这是一篇来自已证抗体库的有关人类 4E-BP1 (4E-BP1) 的综述,是根据247篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合4E-BP1 抗体。
4E-BP1 同义词: 4E-BP1; 4EBP1; BP-1; PHAS-I

圣克鲁斯生物技术
小鼠 单克隆(P-1)
  • 免疫印迹; 人类; 1:1000; 图 4d
圣克鲁斯生物技术4E-BP1抗体(Santa Cruz Biotechnology, sc-9977)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Oncol Lett (2016) ncbi
小鼠 单克隆(11G12C11)
  • 免疫组化; 人类; 1:200
圣克鲁斯生物技术4E-BP1抗体(Santa Cruz Biotechnology, sc-81149)被用于被用于免疫组化在人类样本上浓度为1:200. Scand J Med Sci Sports (2015) ncbi
小鼠 单克隆(P-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术4E-BP1抗体(Santa, sc-9977)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(11G12C11)
  • 免疫印迹; 人类
圣克鲁斯生物技术4E-BP1抗体(Santa Cruz, sc-81149)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2013) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 牛; 图 4b
艾博抗(上海)贸易有限公司4E-BP1抗体(Abcam, ab2606)被用于被用于免疫印迹在牛样本上 (图 4b). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(EPR2169Y)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司4E-BP1抗体(Abcam, ab68187)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Immunol Res (2017) ncbi
赛默飞世尔
小鼠 单克隆(554R16)
  • 免疫印迹; 人类; 图 2
赛默飞世尔4E-BP1抗体(Invitrogen, AHO1382)被用于被用于免疫印迹在人类样本上 (图 2). Autophagy (2010) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 斑马鱼; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 3a). Sci Rep (2020) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 斑马鱼; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 3a). Sci Rep (2020) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 s1c
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 236B4)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 s1c). Cancer Sci (2020) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 5d). EBioMedicine (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在人类样本上 (图 5d). EBioMedicine (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9452)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3b). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9459)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3b). Science (2019) ncbi
domestic rabbit 单克隆(87D12)
  • 免疫印迹; 牛; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 4923S)被用于被用于免疫印迹在牛样本上浓度为1:1000 (图 4a). Br J Nutr (2020) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 牛; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855S)被用于被用于免疫印迹在牛样本上浓度为1:1000 (图 4a). Br J Nutr (2020) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 牛; 图 2b
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 2855s)被用于被用于免疫印迹在牛样本上 (图 2b). Biomed Res Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Int J Biol Sci (2019) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化; 人类; 1:100; 图 3d
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Int J Biol Sci (2019) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 1:4000; 图 1a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1a). Int J Biol Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 9452S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Nat Commun (2019) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 2855S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 9452)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). elife (2019) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫细胞化学; 小鼠; 1:100; 图 6s1b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 7547)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6s1b). elife (2019) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 6a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 6a). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 s3c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 s3c). Cell (2019) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000; 图 s6d
  • 免疫印迹; 猕猴; 1:1000; 图 s6d
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6d) 和 被用于免疫印迹在猕猴样本上浓度为1:1000 (图 s6d). Cell (2019) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000; 图 s6f
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 236B4)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6f). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2b
  • 免疫印迹; 小鼠; 1:1000; 图 1a, 2e
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a, 2e). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a, 2e
  • 免疫印迹; 大鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a, 2e) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Nature (2019) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). elife (2019) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). elife (2019) ncbi
domestic rabbit 单克隆(D9G1Q)
  • 免疫组化-石蜡切片; 小鼠; 图 5e
  • 免疫印迹; 小鼠; 图 5d
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 13443)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5e), 被用于免疫印迹在小鼠样本上 (图 5d) 和 被用于免疫印迹在人类样本上 (图 5f). Hepatology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5d
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在小鼠样本上 (图 5d) 和 被用于免疫印迹在人类样本上 (图 5f). Hepatology (2018) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 大鼠; 图 2a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在大鼠样本上 (图 2a). Oxid Med Cell Longev (2018) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 6c). Oncogene (2019) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 s5a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855S)被用于被用于免疫印迹在人类样本上 (图 s5a). Oncogene (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9459)被用于被用于免疫印迹在人类样本上 (图 6c). Oncogene (2019) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 s4c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 s4c). Cell (2018) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 1h
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 1h). Immunity (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9452)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Metab (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9459)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Metab (2019) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫细胞化学; 人类; 1:150; 图 s4i
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫细胞化学在人类样本上浓度为1:150 (图 s4i). Science (2018) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化-石蜡切片; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 236B4)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2a). Science (2018) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9644)被用于被用于免疫印迹在人类样本上 (图 2a). Autophagy (2018) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫印迹在人类样本上 (图 2a). Autophagy (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 s4a
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 9451S)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 s4a). Sci Adv (2018) ncbi
domestic rabbit 单克隆(D7F6I)
  • 免疫印迹; 人类; 1:3000; 图 s4a
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 13396S)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 s4a). Sci Adv (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 s4a
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 9459S)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 s4a). Sci Adv (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 s4a
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 9452S)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 s4a). Sci Adv (2018) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化; 小鼠; 1:500; 图 e9m
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 236B4)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 e9m). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 10j
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9452)被用于被用于免疫印迹在人类样本上 (图 10j). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 10j
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9451)被用于被用于免疫印迹在人类样本上 (图 10j). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(174A9)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9456)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855S)被用于被用于免疫印迹在人类样本上 (图 3b). Cell (2018) ncbi
domestic rabbit 单克隆(D7F6I)
  • 免疫印迹; 人类; 1:1000; 图 s11a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 13396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s11a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D9G1Q)
  • 免疫印迹; 人类; 1:1000; 图 s11a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 13443)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s11a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1b
  • 免疫印迹; 人类; 1:1000; 图 s7d
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s7d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000; 图 s11a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s11a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 6a). Cancer Lett (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 s5e
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9455S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 s5e). Biol Reprod (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 s5d
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s5d). Biol Reprod (2018) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 2855)被用于被用于免疫印迹在小鼠样本上 (图 s1). Mol Neurobiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 9452)被用于被用于免疫印迹在小鼠样本上 (图 s1). Mol Neurobiol (2018) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644S)被用于被用于免疫印迹在人类样本上 (图 2c). Breast Cancer Res Treat (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Nat Med (2017) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9456)被用于被用于免疫印迹在小鼠样本上 (图 2e). Mol Cell (2017) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9644)被用于被用于免疫印迹在小鼠样本上 (图 2e). Mol Cell (2017) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫印迹; 人类; 图 s5f
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9456)被用于被用于免疫印迹在人类样本上 (图 s5f). Nat Commun (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 3a). Science (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 1:50; 图 5b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 5b). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 大鼠; 1:500; 图 3e
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 2855)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3e). Front Mol Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在人类样本上 (图 3a). Autophagy (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上 (图 3a). Autophagy (2017) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 1:1000; 图 5h
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5h). Nat Commun (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 1:1000; 图 5h
