这是一篇来自已证抗体库的有关人类 ACACA的综述,是根据109篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ACACA 抗体。
ACACA 同义词: ACAC; ACACAD; ACC; ACC1; ACCA

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP687Y)
  • 免疫组化-石蜡切片; 人类; 图 1a
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 ACACA抗体(Abcam, ab45174)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1b). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(EP687Y)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 ACACA抗体(Abcam, ab45174)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Cell Mol Med (2020) ncbi
domestic rabbit 单克隆(EP1885Y)
  • 免疫印迹; 小鼠; 1:5000
艾博抗(上海)贸易有限公司 ACACA抗体(Abcam, ab68191)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. J Cell Mol Med (2020) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5e
  • 免疫印迹; 小鼠; 图 5d
  • 免疫印迹; 人类; 图 5f
艾博抗(上海)贸易有限公司 ACACA抗体(Abcam, ab222774)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5e), 被用于免疫印迹在小鼠样本上 (图 5d) 和 被用于免疫印迹在人类样本上 (图 5f). Hepatology (2018) ncbi
domestic rabbit 单克隆(EP687Y)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司 ACACA抗体(Abcam, ab45174)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(EP687Y)
  • 免疫细胞化学; 人类; 1:100; 图 s3
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 ACACA抗体(Abcam, ab45174)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-2)
  • 免疫印迹; 小鼠; 1:1000; 图 s1a
圣克鲁斯生物技术 ACACA抗体(Santa Cruz, sc-271965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1a). J Inflamm Res (2021) ncbi
小鼠 单克隆(D-5)
  • 免疫印迹; 小鼠; 图 3d
圣克鲁斯生物技术 ACACA抗体(Santa Cruz Biotechnology (Santa Cruz, CA), sc-137104)被用于被用于免疫印迹在小鼠样本上 (图 3d). Pharmacol Res (2020) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 小鼠; 图 3d
圣克鲁斯生物技术 ACACA抗体(Santa Cruz Biotechnology (Santa Cruz, CA), sc271965))被用于被用于免疫印迹在小鼠样本上 (图 3d). Pharmacol Res (2020) ncbi
小鼠 单克隆(D-5)
  • 免疫印迹; 小鼠; 1:200; 图 6a
圣克鲁斯生物技术 ACACA抗体(Santa Cruz, sc-137104)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 6a). Int J Mol Med (2018) ncbi
赛默飞世尔
domestic rabbit 单克隆(B.800.8)
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 ACACA抗体(Thermo Scientific, MA5-15025)被用于被用于免疫印迹在人类样本上 (图 1a). PLoS ONE (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2022) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 1:1000; 图 s2b
  • 免疫印迹; 大鼠; 1:1000; 图 2c, 2h
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2c, 2h). Sci Rep (2022) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 ACACA抗体(CST, 3676)被用于被用于免疫印迹在人类样本上 (图 5f). Cell Rep (2022) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫组化; 小鼠; 1:200; 图 3a
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3676)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3a). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 图 3j
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3676S)被用于被用于免疫印迹在小鼠样本上 (图 3j). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 6g
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3662)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6g). Sci Adv (2021) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signalling, 3676)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. BMC Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662)被用于被用于免疫印迹在小鼠样本上 (图 3e). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4c
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 4190s)被用于被用于免疫印迹在大鼠样本上 (图 4c). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3662)被用于被用于免疫印迹在人类样本上 (图 2b). Sci Adv (2021) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 图 s6a
赛信通(上海)生物试剂有限公司 ACACA抗体(CST, 3676S)被用于被用于免疫印迹在人类样本上 (图 s6a). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 1:1000; 图 s3-1b
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, C83B10)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3-1b). elife (2020) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 图 3s3a
赛信通(上海)生物试剂有限公司 ACACA抗体(CST, 3676)被用于被用于免疫印迹在人类样本上 (图 3s3a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 1c
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1c). J Biol Chem (2020) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 ACACA抗体(CST, 3676)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). EMBO Mol Med (2020) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3676S)被用于被用于免疫印迹在人类样本上 (图 5c). Cancer Res (2020) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 ACACA抗体(CST, 3676)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). elife (2019) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 1:500-1:2000; 图 6d
