这是一篇来自已证抗体库的有关人类 ACTC1的综述,是根据376篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ACTC1 抗体。
ACTC1 同义词: ACTC; ASD5; CMD1R; CMH11; LVNC4

圣克鲁斯生物技术
小鼠 单克隆(5C5)
  • 免疫组化; 小鼠; 1:100; 图 s3-1b
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, SC-58670)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3-1b). elife (2022) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 小鼠; 1:200; 图 2r
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc53142)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2r). Nat Commun (2022) ncbi
小鼠 单克隆(B4)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, SC-53142)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Front Immunol (2021) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化-冰冻切片; 小鼠; 图 2f
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2e
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-53015)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2f) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2e). Cell Prolif (2020) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4g
圣克鲁斯生物技术 ACTC1抗体(Santa, sc-8432)被用于被用于免疫印迹在人类样本上 (图 4g). Cell Cycle (2020) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 人类; 1:200; 图 1c
圣克鲁斯生物技术 ACTC1抗体(Santa, CGA7)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1c). Science (2019) ncbi
小鼠 单克隆(B4)
  • 免疫组化; 小鼠; 1:100; 图 s1b
  • 免疫印迹; 小鼠; 1:1000; 图 6c
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-53142)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). J Clin Invest (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2e
圣克鲁斯生物技术 ACTC1抗体(Santa, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 2e). Sci Rep (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:1000; 图 1d
  • 免疫印迹; 人类; 1:1000; 图 1d
圣克鲁斯生物技术 ACTC1抗体(Santa, C-2)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Nat Commun (2018) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 1:2500; 图 3a
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, Inc, sc-53142)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 3a). Mol Med Rep (2018) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 1:1000; 图 3a
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Med Rep (2017) ncbi
小鼠 单克隆(Alpha Sr-1)
  • 免疫细胞化学; 小鼠; 1:100; 图 5a
  • 免疫印迹; 小鼠; 1:200; 图 5b
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-58671)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 5b). Am J Pathol (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 人类; 1:500
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-53015)被用于被用于免疫组化在人类样本上浓度为1:500. Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 1
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 6
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:200; 图 1
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, SC-8432)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 6
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, Sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Front Oncol (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
小鼠 单克隆(CGA7)
  • 免疫印迹; 人类; 1:1500; 图 2B
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-53015)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 2B). Mol Med Rep (2016) ncbi
小鼠 单克隆(B4)
  • 免疫组化-石蜡切片; 小鼠; 图 8
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc53142)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:500; 图 3
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Biofactors (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Exp Ther Med (2016) ncbi
小鼠 单克隆(B4)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-53142)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(5C5)
  • 免疫印迹; 大鼠; 1:10,000; 图 1h
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-58670)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 1h). Diabetologia (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 2b). elife (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 4). Int J Mol Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:2000; 图 3
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1 ug/ml; 图 1
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(5C5)
  • 免疫组化; 小鼠; 1:100; 图 1
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-58670)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Genes Dev (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 ACTC1抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2A
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 2A). Sci Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:5000; 图 1
  • 免疫印迹; 小鼠; 1:5000; 图 2
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). Biochemistry (2015) ncbi
小鼠 单克隆(5C5)
  • 免疫印迹; 小鼠; 1:200; 图 1B
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-58670)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1B). Autophagy (2016) ncbi
小鼠 单克隆(H-6)
  • 免疫印迹; 大鼠; 1:500; 图 4
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-376421)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 犬; 图 1b
  • 免疫印迹; 犬; 1:1000; 图 s1d
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫细胞化学在犬样本上 (图 1b) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 s1d). Mol Biol Cell (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 2). J Transl Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 犬; 1:50,000; 图 1
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在犬样本上浓度为1:50,000 (图 1). BMC Cancer (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 小鼠; 图 3d
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, SC-8432)被用于被用于免疫细胞化学在小鼠样本上 (图 3d). Cell Cycle (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(C-2)
  • 染色质免疫沉淀 ; 人类; 图 5
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc8432)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 f6
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, C-2)被用于被用于免疫印迹在小鼠样本上 (图 f6). Sci Signal (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:4000
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Int J Mol Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 1g
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1g). Int J Obes (Lond) (2015) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(5C5)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-58670)被用于被用于免疫印迹在人类样本上 (图 2). EMBO Mol Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Diabetes (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). PLoS Pathog (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:3000; 图 2
  • 免疫印迹; 小鼠; 1:3000; 图 6
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:2000; 图 2
  • 免疫印迹; 人类; 1:2000; 图 1
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432HRP)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ACTC1抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(5C5)
  • 免疫细胞化学; 人类; 图 3
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-58670)被用于被用于免疫细胞化学在人类样本上 (图 3). Cytotechnology (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 5
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, SC-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. FASEB J (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术 ACTC1抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nat Commun (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 ACTC1抗体(SantaCruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 小鼠; 1:100; 图 4
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-53015)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 ACTC1抗体(santa cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上. Sci Rep (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Am J Respir Cell Mol Biol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotech, sc-8432)被用于被用于免疫印迹在人类样本上. Proteomics (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Mol Cell Endocrinol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(5C5)
  • 免疫组化-冰冻切片; 大鼠; 图 3
圣克鲁斯生物技术 ACTC1抗体(Santa, sc-58670)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 3). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫组化-石蜡切片; 豚鼠
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-53015)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫组化-石蜡切片在豚鼠样本上. Am J Respir Cell Mol Biol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000. Mol Cell Biol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:4000
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Exp Neurol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(5C5)
  • 免疫组化-冰冻切片; 大鼠
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz Biotechnology, sc-58670)被用于被用于免疫组化-冰冻切片在大鼠样本上. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上. J Cell Sci (2013) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:500. Eur J Hum Genet (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(B4)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc-53142)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ACTC1抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2013) ncbi
小鼠 单克隆(Alpha Sr-1)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
圣克鲁斯生物技术 ACTC1抗体(Santa, Sc-58671)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Cell Death Differ (2012) ncbi
赛默飞世尔
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔 ACTC1抗体(Thermo Fisher, MA5-11869)被用于被用于免疫印迹在人类样本上. PLoS ONE (2020) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛默飞世尔 ACTC1抗体(thermo fisher, MA1-744)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Invest Ophthalmol Vis Sci (2020) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2b
赛默飞世尔 ACTC1抗体(ThermoFisher, MA5-14084)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2b). Stem Cell Res Ther (2020) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:2000; 图 1b
赛默飞世尔 ACTC1抗体(ThermoFisher, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Nat Commun (2019) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:4000; 图 1b
赛默飞世尔 ACTC1抗体(Thermo fisher, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1b). Nature (2019) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:50; 图 2d
赛默飞世尔 ACTC1抗体(Thermo, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 2d). Nat Commun (2018) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:1000; 图 2e
赛默飞世尔 ACTC1抗体(Thermo Fisher, MS-1295-P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Nature (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 斑马鱼; 1:5000; 图 s2e
赛默飞世尔 ACTC1抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在斑马鱼样本上浓度为1:5000 (图 s2e). Dis Model Mech (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:100; 图 1b
赛默飞世尔 ACTC1抗体(Invitrogen, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 1b). Clin Sci (Lond) (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 5g
赛默飞世尔 ACTC1抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 5g). J Cell Physiol (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:300; 图 2
赛默飞世尔 ACTC1抗体(Thermo Fisher Scientific, Ab-5)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; brewer's yeast; 图 2
赛默飞世尔 ACTC1抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在brewer's yeast样本上 (图 2). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类; 1:500; 图 1a
赛默飞世尔 ACTC1抗体(Pierce, MA1-744)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1a). DNA Repair (Amst) (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 1
赛默飞世尔 ACTC1抗体(Neo Markers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫沉淀; 大鼠; 图 2
赛默飞世尔 ACTC1抗体(Thermo scientific, MA1-744)被用于被用于免疫沉淀在大鼠样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 拟南芥; 图 1
赛默飞世尔 ACTC1抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在拟南芥样本上 (图 1). Plant Physiol (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; pigs ; 图 2c
赛默飞世尔 ACTC1抗体(Thermo Scientific, mAbGEa)被用于被用于免疫印迹在pigs 样本上 (图 2c). PLoS ONE (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 3b