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5h). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 9d
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9452)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9d). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上 (图 2d). Mol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d, s4e
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在人类样本上 (图 2d, s4e). Mol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s4e
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在人类样本上 (图 s4e). Mol Cell (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上 (图 5c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 5c). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 9455)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(174A9)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 9456)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 9459)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 9452)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在小鼠样本上 (图 7c). Biochem Pharmacol (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 7c). Biochem Pharmacol (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 2855P)被用于被用于免疫印迹在人类样本上 (图 2a). Redox Biol (2017) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 2a). Redox Biol (2017) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(87D12)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 4923)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 s9e
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 s9e). Nature (2017) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫印迹; 小鼠; 图 s9e
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9456)被用于被用于免疫印迹在小鼠样本上 (图 s9e) 和 被用于免疫印迹在人类样本上 (图 1a). Nature (2017) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9644)被用于被用于免疫印迹在人类样本上 (图 2a). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9451)被用于被用于免疫印迹在人类样本上 (图 2a). Nature (2017) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 s7f
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 9644)被用于被用于免疫印迹在人类样本上 (图 s7f). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s7f
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 9451)被用于被用于免疫印迹在人类样本上 (图 s7f). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9452)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9451)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9455)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猪; 图 2a
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 9451)被用于被用于免疫印迹在猪样本上 (图 2a). Front Immunol (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 1:500; 图 1d
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1d). Front Mol Neurosci (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 1:500; 图 1d
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1d). Front Mol Neurosci (2016) ncbi
domestic rabbit 单克隆(174A9)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9456)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2e
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000; 图 s2e
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司4E-BP1抗体(cell signalling, 9644)被用于被用于免疫印迹在小鼠样本上 (图 6a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:300; 图 7a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 7a). J Nutr Biochem (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:100; 图 7a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 7a). J Nutr Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在人类样本上 (图 4a). Biochim Biophys Acta Mol Cell Res (2017) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9456)被用于被用于免疫印迹在人类样本上 (图 4a). Biochim Biophys Acta Mol Cell Res (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化-冰冻切片; 小鼠; 图 s2d
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 236B4)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2d). Nature (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 1:500; 图 9k
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 9k). J Neurosci (2017) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 1:500; 图 9k
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 9k). J Neurosci (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 2855)被用于被用于免疫印迹在小鼠样本上 (图 6b). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 9644)被用于被用于免疫印迹在小鼠样本上 (图 6b). Mol Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 9455)被用于被用于免疫印迹在小鼠样本上 (图 6b). Mol Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 9451)被用于被用于免疫印迹在小鼠样本上 (图 6b). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 1:1000; 图 s1e
赛信通(上海)生物试剂有限公司4E-BP1抗体(New England Biolabs, 9644)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1e). Hum Mol Genet (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 黑腹果蝇; 图 4a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 2855)被用于被用于免疫印迹在黑腹果蝇样本上 (图 4a). J Gerontol A Biol Sci Med Sci (2017) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 2d). Nature (2017) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9456)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9452)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9459)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 236B4)被用于被用于免疫印迹在人类样本上 (图 3f). Biochim Biophys Acta Mol Cell Res (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫细胞化学; 小鼠; 1:200; 图 s7b
  • 免疫印迹; 小鼠; 1:1000; 图 s5a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s7b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5a). Nature (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司4E-BP1抗体(cell signalling, 2855)被用于被用于免疫印迹在人类样本上 (图 1a). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司4E-BP1抗体(cell signalling, 9452)被用于被用于免疫印迹在人类样本上 (图 1a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 黑腹果蝇; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855S)被用于被用于免疫印迹在黑腹果蝇样本上浓度为1:1000 (图 6d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Santa Cruz, 9644)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Oncogene (2017) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 图 s6b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 236B4)被用于被用于免疫组化在小鼠样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 s6b). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在人类样本上 (图 s3). Neuroendocrinology (2018) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 s3). Neuroendocrinology (2018) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹基因敲除验证; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 s2a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 1f). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 9451)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9452)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9451)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 3d
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 236B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 3d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 4b). Diabetes (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在人类样本上 (图 3). Cell Discov (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在人类样本上 (图 3). Cell Discov (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 1:2000; 图 s2
赛信通(上海)生物试剂有限公司4E-BP1抗体(cell signalling, 9644)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 53H11)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 9451)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 1a). Aging Cell (2017) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在小鼠样本上 (图 1a). Aging Cell (2017) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Tech, 9456)被用于被用于免疫印迹在人类样本上 (图 5). Nat Commun (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 53H11)被用于被用于免疫印迹在小鼠样本上 (图 7b). Hum Mol Genet (2016) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 9456)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 7b). Hum Mol Genet (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化; 人类; 图 6
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 236B4)被用于被用于免疫组化在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 53H11)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9459)被用于被用于免疫印迹在大鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在大鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在小鼠样本上 (图 s3c). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2e
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9459)被用于被用于免疫印迹在小鼠样本上 (图 s2e). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在人类样本上 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9456)被用于被用于免疫印迹在人类样本上 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上. Nature (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 3c). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在小鼠样本上 (图 3c). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Mol Neurodegener (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9455)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9459)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855S)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452S)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9644)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Tech, 2855)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 1:1000; 图 s3
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s1
  • 免疫印迹; 人类; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 流式细胞仪; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 236B4)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Leukoc Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在小鼠样本上 (图 s1). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 8
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9451)被用于被用于免疫印迹在大鼠样本上 (图 8). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 7547)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司4E-BP1抗体(cell signalling, 9452S)被用于被用于免疫印迹在人类样本上 (图 1b). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 9644)被用于被用于免疫印迹在小鼠样本上 (图 2). Autophagy (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 2). Autophagy (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 9452)被用于被用于免疫印迹在人类样本上 (图 1). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 2). Aging (Albany NY) (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上 (图 2). Aging (Albany NY) (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 黑腹果蝇; 1:1000; 图 6