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在人类样本上浓度为1:500-1:2000 (图 6d). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6o
  • 免疫印迹; 大鼠; 1:1000; 图 6s1a
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 4190)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6o) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6s1a). elife (2019) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 图 1k
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3676)被用于被用于免疫印迹在人类样本上 (图 1k). Mol Cell (2019) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 图 3a
赛信通(上海)生物试剂有限公司 ACACA抗体(CST, 3662)被用于被用于免疫印迹在牛样本上 (图 3a). Biomed Res Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 4190)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Mol Med Rep (2019) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 1:1000; 图 1s2c
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell signaling, 3676)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1s2c). elife (2019) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 图 2d
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3676)被用于被用于免疫印迹在小鼠样本上 (图 2d) 和 被用于免疫印迹在人类样本上 (图 3d). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Nature (2019) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 图 1a, 1b
  • 免疫印迹; 人类; 图 1a, 1b
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在小鼠样本上 (图 1a, 1b) 和 被用于免疫印迹在人类样本上 (图 1a, 1b). Cell Rep (2019) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell signaling, 3676)被用于被用于免疫印迹在人类样本上 (图 6b). elife (2019) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在小鼠样本上 (图 2e). Cell Signal (2019) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 图 5f
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在人类样本上 (图 5f) 和 被用于免疫印迹在小鼠样本上 (图 5d). Hepatology (2018) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在大鼠样本上 (图 4a). J Mol Med (Berl) (2018) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ACACA抗体(cst, 3676)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662)被用于被用于免疫印迹在人类样本上 (图 s4a). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 图 s7a
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3676s)被用于被用于免疫印迹在小鼠样本上 (图 s7a). PLoS Biol (2018) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 1:1000; 图 s1c
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1c). Nat Cell Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2c
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2c). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1h
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell signaling, 3662)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1h). Nat Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 4190)被用于被用于免疫印迹在人类样本上 (图 6d). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2g
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662)被用于被用于免疫印迹在小鼠样本上 (图 2g). Cell (2018) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 1:2000; 图 1f
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1f). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3c). Autophagy (2017) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell signaling, 3676)被用于被用于免疫印迹在人类样本上 (图 1f). Mol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 ACACA抗体(cell signalling, 3662s)被用于被用于免疫印迹在小鼠样本上 (图 6). Thyroid (2017) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8b). Toxicol Appl Pharmacol (2017) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 图 5m
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在人类样本上 (图 5m). Mol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662)被用于被用于免疫印迹在人类样本上 (图 1b). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3662)被用于被用于免疫印迹在人类样本上 (图 2c). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). Virol J (2017) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 图 s7d
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在小鼠样本上 (图 s7d) 和 被用于免疫印迹在人类样本上 (图 1a). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662)被用于被用于免疫印迹在小鼠样本上 (图 1c). PLoS Pathog (2017) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signalling, 3,676)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). Mol Metab (2017) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Cell Cycle (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4i