赛默飞世尔 ACTC1抗体(Thermo Scientific, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 3b). Antimicrob Agents Chemother (2016) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; domestic rabbit; 1:4; 图 1
赛默飞世尔 ACTC1抗体(ThermoFisher Scientific, MA5-14084)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:4 (图 1). Acta Histochem (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:3000; 图 3
  • 免疫印迹; 小鼠; 1:3000; 图 1
赛默飞世尔 ACTC1抗体(Thermo Scientific, Ab-5)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1). elife (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; brewer's yeast; 1:1000; 图 3
赛默飞世尔 ACTC1抗体(Thermo Fisher scientific, mAbGEa)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 1
赛默飞世尔 ACTC1抗体(Thermo Scientific, MS-1295-P1)被用于被用于免疫印迹在人类样本上 (图 1). J Virol (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 犬; 图 8
赛默飞世尔 ACTC1抗体(Neomarkers, pan Ab-5)被用于被用于免疫印迹在犬样本上 (图 8). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 ACTC1抗体(Thermo Scientific, mAbGEa)被用于被用于免疫印迹在小鼠样本上 (图 2). Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:10,000; 图 3
赛默飞世尔 ACTC1抗体(Pierce Biotechnology, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔 ACTC1抗体(Thermo Scientific, MA5-11869)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; fruit fly ; 1:4000; 图 9
赛默飞世尔 ACTC1抗体(Thermo Scientific, MA5-11869))被用于被用于免疫印迹在fruit fly 样本上浓度为1:4000 (图 9). PLoS Biol (2015) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; brewer's yeast; 1:1000; 图 2, 4
赛默飞世尔 ACTC1抗体(Fisher, MA1-744)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:1000 (图 2, 4). Nat Commun (2015) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 拟南芥; 1:1000; 图 1
赛默飞世尔 ACTC1抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在拟南芥样本上浓度为1:1000 (图 1). Plant Physiol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:500; 图 5a
赛默飞世尔 ACTC1抗体(Thermo Fisher, MA5-11869)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). Eur J Pharmacol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔 ACTC1抗体(Lab Vision, Ab-5)被用于被用于免疫印迹在人类样本上. J Transl Med (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 ACTC1抗体(Thermo Fisher, MA5-11869)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Ethnopharmacol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠
赛默飞世尔 ACTC1抗体(Thermo Scientific, ACTN05)被用于被用于免疫印迹在小鼠样本上. Eur J Nutr (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类; 1:1000; 图 6
赛默飞世尔 ACTC1抗体(Thermo Fisher, MA1-744)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(mAbGEa)
赛默飞世尔 ACTC1抗体(Fisher, MA1-744)被用于. Traffic (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:10,000; 图 5
赛默飞世尔 ACTC1抗体(分子探针, C4)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 1,2,3,4,5,6
赛默飞世尔 ACTC1抗体(neomarkers, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 1,2,3,4,5,6). Breast Cancer Res (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔 ACTC1抗体(Thermo Scientific, PA5-21396)被用于. Exp Cell Res (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔 ACTC1抗体(NeoMarkers, ACTN05)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; fruit fly ; 1:4000
赛默飞世尔 ACTC1抗体(Thermo Scientific, MA5-11869)被用于被用于免疫印迹在fruit fly 样本上浓度为1:4000. Mech Dev (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 犬; 1:2000
赛默飞世尔 ACTC1抗体(Thermo, MS-1295-P1)被用于被用于免疫印迹在犬样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
赛默飞世尔 ACTC1抗体(Thermo Fisher Scientific, MS-1295-P1ABX)被用于. Am J Pathol (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛默飞世尔 ACTC1抗体(NeoMarkers, MS-1295-P1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Cell Physiol (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 ACTC1抗体(Thermo Scientific, MS1295P1)被用于被用于免疫印迹在小鼠样本上 (图 1). Front Cell Infect Microbiol (2013) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠
赛默飞世尔 ACTC1抗体(Thermo Fisher, ACTN05)被用于被用于免疫印迹在小鼠样本上. Cancer Prev Res (Phila) (2014) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类
赛默飞世尔 ACTC1抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化; 人类; 1:100; 表 1
赛默飞世尔 ACTC1抗体(Neomarker, HHF-35)被用于被用于免疫组化在人类样本上浓度为1:100 (表 1). Int J Surg Pathol (2014) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 非洲爪蛙
赛默飞世尔 ACTC1抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在非洲爪蛙样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 3
赛默飞世尔 ACTC1抗体(Lab Vision, Ab-5)被用于被用于免疫印迹在人类样本上 (图 3). Exp Cell Res (2010) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 ACTC1抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2010) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 8
赛默飞世尔 ACTC1抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 8). Neuropathology (2009) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 4
赛默飞世尔 ACTC1抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 4). Mol Hum Reprod (2008) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 大鼠; 1:1000
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 ACTC1抗体(LabVision, ACTN05)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Brain (2007) ncbi
American Research Products
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1
American Research Products ACTC1抗体(American Research Products, 03-61001)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1). Sci Rep (2016) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:200; 图 s1d
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1d). iScience (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s5b
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2d, 8c, s4b, s7a
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s5b) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2d, 8c, s4b, s7a). Nat Commun (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2b
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2b). Proc Natl Acad Sci U S A (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:30; 图 8b
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在小鼠样本上浓度为1:30 (图 8b). Nat Commun (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 4f
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Agilent-Dako, M0851)被用于被用于免疫组化在小鼠样本上 (图 4f). Int J Mol Sci (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:100; 图 1b
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 1b). J Cell Mol Med (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:1500; 图 2b
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1500 (图 2b). Cells (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:400; 图 1d
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在人类样本上浓度为1:400 (图 1d). Front Cardiovasc Med (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 1:100; 图 s4b
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 s4b). NPJ Regen Med (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:10,000; 图 5f
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10,000 (图 5f). Int J Mol Sci (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:500; 图 3a
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). Am J Physiol Gastrointest Liver Physiol (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 4a
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako (Agilent Technologies, M0851)被用于被用于免疫组化在人类样本上 (图 4a). Mol Med Rep (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 1f, 2h
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在小鼠样本上 (图 1f, 2h). Front Physiol (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5). Medicina (Kaunas) (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:1000; 图 s3b
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s3b). Sci Rep (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 大鼠; 图 5s3a
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫印迹在大鼠样本上 (图 5s3a). elife (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). Cell Death Differ (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:200; 图 1h
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1h). Stem Cell Res (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:100; 图 1f
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, AB_2223500)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1f). Stem Cell Res (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 4h
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在小鼠样本上 (图 4h). Cancer Discov (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:1000; 图 4f
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 4f). Nat Commun (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 s4b
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫印迹在人类样本上 (图 s4b). Nat Commun (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3d
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3d). Nutrients (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:300; 图 3a
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3a). Nat Commun (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 1i
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 1i). JCI Insight (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 4a
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在人类样本上 (图 4a). J Clin Invest (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 图 1b
  • 免疫印迹; 大鼠; 图 3a
  • 免疫组化; 人类; 图 1b
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在大鼠样本上 (图 1b), 被用于免疫印迹在大鼠样本上 (图 3a) 和 被用于免疫组化在人类样本上 (图 1b). Am J Pathol (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 s4
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s4). J Clin Invest (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 s2j
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Agilent Technologies, M0851)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 s2j). PLoS ONE (2017) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 人类; 表 s1
  • 免疫细胞化学; 人类; 1:50; 图 1b
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于流式细胞仪在人类样本上 (表 s1) 和 被用于免疫细胞化学在人类样本上浓度为1:50 (图 1b). J Transl Med (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 st1
  • 免疫组化-石蜡切片; African green monkey; 1:100; 图 st1
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 st1
  • 免疫组化-石蜡切片; pigs ; 1:200; 图 st1
  • 免疫组化-石蜡切片; 牛; 1:1000; 图 st1
  • 免疫组化-冰冻切片; 犬; 1:1000; 图 st1
  • 免疫组化-石蜡切片; 犬; 1:100; 图 st1
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 st1), 被用于免疫组化-石蜡切片在African green monkey样本上浓度为1:100 (图 st1), 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 st1), 被用于免疫组化-石蜡切片在pigs 样本上浓度为1:200 (图 st1), 被用于免疫组化-石蜡切片在牛样本上浓度为1:1000 (图 st1), 被用于免疫组化-冰冻切片在犬样本上浓度为1:1000 (图 st1) 和 被用于免疫组化-石蜡切片在犬样本上浓度为1:100 (图 st1). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(1A4)
  • 其他; 人类; 图 sb5
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于其他在人类样本上 (图 sb5). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100; 图 3b
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3b). Sci Rep (2017) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 人类; 图 1b
  • 免疫细胞化学; 人类; 图 4a
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于流式细胞仪在人类样本上 (图 1b) 和 被用于免疫细胞化学在人类样本上 (图 4a). Cell Cycle (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s2b
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s2b). Arterioscler Thromb Vasc Biol (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 图 6b
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, A0851)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上 (图 6b). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s9b
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4a
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s9b) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4a). Nature (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1c
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DakoCytomation, M0851)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1c). Histochem Cell Biol (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 3e
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫组化在小鼠样本上 (图 3e). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:200; 图 1c