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫印迹在黑腹果蝇样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 6). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猫; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9459)被用于被用于免疫印迹在猫样本上 (图 4). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猫; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在猫样本上 (图 4). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猫; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在猫样本上 (图 4). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫组化在小鼠样本上 (图 4a). J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:100; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 9
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫印迹在小鼠样本上 (图 9). Sci Rep (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 9
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9644)被用于被用于免疫印迹在小鼠样本上 (图 9). Sci Rep (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2016) ncbi
domestic rabbit 单克隆(D7F6I)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 13396)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 5c). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Hum Mol Genet (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Hum Mol Genet (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 1b). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 1i
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上 (图 1i). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technologies, 2855)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 1:2000; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technologies, 9644)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technologies, 9456)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 6). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在人类样本上 (图 6). J Virol (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 牛; 图 5a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在牛样本上 (图 5a). Mol Cells (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(87D12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 4923S)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644S)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855S)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9459)被用于被用于免疫印迹在小鼠样本上 (图 s5). Hepatology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在小鼠样本上 (图 s5). Hepatology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7f
  • 免疫印迹; 小鼠; 图 6g
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9452)被用于被用于免疫印迹在人类样本上 (图 7f) 和 被用于免疫印迹在小鼠样本上 (图 6g). elife (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化-石蜡切片; 小鼠; 图 6f
  • 免疫印迹; 小鼠; 图 6g
  • 免疫印迹; 人类; 图 7f
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6f), 被用于免疫印迹在小鼠样本上 (图 6g) 和 被用于免疫印迹在人类样本上 (图 7f). elife (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 2855)被用于被用于免疫印迹在小鼠样本上 (图 4). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 9644)被用于被用于免疫印迹在小鼠样本上 (图 4). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化-石蜡切片; 人类; 1:750; 图 s5
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 236B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:750 (图 s5). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s4c
  • 免疫印迹; 小鼠; 1:2000; 图 s1a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9459)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s1a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s4c
  • 免疫印迹; 小鼠; 1:2000; 图 s1a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s1a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 9451)被用于被用于免疫印迹在小鼠样本上 (图 7a). Diabetes (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3i). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 3a
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 53H11)被用于被用于免疫印迹在小鼠样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 3a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫沉淀; 人类; 图 4b
  • 免疫印迹; 人类; 图 3a
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 236B4)被用于被用于免疫沉淀在人类样本上 (图 4b), 被用于免疫印迹在人类样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 3a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上 (图 2). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在人类样本上 (图 2). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫细胞化学; 人类; 1:200; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signalling, 9644)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9452)被用于被用于免疫印迹在小鼠样本上 (图 s4). Neuron (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9459)被用于被用于免疫印迹在小鼠样本上 (图 s4). Neuron (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Commun (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000; 图 1s3g
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technologies, 2855)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1s3g). elife (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 1:1000; 图 s6a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 1s2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9644)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 1s2). elife (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 53H11)被用于被用于免疫印迹在小鼠样本上 (图 5). J Immunol (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 236B4)被用于被用于免疫印迹在小鼠样本上 (图 5). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s5
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9459)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s5). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在小鼠样本上 (图 4b). EMBO Mol Med (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000; 图 s10
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 2855)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s10). Nat Commun (2015) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫组化; 人类; 图 3h
  • 免疫印迹; 人类; 图 s2c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9456)被用于被用于免疫组化在人类样本上 (图 3h) 和 被用于免疫印迹在人类样本上 (图 s2c). Sci Adv (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 s2c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上 (图 s2c). Sci Adv (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000; 图 1a
  • 免疫组化; 小鼠; 1:1600; 图 3b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 2855)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a) 和 被用于免疫组化在小鼠样本上浓度为1:1600 (图 3b). Cancer Res (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 9644)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Cancer Res (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 1:5000; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Endocrinology (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 4). Nat Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 9452)被用于被用于免疫印迹在小鼠样本上 (图 8). Nat Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 9451)被用于被用于免疫印迹在小鼠样本上 (图 4). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司4E-BP1抗体(cell signaling, 2855S)被用于被用于免疫印迹在人类样本上. Aging (Albany NY) (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 5). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(87D12)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 4923)被用于被用于免疫印迹在大鼠样本上 (图 5). Int J Nanomedicine (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 s2a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上 (图 s2a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 2b). Oncogenesis (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 4c). Oncogene (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). EMBO Mol Med (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). EMBO Mol Med (2015) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫印迹; 小鼠; 1:5000; 图 3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 9456)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Drug Des Devel Ther (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9644P)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9455S)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cancer Res (2016) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855L)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer Res (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 1:2000; 图 3f
  • 免疫印迹; 大鼠; 1:2000; 图 3d
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9644)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3f) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3d). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 大鼠; 1:2000; 图 3d
  • 免疫印迹; 人类; 1:2000; 图 3f
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3d) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 3f). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 236B4)被用于被用于免疫印迹在大鼠样本上. Exp Neurol (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 1:2000; 图 6
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 1:2000; 图 6
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 4b). Neuroendocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9451)被用于被用于免疫印迹在人类样本上 (图 4b). Neuroendocrinology (2016) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫印迹; 大鼠; 1:500; 图 5a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 9456)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5a). J Neurooncol (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000; 图 s8c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8c). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644S)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 236B4)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 53H11)被用于被用于免疫印迹在人类样本上 (图 2a). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9456)被用于被用于免疫印迹在人类样本上 (图 4). Acta Pharmacol Sin (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Rep (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上 (图 3). Nat Immunol (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 3). Nat Immunol (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 1:500; 图 2.e
赛信通(上海)生物试剂有限公司4E-BP1抗体(CellSignaling, 9644)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2.e). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:500; 图 2.e
赛信通(上海)生物试剂有限公司4E-BP1抗体(CellSignaling, 2855)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2.e). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 2855)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化-石蜡切片; 人类; 1:50
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signalling Technology, 236B4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Int J Clin Exp Pathol (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在大鼠样本上 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化; 黑腹果蝇; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫组化在黑腹果蝇样本上 (图 1). Autophagy (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫组化-石蜡切片; 犬