赛信通(上海)生物试剂有限公司 ACACA抗体(CST, 3662)被用于被用于免疫印迹在人类样本上 (图 4i). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 4190)被用于被用于免疫印迹在小鼠样本上 (图 1a). Autophagy (2017) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Arch Biochem Biophys (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 4190)被用于被用于免疫印迹在小鼠样本上 (图 3g). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在小鼠样本上 (图 3a). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 图 3b, 4a, 5b, 6a, 7a
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在小鼠样本上 (图 3b, 4a, 5b, 6a, 7a). Am J Physiol Endocrinol Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3662)被用于被用于免疫印迹在人类样本上 (图 2e). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662)被用于被用于免疫印迹在大鼠样本上 (图 5). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signalling, 3662)被用于被用于免疫印迹在小鼠样本上 (图 1b). Circ Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662)被用于被用于免疫印迹在大鼠样本上 (图 5). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c, 5f, 5g
  • 免疫印迹; 大鼠; 图 5h
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662S)被用于被用于免疫印迹在人类样本上 (图 2c, 5f, 5g) 和 被用于免疫印迹在大鼠样本上 (图 5h). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662)被用于被用于免疫印迹在小鼠样本上 (图 5). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Tech, 3676)被用于被用于免疫印迹在大鼠样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell signaling, 3676)被用于被用于免疫印迹在人类样本上 (图 3e). Clin Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 4190)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signalling, 3676)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Neuropharmacology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d, s4d,
  • 免疫印迹; 人类; 图 1c, s3b
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662)被用于被用于免疫印迹在小鼠样本上 (图 3d, s4d,) 和 被用于免疫印迹在人类样本上 (图 1c, s3b). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3662)被用于被用于免疫印迹在人类样本上 (图 1). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, cs-3662)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). EMBO Mol Med (2016) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫组化; 小鼠; 1:200; 图 3d
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3d). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3662)被用于被用于免疫印迹在小鼠样本上 (图 st1). Liver Int (2016) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, C83B10)被用于被用于免疫印迹在人类样本上 (图 3a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell signaling, 3676)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3662)被用于被用于免疫印迹在小鼠样本上 (图 4a). Int J Obes (Lond) (2016) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3676)被用于被用于免疫印迹在人类样本上. Nature (2015) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫组化; 人类; 图 2c
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫组化在人类样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 8a). EMBO Rep (2015) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell signaling, 3676)被用于被用于免疫印迹在人类样本上 (图 1d). Cell Rep (2015) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676P)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3662)被用于被用于免疫印迹在小鼠样本上. Muscle Nerve (2016) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; pigs ; 图 10
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell signaling, 3676S)被用于被用于免疫印迹在pigs 样本上 (图 10). Am J Physiol Heart Circ Physiol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3662)被用于被用于免疫印迹在人类样本上 (图 7) 和 被用于免疫印迹在小鼠样本上 (图 7). Oncogene (2016) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell signaling, 3676)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3676)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Br J Pharmacol (2015) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3676)被用于被用于免疫印迹在小鼠样本上. Cell Signal (2015) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling Technology, 3676S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, 3676)被用于被用于免疫印迹在小鼠样本上. Mol Metab (2014) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ACACA抗体(CST, 3676s)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, C83B10)被用于被用于免疫印迹在小鼠样本上. FASEB J (2014) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, C83B10)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C83B10)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 ACACA抗体(Cell Signaling, C83B10)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2013) ncbi