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1c). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:500; 图 s2
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s2). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:500; 表 s4
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (表 s4). Stem Cell Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 7e
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7e). Kidney Int (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:500; 表 2
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (表 2). Stem Cell Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:500; 图 1e
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1e). Stem Cell Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 1:1000
  • 免疫印迹; 小鼠; 图 7
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 和 被用于免疫印迹在小鼠样本上 (图 7). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 9a
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫组化-石蜡切片在人类样本上 (图 9a). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 1
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化在小鼠样本上 (图 1). Diabetes (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:500; 图 1
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(dako, M0851)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1). Stem Cell Rev (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:350; 图 5
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:350 (图 5). Theranostics (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 1b
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b). Am J Pathol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4a
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
  • 免疫细胞化学; 人类; 1:100; 图 2
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 图 6
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell Adh Migr (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3). Front Physiol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 4a
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Dis Model Mech (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Nature (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 7
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M 0851)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 7). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 1:100; 图 5a
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 5a). J Vis Exp (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100; 图 3d
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3d). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(dako, M0851)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:2000; 图 2
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 2). Brain Tumor Pathol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Basic Res Cardiol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; domestic rabbit; 1:1000; 图 1
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 1). Mol Vis (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 1:50; 图 s1
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 s1). Am J Respir Crit Care Med (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:400; 图 3
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3). J Clin Invest (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 s4
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫细胞化学在人类样本上 (图 s4). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 s2b
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, m0851)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 s2b). Oncotarget (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:50; 图 s5
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, 1A4)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s5). Development (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:100; 图 1
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Cell Tissue Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 2
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 2). Am J Surg Pathol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 7a
  • 免疫组化; 人类; 图 1
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化在小鼠样本上 (图 7a) 和 被用于免疫组化在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 7c
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫组化在小鼠样本上 (图 7c). Endocrinology (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:100; 图 3a
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3a). J Cell Mol Med (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类; 1:400; 图 6
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 图 6
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫细胞化学在小鼠样本上 (图 6). J Immunol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. Br J Cancer (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 1b
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫印迹在人类样本上 (图 1b). Sci Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:200; 表 s4
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫组化在人类样本上浓度为1:200 (表 s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 表 2
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在人类样本上 (表 2). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:500; 图 6
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:3200
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, 1A4)被用于被用于免疫组化在人类样本上浓度为1:3200. Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:1000
  • 免疫组化; 小鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫印迹在人类样本上浓度为1:1000 和 被用于免疫组化在小鼠样本上浓度为1:200. Am J Pathol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:2
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化在人类样本上浓度为1:2. PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Female Pelvic Med Reconstr Surg (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, clone 1A4)被用于被用于免疫组化在人类样本上. Brain Tumor Pathol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Oncogene (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:200; 图 1
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1). BMC Cancer (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 5a
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫细胞化学在人类样本上 (图 5a). J Biomed Mater Res B Appl Biomater (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Ann Surg Oncol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:100; 图 s6
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s6). BMC Genomics (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化在大鼠样本上浓度为1:500. Exp Mol Pathol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 家羊
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, clone 1A4)被用于被用于免疫组化-石蜡切片在家羊样本上. Bone (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Stem Cells (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 大鼠; 图 7
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 7). Sci Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, clone M0851/1A4)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Surg Pathol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:800
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, 1A4)被用于被用于免疫组化在人类样本上浓度为1:800. Diagn Pathol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫细胞化学在人类样本上. Am J Hum Genet (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 2
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, 1A4)被用于被用于免疫组化在人类样本上 (图 2). Circ Heart Fail (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫沉淀; 人类
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(dako, m851)被用于被用于免疫沉淀在人类样本上. Brain Res (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化在人类样本上. Rheumatol Int (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 大鼠; 1:400
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400. Pediatr Surg Int (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 犬; 1:30
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:30. Peerj (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化在人类样本上浓度为1:200. J Cutan Pathol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫组化在人类样本上浓度为1:50. Thromb Res (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:1600
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在人类样本上浓度为1:1600. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 1:800
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在大鼠样本上浓度为1:800. J Neurosci (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上. Virchows Arch (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 1:1000
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. J Chem Neuroanat (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, 1A4)被用于被用于免疫组化在人类样本上. BMC Cancer (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Virchows Arch (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:60
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化在人类样本上浓度为1:60. Pathol Res Pract (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 大鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100. J Biomed Sci (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:3000
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:3000. Nat Genet (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在人类样本上. Biol Reprod (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Neuropathology (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako Cytomation, M0851)被用于被用于免疫组化在小鼠样本上浓度为1:200. Dev Biol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在人类样本上. Cell Tissue Bank (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在人类样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Virchows Arch (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫组化-石蜡切片在大鼠样本上. Mol Cancer Res (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:10,000
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10,000. Biomaterials (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫组化-石蜡切片; pigs ; 1:10,000
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫组化-石蜡切片在pigs 样本上浓度为1:10,000. Biomaterials (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上. Br J Cancer (2014) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 人类
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化在人类样本上浓度为1:50. Fetal Pediatr Pathol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 犬; 1:100
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako A/S, 1A4)被用于被用于免疫组化在犬样本上浓度为1:100. J Comp Pathol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:5000
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000. Dev Biol (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Pathol (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:150
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150. Pathol Int (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫细胞化学在人类样本上. Biomed Res Int (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Pathol (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:10; 图 3
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, M0851)被用于被用于免疫细胞化学在人类样本上浓度为1:10 (图 3). J Biol Chem (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DakoCytomation, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上. Hepatology (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化在大鼠样本上浓度为1:200. Acta Ophthalmol (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在人类样本上. Perit Dial Int (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2012) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400. J Comp Neurol (2012) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Biomarkers (2012) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:200
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, M0851)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:200. Biochim Biophys Acta (2012) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(DAKO, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上. Hepatology (2009) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 ACTC1抗体(Dako, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Surg Pathol (2009) ncbi
