, et al. Phospholipase C epsilon (PLCε) induced TRPC6 activation: a common but redundant mechanism in primary podocytes. J Cell Physiol. 2015;230:1389-99 pubmed 出版商
  212. Boucrot E, Ferreira A, Almeida Souza L, Debard S, Vallis Y, Howard G, et al. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature. 2015;517:460-5 pubmed 出版商
  213. Smithline Z, Nikonova A, Hensley H, Cai K, Egleston B, Proia D, et al. Inhibiting heat shock protein 90 (HSP90) limits the formation of liver cysts induced by conditional deletion of Pkd1 in mice. PLoS ONE. 2014;9:e114403 pubmed 出版商
  214. Petti C, Picco G, Martelli M, Trisolini E, Bucci E, Perera T, et al. Truncated RAF kinases drive resistance to MET inhibition in MET-addicted cancer cells. Oncotarget. 2015;6:221-33 pubmed
  215. Elloumi Hannachi I, García J, Shekeran A, García A. Contributions of the integrin β1 tail to cell adhesive forces. Exp Cell Res. 2015;332:212-22 pubmed 出版商
  216. Sazonova O, Isenberg B, Herrmann J, Lee K, Purwada A, Valentine A, et al. Extracellular matrix presentation modulates vascular smooth muscle cell mechanotransduction. Matrix Biol. 2015;41:36-43 pubmed 出版商
  217. Katt W, Antonyak M, Cerione R. Simultaneously targeting tissue transglutaminase and kidney type glutaminase sensitizes cancer cells to acid toxicity and offers new opportunities for therapeutic intervention. Mol Pharm. 2015;12:46-55 pubmed 出版商
  218. Kararigas G, Fliegner D, Forler S, Klein O, Schubert C, Gustafsson J, et al. Comparative proteomic analysis reveals sex and estrogen receptor β effects in the pressure overloaded heart. J Proteome Res. 2014;13:5829-36 pubmed 出版商
  219. Chen Y, Su P, Chen Y, Wei M, Huang C, Osterday K, et al. The effect of enterohemorrhagic E. coli infection on the cell mechanics of host cells. PLoS ONE. 2014;9:e112137 pubmed 出版商
  220. Qin J, Rajaratnam R, Feng L, Salami J, Barber Rotenberg J, Domsic J, et al. Development of organometallic S6K1 inhibitors. J Med Chem. 2015;58:305-14 pubmed 出版商
  221. Wanichawan P, Hafver T, Hodne K, Aronsen J, Lunde I, Dalhus B, et al. Molecular basis of calpain cleavage and inactivation of the sodium-calcium exchanger 1 in heart failure. J Biol Chem. 2014;289:33984-98 pubmed 出版商
  222. Raman N, Nayak A, Muller S. mTOR signaling regulates nucleolar targeting of the SUMO-specific isopeptidase SENP3. Mol Cell Biol. 2014;34:4474-84 pubmed 出版商
  223. Ali M, Chuang C, Saif M. Reprogramming cellular phenotype by soft collagen gels. Soft Matter. 2014;10:8829-37 pubmed 出版商
  224. Chang Y, Huang Y. Arsenite-activated JNK signaling enhances CPEB4-Vinexin interaction to facilitate stress granule assembly and cell survival. PLoS ONE. 2014;9:e107961 pubmed 出版商
  225. Rubashkin M, Cassereau L, Bainer R, DuFort C, Yui Y, Ou G, et al. Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res. 2014;74:4597-611 pubmed 出版商
  226. Monge C, Saha N, Boudou T, P zos V squez C, Dulong V, Glinel K, et al. Rigidity-patterned polyelectrolyte films to control myoblast cell adhesion and spatial organization. Adv Funct Mater. 2013;23:3432-3442 pubmed 出版商
  227. Bailon E, Ugarte Berzal E, Amigo Jiménez I, Van den Steen P, Opdenakker G, Garcia Marco J, et al. Overexpression of progelatinase B/proMMP-9 affects migration regulatory pathways and impairs chronic lymphocytic leukemia cell homing to bone marrow and spleen. J Leukoc Biol. 2014;96:185-99 pubmed 出版商
  228. Le Provost G, Pullar C. ?2-adrenoceptor activation modulates skin wound healing processes to reduce scarring. J Invest Dermatol. 2015;135:279-88 pubmed 出版商
  229. Martin V, Corso S, Comoglio P, Giordano S. Increase of MET gene copy number confers resistance to a monovalent MET antibody and establishes drug dependence. Mol Oncol. 2014;8:1561-74 pubmed 出版商