  • 免疫印迹; 犬
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 53H11)被用于被用于免疫组化-石蜡切片在犬样本上 和 被用于免疫印迹在犬样本上. Int J Oncol (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Oncotarget (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上 (图 4b). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上 (图 4b). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 流式细胞仪; 小鼠; 图 9
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 236B4)被用于被用于流式细胞仪在小鼠样本上 (图 9). J Immunol (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫印迹在小鼠样本上. Muscle Nerve (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9452)被用于被用于免疫印迹在小鼠样本上. Muscle Nerve (2016) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Tech, 9644)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 f5,f6
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technologies, 236B4)被用于被用于免疫印迹在小鼠样本上 (图 f5,f6). Sci Signal (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 f6
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technologies, 53H11)被用于被用于免疫印迹在小鼠样本上 (图 f6). Sci Signal (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司4E-BP1抗体(cell signaling tech, 2855)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化-石蜡切片; 小鼠; 图 2
  • 免疫印迹; 人类; 1:300
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Tech, 2855)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:300. Oncotarget (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855S)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Mol Syst Biol (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 1:1000; 图 1,2,3,4,5,6,7
赛信通(上海)生物试剂有限公司4E-BP1抗体(cell signaling, 9644)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1,2,3,4,5,6,7). EMBO J (2015) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9456)被用于被用于免疫印迹在人类样本上 (图 1). Sci Signal (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 3,7,8
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫印迹在小鼠样本上 (图 3,7,8). J Am Heart Assoc (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 3,7,8
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9644)被用于被用于免疫印迹在小鼠样本上 (图 3,7,8). J Am Heart Assoc (2015) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫印迹; 小鼠; 1:500; 图 6c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 9456)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6c). Brain Res (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化-石蜡切片; 斑马鱼; 1:200
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855P)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:200. Mol Cancer (2015) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9456)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 236B4)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 大鼠; 1:1000; 图 6D
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6D). Arch Biochem Biophys (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫细胞化学; 雨虎属; 图 5s1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫细胞化学在雨虎属样本上 (图 5s1). elife (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在大鼠样本上. Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在大鼠样本上. Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 s7
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 236B4)被用于被用于免疫印迹在小鼠样本上 (图 s7). Nat Immunol (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司4E-BP1抗体(CST, 2855)被用于被用于免疫印迹在人类样本上浓度为1:1000 和 被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 7d). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 3d
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 3c). Nat Med (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Ann Anat (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Ann Anat (2015) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9456)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nutr Res (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上浓度为1:1000. Br J Cancer (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 5). J Exp Med (2014) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在小鼠样本上 (图 7). Cell (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上 (图 7). Cell (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 猪; 1:500
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9644P)被用于被用于免疫印迹在猪样本上浓度为1:500. Amino Acids (2014) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9644P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technologies, 2855)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technologies, 2855)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(174A9)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9456)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncol Rep (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855p)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 9644p)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 9644)被用于被用于免疫印迹在人类样本上. Aging Cell (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上. Aging Cell (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Nat Med (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 1:3000
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology Inc, 236B4)被用于被用于免疫印迹在小鼠样本上浓度为1:3000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signalling Technology, #9644)被用于被用于免疫印迹在人类样本上浓度为1:1000. Breast Cancer Res (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化; 人类; 1:2000
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫组化在人类样本上浓度为1:2000. Scand J Med Sci Sports (2015) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 53H11)被用于被用于免疫组化-石蜡切片在人类样本上. Oncol Lett (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 236B4)被用于被用于免疫组化-石蜡切片在人类样本上. Oncol Lett (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在大鼠样本上 (图 1). Hum Mol Genet (2014) ncbi
domestic rabbit 单克隆(53H11)
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 53H11)被用于被用于免疫印迹在大鼠样本上 (图 1). Hum Mol Genet (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 1:1000
  • 免疫组化; 大鼠
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫印迹在人类样本上浓度为1:1000, 被用于免疫组化在大鼠样本上 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Pain (2013) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫组化在人类样本上. Cancer Res (2013) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫组化-石蜡切片; 斑马鱼; 1:300
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:300. PLoS Genet (2013) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上 (图 4). Mol Carcinog (2014) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technologie, 2855)被用于被用于免疫印迹在人类样本上 (图 5). Oncogenesis (2013) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠; 1:100; 图 3
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 3). Cell (2013) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling, 2855)被用于被用于免疫印迹在人类样本上. J Physiol (2013) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855S)被用于被用于免疫印迹在小鼠样本上. Eur J Immunol (2011) ncbi
domestic rabbit 单克隆(236B4)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司4E-BP1抗体(Cell Signaling Technology, 2855)被用于被用于免疫印迹在人类样本上 (图 1a). Blood (2009) ncbi
文章列表
  1. Chávez M, Morales R, Lopez Crisosto C, Roa J, Allende M, Lavandero S. Autophagy Activation in Zebrafish Heart Regeneration. Sci Rep. 2020;10:2191 pubmed 出版商
  2. Inoue T, Kokubo T, Daino K, Yanagihara H, Watanabe F, Tsuruoka C, et al. Interstitial chromosomal deletion of the tuberous sclerosis complex 2 locus is a signature for radiation-associated renal tumors in Eker rats. Cancer Sci. 2020;111:840-848 pubmed 出版商
  3. Xu Q, Ge Q, Zhou Y, Yang B, Yang Q, Jiang S, et al. MELK promotes Endometrial carcinoma progression via activating mTOR signaling pathway. EBioMedicine. 2020;51:102609 pubmed 出版商
  4. Zhu P, Khatiwada S, Cui Y, Reineke L, Dooling S, Kim J, et al. Activation of the ISR mediates the behavioral and neurophysiological abnormalities in Down syndrome. Science. 2019;366:843-849 pubmed 出版商
  5. Dai W, Zhao F, Liu J, Liu H. Seryl-tRNA synthetase is involved in methionine stimulation of β-casein synthesis in bovine mammary epithelial cells. Br J Nutr. 2020;123:489-498 pubmed 出版商
  6. Guo Z, Zhao K, Feng X, Yan D, Yao R, Chen Y, et al. mTORC2 Regulates Lipogenic Gene Expression through PPARγ to Control Lipid Synthesis in Bovine Mammary Epithelial Cells. Biomed Res Int. 2019;2019:5196028 pubmed 出版商
  7. Wang H, Huang F, Zhang Z, Wang P, Luo Y, Li H, et al. Feedback Activation of SGK3 and AKT Contributes to Rapamycin Resistance by Reactivating mTORC1/4EBP1 Axis via TSC2 in Breast Cancer. Int J Biol Sci. 2019;15:929-941 pubmed 出版商
  8. Pietila M, Sahgal P, Peuhu E, Jäntti N, Paatero I, Närvä E, et al. SORLA regulates endosomal trafficking and oncogenic fitness of HER2. Nat Commun. 2019;10:2340 pubmed 出版商
  9. Jewell J, Fu V, Hong A, Yu F, Meng D, Melick C, et al. GPCR signaling inhibits mTORC1 via PKA phosphorylation of Raptor. elife. 2019;8: pubmed 出版商
  10. Miettinen T, Kang J, Yang L, Manalis S. Mammalian cell growth dynamics in mitosis. elife. 2019;8: pubmed 出版商
  11. Han Y, Feng H, Sun J, Liang X, Wang Z, Xing W, et al. Lkb1 deletion in periosteal mesenchymal progenitors induces osteogenic tumors through mTORC1 activation. J Clin Invest. 2019;130: pubmed 出版商
  12. Horos R, Büscher M, Kleinendorst R, Alleaume A, Tarafder A, Schwarzl T, et al. The Small Non-coding Vault RNA1-1 Acts as a Riboregulator of Autophagy. Cell. 2019;176:1054-1067.e12 pubmed 出版商
  13. Pollen A, Bhaduri A, Andrews M, Nowakowski T, Meyerson O, Mostajo Radji M, et al. Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution. Cell. 2019;176:743-756.e17 pubmed 出版商
  14. Mathieu J, Detraux D, Kuppers D, Wang Y, Cavanaugh C, Sidhu S, et al. Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency. Nat Commun. 2019;10:632 pubmed 出版商
  15. Ranek M, Kokkonen Simon K, Chen A, Dunkerly Eyring B, Vera M, Oeing C, et al. PKG1-modified TSC2 regulates mTORC1 activity to counter adverse cardiac stress. Nature. 2019;566:264-269 pubmed 出版商
  16. Wong Y, Lebon L, Basso A, Kohlhaas K, Nikkel A, Robb H, et al. eIF2B activator prevents neurological defects caused by a chronic integrated stress response. elife. 2019;8: pubmed 出版商
  17. Wang Y, Du L, Liang X, Meng P, Bi L, Wang Y, et al. Sirtuin 4 Depletion Promotes Hepatocellular Carcinoma Tumorigenesis Through Regulating Adenosine-Monophosphate-Activated Protein Kinase Alpha/Mammalian Target of Rapamycin Axis in Mice. Hepatology. 2018;: pubmed 出版商