西格玛奥德里奇
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:4000; 图 s3-1c
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 s3-1c). elife (2020) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:1000; 图 s5g
西格玛奥德里奇 ACTC1抗体(Sigma, A2103)被用于被用于流式细胞仪在人类样本上浓度为1:1000 (图 s5g). Science (2020) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1a, 4a, 4b
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在人类样本上 (图 1a, 4a, 4b). JCI Insight (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
西格玛奥德里奇 ACTC1抗体(Sigma, A2103)被用于被用于免疫印迹在人类样本上 (图 1e). Transl Oncol (2020) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:100; 图 13a
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 13a). elife (2019) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 s3a
西格玛奥德里奇 ACTC1抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上 (图 s3a). PLoS Pathog (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:8000; 图 6t
西格玛奥德里奇 ACTC1抗体(Sigma, A2103)被用于被用于免疫印迹在小鼠样本上浓度为1:8000 (图 6t). J Exp Med (2018) ncbi
小鼠 单克隆(AC-40)
  • 免疫组化-石蜡切片; pigs ; 1:200; 图 st1
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, A4700)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:200 (图 st1). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 1A
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上 (图 1A). Exp Cell Res (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫细胞化学; 小鼠; 1:100; 图 6
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 1). Biosci Rep (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 6). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
西格玛奥德里奇 ACTC1抗体(Sigma, A2103)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS Pathog (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫组化; 人类; 图 4
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫组化在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:2000; 图 3
西格玛奥德里奇 ACTC1抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Int J Mol Sci (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:5000; 图 s1
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s1). J Cell Sci (2017) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:10,000; 图 5
  • 免疫印迹; 小鼠; 1:10,000; 图 4
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上 (图 1). Brain Behav (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇 ACTC1抗体(Sigma Aldrich, AC-40)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
西格玛奥德里奇 ACTC1抗体(Sigma, A2103)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Infect Immun (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 3). Endocrinology (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 6). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇 ACTC1抗体(Sigma, A-4700)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-40)
  • 其他; 人类; 图 st1
西格玛奥德里奇 ACTC1抗体(SIGMA, AC-40)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇 ACTC1抗体(Sigma Aldrich, A4700)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 ACTC1抗体(Sigma, AC40)被用于被用于免疫印迹在人类样本上 (图 3). PLoS Pathog (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 ACTC1抗体(Sigma Aldrich, ac-40)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Oncol (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫细胞化学; 大鼠; 图 2
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫细胞化学在大鼠样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:5000. Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 表 1
西格玛奥德里奇 ACTC1抗体(Sigma, A2103)被用于被用于免疫印迹在人类样本上 (表 1). Redox Biol (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 斑马鱼; 图 2
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在斑马鱼样本上 (图 2). J Muscle Res Cell Motil (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, A2103)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 7
西格玛奥德里奇 ACTC1抗体(Sigma, AC-40)被用于被用于免疫印迹在小鼠样本上 (图 7). Am J Physiol Renal Physiol (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:1000; 图 4
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Cell Sci (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:2000; 图 1b
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1b). Nat Commun (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 s7
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在小鼠样本上 (图 s7). Nat Immunol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上. Biochem J (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:2500; 图 2c
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 2c). Nat Commun (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:10,000; 图 s2b
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s2b). Mol Cell (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇 ACTC1抗体(Sigma, 4700)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Biomed Res Int (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 非洲爪蛙; 1:800; 图 3
西格玛奥德里奇 ACTC1抗体(Sigma, Ac-40)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:800 (图 3). Protoplasma (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇 ACTC1抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS Pathog (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 仓鼠; 1:2000; 图 3
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在仓鼠样本上浓度为1:2000 (图 3). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:1000; 图 s5
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). PLoS ONE (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; pigs ; 1:5000; 图 3
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在pigs 样本上浓度为1:5000 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:5000; 图 4
西格玛奥德里奇 ACTC1抗体(Sigma, AC40)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:2000; 图 2
西格玛奥德里奇 ACTC1抗体(Sigma, A 4700)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2). J Neurosci (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:2000; 图 3
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Cell Death Dis (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich-Aldrich, AC-40)被用于被用于免疫印迹在小鼠样本上. J Am Soc Nephrol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 s2
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 s2). Nature (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; African green monkey; 1:5000; 图 s8
  • 免疫印迹; 大鼠; 1:5000; 图 3
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在African green monkey样本上浓度为1:5000 (图 s8) 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:500; 图 8
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8). J Cell Biol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Biol Cell (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, A2103)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠
西格玛奥德里奇 ACTC1抗体(Sigma Chemical, A4700)被用于被用于免疫印迹在大鼠样本上. FEBS Lett (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 s3
西格玛奥德里奇 ACTC1抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上 (图 s3). Aging Cell (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Int J Dev Neurosci (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类
西格玛奥德里奇 ACTC1抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. J Neurosci (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:20,000
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, AC40)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000. Neurobiol Dis (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:2000
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. Behav Brain Res (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; domestic goat; 1:1000; 图 3
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在domestic goat样本上浓度为1:1000 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 ACTC1抗体(Sigma, AC40)被用于被用于免疫印迹在人类样本上 (图 6). Oncogene (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, AC40)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Eur Neuropsychopharmacol (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 ACTC1抗体(Sigma Aldrich, #AC40)被用于被用于免疫印迹在小鼠样本上 (图 4). Cancer Med (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:5000. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, AC40)被用于被用于免疫沉淀在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Mol Cells (2013) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Neurosci (2013) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:3000
西格玛奥德里奇 ACTC1抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在人类样本上浓度为1:3000. Head Neck (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠
西格玛奥德里奇 ACTC1抗体(Sigma, AC40)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 斑马鱼; 1:1000
西格玛奥德里奇 ACTC1抗体(Sigma, AC40)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000. Dev Biol (2012) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:4000
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. J Histochem Cytochem (2012) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:10,000; 图 s2
西格玛奥德里奇 ACTC1抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s2). PLoS ONE (2010) ncbi
文章列表
  1. Gao F, Li C, Smith S, Peinado N, Kohbodi G, Tran E, et al. Decoding the IGF1 signaling gene regulatory network behind alveologenesis from a mouse model of bronchopulmonary dysplasia. elife. 2022;11: pubmed 出版商
  2. Selle J, Dinger K, Jentgen V, Zanetti D, Will J, Georgomanolis T, et al. Maternal and perinatal obesity induce bronchial obstruction and pulmonary hypertension via IL-6-FoxO1-axis in later life. Nat Commun. 2022;13:4352 pubmed 出版商
  3. Koide T, Koyanagi Aoi M, Uehara K, Kakeji Y, Aoi T. CDX2-induced intestinal metaplasia in human gastric organoids derived from induced pluripotent stem cells. iScience. 2022;25:104314 pubmed 出版商
  4. Lee K, Yeo S, Gong J, Koo O, Sohn I, Lee W, et al. PRRX1 is a master transcription factor of stromal fibroblasts for myofibroblastic lineage progression. Nat Commun. 2022;13:2793 pubmed 出版商
  5. Zhao Q, Dai W, Chen H, Jacobs R, Zlokovic B, Lund B, et al. Prenatal disruption of blood-brain barrier formation via cyclooxygenase activation leads to lifelong brain inflammation. Proc Natl Acad Sci U S A. 2022;119:e2113310119 pubmed 出版商
  6. Hua X, Ge S, Zhang M, Mo F, Zhang L, Zhang J, et al. Pathogenic Roles of CXCL10 in Experimental Autoimmune Prostatitis by Modulating Macrophage Chemotaxis and Cytokine Secretion. Front Immunol. 2021;12:706027 pubmed 出版商
  7. Langdon C, Gadek K, Garcia M, Evans M, Reed K, Bush M, et al. Synthetic essentiality between PTEN and core dependency factor PAX7 dictates rhabdomyosarcoma identity. Nat Commun. 2021;12:5520 pubmed 出版商
  8. Credendino S, De Menna M, Cantone I, Moccia C, Esposito M, Di Guida L, et al. FOXE1-Dependent Regulation of Macrophage Chemotaxis by Thyroid Cells In Vitro and In Vivo. Int J Mol Sci. 2021;22: pubmed 出版商
  9. Nadeem L, Balendran R, Dorogin A, Mesiano S, Shynlova O, Lye S. Pro-inflammatory signals induce 20α-HSD expression in myometrial cells: A key mechanism for local progesterone withdrawal. J Cell Mol Med. 2021;25:6773-6785 pubmed 出版商
  10. Seime T, Akbulut A, Liljeqvist M, Siika A, Jin H, Winski G, et al. Proteoglycan 4 Modulates Osteogenic Smooth Muscle Cell Differentiation during Vascular Remodeling and Intimal Calcification. Cells. 2021;10: pubmed 出版商
  11. Gallina A, Rykaczewska U, Wirka R, Caravaca A, Shavva V, Youness M, et al. AMPA-Type Glutamate Receptors Associated With Vascular Smooth Muscle Cell Subpopulations in Atherosclerosis and Vascular Injury. Front Cardiovasc Med. 2021;8:655869 pubmed 出版商
  12. Bilodeau C, Shojaie S, Goltsis O, Wang J, Luo D, Ackerley C, et al. TP63 basal cells are indispensable during endoderm differentiation into proximal airway cells on acellular lung scaffolds. NPJ Regen Med. 2021;6:12 pubmed 出版商