文章列表
  1. Chen C, Zhang Z, Liu C, Wang B, Liu P, Fang S, et al. ATF4-dependent fructolysis fuels growth of glioblastoma multiforme. Nat Commun. 2022;13:6108 pubmed 出版商
  2. Formigari G, D xe1 tilo M, Vareda B, Bonfante I, Cavaglieri C, Lopes de Faria J, et al. Renal protection induced by physical exercise may be mediated by the irisin/AMPK axis in diabetic nephropathy. Sci Rep. 2022;12:9062 pubmed 出版商
  3. Pillai S, Mahmud I, Mahar R, Griffith C, Langsen M, Nguyen J, et al. Lipogenesis mediated by OGR1 regulates metabolic adaptation to acid stress in cancer cells via autophagy. Cell Rep. 2022;39:110796 pubmed 出版商
  4. Cheng C, Xue F, Sui W, Meng L, Xie L, Zhang C, et al. Deletion of natriuretic peptide receptor C alleviates adipose tissue inflammation in hypercholesterolemic Apolipoprotein E knockout mice. J Cell Mol Med. 2021;25:9837-9850 pubmed 出版商
  5. Guo W, Liu J, Cheng L, Liu Z, Zheng X, Liang H, et al. Metformin Alleviates Steatohepatitis in Diet-Induced Obese Mice in a SIRT1-Dependent Way. Front Pharmacol. 2021;12:704112 pubmed 出版商
  6. Chafe S, Vizeacoumar F, Venkateswaran G, Nemirovsky O, Awrey S, Brown W, et al. Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors. Sci Adv. 2021;7: pubmed 出版商
  7. Tomacha J, Dokduang H, Padthaisong S, Namwat N, Klanrit P, Phetcharaburanin J, et al. Targeting Fatty Acid Synthase Modulates Metabolic Pathways and Inhibits Cholangiocarcinoma Cell Progression. Front Pharmacol. 2021;12:696961 pubmed 出版商
  8. Vieira Lara M, Dommerholt M, Zhang W, Blankestijn M, Wolters J, Abegaz F, et al. Age-related susceptibility to insulin resistance arises from a combination of CPT1B decline and lipid overload. BMC Biol. 2021;19:154 pubmed 出版商
  9. Lee H, Donati A, Feliers D, Sun Y, Ding Y, Madesh M, et al. Chloride channel accessory 1 integrates chloride channel activity and mTORC1 in aging-related kidney injury. Aging Cell. 2021;20:e13407 pubmed 出版商
  10. Li L, Li Q, Huang W, Han Y, Tan H, An M, et al. Dapagliflozin Alleviates Hepatic Steatosis by Restoring Autophagy via the AMPK-mTOR Pathway. Front Pharmacol. 2021;12:589273 pubmed 出版商
  11. Li L, Yang L, Yang F, Zhao X, Xue S, Gong F. Ginkgo biloba Extract 50 (GBE50) Ameliorates Insulin Resistance, Hepatic Steatosis and Liver Injury in High Fat Diet-Fed Mice. J Inflamm Res. 2021;14:1959-1971 pubmed 出版商
  12. Hung C, Lombardo P, Malik N, Brun S, Hellberg K, Van Nostrand J, et al. AMPK/ULK1-mediated phosphorylation of Parkin ACT domain mediates an early step in mitophagy. Sci Adv. 2021;7: pubmed 出版商
  13. Chen Y, Hu W, Li Q, Zhao S, Zhao D, Zhang S, et al. NGBR is required to ameliorate type 2 diabetes in mice by enhancing insulin sensitivity. J Biol Chem. 2021;296:100624 pubmed 出版商
  14. Crespo M, González Terán B, Nikolic I, Mora A, Folgueira C, Rodriguez E, et al. Neutrophil infiltration regulates clock-gene expression to organize daily hepatic metabolism. elife. 2020;9: pubmed 出版商
  15. Stephenson Z, Harvey R, Pryde K, Mistry S, Hardy R, Serreli R, et al. Identification of a novel toxicophore in anti-cancer chemotherapeutics that targets mitochondrial respiratory complex I. elife. 2020;9: pubmed 出版商
  16. Collins M, Stransky L, Forgac M. AKT Ser/Thr kinase increases V-ATPase-dependent lysosomal acidification in response to amino acid starvation in mammalian cells. J Biol Chem. 2020;295:9433-9444 pubmed 出版商
  17. Lahiguera Á, Hyroššová P, Figueras A, Garzón D, Moreno R, Soto Cerrato V, et al. Tumors defective in homologous recombination rely on oxidative metabolism: relevance to treatments with PARP inhibitors. EMBO Mol Med. 2020;12:e11217 pubmed 出版商
  18. Feng Y, Mischler W, Gurung A, Kavanagh T, Androsov G, Sadow P, et al. Therapeutic Targeting of the Secreted Lysophospholipase D Autotaxin Suppresses Tuberous Sclerosis Complex-Associated Tumorigenesis. Cancer Res. 2020;80:2751-2763 pubmed 出版商
  19. Li M, Li C, Ye Z, Huang J, Li Y, Lai W, et al. Sirt3 modulates fatty acid oxidation and attenuates cisplatin-induced AKI in mice. J Cell Mol Med. 2020;24:5109-5121 pubmed 出版商
  20. Yang S, Ma C, Wu H, Zhang H, Yuan F, Yang G, et al. Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway. Pharmacol Res. 2020;153:104678 pubmed 出版商
  21. Palomo Guerrero M, Fadó R, Casas M, Pérez Montero M, Baena M, Helmer P, et al. Sensing of nutrients by CPT1C regulates late endosome/lysosome anterograde transport and axon growth. elife. 2019;8: pubmed 出版商