  18. Bitar M, Nader J, Al Ali W, Al Madhoun A, Arefanian H, Al Mulla F. Hydrogen Sulfide Donor NaHS Improves Metabolism and Reduces Muscle Atrophy in Type 2 Diabetes: Implication for Understanding Sarcopenic Pathophysiology. Oxid Med Cell Longev. 2018;2018:6825452 pubmed 出版商
  19. Urtishak K, Wang L, Culjkovic Kraljacic B, Davenport J, Porazzi P, Vincent T, et al. Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene. 2019;38:2241-2262 pubmed 出版商
  20. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  21. Mollaoglu G, Jones A, Wait S, Mukhopadhyay A, Jeong S, Arya R, et al. The Lineage-Defining Transcription Factors SOX2 and NKX2-1 Determine Lung Cancer Cell Fate and Shape the Tumor Immune Microenvironment. Immunity. 2018;49:764-779.e9 pubmed 出版商
  22. Son S, Park S, Lee H, Siddiqi F, Lee J, Menzies F, et al. Leucine Signals to mTORC1 via Its Metabolite Acetyl-Coenzyme A. Cell Metab. 2019;29:192-201.e7 pubmed 出版商
  23. Gut G, Herrmann M, Pelkmans L. Multiplexed protein maps link subcellular organization to cellular states. Science. 2018;361: pubmed 出版商
  24. Poffenberger M, Metcalfe Roach A, Aguilar E, Chen J, Hsu B, Wong A, et al. LKB1 deficiency in T cells promotes the development of gastrointestinal polyposis. Science. 2018;361:406-411 pubmed 出版商
  25. Wang W, Xia Z, Farre J, Subramani S. TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis. Autophagy. 2018;14:1574-1585 pubmed 出版商
  26. NGUYEN J, Ray C, Fox A, Mendonça D, Kim J, Krebsbach P. Mammalian EAK-7 activates alternative mTOR signaling to regulate cell proliferation and migration. Sci Adv. 2018;4:eaao5838 pubmed 出版商
  27. Liakath Ali K, Mills E, Sequeira I, Lichtenberger B, Pisco A, Sipilä K, et al. An evolutionarily conserved ribosome-rescue pathway maintains epidermal homeostasis. Nature. 2018;556:376-380 pubmed 出版商
  28. Panda S, Facchinetti V, Voynova E, Hanabuchi S, Karnell J, Hanna R, et al. Galectin-9 inhibits TLR7-mediated autoimmunity in murine lupus models. J Clin Invest. 2018;128:1873-1887 pubmed 出版商
  29. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  30. Bekkering S, Arts R, Novakovic B, Kourtzelis I, van der Heijden C, Li Y, et al. Metabolic Induction of Trained Immunity through the Mevalonate Pathway. Cell. 2018;172:135-146.e9 pubmed 出版商
  31. Wang J, Ye Q, Cao Y, Guo Y, Huang X, Mi W, et al. Snail determines the therapeutic response to mTOR kinase inhibitors by transcriptional repression of 4E-BP1. Nat Commun. 2017;8:2207 pubmed 出版商
  32. Liu S, Li X, Lin Z, Su L, Yan S, Zhao B, et al. SEC-induced activation of ANXA7 GTPase suppresses prostate cancer metastasis. Cancer Lett. 2018;416:11-23 pubmed 出版商
  33. Hu J, Sun F, Handel M. Nuclear localization of EIF4G3 suggests a role for the XY body in translational regulation during spermatogenesis in mice. Biol Reprod. 2018;98:102-114 pubmed 出版商
  34. Urbanska M, Gozdz A, Macias M, Cymerman I, Liszewska E, Kondratiuk I, et al. GSK3β Controls mTOR and Prosurvival Signaling in Neurons. Mol Neurobiol. 2018;55:6050-6062 pubmed 出版商
  35. Bostner J, Alayev A, Berman A, Fornander T, Nordenskjold B, Holz M, et al. Raptor localization predicts prognosis and tamoxifen response in estrogen receptor-positive breast cancer. Breast Cancer Res Treat. 2018;168:17-27 pubmed 出版商
  36. Mai W, Gosa L, Daniëls V, Ta L, Tsang J, Higgins B, et al. Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nat Med. 2017;23:1342-1351 pubmed 出版商
  37. Morita M, Prudent J, Basu K, Goyon V, Katsumura S, Hulea L, et al. mTOR Controls Mitochondrial Dynamics and Cell Survival via MTFP1. Mol Cell. 2017;67:922-935.e5 pubmed 出版商
  38. Sinha S, Thomas D, Chan S, Gao Y, Brunen D, Torabi D, et al. Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data. Nat Commun. 2017;8:15580 pubmed 出版商
  39. Ip W, Hoshi N, Shouval D, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356:513-519 pubmed 出版商
  40. Riemer P, Rydenfelt M, Marks M, van Eunen K, Thedieck K, Herrmann B, et al. Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. J Cell Biol. 2017;216:1567-1577 pubmed 出版商
  41. Kwon M, Han J, Kim U, Cha M, Um S, Bai S, et al. Inhibition of Mammalian Target of Rapamycin (mTOR) Signaling in the Insular Cortex Alleviates Neuropathic Pain after Peripheral Nerve Injury. Front Mol Neurosci. 2017;10:79 pubmed 出版商
  42. Zhang X, Fan J, Wang S, Li Y, Wang Y, Li S, et al. Targeting CD47 and Autophagy Elicited Enhanced Antitumor Effects in Non-Small Cell Lung Cancer. Cancer Immunol Res. 2017;5:363-375 pubmed 出版商
  43. Suresh S, Chavalmane A, Dj V, Yarreiphang H, Rai S, Paul A, et al. A novel autophagy modulator 6-Bio ameliorates SNCA/?-synuclein toxicity. Autophagy. 2017;13:1221-1234 pubmed 出版商
  44. Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed 出版商
  45. Ohgaki R, Ohmori T, Hara S, Nakagomi S, Kanai Azuma M, Kaneda Nakashima K, et al. Essential Roles of L-Type Amino Acid Transporter 1 in Syncytiotrophoblast Development by Presenting Fusogenic 4F2hc. Mol Cell Biol. 2017;37: pubmed 出版商
  46. Gupta A, Anjomani Virmouni S, Koundouros N, Dimitriadi M, Choo Wing R, Valle A, et al. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation. Mol Cell. 2017;65:999-1013.e7 pubmed 出版商
  47. Merhi A, Delree P, Marini A. The metabolic waste ammonium regulates mTORC2 and mTORC1 signaling. Sci Rep. 2017;7:44602 pubmed 出版商
  48. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  49. Samuel S, Ghosh S, Majeed Y, Arunachalam G, Emara M, Ding H, et al. Metformin represses glucose starvation induced autophagic response in microvascular endothelial cells and promotes cell death. Biochem Pharmacol. 2017;132:118-132 pubmed 出版商
  50. Xu J, Wu Y, Lu G, Xie S, Ma Z, Chen Z, et al. Importance of ROS-mediated autophagy in determining apoptotic cell death induced by physapubescin B. Redox Biol. 2017;12:198-207 pubmed 出版商
  51. Møller A, Kampmann U, Hedegaard J, Thorsen K, Nordentoft I, Vendelbo M, et al. Altered gene expression and repressed markers of autophagy in skeletal muscle of insulin resistant patients with type 2 diabetes. Sci Rep. 2017;7:43775 pubmed 出版商
  52. Peng M, Yin N, Li M. SZT2 dictates GATOR control of mTORC1 signalling. Nature. 2017;543:433-437 pubmed 出版商
  53. Wolfson R, Chantranupong L, Wyant G, Gu X, Orozco J, Shen K, et al. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature. 2017;543:438-442 pubmed 出版商
  54. Jung J, Nayak A, Schaeffer V, Starzetz T, Kirsch A, Muller S, et al. Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator. elife. 2017;6: pubmed 出版商
  55. Qiao A, Jin X, Pang J, Moskophidis D, Mivechi N. The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis. J Cell Biol. 2017;216:723-741 pubmed 出版商
  56. Mondello P, Derenzini E, Asgari Z, Philip J, Brea E, SESHAN V, et al. Dual inhibition of histone deacetylases and phosphoinositide 3-kinase enhances therapeutic activity against B cell lymphoma. Oncotarget. 2017;8:14017-14028 pubmed 出版商
  57. Ren W, Yin J, Xiao H, Chen S, Liu G, Tan B, et al. Intestinal Microbiota-Derived GABA Mediates Interleukin-17 Expression during Enterotoxigenic Escherichia coli Infection. Front Immunol. 2016;7:685 pubmed 出版商
  58. Biever A, Boubaker Vitre J, Cutando L, Gracia Rubio I, Costa Mattioli M, Puighermanal E, et al. Repeated Exposure to D-Amphetamine Decreases Global Protein Synthesis and Regulates the Translation of a Subset of mRNAs in the Striatum. Front Mol Neurosci. 2016;9:165 pubmed 出版商
  59. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  60. Villar V, Nguyen T, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124 pubmed 出版商
  61. Li S, Sun S, Gao J, Sun F. Wogonin induces Beclin-1/PI3K and reactive oxygen species-mediated autophagy in human pancreatic cancer cells. Oncol Lett. 2016;12:5059-5067 pubmed 出版商
  62. Chamoto K, Chowdhury P, Kumar A, Sonomura K, Matsuda F, Fagarasan S, et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci U S A. 2017;114:E761-E770 pubmed 出版商
  63. Granato M, Rizzello C, Gilardini Montani M, Cuomo L, Vitillo M, Santarelli R, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem. 2017;41:124-136 pubmed 出版商
  64. Zhang L, Dai F, Cui L, Zhou B, Guo Y. Up-regulation of the active form of small GTPase Rab13 promotes macroautophagy in vascular endothelial cells. Biochim Biophys Acta Mol Cell Res. 2017;1864:613-624 pubmed 出版商
  65. Sendoel A, Dunn J, Rodriguez E, Naik S, Gomez N, Hurwitz B, et al. Translation from unconventional 5' start sites drives tumour initiation. Nature. 2017;541:494-499 pubmed 出版商
  66. Hussain R, Macklin W. Integrin-Linked Kinase (ILK) Deletion Disrupts Oligodendrocyte Development by Altering Cell Cycle. J Neurosci. 2017;37:397-412 pubmed 出版商
  67. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  68. Athanasiou D, Aguilà M, Opefi C, South K, Bellingham J, Bevilacqua D, et al. Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration. Hum Mol Genet. 2017;26:305-319 pubmed 出版商
  69. Wu Q, Lian T, Fan X, Song C, Gaur U, Mao X, et al. 2,5-Dimethyl-Celecoxib Extends Drosophila Life Span via a Mechanism That Requires Insulin and Target of Rapamycin Signaling. J Gerontol A Biol Sci Med Sci. 2017;72:1334-1341 pubmed 出版商
  70. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2017;541:228-232 pubmed 出版商
  71. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  72. Fettweis G, Di Valentin E, L homme L, Lassence C, Dequiedt F, Fillet M, et al. RIP3 antagonizes a TSC2-mediated pro-survival pathway in glioblastoma cell death. Biochim Biophys Acta Mol Cell Res. 2017;1864:113-124 pubmed 出版商
  73. Yang J, Savvatis K, Kang J, Fan P, Zhong H, Schwartz K, et al. Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat Commun. 2016;7:13710 pubmed 出版商
  74. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  75. Cao J, Tyburczy M, Moss J, Darling T, Widlund H, Kwiatkowski D. Tuberous sclerosis complex inactivation disrupts melanogenesis via mTORC1 activation. J Clin Invest. 2017;127:349-364 pubmed 出版商
  76. Bangi E, Murgia C, Teague A, Sansom O, Cagan R. Functional exploration of colorectal cancer genomes using Drosophila. Nat Commun. 2016;7:13615 pubmed 出版商
  77. Liu W, Huang K, Lu M, Huang H, Chen C, Cheng Y, et al. TGF-β upregulates the translation of USP15 via the PI3K/AKT pathway to promote p53 stability. Oncogene. 2017;36:2715-2723 pubmed 出版商
  78. Bulut Karslioglu A, Biechele S, Jin H, Macrae T, Hejna M, Gertsenstein M, et al. Inhibition of mTOR induces a paused pluripotent state. Nature. 2016;540:119-123 pubmed 出版商