  13. Haraguchi R, Yamada G, Murashima A, Matsumaru D, Kitazawa R, Kitazawa S. New Insights into Development of Female Reproductive Tract-Hedgehog-Signal Response in Wolffian Tissues Directly Contributes to Uterus Development. Int J Mol Sci. 2021;22: pubmed 出版商
  14. Lozi x107 M, Filipovi x107 N, Juri x107 M, Kosovi x107 I, Benzon B, x160 oli x107 I, et al. Alteration of Cx37, Cx40, Cx43, Cx45, Panx1, and Renin Expression Patterns in Postnatal Kidneys of Dab1-/- (yotari) Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  15. Ichinose M, Suzuki N, Wang T, Wright J, Lannagan T, Vrbanac L, et al. Stromal DLK1 promotes proliferation and inhibits differentiation of the intestinal epithelium during development. Am J Physiol Gastrointest Liver Physiol. 2021;320:G506-G520 pubmed 出版商
  16. Gal P, Vasilenko T, Kovác I, Coma M, Jakubco J, Jakubčová M, et al. Human galectin‑3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions in vivo. Mol Med Rep. 2021;23: pubmed 出版商
  17. Chen A, Santana A, Doudican N, Roudiani N, Laursen K, Therrien J, et al. MAGE-A3 is a prognostic biomarker for poor clinical outcome in cutaneous squamous cell carcinoma with perineural invasion via modulation of cell proliferation. PLoS ONE. 2020;15:e0241551 pubmed 出版商
  18. Fomicheva M, Macara I. Genome-wide CRISPR screen identifies noncanonical NF-κB signaling as a regulator of density-dependent proliferation. elife. 2020;9: pubmed 出版商
  19. Gurley J, Gmyrek G, McClellan M, Hargis E, Hauck S, Dozmorov M, et al. Neuroretinal-Derived Caveolin-1 Promotes Endotoxin-Induced Inflammation in the Murine Retina. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed 出版商
  20. Zatulovskiy E, Zhang S, Berenson D, Topacio B, Skotheim J. Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division. Science. 2020;369:466-471 pubmed 出版商
  21. Asare Y, Koehncke J, Selle J, Simsekyilmaz S, Jankowski J, Shagdarsuren G, et al. Differential Role for Activating FcγRIII in Neointima Formation After Arterial Injury and Diet-Induced Chronic Atherosclerosis in Apolipoprotein E-Deficient Mice. Front Physiol. 2020;11:673 pubmed 出版商
  22. Chaushu L, Rahmanov Gavrielov M, Chaushu G, Vered M. Palatal Wound Healing with Primary Intention in a Rat Model-Histology and Immunohistomorphometry. Medicina (Kaunas). 2020;56: pubmed 出版商
  23. Beltran Camacho L, Jimenez Palomares M, Rojas Torres M, Sánchez Gomar I, Rosal Vela A, Eslava Alcon S, et al. Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia. Stem Cell Res Ther. 2020;11:106 pubmed 出版商
  24. Mallampalli R, Li X, Jang J, Kaminski T, Hoji A, Coon T, et al. Cigarette smoke exposure enhances transforming acidic coiled-coil-containing protein 2 turnover and thereby promotes emphysema. JCI Insight. 2020;5: pubmed 出版商
  25. Rahman M, Wruck W, Spitzhorn L, Nguyen L, Bohndorf M, Martins S, et al. The FGF, TGFβ and WNT axis Modulate Self-renewal of Human SIX2+ Urine Derived Renal Progenitor Cells. Sci Rep. 2020;10:739 pubmed 出版商
  26. Zhang L, Wang Y, Wu G, Rao L, Wei Y, Yue H, et al. Blockade of JAK2 protects mice against hypoxia-induced pulmonary arterial hypertension by repressing pulmonary arterial smooth muscle cell proliferation. Cell Prolif. 2020;53:e12742 pubmed 出版商
  27. Singh V, Khalil M, De Benedetti A. The TLK1/Nek1 axis contributes to mitochondrial integrity and apoptosis prevention via phosphorylation of VDAC1. Cell Cycle. 2020;19:363-375 pubmed 出版商
  28. Chen W, Wang Q, Xu X, Saxton B, Tessema M, Leng S, et al. Vasorin/ATIA Promotes Cigarette Smoke-Induced Transformation of Human Bronchial Epithelial Cells by Suppressing Autophagy-Mediated Apoptosis. Transl Oncol. 2020;13:32-41 pubmed 出版商
  29. Fons N, Sundaram R, Breuer G, Peng S, McLean R, Kalathil A, et al. PPM1D mutations silence NAPRT gene expression and confer NAMPT inhibitor sensitivity in glioma. Nat Commun. 2019;10:3790 pubmed 出版商
  30. V gtle T, Sharma S, Mori J, Nagy Z, Semeniak D, Scandola C, et al. Heparan sulfates are critical regulators of the inhibitory megakaryocyte-platelet receptor G6b-B. elife. 2019;8: pubmed 出版商
  31. Nakagaki Silva E, Gooding C, Llorian M, Jacob A, RICHARDS F, Buckroyd A, et al. Identification of RBPMS as a mammalian smooth muscle master splicing regulator via proximity of its gene with super-enhancers. elife. 2019;8: pubmed 出版商
  32. Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, et al. Amyloid β oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes. Science. 2019;: pubmed 出版商
  33. Zhao B, Du F, Xu P, Shu C, Sankaran B, Bell S, et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature. 2019;: pubmed 出版商
  34. Schulien I, Hockenjos B, Schmitt Graeff A, Perdekamp M, Follo M, Thimme R, et al. The transcription factor c-Jun/AP-1 promotes liver fibrosis during non-alcoholic steatohepatitis by regulating Osteopontin expression. Cell Death Differ. 2019;: pubmed 出版商
  35. Li B, He J, Lv H, Liu Y, Lv X, Zhang C, et al. c-Abl regulates YAPY357 phosphorylation to activate endothelial atherogenic responses to disturbed flow. J Clin Invest. 2019;129:1167-1179 pubmed 出版商
  36. Lü Y, Dong E, Yang W, Lai L, Lin X, Ma L, et al. Generation of an integration-free induced pluripotent stem cell line, FJMUi001-A, from a hereditary spastic paraplegia patient carrying compound heterozygous p.P498L and p.R618W mutations in CAPN1 (SPG76). Stem Cell Res. 2019;34:101354 pubmed 出版商
  37. Schuster S, Saravanakumar S, Schols L, Hauser S. Generation of a homozygous CRISPR/Cas9-mediated knockout human iPSC line for the STUB1 locus. Stem Cell Res. 2019;34:101378 pubmed 出版商
  38. Biffi G, Oni T, Spielman B, Hao Y, Elyada E, Park Y, et al. IL1-Induced JAK/STAT Signaling Is Antagonized by TGFβ to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma. Cancer Discov. 2019;9:282-301 pubmed 出版商
  39. Rodríguez Baena F, Redondo García S, Peris Torres C, Martino Echarri E, Fernández Rodríguez R, Plaza Calonge M, et al. ADAMTS1 protease is required for a balanced immune cell repertoire and tumour inflammatory response. Sci Rep. 2018;8:13103 pubmed 出版商
  40. Urata S, Kenyon E, Nayak D, Cubitt B, Kurosaki Y, Yasuda J, et al. BST-2 controls T cell proliferation and exhaustion by shaping the early distribution of a persistent viral infection. PLoS Pathog. 2018;14:e1007172 pubmed 出版商
  41. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  42. Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T, et al. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer's disease model. J Exp Med. 2018;215:1649-1663 pubmed 出版商
  43. Anderson D, Kaplan D, Bell K, Koutsis K, Haynes J, Mills R, et al. NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nat Commun. 2018;9:1373 pubmed 出版商
  44. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  45. Clemente C, Rius C, Alonso Herranz L, Martín Alonso M, Pollán A, Camafeita E, et al. MT4-MMP deficiency increases patrolling monocyte recruitment to early lesions and accelerates atherosclerosis. Nat Commun. 2018;9:910 pubmed 出版商
  46. Hoving L, De Vries M, de Jong R, Katiraei S, Pronk A, Quax P, et al. The Prebiotic Inulin Aggravates Accelerated Atherosclerosis in Hypercholesterolemic APOE*3-Leiden Mice. Nutrients. 2018;10: pubmed 出版商
  47. Li T, Zhao J. Knockdown of elF3a inhibits TGF??1?induced extracellular matrix protein expression in keloid fibroblasts. Mol Med Rep. 2018;17:4057-4061 pubmed 出版商
  48. Fang J, Coon B, Gillis N, Chen Z, Qiu J, Chittenden T, et al. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat Commun. 2017;8:2149 pubmed 出版商
  49. Aguado L, Schmid S, May J, Sabin L, Panis M, Blanco Melo D, et al. RNase III nucleases from diverse kingdoms serve as antiviral effectors. Nature. 2017;547:114-117 pubmed 出版商
  50. Guo Q, Minnier J, Burchard J, Chiotti K, Spellman P, Schedin P. Physiologically activated mammary fibroblasts promote postpartum mammary cancer. JCI Insight. 2017;2:e89206 pubmed 出版商
  51. Langley S, Willeit K, Didangelos A, Matic L, Skroblin P, Barallobre Barreiro J, et al. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques. J Clin Invest. 2017;127:1546-1560 pubmed 出版商
  52. Manzanares M, Usui A, Campbell D, Dumur C, Maldonado G, Fausther M, et al. Transforming Growth Factors α and β Are Essential for Modeling Cholangiocarcinoma Desmoplasia and Progression in a Three-Dimensional Organotypic Culture Model. Am J Pathol. 2017;187:1068-1092 pubmed 出版商
  53. Koyama Y, Wang P, Liang S, Iwaisako K, Liu X, Xu J, et al. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest. 2017;127:1254-1270 pubmed 出版商
  54. Chen J, Borges M. Histopathology and enhanced detection of tumor invasion of peritoneal membranes. PLoS ONE. 2017;12:e0173833 pubmed 出版商
  55. Chen S, Wang Y, Zhang W, Dong M, Zhang J. Sclareolide enhances gemcitabine?induced cell death through mediating the NICD and Gli1 pathways in gemcitabine?resistant human pancreatic cancer. Mol Med Rep. 2017;15:1461-1470 pubmed 出版商
  56. Zakharova I, Zhiven M, Saaya S, Shevchenko A, Smirnova A, Strunov A, et al. Endothelial and smooth muscle cells derived from human cardiac explants demonstrate angiogenic potential and suitable for design of cell-containing vascular grafts. J Transl Med. 2017;15:54 pubmed 出版商
  57. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  58. Alkasalias T, Alexeyenko A, Hennig K, Danielsson F, Lebbink R, Fielden M, et al. RhoA knockout fibroblasts lose tumor-inhibitory capacity in vitro and promote tumor growth in vivo. Proc Natl Acad Sci U S A. 2017;114:E1413-E1421 pubmed 出版商
  59. Delhove J, Buckley S, Perocheau D, Karda R, Arbuthnot P, Henderson N, et al. Longitudinal in vivo bioimaging of hepatocyte transcription factor activity following cholestatic liver injury in mice. Sci Rep. 2017;7:41874 pubmed 出版商
  60. Zorin V, Pulin A, Eremin I, Korsakov I, Zorina A, Khromova N, et al. Myogenic potential of human alveolar mucosa derived cells. Cell Cycle. 2017;16:545-555 pubmed 出版商
  61. de Jong R, Paulin N, Lemnitzer P, Viola J, Winter C, Ferraro B, et al. Protective Aptitude of Annexin A1 in Arterial Neointima Formation in Atherosclerosis-Prone Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:312-315 pubmed 出版商
  62. Mayrhofer M, Gourain V, Reischl M, Affaticati P, Jenett A, Joly J, et al. A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK- and PI3K-induced malignant growth. Dis Model Mech. 2017;10:15-28 pubmed 出版商
  63. Jørgensen L, Jepsen P, Boysen A, Dalgaard L, Hvid L, Ørtenblad N, et al. SPARC Interacts with Actin in Skeletal Muscle in Vitro and in Vivo. Am J Pathol. 2017;187:457-474 pubmed 出版商
  64. Chen Z, Tang C, Zhu Y, Xie M, He D, Pan Q, et al. TrpC5 regulates differentiation through the Ca2+/Wnt5a signalling pathway in colorectal cancer. Clin Sci (Lond). 2017;131:227-237 pubmed 出版商
  65. Sakata K, Araki K, Nakano H, Nishina T, Komazawa Sakon S, Murai S, et al. Novel method to rescue a lethal phenotype through integration of target gene onto the X-chromosome. Sci Rep. 2016;6:37200 pubmed 出版商
  66. Cao L, Riascos Bernal D, Chinnasamy P, Dunaway C, Hou R, Pujato M, et al. Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature. 2016;539:575-578 pubmed 出版商
  67. Moser G, Weiss G, Sundl M, Gauster M, Siwetz M, Lang Olip I, et al. Extravillous trophoblasts invade more than uterine arteries: evidence for the invasion of uterine veins. Histochem Cell Biol. 2017;147:353-366 pubmed 出版商
  68. He M, Yuan H, Tan B, Bai R, Kim H, Bae S, et al. SIRT1-mediated downregulation of p27Kip1 is essential for overcoming contact inhibition of Kaposi's sarcoma-associated herpesvirus transformed cells. Oncotarget. 2016;7:75698-75711 pubmed 出版商
  69. Sun K, Xu S, Chen J, Liu G, Shen X, Wu X. Atypical presentation of a gastric stromal tumor masquerading as a giant intraabdominal cyst: A case report. Oncol Lett. 2016;12:3018-3020 pubmed
  70. Romeo S, Conti A, Polito F, Tomasello C, Barresi V, La Torre D, et al. miRNA regulation of Sirtuin-1 expression in human astrocytoma. Oncol Lett. 2016;12:2992-2998 pubmed