  22. Wall C, Rose C, Adrian M, Zeng Y, Kirkpatrick D, Bingol B. PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Rep. 2019;29:3280-3292.e7 pubmed 出版商
  23. Currais A, Huang L, Goldberg J, Petrascheck M, Ates G, Pinto Duarte A, et al. Elevating acetyl-CoA levels reduces aspects of brain aging. elife. 2019;8: pubmed 出版商
  24. Gao X, Zhao L, Liu S, Li Y, Xia S, Chen D, et al. γ-6-Phosphogluconolactone, a Byproduct of the Oxidative Pentose Phosphate Pathway, Contributes to AMPK Activation through Inhibition of PP2A. Mol Cell. 2019;76:857-871.e9 pubmed 出版商
  25. Shan C, Lu Z, Li Z, Sheng H, Fan J, Qi Q, et al. 4-hydroxyphenylpyruvate dioxygenase promotes lung cancer growth via pentose phosphate pathway (PPP) flux mediated by LKB1-AMPK/HDAC10/G6PD axis. Cell Death Dis. 2019;10:525 pubmed 出版商
  26. Guo Z, Zhao K, Feng X, Yan D, Yao R, Chen Y, et al. mTORC2 Regulates Lipogenic Gene Expression through PPARγ to Control Lipid Synthesis in Bovine Mammary Epithelial Cells. Biomed Res Int. 2019;2019:5196028 pubmed 出版商
  27. Ma X, Cheng F, Yuan K, Jiang K, Zhu T. Lipid storage droplet protein 5 reduces sodium palmitate‑induced lipotoxicity in human normal liver cells by regulating lipid metabolism‑related factors. Mol Med Rep. 2019;20:879-886 pubmed 出版商
  28. Jewell J, Fu V, Hong A, Yu F, Meng D, Melick C, et al. GPCR signaling inhibits mTORC1 via PKA phosphorylation of Raptor. elife. 2019;8: pubmed 出版商
  29. Xu D, Li X, Shao F, Lv G, Lv H, Lee J, et al. The protein kinase activity of fructokinase A specifies the antioxidant responses of tumor cells by phosphorylating p62. Sci Adv. 2019;5:eaav4570 pubmed 出版商
  30. Shi Y, Lim S, Liang Q, Iyer S, Wang H, Wang Z, et al. Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature. 2019;567:341-346 pubmed 出版商
  31. Losier T, Akuma M, McKee Muir O, LeBlond N, Suk Y, Alsaadi R, et al. AMPK Promotes Xenophagy through Priming of Autophagic Kinases upon Detection of Bacterial Outer Membrane Vesicles. Cell Rep. 2019;26:2150-2165.e5 pubmed 出版商
  32. Yambire K, Fernández Mosquera L, Steinfeld R, Mühle C, Ikonen E, Milosevic I, et al. Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases. elife. 2019;8: pubmed 出版商
  33. Ducommun S, Deak M, Zeigerer A, Göransson O, Seitz S, Collodet C, et al. Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates. Cell Signal. 2019;57:45-57 pubmed 出版商
  34. Wang Y, Du L, Liang X, Meng P, Bi L, Wang Y, et al. Sirtuin 4 Depletion Promotes Hepatocellular Carcinoma Tumorigenesis Through Regulating Adenosine-Monophosphate-Activated Protein Kinase Alpha/Mammalian Target of Rapamycin Axis in Mice. Hepatology. 2018;: pubmed 出版商
  35. Zhang N, Wei W, Liao H, Yang Z, Hu C, Wang S, et al. AdipoRon, an adiponectin receptor agonist, attenuates cardiac remodeling induced by pressure overload. J Mol Med (Berl). 2018;96:1345-1357 pubmed 出版商
  36. Cheruiyot A, Li S, Nickless A, Roth R, Fitzpatrick J, You Z. Compound C inhibits nonsense-mediated RNA decay independently of AMPK. PLoS ONE. 2018;13:e0204978 pubmed 出版商
  37. Hinchy E, Gruszczyk A, Willows R, Navaratnam N, Hall A, Bates G, et al. Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. J Biol Chem. 2018;293:17208-17217 pubmed 出版商
  38. Matesanz N, Nikolic I, Leiva M, Pulgarín Alfaro M, Santamans A, Bernardo E, et al. p38α blocks brown adipose tissue thermogenesis through p38δ inhibition. PLoS Biol. 2018;16:e2004455 pubmed 出版商
  39. Chhipa R, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20:823-835 pubmed 出版商
  40. Li T, Song L, Sun Y, Li J, Yi C, Lam S, et al. Tip60-mediated lipin 1 acetylation and ER translocation determine triacylglycerol synthesis rate. Nat Commun. 2018;9:1916 pubmed 出版商
  41. Zhang Z, Zi Z, Lee E, Zhao J, Contreras D, South A, et al. Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nat Med. 2018;24:617-627 pubmed 出版商
  42. Song H, Li X, Liu Y, Lu W, Cui Z, Zhou L, et al. Carnosic acid protects mice from high-fat diet-induced NAFLD by regulating MARCKS. Int J Mol Med. 2018;42:193-207 pubmed 出版商
  43. Longchamp A, Mirabella T, Arduini A, MacArthur M, Das A, Treviño Villarreal J, et al. Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H2S Production. Cell. 2018;173:117-129.e14 pubmed 出版商