  79. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  80. Tahmasebi S, Jafarnejad S, Tam I, Gonatopoulos Pournatzis T, Matta Camacho E, Tsukumo Y, et al. Control of embryonic stem cell self-renewal and differentiation via coordinated alternative splicing and translation of YY2. Proc Natl Acad Sci U S A. 2016;113:12360-12367 pubmed
  81. Li R, Xu J, Fu C, Zhang J, Zheng Y, Jia H, et al. Regulation of mTORC1 by lysosomal calcium and calmodulin. elife. 2016;5: pubmed 出版商
  82. Chen Y, Xu J, Skanderup A, Dong Y, Brannon A, Wang L, et al. Molecular analysis of aggressive renal cell carcinoma with unclassified histology reveals distinct subsets. Nat Commun. 2016;7:13131 pubmed 出版商
  83. Gurley J, Ilkayeva O, Jackson R, Griesel B, White P, Matsuzaki S, et al. Enhanced GLUT4-Dependent Glucose Transport Relieves Nutrient Stress in Obese Mice Through Changes in Lipid and Amino Acid Metabolism. Diabetes. 2016;65:3585-3597 pubmed
  84. Yuzugullu H, Von T, Thorpe L, Walker S, Roberts T, Frank D, et al. NTRK2 activation cooperates with PTEN deficiency in T-ALL through activation of both the PI3K-AKT and JAK-STAT3 pathways. Cell Discov. 2016;2:16030 pubmed 出版商
  85. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  86. Krepler C, Xiao M, Samanta M, Vultur A, Chen H, Brafford P, et al. Targeting Notch enhances the efficacy of ERK inhibitors in BRAF-V600E melanoma. Oncotarget. 2016;7:71211-71222 pubmed 出版商
  87. Carbonneau M, M Gagné L, Lalonde M, Germain M, Motorina A, Guiot M, et al. The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nat Commun. 2016;7:12700 pubmed 出版商
  88. Dominick G, Bowman J, Li X, Miller R, Garcia G. mTOR regulates the expression of DNA damage response enzymes in long-lived Snell dwarf, GHRKO, and PAPPA-KO mice. Aging Cell. 2017;16:52-60 pubmed 出版商
  89. Rasmussen M, Lyskjær I, Jersie Christensen R, Tarpgaard L, Primdal Bengtson B, Nielsen M, et al. miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells. Nat Commun. 2016;7:12436 pubmed 出版商
  90. Zhang L, Justus S, Xu Y, Pluchenik T, Hsu C, Yang J, et al. Reprogramming towards anabolism impedes degeneration in a preclinical model of retinitis pigmentosa. Hum Mol Genet. 2016;25:4244-4255 pubmed 出版商
  91. Khanom R, Nguyen C, Kayamori K, Zhao X, Morita K, Miki Y, et al. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLoS ONE. 2016;11:e0161163 pubmed 出版商
  92. Ogasawara R, Fujita S, Hornberger T, Kitaoka Y, Makanae Y, Nakazato K, et al. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep. 2016;6:31142 pubmed 出版商
  93. Tsai S, Rodriguez A, Dastidar S, Del Greco E, Carr K, Sitzmann J, et al. Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice. Cell Rep. 2016;16:1903-14 pubmed 出版商
  94. Ladd B, Mazzola A, Bihani T, Lai Z, BRADFORD J, Collins M, et al. Effective combination therapies in preclinical endocrine resistant breast cancer models harboring ER mutations. Oncotarget. 2016;7:54120-54136 pubmed 出版商
  95. Lee A, Kranzusch P, Doudna J, Cate J. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature. 2016;536:96-9 pubmed
  96. Diez H, Benitez M, Fernandez S, Torres Aleman I, Garrido J, Wandosell F. Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation. Biochim Biophys Acta. 2016;1863:2574-2583 pubmed 出版商
  97. Jiang M, Liu L, He X, Wang H, Lin W, Wang H, et al. Regulation of PERK-eIF2? signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes. Nat Commun. 2016;7:12185 pubmed 出版商
  98. Velázquez R, Shaw D, Caccamo A, Oddo S. Pim1 inhibition as a novel therapeutic strategy for Alzheimer's disease. Mol Neurodegener. 2016;11:52 pubmed 出版商
  99. Deblois G, Smith H, Tam I, Gravel S, Caron M, Savage P, et al. ERR? mediates metabolic adaptations driving lapatinib resistance in breast cancer. Nat Commun. 2016;7:12156 pubmed 出版商
  100. Yin C, He D, Chen S, Tan X, Sang N. Exogenous pyruvate facilitates cancer cell adaptation to hypoxia by serving as an oxygen surrogate. Oncotarget. 2016;7:47494-47510 pubmed 出版商
  101. Tsukumo Y, Alain T, Fonseca B, Nadon R, Sonenberg N. Translation control during prolonged mTORC1 inhibition mediated by 4E-BP3. Nat Commun. 2016;7:11776 pubmed 出版商
  102. Andersson A, Andersson B, Lorell C, Raffetseder J, Larsson M, Blomgran R. Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages. Sci Rep. 2016;6:28171 pubmed 出版商
  103. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed 出版商
  104. Cao G, Wang Q, Li G, Meng Z, Liu H, Tong J, et al. mTOR inhibition potentiates cytotoxicity of V?4 ?? T cells via up-regulating NKG2D and TNF-?. J Leukoc Biol. 2016;100:1181-1189 pubmed
  105. van Ree J, Nam H, Jeganathan K, Kanakkanthara A, van Deursen J. Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes. Nat Cell Biol. 2016;18:814-21 pubmed 出版商
  106. Zhu Y, Ramos da Silva S, He M, Liang Q, Lu C, Feng P, et al. An Oncogenic Virus Promotes Cell Survival and Cellular Transformation by Suppressing Glycolysis. PLoS Pathog. 2016;12:e1005648 pubmed 出版商
  107. Rao E, Zhang Y, Li Q, Hao J, Egilmez N, Suttles J, et al. AMPK-dependent and independent effects of AICAR and compound C on T-cell responses. Oncotarget. 2016;7:33783-95 pubmed 出版商
  108. Lyons S, Achorn C, Kedersha N, Anderson P, Ivanov P. YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression. Nucleic Acids Res. 2016;44:6949-60 pubmed 出版商
  109. Pastore N, Brady O, Diab H, Martina J, Sun L, Huynh T, et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy. 2016;12:1240-58 pubmed 出版商
  110. Ma X, Guo P, Qiu Y, Mu K, Zhu L, Zhao W, et al. Loss of AIM2 expression promotes hepatocarcinoma progression through activation of mTOR-S6K1 pathway. Oncotarget. 2016;7:36185-36197 pubmed 出版商
  111. Lock R, Ingraham R, Maertens O, Miller A, Weledji N, Legius E, et al. Cotargeting MNK and MEK kinases induces the regression of NF1-mutant cancers. J Clin Invest. 2016;126:2181-90 pubmed 出版商
  112. Segatto I, Massarut S, Boyle R, Baldassarre G, Walker D, Belletti B. Preclinical validation of a novel compound targeting p70S6 kinase in breast cancer. Aging (Albany NY). 2016;8:958-76 pubmed 出版商
  113. Le T, Vuong L, Kim A, Hsu Y, Choi K. 14-3-3 proteins regulate Tctp-Rheb interaction for organ growth in Drosophila. Nat Commun. 2016;7:11501 pubmed 出版商
  114. Taniguchi T, Iizumi Y, Watanabe M, Masuda M, Morita M, Aono Y, et al. Resveratrol directly targets DDX5 resulting in suppression of the mTORC1 pathway in prostate cancer. Cell Death Dis. 2016;7:e2211 pubmed 出版商
  115. Humoud M, Doyle N, Royall E, Willcocks M, Sorgeloos F, van Kuppeveld F, et al. Feline Calicivirus Infection Disrupts Assembly of Cytoplasmic Stress Granules and Induces G3BP1 Cleavage. J Virol. 2016;90:6489-6501 pubmed 出版商
  116. Krall A, Xu S, Graeber T, Braas D, Christofk H. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun. 2016;7:11457 pubmed 出版商
  117. Guinot A, Lehmann H, Wild P, Frew I. Combined deletion of Vhl, Trp53 and Kif3a causes cystic and neoplastic renal lesions. J Pathol. 2016;239:365-73 pubmed 出版商
  118. Du R, Liu Z, Hou X, Fu G, An N, Wang L. Trichostatin A potentiates genistein-induced apoptosis and reverses EMT in HEp2 cells. Mol Med Rep. 2016;13:5045-52 pubmed 出版商
  119. Kim S, Choi K, Cho S, Yun S, Jeon J, Koh Y, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep. 2016;6:24933 pubmed 出版商
  120. Xu K, Wang L, Feng W, Feng Y, Shu H. Phosphatidylinositol-3 kinase-dependent translational regulation of Id1 involves the PPM1G phosphatase. Oncogene. 2016;35:5807-5816 pubmed 出版商
  121. Gao Y, Bai X, Zhang D, Han C, Yuan J, Liu W, et al. Mammalian elongation factor 4 regulates mitochondrial translation essential for spermatogenesis. Nat Struct Mol Biol. 2016;23:441-9 pubmed 出版商
  122. Hakim S, Dyson J, Feeney S, Davies E, Sriratana A, Koenig M, et al. Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet. 2016;25:2295-2313 pubmed
  123. Ren J, Li J, Liu X, Feng Y, Gui Y, Yang J, et al. Quercetin Inhibits Fibroblast Activation and Kidney Fibrosis Involving the Suppression of Mammalian Target of Rapamycin and β-catenin Signaling. Sci Rep. 2016;6:23968 pubmed 出版商
  124. Su K, Cao J, Tang Z, Dai S, He Y, Sampson S, et al. HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth. Nat Cell Biol. 2016;18:527-39 pubmed 出版商
  125. Gandin V, Masvidal L, Cargnello M, Gyenis L, McLaughlan S, Cai Y, et al. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nat Commun. 2016;7:11127 pubmed 出版商
  126. Strickland S, Vande Pol S. The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC. J Virol. 2016;90:5611-5621 pubmed 出版商
  127. Xia X, Che Y, Gao Y, Zhao S, Ao C, Yang H, et al. Arginine Supplementation Recovered the IFN-?-Mediated Decrease in Milk Protein and Fat Synthesis by Inhibiting the GCN2/eIF2? Pathway, Which Induces Autophagy in Primary Bovine Mammary Epithelial Cells. Mol Cells. 2016;39:410-7 pubmed 出版商
  128. Singh A, Joshi S, Zulcic M, Alcaraz M, GARLICH J, Morales G, et al. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma. PLoS ONE. 2016;11:e0150836 pubmed 出版商
  129. Lyabin D, Ovchinnikov L. Selective regulation of YB-1 mRNA translation by the mTOR signaling pathway is not mediated by 4E-binding protein. Sci Rep. 2016;6:22502 pubmed 出版商
  130. Gong Q, Hu Z, Zhang F, Cui A, Chen X, Jiang H, et al. Fibroblast growth factor 21 improves hepatic insulin sensitivity by inhibiting mammalian target of rapamycin complex 1 in mice. Hepatology. 2016;64:425-38 pubmed 出版商
  131. Ro S, Xue X, Ramakrishnan S, Cho C, Namkoong S, Jang I, et al. Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. elife. 2016;5:e12204 pubmed 出版商
  132. Li M, Lu G, Hu J, Shen X, Ju J, Gao Y, et al. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy. Stem Cell Reports. 2016;6:396-410 pubmed 出版商
  133. Loayza Puch F, Rooijers K, Buil L, Zijlstra J, Oude Vrielink J, Lopes R, et al. Tumour-specific proline vulnerability uncovered by differential ribosome codon reading. Nature. 2016;530:490-4 pubmed 出版商
  134. Demetriades C, Plescher M, Teleman A. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun. 2016;7:10662 pubmed 出版商
  135. Lakshmipathi J, Alvarez Perez J, Rosselot C, Casinelli G, Stamateris R, Rausell Palamos F, et al. PKCζ Is Essential for Pancreatic β-Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2. Diabetes. 2016;65:1283-96 pubmed 出版商
  136. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  137. Llanos S, García Pedrero J, Morgado Palacin L, Rodrigo J, Serrano M. Stabilization of p21 by mTORC1/4E-BP1 predicts clinical outcome of head and neck cancers. Nat Commun. 2016;7:10438 pubmed 出版商