  71. Adachi E, Sakai K, Nishiuchi T, Imamura R, Sato H, Matsumoto K. Different growth and metastatic phenotypes associated with a cell-intrinsic change of Met in metastatic melanoma. Oncotarget. 2016;7:70779-70793 pubmed 出版商
  72. Matos M, Lapyckyj L, Rosso M, Besso M, Mencucci M, Briggiler C, et al. Identification of a Novel Human E-Cadherin Splice Variant and Assessment of Its Effects Upon EMT-Related Events. J Cell Physiol. 2017;232:1368-1386 pubmed 出版商
  73. Zhao G, Zhu P, Renvoisé B, Maldonado Baez L, Park S, Blackstone C. Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology. Exp Cell Res. 2016;349:32-44 pubmed 出版商
  74. Frolikova M, Sebkova N, Ded L, Dvorakova Hortova K. Characterization of CD46 and ?1 integrin dynamics during sperm acrosome reaction. Sci Rep. 2016;6:33714 pubmed 出版商
  75. Hosaka K, Yang Y, Seki T, Fischer C, Dubey O, Fredlund E, et al. Pericyte-fibroblast transition promotes tumor growth and metastasis. Proc Natl Acad Sci U S A. 2016;113:E5618-27 pubmed 出版商
  76. Ahmadian Baghbaderani B, Tian X, Scotty Cadet J, Shah K, Walde A, Tran H, et al. A Newly Defined and Xeno-Free Culture Medium Supports Every-Other-Day Medium Replacement in the Generation and Long-Term Cultivation of Human Pluripotent Stem Cells. PLoS ONE. 2016;11:e0161229 pubmed 出版商
  77. Zhou S, Han Q, Wang R, Li X, Wang Q, Wang H, et al. PRDX2 protects hepatocellular carcinoma SMMC-7721 cells from oxidative stress. Oncol Lett. 2016;12:2217-2221 pubmed
  78. Sousa A, Rei M, Freitas R, Ricardo S, Caffrey T, David L, et al. Effect of MUC1/?-catenin interaction on the tumorigenic capacity of pancreatic CD133+ cells. Oncol Lett. 2016;12:1811-1817 pubmed
  79. Hansen S, Stummann T, Borland H, Hasholt L, Tumer Z, Nielsen J, et al. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res. 2016;17:306-317 pubmed 出版商
  80. Vasilopoulou E, Kolatsi Joannou M, Lindenmeyer M, White K, Robson M, Cohen C, et al. Loss of endogenous thymosin β4 accelerates glomerular disease. Kidney Int. 2016;90:1056-1070 pubmed 出版商
  81. Abraham K, Chan J, Salvi J, Ho B, Hall A, Vidya E, et al. Intersection of calorie restriction and magnesium in the suppression of genome-destabilizing RNA-DNA hybrids. Nucleic Acids Res. 2016;44:8870-8884 pubmed
  82. Martin K, Pritchett J, Llewellyn J, Mullan A, Athwal V, Dobie R, et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat Commun. 2016;7:12502 pubmed 出版商
  83. Weikel K, Cacicedo J, Ruderman N, Ido Y. Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci Rep. 2016;36: pubmed 出版商
  84. Bercovich Kinori A, Tai J, Gelbart I, Shitrit A, Ben Moshe S, Drori Y, et al. A systematic view on influenza induced host shutoff. elife. 2016;5: pubmed 出版商
  85. Wang X, Shaw D, Hammond H, Sutterwala F, Rayamajhi M, Shirey K, et al. The Prostaglandin E2-EP3 Receptor Axis Regulates Anaplasma phagocytophilum-Mediated NLRC4 Inflammasome Activation. PLoS Pathog. 2016;12:e1005803 pubmed 出版商
  86. Fritzen R, Delbos F, De Smet A, Palancade B, Canman C, Aoufouchi S, et al. A single aspartate mutation in the conserved catalytic site of Rev3L generates a hypomorphic phenotype in vivo and in vitro. DNA Repair (Amst). 2016;46:37-46 pubmed 出版商
  87. Das S, Rehman I, Ghosh A, Sengupta S, Majumdar P, Jana B, et al. Poly(ADP-ribose) polymers regulate DNA topoisomerase I (Top1) nuclear dynamics and camptothecin sensitivity in living cells. Nucleic Acids Res. 2016;44:8363-75 pubmed 出版商
  88. Yang X, Zhou X, Tone P, Durkin M, Popescu N. Cooperative antiproliferative effect of coordinated ectopic expression of DLC1 tumor suppressor protein and silencing of MYC oncogene expression in liver cancer cells: Therapeutic implications. Oncol Lett. 2016;12:1591-1596 pubmed
  89. Jin Z, Yan W, Jin H, Ge C, Xu Y. Psoralidin inhibits proliferation and enhances apoptosis of human esophageal carcinoma cells via NF-?B and PI3K/Akt signaling pathways. Oncol Lett. 2016;12:971-976 pubmed
  90. Geng J, Li J, Huang T, Zhao K, Chen Q, Guo W, et al. A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria. Mol Med Rep. 2016;14:1970-8 pubmed 出版商
  91. He Z, Forest F, Gain P, Rageade D, Bernard A, Acquart S, et al. 3D map of the human corneal endothelial cell. Sci Rep. 2016;6:29047 pubmed 出版商
  92. Espinoza I, Sakiyama M, Ma T, Fair L, Zhou X, Hassan M, et al. Hypoxia on the Expression of Hepatoma Upregulated Protein in Prostate Cancer Cells. Front Oncol. 2016;6:144 pubmed 出版商
  93. Hansen S, Borland H, Hasholt L, Tumer Z, Nielsen J, Rasmussen M, et al. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.B11. Stem Cell Res. 2016;16:589-92 pubmed 出版商
  94. Hansen S, Borland H, Hasholt L, Tumer Z, Nielsen J, Rasmussen M, et al. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.A11. Stem Cell Res. 2016;16:553-6 pubmed 出版商
  95. Llorian M, Gooding C, Bellora N, Hallegger M, Buckroyd A, Wang X, et al. The alternative splicing program of differentiated smooth muscle cells involves concerted non-productive splicing of post-transcriptional regulators. Nucleic Acids Res. 2016;44:8933-8950 pubmed
  96. Priego N, Arechederra M, Sequera C, Bragado P, Vázquez Carballo A, Gutierrez Uzquiza A, et al. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38? activation, while it impairs tumor growth through p38?-independent mechanisms. Oncotarget. 2016;7:45060-45078 pubmed 出版商
  97. Ryan T, Schmidt C, Green T, Spangenburg E, Neufer P, McClung J. Targeted Expression of Catalase to Mitochondria Protects Against Ischemic Myopathy in High-Fat Diet-Fed Mice. Diabetes. 2016;65:2553-68 pubmed 出版商
  98. Baghbaderani B, Syama A, Sivapatham R, Pei Y, Mukherjee O, Fellner T, et al. Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications. Stem Cell Rev. 2016;12:394-420 pubmed 出版商
  99. Ambrosi C, Ren C, Spagnol G, Cavin G, CONE A, Grintsevich E, et al. Connexin43 Forms Supramolecular Complexes through Non-Overlapping Binding Sites for Drebrin, Tubulin, and ZO-1. PLoS ONE. 2016;11:e0157073 pubmed 出版商
  100. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  101. Huang R, Harmsen S, Samii J, Karabeber H, Pitter K, Holland E, et al. High Precision Imaging of Microscopic Spread of Glioblastoma with a Targeted Ultrasensitive SERRS Molecular Imaging Probe. Theranostics. 2016;6:1075-84 pubmed 出版商
  102. Ikeuchi M, Fukumoto Y, Honda T, Kuga T, Saito Y, Yamaguchi N, et al. v-Src Causes Chromosome Bridges in a Caffeine-Sensitive Manner by Generating DNA Damage. Int J Mol Sci. 2016;17: pubmed 出版商
  103. Stampfl H, Fritz M, Dal Santo S, Jonak C. The GSK3/Shaggy-Like Kinase ASKα Contributes to Pattern-Triggered Immunity. Plant Physiol. 2016;171:1366-77 pubmed 出版商
  104. Paramel Varghese G, Folkersen L, Strawbridge R, Halvorsen B, Yndestad A, Ranheim T, et al. NLRP3 Inflammasome Expression and Activation in Human Atherosclerosis. J Am Heart Assoc. 2016;5: pubmed 出版商
  105. Freeman S, Christian S, Austin P, Iu I, Graves M, Huang L, et al. Applied stretch initiates directional invasion through the action of Rap1 GTPase as a tension sensor. J Cell Sci. 2017;130:152-163 pubmed 出版商
  106. Ashino T, Yamamoto M, Numazawa S. Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury. Sci Rep. 2016;6:26291 pubmed 出版商
  107. Speer S, Li Z, Buta S, Payelle Brogard B, Qian L, Vigant F, et al. ISG15 deficiency and increased viral resistance in humans but not mice. Nat Commun. 2016;7:11496 pubmed 出版商
  108. Chen Z, Mei Y, Lei H, Tian R, Ni N, Han F, et al. LYTAK1, a TAK1 inhibitor, suppresses proliferation and epithelial?mesenchymal transition in retinal pigment epithelium cells. Mol Med Rep. 2016;14:145-50 pubmed 出版商
  109. Shen Z, Liu Y, Dewidar B, Hu J, Park O, Feng T, et al. Delta-Like Ligand 4 Modulates Liver Damage by Down-Regulating Chemokine Expression. Am J Pathol. 2016;186:1874-1889 pubmed 出版商
  110. Yu P, Ji L, Lee K, Yu M, He C, Ambati S, et al. Subsets of Visceral Adipose Tissue Nuclei with Distinct Levels of 5-Hydroxymethylcytosine. PLoS ONE. 2016;11:e0154949 pubmed 出版商
  111. Sintusek P, Catapano F, Angkathunkayul N, Marrosu E, Parson S, Morgan J, et al. Histopathological Defects in Intestine in Severe Spinal Muscular Atrophy Mice Are Improved by Systemic Antisense Oligonucleotide Treatment. PLoS ONE. 2016;11:e0155032 pubmed 出版商
  112. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed 出版商
  113. Passalacqua K, Charbonneau M, Donato N, Showalter H, Sun D, Wen B, et al. Anti-infective Activity of 2-Cyano-3-Acrylamide Inhibitors with Improved Drug-Like Properties against Two Intracellular Pathogens. Antimicrob Agents Chemother. 2016;60:4183-96 pubmed 出版商
  114. Fajardo V, Smith I, Bombardier E, Chambers P, Quadrilatero J, Tupling A. Diaphragm assessment in mice overexpressing phospholamban in slow-twitch type I muscle fibers. Brain Behav. 2016;6:e00470 pubmed 出版商
  115. Kayamori K, Katsube K, Sakamoto K, Ohyama Y, Hirai H, Yukimori A, et al. NOTCH3 Is Induced in Cancer-Associated Fibroblasts and Promotes Angiogenesis in Oral Squamous Cell Carcinoma. PLoS ONE. 2016;11:e0154112 pubmed 出版商
  116. Hintermann E, Bayer M, Ehser J, Aurrand Lions M, Pfeilschifter J, Imhof B, et al. Murine junctional adhesion molecules JAM-B and JAM-C mediate endothelial and stellate cell interactions during hepatic fibrosis. Cell Adh Migr. 2016;10:419-33 pubmed 出版商
  117. Dinger K, Kasper P, Hucklenbruch Rother E, Vohlen C, Jobst E, Janoschek R, et al. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice. Sci Rep. 2016;6:24168 pubmed 出版商
  118. Kruzliak P, Hare D, Sabaka P, Delev D, Gaspar L, Rodrigo L, et al. Evidence for CD34/SMA positive cells in the left main coronary artery in atherogenesis. Acta Histochem. 2016;118:413-7 pubmed 出版商
  119. Walia M, Ho P, Taylor S, Ng A, Gupte A, Chalk A, et al. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance. elife. 2016;5: pubmed 出版商
  120. Miao Y, Han X, Zheng L, Xie Y, Mu Y, Yates J, et al. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast. Nat Commun. 2016;7:11265 pubmed 出版商
  121. El Mourabit H, Loeuillard E, Lemoinne S, Cadoret A, Housset C. Culture Model of Rat Portal Myofibroblasts. Front Physiol. 2016;7:120 pubmed 出版商
  122. Körber N, Stein V. In vivo imaging demonstrates dendritic spine stabilization by SynCAM 1. Sci Rep. 2016;6:24241 pubmed 出版商
  123. Wang X, Shaw D, Sakhon O, Snyder G, Sundberg E, Santambrogio L, et al. The Tick Protein Sialostatin L2 Binds to Annexin A2 and Inhibits NLRC4-Mediated Inflammasome Activation. Infect Immun. 2016;84:1796-1805 pubmed 出版商
  124. Negis Y, Karabay A. Expression of cell cycle proteins in cortical neurons-Correlation with glutamate-induced neurotoxicity. Biofactors. 2016;42:358-67 pubmed 出版商
  125. Yu J, Berga S, Johnston MacAnanny E, Sidell N, Bagchi I, Bagchi M, et al. Endometrial Stromal Decidualization Responds Reversibly to Hormone Stimulation and Withdrawal. Endocrinology. 2016;157:2432-46 pubmed 出版商
  126. Strickland S, Vande Pol S. The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC. J Virol. 2016;90:5611-5621 pubmed 出版商
  127. Lao X, Liang Y, Su Y, Zhang S, Zhou X, Liao G. Distribution and significance of interstitial fibrosis and stroma-infiltrating B cells in tongue squamous cell carcinoma. Oncol Lett. 2016;11:2027-2034 pubmed
  128. Liu L, Bai Z, Ma X, Wang T, Yang Y, Zhang Z. Effects of taxol resistance gene 1 expression on the chemosensitivity of SGC-7901 cells to oxaliplatin. Exp Ther Med. 2016;11:846-852 pubmed
  129. Galán M, Varona S, Orriols M, Rodríguez J, Aguiló S, Dilmé J, et al. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors. Dis Model Mech. 2016;9:541-52 pubmed 出版商
  130. Sagi I, Chia G, Golan Lev T, Peretz M, Weissbein U, Sui L, et al. Derivation and differentiation of haploid human embryonic stem cells. Nature. 2016;532:107-11 pubmed 出版商