  44. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  45. Zhao P, Wong K, Sun X, Reilly S, Uhm M, Liao Z, et al. TBK1 at the Crossroads of Inflammation and Energy Homeostasis in Adipose Tissue. Cell. 2018;172:731-743.e12 pubmed 出版商
  46. Li F, Liu J, Bao R, Yan G, Feng X, Xu Y, et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat Commun. 2018;9:508 pubmed 出版商
  47. Dai S, Dulcey A, Hu X, Wassif C, Porter F, Austin C, et al. Methyl-β-cyclodextrin restores impaired autophagy flux in Niemann-Pick C1-deficient cells through activation of AMPK. Autophagy. 2017;13:1435-1451 pubmed 出版商
  48. Li X, Yu W, Qian X, Xia Y, Zheng Y, Lee J, et al. Nucleus-Translocated ACSS2 Promotes Gene Transcription for Lysosomal Biogenesis and Autophagy. Mol Cell. 2017;66:684-697.e9 pubmed 出版商
  49. Ohba K, Sinha R, Singh B, Iannucci L, Zhou J, Kovalik J, et al. Changes in Hepatic TRβ Protein Expression, Lipogenic Gene Expression, and Long-Chain Acylcarnitine Levels During Chronic Hyperthyroidism and Triiodothyronine Withdrawal in a Mouse Model. Thyroid. 2017;27:852-860 pubmed 出版商
  50. McKay T, Hjortdal J, Priyadarsini S, Karamichos D. Acute hypoxia influences collagen and matrix metalloproteinase expression by human keratoconus cells in vitro. PLoS ONE. 2017;12:e0176017 pubmed 出版商
  51. Bai X, Hong W, Cai P, Chen Y, Xu C, Cao D, et al. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis. Toxicol Appl Pharmacol. 2017;324:12-25 pubmed 出版商
  52. Gupta A, Anjomani Virmouni S, Koundouros N, Dimitriadi M, Choo Wing R, Valle A, et al. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation. Mol Cell. 2017;65:999-1013.e7 pubmed 出版商
  53. Georgiadou M, Lilja J, Jacquemet G, Guzmán C, Rafaeva M, Alibert C, et al. AMPK negatively regulates tensin-dependent integrin activity. J Cell Biol. 2017;216:1107-1121 pubmed 出版商
  54. Wolfson R, Chantranupong L, Wyant G, Gu X, Orozco J, Shen K, et al. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature. 2017;543:438-442 pubmed 出版商
  55. Tongluan N, Ramphan S, Wintachai P, Jaresitthikunchai J, Khongwichit S, Wikan N, et al. Involvement of fatty acid synthase in dengue virus infection. Virol J. 2017;14:28 pubmed 出版商
  56. Chan L, Chen Z, Braas D, Lee J, Xiao G, Geng H, et al. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature. 2017;542:479-483 pubmed 出版商
  57. Ganesan R, Hos N, Gutierrez S, Fischer J, Stepek J, Daglidu E, et al. Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathog. 2017;13:e1006227 pubmed 出版商
  58. Hogarth M, Houweling P, Thomas K, Gordish Dressman H, Bello L, Pegoraro E, et al. Evidence for ACTN3 as a genetic modifier of Duchenne muscular dystrophy. Nat Commun. 2017;8:14143 pubmed 出版商
  59. Cederquist C, Lentucci C, Martinez Calejman C, Hayashi V, Orofino J, GUERTIN D, et al. Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue. Mol Metab. 2017;6:125-137 pubmed 出版商
  60. Che L, Pilo M, Cigliano A, Latte G, Simile M, Ribback S, et al. Oncogene dependent requirement of fatty acid synthase in hepatocellular carcinoma. Cell Cycle. 2017;16:499-507 pubmed 出版商
  61. Dey P, Baddour J, Muller F, Wu C, Wang H, Liao W, et al. Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature. 2017;542:119-123 pubmed 出版商
  62. Wang Q, Wu S, Zhu H, Ding Y, Dai X, Ouyang C, et al. Deletion of PRKAA triggers mitochondrial fission by inhibiting the autophagy-dependent degradation of DNM1L. Autophagy. 2017;13:404-422 pubmed 出版商
  63. Marmisolle I, Martínez J, Liu J, Mastrogiovanni M, Fergusson M, Rovira I, et al. Reciprocal regulation of acetyl-CoA carboxylase 1 and senescence in human fibroblasts involves oxidant mediated p38 MAPK activation. Arch Biochem Biophys. 2017;613:12-22 pubmed 出版商
  64. Liu Z, Gan L, Wu T, Feng F, Luo D, Gu H, et al. Adiponectin reduces ER stress-induced apoptosis through PPARα transcriptional regulation of ATF2 in mouse adipose. Cell Death Dis. 2016;7:e2487 pubmed 出版商
  65. Kong Q, Zhang H, Zhao T, Zhang W, Yan M, Dong X, et al. Tangshen formula attenuates hepatic steatosis by inhibiting hepatic lipogenesis and augmenting fatty acid oxidation in db/db mice. Int J Mol Med. 2016;38:1715-1726 pubmed 出版商
  66. Bultot L, Jensen T, Lai Y, Madsen A, Collodet C, Kviklyte S, et al. Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. Am J Physiol Endocrinol Metab. 2016;311:E706-E719 pubmed 出版商