  138. Button R, Vincent J, Strang C, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget. 2016;7:5157-75 pubmed 出版商
  139. Thomassen M, Gunnarsson T, Christensen P, Pavlovic D, Shattock M, Bangsbo J. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes. Am J Physiol Regul Integr Comp Physiol. 2016;310:R659-69 pubmed 出版商
  140. Cherepkova M, Sineva G, Pospelov V. Leukemia inhibitory factor (LIF) withdrawal activates mTOR signaling pathway in mouse embryonic stem cells through the MEK/ERK/TSC2 pathway. Cell Death Dis. 2016;7:e2050 pubmed 出版商
  141. Pivonello C, Negri M, De Martino M, Napolitano M, De Angelis C, Provvisiero D, et al. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget. 2016;7:9718-31 pubmed 出版商
  142. Ruegsegger C, Stucki D, Steiner S, Angliker N, Radecke J, Keller E, et al. Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology. Neuron. 2016;89:129-46 pubmed 出版商
  143. Kim K, Qiang L, Hayden M, Sparling D, Purcell N, Pajvani U. mTORC1-independent Raptor prevents hepatic steatosis by stabilizing PHLPP2. Nat Commun. 2016;7:10255 pubmed 出版商
  144. Carroll B, Maetzel D, Maddocks O, Otten G, Ratcliff M, Smith G, et al. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. elife. 2016;5: pubmed 出版商
  145. Arimoto Matsuzaki K, Saito H, Takekawa M. TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis. Nat Commun. 2016;7:10252 pubmed 出版商
  146. Khoutorsky A, Bonin R, Sorge R, Gkogkas C, Pawlowski S, Jafarnejad S, et al. Translational control of nociception via 4E-binding protein 1. elife. 2015;4: pubmed 出版商
  147. Vural A, Al Khodor S, Cheung G, Shi C, Srinivasan L, McQuiston T, et al. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection. J Immunol. 2016;196:846-56 pubmed 出版商
  148. Yamano S, Gi M, Tago Y, Doi K, Okada S, Hirayama Y, et al. Role of deltaNp63(pos)CD44v(pos) cells in the development of N-nitroso-tris-chloroethylurea-induced peripheral-type mouse lung squamous cell carcinomas. Cancer Sci. 2016;107:123-32 pubmed 出版商
  149. Cuttano R, Rudini N, Bravi L, Corada M, Giampietro C, Papa E, et al. KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med. 2016;8:6-24 pubmed 出版商
  150. Kim H, An S, Ro S, Teixeira F, Park G, Kim C, et al. Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains. Nat Commun. 2015;6:10025 pubmed 出版商
  151. Green A, Maciel T, Hospital M, Yin C, Mazed F, Townsend E, et al. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia. Sci Adv. 2015;1:e1500221 pubmed 出版商
  152. Ye Z, Al Aidaroos A, Park J, Yuen H, Zhang S, Gupta A, et al. PRL-3 activates mTORC1 in Cancer Progression. Sci Rep. 2015;5:17046 pubmed 出版商
  153. Momcilovic M, McMickle R, Abt E, Seki A, Simko S, Magyar C, et al. Heightening Energetic Stress Selectively Targets LKB1-Deficient Non-Small Cell Lung Cancers. Cancer Res. 2015;75:4910-22 pubmed 出版商
  154. Das R, Xu S, Nguyen T, Quan X, Choi S, Kim S, et al. Transforming Growth Factor β1-induced Apoptosis in Podocytes via the Extracellular Signal-regulated Kinase-Mammalian Target of Rapamycin Complex 1-NADPH Oxidase 4 Axis. J Biol Chem. 2015;290:30830-42 pubmed 出版商
  155. Lesmana R, Sinha R, Singh B, Zhou J, Ohba K, Wu Y, et al. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Endocrinology. 2016;157:23-38 pubmed 出版商
  156. Hukelmann J, Anderson K, Sinclair L, Grzes K, Murillo A, Hawkins P, et al. The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat Immunol. 2016;17:104-12 pubmed 出版商
  157. Waye S, Naeem A, Choudhry M, Parasido E, Tricoli L, Sivakumar A, et al. The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells. Aging (Albany NY). 2015;7:854-68 pubmed
  158. Antonucci L, Fagman J, Kim J, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A. 2015;112:E6166-74 pubmed 出版商
  159. Knoll M, Macher Goeppinger S, Kopitz J, Duensing S, Pahernik S, Hohenfellner M, et al. The ribosomal protein S6 in renal cell carcinoma: functional relevance and potential as biomarker. Oncotarget. 2016;7:418-32 pubmed 出版商
  160. Chauhan S, Ahmed Z, Bradfute S, Arko Mensah J, Mandell M, Won Choi S, et al. Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nat Commun. 2015;6:8620 pubmed 出版商
  161. Asano S, Arvapalli R, Manne N, Maheshwari M, Ma B, Rice K, et al. Cerium oxide nanoparticle treatment ameliorates peritonitis-induced diaphragm dysfunction. Int J Nanomedicine. 2015;10:6215-25 pubmed 出版商
  162. Mazzacurati L, Lambert Q, Pradhan A, Griner L, Huszar D, Reuther G. The PIM inhibitor AZD1208 synergizes with ruxolitinib to induce apoptosis of ruxolitinib sensitive and resistant JAK2-V617F-driven cells and inhibit colony formation of primary MPN cells. Oncotarget. 2015;6:40141-57 pubmed 出版商
  163. Payne S, Maher M, Tran N, Van De Hey D, Foley T, Yueh A, et al. PIK3CA mutations can initiate pancreatic tumorigenesis and are targetable with PI3K inhibitors. Oncogenesis. 2015;4:e169 pubmed 出版商
  164. Fan S, Snell C, Turley H, Li J, McCormick R, Perera S, et al. PAT4 levels control amino-acid sensitivity of rapamycin-resistant mTORC1 from the Golgi and affect clinical outcome in colorectal cancer. Oncogene. 2016;35:3004-15 pubmed 出版商
  165. Marchi S, Corricelli M, Trapani E, Bravi L, Pittaro A, Delle Monache S, et al. Defective autophagy is a key feature of cerebral cavernous malformations. EMBO Mol Med. 2015;7:1403-17 pubmed 出版商
  166. Li S, TANG J, Chen J, Zhang P, Wang T, Chen T, et al. Regulation of bone formation by baicalein via the mTORC1 pathway. Drug Des Devel Ther. 2015;9:5169-83 pubmed 出版商
  167. Agarwal S, Bell C, Taylor S, Moran R. p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb. Mol Cancer Res. 2016;14:66-77 pubmed 出版商
  168. Brina D, Miluzio A, Ricciardi S, Clarke K, Davidsen P, Viero G, et al. eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription. Nat Commun. 2015;6:8261 pubmed 出版商
  169. Zhang J, Tripathi D, Jing J, Alexander A, Kim J, Powell R, et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol. 2015;17:1259-1269 pubmed 出版商
  170. Li M, Yang S, Xing B, Ferguson B, Gulchina Y, Li Y, et al. LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment. Exp Neurol. 2015;273:190-201 pubmed 出版商
  171. Ebert S, Dyle M, Bullard S, Dierdorff J, Murry D, Fox D, et al. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy. J Biol Chem. 2015;290:25497-511 pubmed 出版商
  172. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  173. Xie R, He W, Shen M, Shou X, Wang Y, Bao W, et al. Specific inhibition of mTOR pathway induces anti-proliferative effect and decreases the hormone secretion in cultured pituitary adenoma cells. J Neurooncol. 2015;125:79-89 pubmed 出版商
  174. Mughal A, Grieg Z, Skjellegrind H, Fayzullin A, Lamkhannat M, Joel M, et al. Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells. Mol Cancer. 2015;14:160 pubmed 出版商
  175. Lee S, Kim J, Hong S, Lee A, Park E, Seo H, et al. High Inorganic Phosphate Intake Promotes Tumorigenesis at Early Stages in a Mouse Model of Lung Cancer. PLoS ONE. 2015;10:e0135582 pubmed 出版商
  176. Nezich C, Wang C, Fogel A, Youle R. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol. 2015;210:435-50 pubmed 出版商
  177. Zhang L, Dai F, Sheng P, Chen Z, Xu Q, Guo Y. Resveratrol analogue 3,4,4'-trihydroxy-trans-stilbene induces apoptosis and autophagy in human non-small-cell lung cancer cells in vitro. Acta Pharmacol Sin. 2015;36:1256-65 pubmed 出版商
  178. Schipany K, Rosner M, Ionce L, Hengstschläger M, Kovacic B. eIF3 controls cell size independently of S6K1-activity. Oncotarget. 2015;6:24361-75 pubmed
  179. Dutchak P, Laxman S, Estill S, Wang C, Wang Y, Wang Y, et al. Regulation of Hematopoiesis and Methionine Homeostasis by mTORC1 Inhibitor NPRL2. Cell Rep. 2015;12:371-9 pubmed 出版商
  180. Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed 出版商
  181. Laberge R, Sun Y, Orjalo A, Patil C, Freund A, Zhou L, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17:1049-61 pubmed 出版商
  182. Wang J, Ma L, Tang X, Zhang X, Qiao Y, Shi Y, et al. Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells. Oncotarget. 2015;6:24075-91 pubmed
  183. Lee H, Lee E, Lee J, Kim J, Kim S, Kim T, et al. Prognostic significance of phosphorylated 4E-binding protein 1 in non-small cell lung cancer. Int J Clin Exp Pathol. 2015;8:3955-62 pubmed
  184. Nishida H, Ikegami A, Kaneko C, Kakuma H, Nishi H, Tanaka N, et al. Dexamethasone and BCAA Failed to Modulate Muscle Mass and mTOR Signaling in GH-Deficient Rats. PLoS ONE. 2015;10:e0128805 pubmed 出版商
  185. Takáts S, Varga A, Pircs K, Juhasz G. Loss of Drosophila Vps16A enhances autophagosome formation through reduced Tor activity. Autophagy. 2015;11:1209-15 pubmed 出版商
  186. Andersen N, Boguslawski E, Kuk C, Chambers C, Duesbery N. Combined inhibition of MEK and mTOR has a synergic effect on angiosarcoma tumorgrafts. Int J Oncol. 2015;47:71-80 pubmed 出版商
  187. Sadowski S, Boufraqech M, Zhang L, Mehta A, Kapur P, Zhang Y, et al. Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis. Oncotarget. 2015;6:18038-49 pubmed
  188. Fonseca B, Zakaria C, Jia J, Graber T, Svitkin Y, Tahmasebi S, et al. La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1). J Biol Chem. 2015;290:15996-6020 pubmed 出版商
  189. Pei B, Zhao M, Miller B, Véla J, Bruinsma M, Virgin H, et al. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation. J Immunol. 2015;194:5872-84 pubmed 出版商
  190. Dungan C, Li Z, Wright D, Williamson D. Hyperactive mTORC1 signaling is unaffected by metformin treatment in aged skeletal muscle. Muscle Nerve. 2016;53:107-17 pubmed 出版商
  191. Sharon C, Baranwal S, Patel N, Rodriguez Agudo D, Pandak W, Majumdar A, et al. Inhibition of insulin-like growth factor receptor/AKT/mammalian target of rapamycin axis targets colorectal cancer stem cells by attenuating mevalonate-isoprenoid pathway in vitro and in vivo. Oncotarget. 2015;6:15332-47 pubmed
  192. Chung J, Bauer D, Ghamari A, Nizzi C, Deck K, Kingsley P, et al. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability. Sci Signal. 2015;8:ra34 pubmed 出版商
  193. Shimizu N, Maruyama T, Yoshikawa N, Matsumiya R, Ma Y, Ito N, et al. A muscle-liver-fat signalling axis is essential for central control of adaptive adipose remodelling. Nat Commun. 2015;6:6693 pubmed 出版商