  131. Jennewein L, Ronellenfitsch M, Antonietti P, Ilina E, Jung J, Stadel D, et al. Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget. 2016;7:20016-32 pubmed 出版商
  132. Wang X, Chen L, Liu J, Yan T, Wu G, Xia Y, et al. In vivo treatment of rat arterial adventitia with interleukin‑1β induces intimal proliferation via the JAK2/STAT3 signaling pathway. Mol Med Rep. 2016;13:3451-8 pubmed 出版商
  133. Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, et al. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Mol Cancer Ther. 2016;15:628-39 pubmed 出版商
  134. Bach F, Zhang Y, Miranda Bedate A, Verdonschot L, Bergknut N, Creemers L, et al. Increased caveolin-1 in intervertebral disc degeneration facilitates repair. Arthritis Res Ther. 2016;18:59 pubmed 出版商
  135. Marek I, Lichtneger T, Cordasic N, Hilgers K, Volkert G, Fahlbusch F, et al. Alpha8 Integrin (Itga8) Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover. PLoS ONE. 2016;11:e0150471 pubmed 出版商
  136. Bhushan S, Aslani F, Zhang Z, Sebastian T, Elsässer H, Klug J. Isolation of Sertoli Cells and Peritubular Cells from Rat Testes. J Vis Exp. 2016;:e53389 pubmed 出版商
  137. Tsaousi A, Hayes E, Di Gregoli K, Bond A, Bevan L, Thomas A, et al. Plaque Size Is Decreased but M1 Macrophage Polarization and Rupture Related Metalloproteinase Expression Are Maintained after Deleting T-Bet in ApoE Null Mice. PLoS ONE. 2016;11:e0148873 pubmed 出版商
  138. Sparks L, Gemmink A, Phielix E, Bosma M, Schaart G, Moonen Kornips E, et al. ANT1-mediated fatty acid-induced uncoupling as a target for improving myocellular insulin sensitivity. Diabetologia. 2016;59:1030-9 pubmed 出版商
  139. Liu L, Tong Q, Liu S, Cui J, Zhang Q, Sun W, et al. ZEB1 Upregulates VEGF Expression and Stimulates Angiogenesis in Breast Cancer. PLoS ONE. 2016;11:e0148774 pubmed 出版商
  140. Malecova B, Dall Agnese A, Madaro L, Gatto S, Coutinho Toto P, Albini S, et al. TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells. elife. 2016;5: pubmed 出版商
  141. Hammam O, Elkhafif N, Attia Y, Mansour M, Elmazar M, Abdelsalam R, et al. Wharton's jelly-derived mesenchymal stem cells combined with praziquantel as a potential therapy for Schistosoma mansoni-induced liver fibrosis. Sci Rep. 2016;6:21005 pubmed 出版商
  142. Kim J, Kim E, Lee B, Min J, Song D, Lim J, et al. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells. Int J Mol Med. 2016;37:649-58 pubmed 出版商
  143. Okamoto S, Nitta M, Maruyama T, Sawada T, Komori T, Okada Y, et al. Bevacizumab changes vascular structure and modulates the expression of angiogenic factors in recurrent malignant gliomas. Brain Tumor Pathol. 2016;33:129-36 pubmed 出版商
  144. Malan D, Zhang M, Stallmeyer B, Müller J, Fleischmann B, Schulze Bahr E, et al. Human iPS cell model of type 3 long QT syndrome recapitulates drug-based phenotype correction. Basic Res Cardiol. 2016;111:14 pubmed 出版商
  145. Santhanam A, Torricelli A, Wu J, Marino G, Wilson S. Differential expression of epithelial basement membrane components nidogens and perlecan in corneal stromal cells in vitro. Mol Vis. 2015;21:1318-27 pubmed
  146. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  147. Szulcek R, Happé C, Rol N, Fontijn R, Dickhoff C, Hartemink K, et al. Delayed Microvascular Shear Adaptation in Pulmonary Arterial Hypertension. Role of Platelet Endothelial Cell Adhesion Molecule-1 Cleavage. Am J Respir Crit Care Med. 2016;193:1410-20 pubmed 出版商
  148. Pivonello C, Negri M, De Martino M, Napolitano M, De Angelis C, Provvisiero D, et al. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget. 2016;7:9718-31 pubmed 出版商
  149. Umazume T, Thomas W, Campbell S, Aluri H, Thotakura S, Zoukhri D, et al. Lacrimal Gland Inflammation Deregulates Extracellular Matrix Remodeling and Alters Molecular Signature of Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci. 2015;56:8392-402 pubmed 出版商
  150. Suzuki Y, Chin W, Han Q, Ichiyama K, Lee C, Eyo Z, et al. Characterization of RyDEN (C19orf66) as an Interferon-Stimulated Cellular Inhibitor against Dengue Virus Replication. PLoS Pathog. 2016;12:e1005357 pubmed 出版商
  151. Hrstka R, Bouchalova P, Michalová E, Matoulkova E, Muller P, Coates P, et al. AGR2 oncoprotein inhibits p38 MAPK and p53 activation through a DUSP10-mediated regulatory pathway. Mol Oncol. 2016;10:652-62 pubmed 出版商
  152. Tagliatti E, Fadda M, Falace A, Benfenati F, Fassio A. Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse. elife. 2016;5: pubmed 出版商
  153. Kim T, Jin F, Shin S, Oh S, Lightfoot S, Grande J, et al. Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. J Clin Invest. 2016;126:706-20 pubmed 出版商
  154. Creedon H, Balderstone L, Muir M, Balla J, Gómez Cuadrado L, Tracey N, et al. Use of a genetically engineered mouse model as a preclinical tool for HER2 breast cancer. Dis Model Mech. 2016;9:131-40 pubmed 出版商
  155. Fontijn R, Volger O, van der Pouw Kraan T, Doddaballapur A, Leyen T, Baggen J, et al. Expression of Nitric Oxide-Transporting Aquaporin-1 Is Controlled by KLF2 and Marks Non-Activated Endothelium In Vivo. PLoS ONE. 2015;10:e0145777 pubmed 出版商
  156. Wong H, Wang G, Croessmann S, Zabransky D, Chu D, Garay J, et al. TMSB4Y is a candidate tumor suppressor on the Y chromosome and is deleted in male breast cancer. Oncotarget. 2015;6:44927-40 pubmed 出版商
  157. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  158. Wang Y, Hou H, Li M, Yang Y, Sun L. Anticancer effect of eupatilin on glioma cells through inhibition of the Notch-1 signaling pathway. Mol Med Rep. 2016;13:1141-6 pubmed 出版商
  159. Marazita M, Dugour A, Marquioni Ramella M, Figueroa J, Suburo A. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration. Redox Biol. 2016;7:78-87 pubmed 出版商
  160. Brai E, Marathe S, Astori S, Fredj N, Perry E, Lamy C, et al. Notch1 Regulates Hippocampal Plasticity Through Interaction with the Reelin Pathway, Glutamatergic Transmission and CREB Signaling. Front Cell Neurosci. 2015;9:447 pubmed 出版商
  161. Leshchyns ka I, Liew H, Shepherd C, Halliday G, Stevens C, Ke Y, et al. Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. Nat Commun. 2015;6:8836 pubmed 出版商
  162. Furlan S, Mosole S, Murgia M, Nagaraj N, Argenton F, Volpe P, et al. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio. J Muscle Res Cell Motil. 2016;37:27-39 pubmed 出版商
  163. Hunt L, Xu B, Finkelstein D, Fan Y, Carroll P, Cheng P, et al. The glucose-sensing transcription factor MLX promotes myogenesis via myokine signaling. Genes Dev. 2015;29:2475-89 pubmed 出版商
  164. Cao J, Zhang X, Wang Q, Qiu G, Hou C, Wang J, et al. Smad4 represses the generation of memory-precursor effector T cells but is required for the differentiation of central memory T cells. Cell Death Dis. 2015;6:e1984 pubmed 出版商
  165. Wang W, Liu H, Dai X, Fang S, Wang X, Zhang Y, et al. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis. Sci Rep. 2015;5:16900 pubmed 出版商
  166. Fraveto A, Cardinale V, Bragazzi M, Giuliante F, De Rose A, Grazi G, et al. Sensitivity of Human Intrahepatic Cholangiocarcinoma Subtypes to Chemotherapeutics and Molecular Targeted Agents: A Study on Primary Cell Cultures. PLoS ONE. 2015;10:e0142124 pubmed 出版商
  167. Hu Z, Hu J, Shen W, Kraemer F, Azhar S. A Novel Role of Salt-Inducible Kinase 1 (SIK1) in the Post-Translational Regulation of Scavenger Receptor Class B Type 1 Activity. Biochemistry. 2015;54:6917-30 pubmed 出版商
  168. Sin J, Andres A, Taylor D, Weston T, Hiraumi Y, Stotland A, et al. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy. 2016;12:369-80 pubmed 出版商
  169. Hu X, Garcia C, Fazli L, Gleave M, Vitek M, Jansen M, et al. Inhibition of Pten deficient Castration Resistant Prostate Cancer by Targeting of the SET - PP2A Signaling axis. Sci Rep. 2015;5:15182 pubmed 出版商
  170. Alnasser H, Guan Q, Zhang F, Gleave M, Nguan C, Du C. Requirement of clusterin expression for prosurvival autophagy in hypoxic kidney tubular epithelial cells. Am J Physiol Renal Physiol. 2016;310:F160-73 pubmed 出版商
  171. Lohberger B, Leithner A, Stuendl N, Kaltenegger H, Kullich W, Steinecker Frohnwieser B. Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation. BMC Cancer. 2015;15:891 pubmed 出版商
  172. Osmanagic Myers S, Rus S, Wolfram M, Brunner D, Goldmann W, Bonakdar N, et al. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks. J Cell Sci. 2015;128:4138-50 pubmed 出版商
  173. Antonucci L, Fagman J, Kim J, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A. 2015;112:E6166-74 pubmed 出版商
  174. Oh Y, Park H, Shin J, Lee J, Park H, Kho D, et al. Ndrg1 is a T-cell clonal anergy factor negatively regulated by CD28 costimulation and interleukin-2. Nat Commun. 2015;6:8698 pubmed 出版商
  175. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  176. Kizuka Y, Nakano M, Kitazume S, Saito T, Saido T, Taniguchi N. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J. 2016;473:21-30 pubmed 出版商
  177. Zhang W, Pelicano H, Yin R, Zeng J, Wen T, Ding L, et al. Effective elimination of chronic lymphocytic leukemia cells in the stromal microenvironment by a novel drug combination strategy using redox-mediated mechanisms. Mol Med Rep. 2015;12:7374-88 pubmed 出版商
  178. Takeda S, Wegmann S, Cho H, DeVos S, Commins C, Roe A, et al. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nat Commun. 2015;6:8490 pubmed 出版商
  179. Liu F, Hon G, Villa G, Turner K, Ikegami S, Yang H, et al. EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling. Mol Cell. 2015;60:307-18 pubmed 出版商
  180. Mia M, Bank R. The pro-fibrotic properties of transforming growth factor on human fibroblasts are counteracted by caffeic acid by inhibiting myofibroblast formation and collagen synthesis. Cell Tissue Res. 2016;363:775-89 pubmed 出版商
  181. Agaimy A, Specht K, Stoehr R, Lorey T, Märkl B, Niedobitek G, et al. Metastatic Malignant Melanoma With Complete Loss of Differentiation Markers (Undifferentiated/Dedifferentiated Melanoma): Analysis of 14 Patients Emphasizing Phenotypic Plasticity and the Value of Molecular Testing as Surrogate Diagnostic Marker. Am J Surg Pathol. 2016;40:181-91 pubmed 出版商
  182. Inoue O, Hokamura K, Shirai T, Osada M, Tsukiji N, Hatakeyama K, et al. Vascular Smooth Muscle Cells Stimulate Platelets and Facilitate Thrombus Formation through Platelet CLEC-2: Implications in Atherothrombosis. PLoS ONE. 2015;10:e0139357 pubmed 出版商
  183. Li Z, Hao Q, Luo J, Xiong J, Zhang S, Wang T, et al. USP4 inhibits p53 and NF-κB through deubiquitinating and stabilizing HDAC2. Oncogene. 2016;35:2902-12 pubmed 出版商
  184. Maqdasy S, El Hajjaji F, Baptissart M, Viennois E, Oumeddour A, Brugnon F, et al. Identification of the Functions of Liver X Receptor-β in Sertoli Cells Using a Targeted Expression-Rescue Model. Endocrinology. 2015;156:4545-57 pubmed 出版商
  185. Woolery K, Mohamed M, Linger R, Dobrinski K, Roman J, Kruk P. BRCA1 185delAG Mutation Enhances Interleukin-1β Expression in Ovarian Surface Epithelial Cells. Biomed Res Int. 2015;2015:652017 pubmed 出版商
  186. Yao J, Zheng K, Zhang X. Rosiglitazone exerts neuroprotective effects via the suppression of neuronal autophagy and apoptosis in the cortex following traumatic brain injury. Mol Med Rep. 2015;12:6591-7 pubmed 出版商
  187. Mia M, Bank R. The IκB kinase inhibitor ACHP strongly attenuates TGFβ1-induced myofibroblast formation and collagen synthesis. J Cell Mol Med. 2015;19:2780-92 pubmed 出版商
  188. Marković Lipkovski J, Životić M, Müller C, Tampe B, Ćirović S, VjeÅ¡tica J, et al. Variable Expression of Neural Cell Adhesion Molecule Isoforms in Renal Tissue: Possible Role in Incipient Renal Fibrosis. PLoS ONE. 2015;10:e0137028 pubmed 出版商
  189. Poncini C, Ilarregui J, Batalla E, Engels S, Cerliani J, Cucher M, et al. Trypanosoma cruzi Infection Imparts a Regulatory Program in Dendritic Cells and T Cells via Galectin-1-Dependent Mechanisms. J Immunol. 2015;195:3311-24 pubmed 出版商