  67. Boß M, Newbatt Y, Gupta S, Collins I, Brüne B, Namgaladze D. AMPK-independent inhibition of human macrophage ER stress response by AICAR. Sci Rep. 2016;6:32111 pubmed 出版商
  68. Liu J, Liang X, Zhou D, Lai L, Xiao L, Liu L, et al. Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/Fnip1/AMPK circuit. EMBO Mol Med. 2016;8:1212-1228 pubmed 出版商
  69. Kawamoto E, Koshinaka K, Yoshimura T, Masuda H, Kawanaka K. Immobilization rapidly induces muscle insulin resistance together with the activation of MAPKs (JNK and p38) and impairment of AS160 phosphorylation. Physiol Rep. 2016;4: pubmed 出版商
  70. Cameron A, Morrison V, Levin D, Mohan M, Forteath C, Beall C, et al. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circ Res. 2016;119:652-65 pubmed 出版商
  71. Zinkhan E, Zalla J, Carpenter J, Yu B, Yu X, Chan G, et al. Intrauterine growth restriction combined with a maternal high-fat diet increases hepatic cholesterol and low-density lipoprotein receptor activity in rats. Physiol Rep. 2016;4: pubmed 出版商
  72. Yin C, He D, Chen S, Tan X, Sang N. Exogenous pyruvate facilitates cancer cell adaptation to hypoxia by serving as an oxygen surrogate. Oncotarget. 2016;7:47494-47510 pubmed 出版商
  73. Shinohara S, Gu Y, Yang Y, Furuta Y, Tanaka M, Yue X, et al. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes. Int J Mol Med. 2016;38:574-84 pubmed 出版商
  74. Kim J, Hong S, Park C, Park J, Choi S, Woo S, et al. Intramyocardial Adipose-Derived Stem Cell Transplantation Increases Pericardial Fat with Recovery of Myocardial Function after Acute Myocardial Infarction. PLoS ONE. 2016;11:e0158067 pubmed 出版商
  75. Geng F, Cheng X, Wu X, Yoo J, Cheng C, Guo J, et al. Inhibition of SOAT1 Suppresses Glioblastoma Growth via Blocking SREBP-1-Mediated Lipogenesis. Clin Cancer Res. 2016;22:5337-5348 pubmed
  76. Sundararaman A, Amirtham U, Rangarajan A. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation. J Biol Chem. 2016;291:14410-29 pubmed 出版商
  77. Karlas A, Berrè S, Couderc T, Varjak M, Braun P, Meyer M, et al. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs. Nat Commun. 2016;7:11320 pubmed 出版商
  78. Taniguchi T, Iizumi Y, Watanabe M, Masuda M, Morita M, Aono Y, et al. Resveratrol directly targets DDX5 resulting in suppression of the mTORC1 pathway in prostate cancer. Cell Death Dis. 2016;7:e2211 pubmed 出版商
  79. Walter C, Clemens L, Müller A, Fallier Becker P, Proikas Cezanne T, Riess O, et al. Activation of AMPK-induced autophagy ameliorates Huntington disease pathology in vitro. Neuropharmacology. 2016;108:24-38 pubmed 出版商
  80. Thomas A, Belaidi E, Aron Wisnewsky J, van der Zon G, Levy P, Clement K, et al. Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice. Sci Rep. 2016;6:24618 pubmed 出版商
  81. Liu X, Xiao Z, Han L, Zhang J, Lee S, Wang W, et al. LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nat Cell Biol. 2016;18:431-42 pubmed 出版商
  82. Senol Cosar O, Flach R, DiStefano M, Chawla A, Nicoloro S, Straubhaar J, et al. Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion. Nat Commun. 2016;7:10686 pubmed 出版商
  83. Toyama E, Herzig S, Courchet J, Lewis T, Losón O, Hellberg K, et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science. 2016;351:275-281 pubmed 出版商
  84. Audet Walsh Ã, Papadopoli D, Gravel S, Yee T, Bridon G, Caron M, et al. The PGC-1α/ERRα Axis Represses One-Carbon Metabolism and Promotes Sensitivity to Anti-folate Therapy in Breast Cancer. Cell Rep. 2016;14:920-931 pubmed 出版商
  85. Albert V, Svensson K, Shimobayashi M, Colombi M, Munoz S, Jimenez V, et al. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med. 2016;8:232-46 pubmed 出版商
  86. Lee K, Hsieh Y, Yang Y, Chan C, Huang Y, Lin H. Aliskiren Reduces Hepatic steatosis and Epididymal Fat Mass and Increases Skeletal Muscle Insulin Sensitivity in High-Fat Diet-Fed Mice. Sci Rep. 2016;6:18899 pubmed 出版商
  87. Wang C, Che L, Hu J, Zhang S, Jiang L, Latte G, et al. Activated mutant forms of PIK3CA cooperate with RasV12 or c-Met to induce liver tumour formation in mice via AKT2/mTORC1 cascade. Liver Int. 2016;36:1176-86 pubmed 出版商
  88. Douglas D, Pu C, Lewis J, Bhat R, Anwar Mohamed A, Logan M, et al. Oxidative Stress Attenuates Lipid Synthesis and Increases Mitochondrial Fatty Acid Oxidation in Hepatoma Cells Infected with Hepatitis C Virus. J Biol Chem. 2016;291:1974-90 pubmed 出版商