  230. Cain S, Tyson J, Jones K, Snutch T. Thalamocortical neurons display suppressed burst-firing due to an enhanced Ih current in a genetic model of absence epilepsy. Pflugers Arch. 2015;467:1367-82 pubmed 出版商
  231. Meijer D, Sun Y, Liu T, Kane M, Alberta J, Adelmant G, et al. An amino terminal phosphorylation motif regulates intranuclear compartmentalization of Olig2 in neural progenitor cells. J Neurosci. 2014;34:8507-18 pubmed 出版商
  232. Dolega M, Wagh J, Gerbaud S, Kermarrec F, Alcaraz J, Martin D, et al. Facile bench-top fabrication of enclosed circular microchannels provides 3D confined structure for growth of prostate epithelial cells. PLoS ONE. 2014;9:e99416 pubmed 出版商
  233. Fiesel F, Moussaud Lamodière E, Ando M, Springer W. A specific subset of E2 ubiquitin-conjugating enzymes regulate Parkin activation and mitophagy differently. J Cell Sci. 2014;127:3488-504 pubmed 出版商
  234. Zou M, Cao J, Liu Z, Huh S, Polyak K, Yan Q. Histone demethylase jumonji AT-rich interactive domain 1B (JARID1B) controls mammary gland development by regulating key developmental and lineage specification genes. J Biol Chem. 2014;289:17620-33 pubmed 出版商
  235. Pryzhkova M, Aria I, Cheng Q, Harris G, Zan X, Gharib M, et al. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials. 2014;35:5098-109 pubmed 出版商
  236. Boudoukha S, Rivera Vargas T, Dang I, Kropp J, Cuvellier S, Gautreau A, et al. MiRNA let-7g regulates skeletal myoblast motility via Pinch-2. FEBS Lett. 2014;588:1623-9 pubmed 出版商
  237. Chlupác J, Filova E, Havlíkova J, Matejka R, Riedel T, Houska M, et al. The gene expression of human endothelial cells is modulated by subendothelial extracellular matrix proteins: short-term response to laminar shear stress. Tissue Eng Part A. 2014;20:2253-64 pubmed 出版商
  238. Uehara K, Uehara A. Integrin ?v?5 in endothelial cells of rat splenic sinus: an immunohistochemical and ultrastructural study. Cell Tissue Res. 2014;356:183-93 pubmed 出版商
  239. Ryszawy D, Sarna M, Rak M, Szpak K, Kedracka Krok S, Michalik M, et al. Functional links between Snail-1 and Cx43 account for the recruitment of Cx43-positive cells into the invasive front of prostate cancer. Carcinogenesis. 2014;35:1920-30 pubmed 出版商
  240. Zemljic Harpf A, Godoy J, Platoshyn O, Asfaw E, Busija A, Domenighetti A, et al. Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci. 2014;127:1104-16 pubmed 出版商
  241. Georgess D, Mazzorana M, Terrado J, Delprat C, Chamot C, Guasch R, et al. Comparative transcriptomics reveals RhoE as a novel regulator of actin dynamics in bone-resorbing osteoclasts. Mol Biol Cell. 2014;25:380-96 pubmed 出版商
  242. Dave J, Kang H, Abbey C, Maxwell S, Bayless K. Proteomic profiling of endothelial invasion revealed receptor for activated C kinase 1 (RACK1) complexed with vimentin to regulate focal adhesion kinase (FAK). J Biol Chem. 2013;288:30720-33 pubmed 出版商
  243. Ho Y, Kok S, Wang J, Lin L. Translucent titanium coating altered the composition of focal adhesions and promoted migration of osteoblast-like MG-63 cells on glass. J Biomed Mater Res A. 2014;102:1187-201 pubmed 出版商
  244. Caravaca J, Donahue G, Becker J, He X, Vinson C, Zaret K. Bookmarking by specific and nonspecific binding of FoxA1 pioneer factor to mitotic chromosomes. Genes Dev. 2013;27:251-60 pubmed 出版商
  245. Juin A, Planus E, Guillemot F, Horáková P, Albiges Rizo C, Genot E, et al. Extracellular matrix rigidity controls podosome induction in microvascular endothelial cells. Biol Cell. 2013;105:46-57 pubmed 出版商
  246. Pendegrass C, Tucker B, Patel S, Dowling R, Blunn G. The effect of adherens junction components on keratinocyte adhesion in vitro: potential implications for sealing the skin-implant interface of intraosseous transcutaneous amputation prostheses. J Biomed Mater Res A. 2012;100:3463-71 pubmed 出版商