  194. Li X, Tao J, Cigliano A, Sini M, Calderaro J, Azoulay D, et al. Co-activation of PIK3CA and Yap promotes development of hepatocellular and cholangiocellular tumors in mouse and human liver. Oncotarget. 2015;6:10102-15 pubmed
  195. Shi Y, Chen J, Karner C, Long F. Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation. Proc Natl Acad Sci U S A. 2015;112:4678-83 pubmed 出版商
  196. Kim J, Ro S, Kim M, Park H, Semple I, Park H, et al. Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Sci Rep. 2015;5:9502 pubmed 出版商
  197. Fallahi Sichani M, Moerke N, Niepel M, Zhang T, Gray N, Sorger P. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol Syst Biol. 2015;11:797 pubmed 出版商
  198. Desantis A, Bruno T, Catena V, De Nicola F, Goeman F, Iezzi S, et al. Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy. EMBO J. 2015;34:1214-30 pubmed 出版商
  199. Wengrod J, Wang D, Weiss S, Zhong H, Osman I, Gardner L. Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma. Sci Signal. 2015;8:ra27 pubmed 出版商
  200. Schisler J, Grevengoed T, Pascual F, Cooper D, Ellis J, Paul D, et al. Cardiac energy dependence on glucose increases metabolites related to glutathione and activates metabolic genes controlled by mechanistic target of rapamycin. J Am Heart Assoc. 2015;4: pubmed 出版商
  201. Li X, Gu S, Ling Y, Shen C, Cao X, Xie R. p53 inhibition provides a pivotal protective effect against ischemia-reperfusion injury in vitro via mTOR signaling. Brain Res. 2015;1605:31-8 pubmed 出版商
  202. Ju B, Chen W, Orr B, Spitsbergen J, Jia S, Eden C, et al. Oncogenic KRAS promotes malignant brain tumors in zebrafish. Mol Cancer. 2015;14:18 pubmed 出版商
  203. Wang S, Chen X, Hu J, Jiang J, Li Y, Chan Salis K, et al. ATF4 Gene Network Mediates Cellular Response to the Anticancer PAD Inhibitor YW3-56 in Triple-Negative Breast Cancer Cells. Mol Cancer Ther. 2015;14:877-88 pubmed 出版商
  204. Zhang Y, Wu B, Metelli A, Thaxton J, Hong F, Rachidi S, et al. GP96 is a GARP chaperone and controls regulatory T cell functions. J Clin Invest. 2015;125:859-69 pubmed 出版商
  205. Wang S, Amato K, Song W, Youngblood V, Lee K, Boothby M, et al. Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways. Mol Cell Biol. 2015;35:1299-313 pubmed 出版商
  206. Padrão A, Moreira Gonçalves D, Oliveira P, Teixeira C, Faustino Rocha A, Helguero L, et al. Endurance training prevents TWEAK but not myostatin-mediated cardiac remodelling in cancer cachexia. Arch Biochem Biophys. 2015;567:13-21 pubmed 出版商
  207. Kim S, Martin K. Neuron-wide RNA transport combines with netrin-mediated local translation to spatially regulate the synaptic proteome. elife. 2015;4: pubmed 出版商
  208. Ma X, Liu H, Murphy J, Foyil S, Godar R, Abuirqeba H, et al. Regulation of the transcription factor EB-PGC1α axis by beclin-1 controls mitochondrial quality and cardiomyocyte death under stress. Mol Cell Biol. 2015;35:956-76 pubmed 出版商
  209. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  210. Tian H, Wang L, Cai R, Zheng L, Guo L. Identification of protein network alterations upon retinal ischemia-reperfusion injury by quantitative proteomics using a Rattus norvegicus model. PLoS ONE. 2014;9:e116453 pubmed 出版商
  211. Mir S, George N, Zahoor L, Harms R, Guinn Z, SARVETNICK N. Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J Biol Chem. 2015;290:6071-85 pubmed 出版商
  212. Yoda A, Adelmant G, Tamburini J, Chapuy B, Shindoh N, Yoda Y, et al. Mutations in G protein β subunits promote transformation and kinase inhibitor resistance. Nat Med. 2015;21:71-5 pubmed 出版商
  213. Ozmen A, Unek G, Kipmen Korgun D, Cetinkaya B, Avcil Z, Korgun E. Glucocorticoid exposure altered angiogenic factor expression via Akt/mTOR pathway in rat placenta. Ann Anat. 2015;198:34-40 pubmed 出版商
  214. Zhang L, Dai F, Cui L, Jing H, Fan P, Tan X, et al. Novel role for TRPC4 in regulation of macroautophagy by a small molecule in vascular endothelial cells. Biochim Biophys Acta. 2015;1853:377-87 pubmed 出版商
  215. Langone F, Cannata S, Fuoco C, Lettieri Barbato D, Testa S, Nardozza A, et al. Metformin protects skeletal muscle from cardiotoxin induced degeneration. PLoS ONE. 2014;9:e114018 pubmed 出版商
  216. Areta J, Hawley J, Ye J, Chan M, Coffey V. Increasing leucine concentration stimulates mechanistic target of rapamycin signaling and cell growth in C2C12 skeletal muscle cells. Nutr Res. 2014;34:1000-7 pubmed 出版商
  217. Shi L, Zhang B, Sun X, Lu S, Liu Z, Liu Y, et al. MiR-204 inhibits human NSCLC metastasis through suppression of NUAK1. Br J Cancer. 2014;111:2316-27 pubmed 出版商
  218. Liang N, Zhang C, Dill P, Panasyuk G, Pion D, Koka V, et al. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med. 2014;211:2249-63 pubmed 出版商
  219. Peng M, Yin N, Li M. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell. 2014;159:122-133 pubmed 出版商
  220. Zou Y, Lee J, Nambiar S, Hu M, Rui W, Bao Q, et al. Nrf2 is involved in maintaining hepatocyte identity during liver regeneration. PLoS ONE. 2014;9:e107423 pubmed 出版商
  221. Zhang S, Ren M, Zeng X, He P, Ma X, Qiao S. Leucine stimulates ASCT2 amino acid transporter expression in porcine jejunal epithelial cell line (IPEC-J2) through PI3K/Akt/mTOR and ERK signaling pathways. Amino Acids. 2014;46:2633-42 pubmed 出版商
  222. Sidhu H, Dansie L, Hickmott P, Ethell D, Ethell I. Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model. J Neurosci. 2014;34:9867-79 pubmed 出版商
  223. Baraz R, Cisterne A, Saunders P, Hewson J, Thien M, Weiss J, et al. mTOR inhibition by everolimus in childhood acute lymphoblastic leukemia induces caspase-independent cell death. PLoS ONE. 2014;9:e102494 pubmed 出版商
  224. Li C, Chen J, Lu B, Shi Z, Wang H, Zhang B, et al. Molecular switch role of Akt in Polygonatum odoratum lectin-induced apoptosis and autophagy in human non-small cell lung cancer A549 cells. PLoS ONE. 2014;9:e101526 pubmed 出版商
  225. Chen K, Wang C, Tsai M, Wu C, Yang H, Chen L, et al. Interconnections between autophagy and the coagulation cascade in hepatocellular carcinoma. Cell Death Dis. 2014;5:e1244 pubmed 出版商
  226. Ling S, Feng T, Ke Q, Fan N, Li L, Li Z, et al. Metformin inhibits proliferation and enhances chemosensitivity of intrahepatic cholangiocarcinoma cell lines. Oncol Rep. 2014;31:2611-8 pubmed 出版商
  227. Cen B, Xiong Y, Song J, Mahajan S, DuPont R, McEachern K, et al. The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling. Mol Cell Biol. 2014;34:2517-32 pubmed 出版商
  228. Bian Z, Liao H, Zhang Y, Wu Q, Zhou H, Yang Z, et al. Never in mitosis gene A related kinase-6 attenuates pressure overload-induced activation of the protein kinase B pathway and cardiac hypertrophy. PLoS ONE. 2014;9:e96095 pubmed 出版商
  229. Li B, Iglesias Pedraz J, Chen L, Yin F, Cadenas E, Reddy S, et al. Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells. Aging Cell. 2014;13:367-78 pubmed
  230. Ota K, Liu R, Voleti B, Maldonado Avilés J, Duric V, Iwata M, et al. REDD1 is essential for stress-induced synaptic loss and depressive behavior. Nat Med. 2014;20:531-5 pubmed 出版商
  231. Smith H, Matthews K, Oldham J, Jeanplong F, Falconer S, Bass J, et al. Translational signalling, atrogenic and myogenic gene expression during unloading and reloading of skeletal muscle in myostatin-deficient mice. PLoS ONE. 2014;9:e94356 pubmed 出版商
  232. Jordan N, Dutkowski C, Barrow D, Mottram H, Hutcheson I, Nicholson R, et al. Impact of dual mTORC1/2 mTOR kinase inhibitor AZD8055 on acquired endocrine resistance in breast cancer in vitro. Breast Cancer Res. 2014;16:R12 pubmed 出版商
  233. Jespersen J, Mikkelsen U, Nedergaard A, Thorlund J, Schjerling P, Suetta C, et al. Alterations in molecular muscle mass regulators after 8 days immobilizing Special Forces mission. Scand J Med Sci Sports. 2015;25:175-83 pubmed 出版商
  234. López Rivera E, Jayaraman P, Parikh F, Davies M, Ekmekcioglu S, Izadmehr S, et al. Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2. Cancer Res. 2014;74:1067-78 pubmed 出版商
  235. Ishida M, Iwai M, Yoshida K, Kagotani A, Okabe H. Signet-ring cell melanoma with sentinel lymph node metastasis: A case report with immunohistochemical analysis and review of the clinicopathological features. Oncol Lett. 2014;7:65-68 pubmed
  236. Manzoni C, Mamais A, Dihanich S, McGoldrick P, Devine M, Zerle J, et al. Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation. Biochem Biophys Res Commun. 2013;441:862-6 pubmed 出版商
  237. Chua J, Reddy S, Merry D, Adachi H, Katsuno M, Sobue G, et al. Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy. Hum Mol Genet. 2014;23:1376-86 pubmed 出版商
  238. Jiang F, Pang X, Niu Q, Hua L, Cheng M, Ji Y. Activation of mammalian target of rapamycin mediates rat pain-related responses induced by BmK I, a sodium channel-specific modulator. Mol Pain. 2013;9:50 pubmed 出版商
  239. Paugh B, Zhu X, Qu C, Endersby R, Diaz A, Zhang J, et al. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res. 2013;73:6219-29 pubmed 出版商
  240. Kim S, Scott S, Bennett M, Carson R, Fessel J, Brown H, et al. Multi-organ abnormalities and mTORC1 activation in zebrafish model of multiple acyl-CoA dehydrogenase deficiency. PLoS Genet. 2013;9:e1003563 pubmed 出版商
  241. Brouxhon S, Kyrkanides S, Teng X, O Banion M, Clarke R, Byers S, et al. Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers. Mol Carcinog. 2014;53:893-906 pubmed 出版商
  242. Beckham T, Cheng J, Lu P, Shao Y, Troyer D, Lance R, et al. Acid ceramidase induces sphingosine kinase 1/S1P receptor 2-mediated activation of oncogenic Akt signaling. Oncogenesis. 2013;2:e49 pubmed 出版商
  243. Betschinger J, Nichols J, Dietmann S, Corrin P, Paddison P, Smith A. Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell. 2013;153:335-47 pubmed 出版商
  244. Areta J, Burke L, Ross M, Camera D, West D, Broad E, et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol. 2013;591:2319-31 pubmed 出版商
  245. O Brien T, Gorentla B, Xie D, Srivatsan S, McLeod I, He Y, et al. Regulation of T-cell survival and mitochondrial homeostasis by TSC1. Eur J Immunol. 2011;41:3361-70 pubmed 出版商
  246. Man N, Chen Y, Zheng F, Zhou W, Wen L. Induction of genuine autophagy by cationic lipids in mammalian cells. Autophagy. 2010;6:449-54 pubmed 出版商
  247. Gupta M, Dillon S, Ziesmer S, Feldman A, Witzig T, Ansell S, et al. A proliferation-inducing ligand mediates follicular lymphoma B-cell proliferation and cyclin D1 expression through phosphatidylinositol 3-kinase-regulated mammalian target of rapamycin activation. Blood. 2009;113:5206-16 pubmed 出版商