  89. Zucal C, D Agostino V, Casini A, Mantelli B, Thongon N, Soncini D, et al. EIF2A-dependent translational arrest protects leukemia cells from the energetic stress induced by NAMPT inhibition. BMC Cancer. 2015;15:855 pubmed 出版商
  90. Lee Y, Yun M, Kim H, Jeon B, Park B, Lee B, et al. Exogenous administration of DLK1 ameliorates hepatic steatosis and regulates gluconeogenesis via activation of AMPK. Int J Obes (Lond). 2016;40:356-65 pubmed 出版商
  91. Lee S, Kim J, Hong S, Lee A, Park E, Seo H, et al. High Inorganic Phosphate Intake Promotes Tumorigenesis at Early Stages in a Mouse Model of Lung Cancer. PLoS ONE. 2015;10:e0135582 pubmed 出版商
  92. Perera R, Stoykova S, Nicolay B, Ross K, Fitamant J, Boukhali M, et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature. 2015;524:361-5 pubmed 出版商
  93. Zidek L, Ackermann T, Hartleben G, Eichwald S, Kortman G, Kiehntopf M, et al. Deficiency in mTORC1-controlled C/EBPβ-mRNA translation improves metabolic health in mice. EMBO Rep. 2015;16:1022-36 pubmed 出版商
  94. Sujobert P, Poulain L, Paubelle E, Zylbersztejn F, Grenier A, Lambert M, et al. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia. Cell Rep. 2015;11:1446-57 pubmed 出版商
  95. De Zio D, Molinari F, Rizza S, Gatta L, Ciotti M, Salvatore A, et al. Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth. Cell Mol Life Sci. 2015;72:4173-91 pubmed 出版商
  96. Dungan C, Li Z, Wright D, Williamson D. Hyperactive mTORC1 signaling is unaffected by metformin treatment in aged skeletal muscle. Muscle Nerve. 2016;53:107-17 pubmed 出版商
  97. Ledee D, Kajimoto M, O Kelly Priddy C, Olson A, Isern N, Robillard Frayne I, et al. Pyruvate modifies metabolic flux and nutrient sensing during extracorporeal membrane oxygenation in an immature swine model. Am J Physiol Heart Circ Physiol. 2015;309:H137-46 pubmed 出版商
  98. Li S, Oh Y, Yue P, Khuri F, Sun S. Inhibition of mTOR complex 2 induces GSK3/FBXW7-dependent degradation of sterol regulatory element-binding protein 1 (SREBP1) and suppresses lipogenesis in cancer cells. Oncogene. 2016;35:642-50 pubmed 出版商
  99. Guo C, Hao C, Shao R, Fang B, Correa A, Hofstetter W, et al. RNA-dependent protein kinase (PKR) depletes nutrients, inducing phosphorylation of AMP-activated kinase in lung cancer. Oncotarget. 2015;6:11114-24 pubmed
  100. Zheng T, Yang X, Wu D, Xing S, Bian F, Li W, et al. Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3β pathway. Br J Pharmacol. 2015;172:3284-301 pubmed 出版商
  101. Mo J, Meng Z, Kim Y, Park H, Hansen C, Kim S, et al. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol. 2015;17:500-10 pubmed 出版商
  102. Ducommun S, Deak M, Sumpton D, Ford R, Núñez Galindo A, Kussmann M, et al. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate. Cell Signal. 2015;27:978-88 pubmed 出版商
  103. Yan Y, Tsukamoto O, Nakano A, Kato H, Kioka H, Ito N, et al. Augmented AMPK activity inhibits cell migration by phosphorylating the novel substrate Pdlim5. Nat Commun. 2015;6:6137 pubmed 出版商
  104. Kwon Y, Song P, Yoon J, Ghim J, Kim D, Kang B, et al. Xanthene derivatives increase glucose utilization through activation of LKB1-dependent AMP-activated protein kinase. PLoS ONE. 2014;9:e108771 pubmed 出版商
  105. Abdul Wahed A, Gautier Stein A, Casteras S, Soty M, Roussel D, Romestaing C, et al. A link between hepatic glucose production and peripheral energy metabolism via hepatokines. Mol Metab. 2014;3:531-43 pubmed 出版商
  106. Li S, Zhou T, Li C, Dai Z, Che D, Yao Y, et al. High metastaticgastric and breast cancer cells consume oleic acid in an AMPK dependent manner. PLoS ONE. 2014;9:e97330 pubmed 出版商
  107. Perez Diaz S, Johnson L, Dekroon R, Moreno Navarrete J, Alzate O, Fernandez Real J, et al. Polymerase I and transcript release factor (PTRF) regulates adipocyte differentiation and determines adipose tissue expandability. FASEB J. 2014;28:3769-79 pubmed 出版商
  108. Carrier B, Wen S, Zigouras S, Browne R, Li Z, Patel M, et al. Alpha-lipoic acid reduces LDL-particle number and PCSK9 concentrations in high-fat fed obese Zucker rats. PLoS ONE. 2014;9:e90863 pubmed 出版商
  109. Ramírez Peinado S, León Annicchiarico C, Galindo Moreno J, Iurlaro R, Caro Maldonado A, Prehn J, et al. Glucose-starved cells do not engage in prosurvival autophagy. J Biol Chem. 2013;288:30387-98 pubmed 出版商