  190. Archibald A, Al Masri M, Liew Spilger A, McCaffrey L. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell. 2015;26:3578-95 pubmed 出版商
  191. Morancho B, Martínez Barriocanal Ã, Villanueva J, Arribas J. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Res. 2015;17:106 pubmed 出版商
  192. Khan I, Zakaria M, Kumar M, Mani P, Chattopadhyay P, Sarkar D, et al. A novel placental like alkaline phosphatase promoter driven transcriptional silencing combined with single chain variable fragment antibody based virosomal delivery for neoplastic cell targeting [corrected]. J Transl Med. 2015;13:254 pubmed 出版商
  193. Xie X, Hsu F, Gao X, Xu W, Ni J, Xing Y, et al. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila. PLoS Biol. 2015;13:e1002207 pubmed 出版商
  194. DubiÅ„ska Magiera M, Chmielewska M, KozioÅ‚ K, Machowska M, Hutchison C, Goldberg M, et al. Xenopus LAP2β protein knockdown affects location of lamin B and nucleoporins and has effect on assembly of cell nucleus and cell viability. Protoplasma. 2016;253:943-56 pubmed 出版商
  195. Chung D, Chan J, Strecker J, Zhang W, Ebrahimi Ardebili S, Lu T, et al. Perinuclear tethers license telomeric DSBs for a broad kinesin- and NPC-dependent DNA repair process. Nat Commun. 2015;6:7742 pubmed 出版商
  196. Zhao L, Tang M, Hu Z, Yan B, Pi W, Li Z, et al. miR-504 mediated down-regulation of nuclear respiratory factor 1 leads to radio-resistance in nasopharyngeal carcinoma. Oncotarget. 2015;6:15995-6018 pubmed
  197. Sloan E, Tatham M, Groslambert M, Glass M, Orr A, Hay R, et al. Analysis of the SUMO2 Proteome during HSV-1 Infection. PLoS Pathog. 2015;11:e1005059 pubmed 出版商
  198. Li W, Qiu Y, Zhang H, Tian X, Fang W. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway. PLoS ONE. 2015;10:e0133165 pubmed 出版商
  199. Lohse I, Borgida A, Cao P, Cheung M, Pintilie M, Bianco T, et al. BRCA1 and BRCA2 mutations sensitize to chemotherapy in patient-derived pancreatic cancer xenografts. Br J Cancer. 2015;113:425-32 pubmed 出版商
  200. Jones M, Hu W, Litthauer S, Lagarias J, Harmer S. A Constitutively Active Allele of Phytochrome B Maintains Circadian Robustness in the Absence of Light. Plant Physiol. 2015;169:814-25 pubmed 出版商
  201. Zhuang J, Lu Q, Shen B, Huang X, Shen L, Zheng X, et al. TGFβ1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci Rep. 2015;5:11924 pubmed 出版商
  202. Lee J, Kim H, Han J, Kim Y, Son C. Anti-fatigue effect of Myelophil in a chronic forced exercise mouse model. Eur J Pharmacol. 2015;764:100-8 pubmed 出版商
  203. Liu R, Fan M, Candas D, Qin L, Zhang X, Eldridge A, et al. CDK1-Mediated SIRT3 Activation Enhances Mitochondrial Function and Tumor Radioresistance. Mol Cancer Ther. 2015;14:2090-102 pubmed 出版商
  204. Breslin C, Hornyak P, Ridley A, Rulten S, Hanzlikova H, Oliver A, et al. The XRCC1 phosphate-binding pocket binds poly (ADP-ribose) and is required for XRCC1 function. Nucleic Acids Res. 2015;43:6934-44 pubmed 出版商
  205. Nadeau M, Rico C, Tsoi M, Vivancos M, Filimon S, Paquet M, et al. Pharmacological targeting of valosin containing protein (VCP) induces DNA damage and selectively kills canine lymphoma cells. BMC Cancer. 2015;15:479 pubmed 出版商
  206. Larsson K, Kock A, Idborg H, Arsenian Henriksson M, Martinsson T, Johnsen J, et al. COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proc Natl Acad Sci U S A. 2015;112:8070-5 pubmed 出版商
  207. Mercer J, Argus J, Crabtree D, KEENAN M, Wilks M, Chi J, et al. Modulation of PICALM Levels Perturbs Cellular Cholesterol Homeostasis. PLoS ONE. 2015;10:e0129776 pubmed 出版商
  208. Masuda Y, Takahashi H, Hatakeyama S. TRIM29 regulates the p63-mediated pathway in cervical cancer cells. Biochim Biophys Acta. 2015;1853:2296-305 pubmed 出版商
  209. Lee W, Shen S, Shih Y, Chou C, Tseng J, Chin S, et al. Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts. J Transl Med. 2015;13:191 pubmed 出版商
  210. Park I, Chung P, Ahn J. Enhancement of Ischemic Wound Healing by Spheroid Grafting of Human Adipose-Derived Stem Cells Treated with Low-Level Light Irradiation. PLoS ONE. 2015;10:e0122776 pubmed 出版商
  211. Zhang T, Zhou Y, Qi S, Wang Z, Qian W, Ouyang Y, et al. Nuf2 is required for chromosome segregation during mouse oocyte meiotic maturation. Cell Cycle. 2015;14:2701-10 pubmed 出版商
  212. Cui J, Bai X, Sun X, Cai G, Hong Q, Ding R, et al. Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models. Sci Rep. 2015;5:11256 pubmed 出版商
  213. Barr A, Bakal C. A sensitised RNAi screen reveals a ch-TOG genetic interaction network required for spindle assembly. Sci Rep. 2015;5:10564 pubmed 出版商
  214. Pan D, Jiang C, Ma Z, Blonska M, You M, Lin X. MALT1 is required for EGFR-induced NF-?B activation and contributes to EGFR-driven lung cancer progression. Oncogene. 2016;35:919-28 pubmed 出版商
  215. Palpant N, Hofsteen P, Pabon L, Reinecke H, Murry C. Cardiac development in zebrafish and human embryonic stem cells is inhibited by exposure to tobacco cigarettes and e-cigarettes. PLoS ONE. 2015;10:e0126259 pubmed 出版商
  216. Kumar P, Gullberg U, Olsson I, Ajore R. Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1. PLoS ONE. 2015;10:e0123725 pubmed 出版商
  217. Kuroda N, Agatsuma Y, Tamura M, Martinek P, Hes O, Michal M. Sporadic renal hemangioblastoma with CA9, PAX2 and PAX8 expression: diagnostic pitfall in the differential diagnosis from clear cell renal cell carcinoma. Int J Clin Exp Pathol. 2015;8:2131-8 pubmed
  218. Formisano L, Guida N, Valsecchi V, Cantile M, Cuomo O, Vinciguerra A, et al. Sp3/REST/HDAC1/HDAC2 Complex Represses and Sp1/HIF-1/p300 Complex Activates ncx1 Gene Transcription, in Brain Ischemia and in Ischemic Brain Preconditioning, by Epigenetic Mechanism. J Neurosci. 2015;35:7332-48 pubmed 出版商
  219. Good R, Gilbane A, Trinder S, Denton C, Coghlan G, Abraham D, et al. Endothelial to Mesenchymal Transition Contributes to Endothelial Dysfunction in Pulmonary Arterial Hypertension. Am J Pathol. 2015;185:1850-8 pubmed 出版商
  220. Mahale S, Bharate S, Manda S, Joshi P, Jenkins P, Vishwakarma R, et al. Antitumour potential of BPT: a dual inhibitor of cdk4 and tubulin polymerization. Cell Death Dis. 2015;6:e1743 pubmed 出版商
  221. Balla P, Maros M, Barna G, Antal I, Papp G, Sapi Z, et al. Prognostic impact of reduced connexin43 expression and gap junction coupling of neoplastic stromal cells in giant cell tumor of bone. PLoS ONE. 2015;10:e0125316 pubmed 出版商
  222. Peiris Pagès M, Sotgia F, Lisanti M. Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells. Oncotarget. 2015;6:10728-45 pubmed
  223. Medel S, Alarab M, Kufaishi H, Drutz H, Shynlova O. Attachment of Primary Vaginal Fibroblasts to Absorbable and Nonabsorbable Implant Materials Coated With Platelet-Rich Plasma: Potential Application in Pelvic Organ Prolapse Surgery. Female Pelvic Med Reconstr Surg. 2015;21:190-7 pubmed 出版商
  224. Randles M, Woolf A, Huang J, Byron A, Humphries J, Price K, et al. Genetic Background is a Key Determinant of Glomerular Extracellular Matrix Composition and Organization. J Am Soc Nephrol. 2015;26:3021-34 pubmed 出版商
  225. Berkovits B, Mayr C. Alternative 3' UTRs act as scaffolds to regulate membrane protein localization. Nature. 2015;522:363-7 pubmed 出版商
  226. Nakada S, Minato H, Takegami T, Kurose N, Ikeda H, Kobayashi M, et al. NAB2-STAT6 fusion gene analysis in two cases of meningeal solitary fibrous tumor/hemangiopericytoma with late distant metastases. Brain Tumor Pathol. 2015;32:268-74 pubmed 出版商
  227. Lodillinsky C, Infante E, Guichard A, Chaligné R, Fuhrmann L, Cyrta J, et al. p63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer. Oncogene. 2016;35:344-57 pubmed 出版商
  228. Fullár A, Dudás J, Oláh L, Hollósi P, Papp Z, Sobel G, et al. Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression. BMC Cancer. 2015;15:256 pubmed 出版商
  229. Chung J, Bauer D, Ghamari A, Nizzi C, Deck K, Kingsley P, et al. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability. Sci Signal. 2015;8:ra34 pubmed 出版商
  230. Zhang X, Liang D, Chi Z, Chu Q, Zhao C, Ma R, et al. Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Int J Mol Med. 2015;35:1747-54 pubmed 出版商
  231. Pardo F, Silva L, Sáez T, Salsoso R, Gutiérrez J, Sanhueza C, et al. Human supraphysiological gestational weight gain and fetoplacental vascular dysfunction. Int J Obes (Lond). 2015;39:1264-73 pubmed 出版商
  232. Chien P, Lin C, Hsiao L, Yang C. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol. 2015;409:59-72 pubmed 出版商
  233. Hong S, Lee J, Lee J, Lee H, Kim H, Lee S, et al. The traditional drug Gongjin-Dan ameliorates chronic fatigue in a forced-stress mouse exercise model. J Ethnopharmacol. 2015;168:268-78 pubmed 出版商
  234. Sheng X, Arnoldussen Y, Storm M, Tesikova M, Nenseth H, Zhao S, et al. Divergent androgen regulation of unfolded protein response pathways drives prostate cancer. EMBO Mol Med. 2015;7:788-801 pubmed 出版商
  235. Gu Q, Yu D, Hu Z, Liu X, Yang Y, Luo Y, et al. miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. Nat Commun. 2015;6:6789 pubmed 出版商
  236. Simões A, Pereira D, Gomes S, Brito H, Carvalho T, French A, et al. Aberrant MEK5/ERK5 signalling contributes to human colon cancer progression via NF-κB activation. Cell Death Dis. 2015;6:e1718 pubmed 出版商
  237. Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol. 2015;209:111-28 pubmed 出版商
  238. Amrutkar M, Cansby E, Chursa U, Nuñez Durán E, Chanclón B, StÃ¥hlman M, et al. Genetic Disruption of Protein Kinase STK25 Ameliorates Metabolic Defects in a Diet-Induced Type 2 Diabetes Model. Diabetes. 2015;64:2791-804 pubmed 出版商
  239. Bergamo P, Palmieri G, Cocca E, Ferrandino I, Gogliettino M, Monaco A, et al. Adaptive response activated by dietary cis9, trans11 conjugated linoleic acid prevents distinct signs of gliadin-induced enteropathy in mice. Eur J Nutr. 2016;55:729-740 pubmed 出版商
  240. Lee S, Chang J, Wu J, Sheu D. Antineoplastic effect of a novel chemopreventive agent, neokestose, on the Caco-2 cell line via inhibition of expression of nuclear factor-κB and cyclooxygenase-2. Mol Med Rep. 2015;12:1114-8 pubmed 出版商
  241. Majumdar T, Chattopadhyay S, Ozhegov E, Dhar J, Goswami R, Sen G, et al. Induction of interferon-stimulated genes by IRF3 promotes replication of Toxoplasma gondii. PLoS Pathog. 2015;11:e1004779 pubmed 出版商
  242. Santoro R, Consolo F, Spiccia M, Piola M, Kassem S, Prandi F, et al. Feasibility of pig and human-derived aortic valve interstitial cells seeding on fixative-free decellularized animal pericardium. J Biomed Mater Res B Appl Biomater. 2016;104:345-56 pubmed 出版商
  243. Yazlovitskaya E, Tseng H, Viquez O, Tu T, Mernaugh G, McKee K, et al. Integrin α3β1 regulates kidney collecting duct development via TRAF6-dependent K63-linked polyubiquitination of Akt. Mol Biol Cell. 2015;26:1857-74 pubmed 出版商
  244. Jamison S, Lin Y, Lin W. Pancreatic endoplasmic reticulum kinase activation promotes medulloblastoma cell migration and invasion through induction of vascular endothelial growth factor A. PLoS ONE. 2015;10:e0120252 pubmed 出版商
  245. Dicay M, Hirota C, Ronaghan N, Peplowski M, Zaheer R, Carati C, et al. Interferon-γ suppresses intestinal epithelial aquaporin-1 expression via Janus kinase and STAT3 activation. PLoS ONE. 2015;10:e0118713 pubmed 出版商
  246. Yoo C, Koh Y, Park Y, Ryu M, Ryoo B, Park H, et al. Prognostic Relevance of p53 Overexpression in Gastrointestinal Stromal Tumors of the Small Intestine: Potential Implication for Adjuvant Treatment with Imatinib. Ann Surg Oncol. 2015;22 Suppl 3:S362-9 pubmed 出版商
  247. Ueda K, Yoshimura K, Yamashita O, Harada T, Morikage N, Hamano K. Possible dual role of decorin in abdominal aortic aneurysm. PLoS ONE. 2015;10:e0120689 pubmed 出版商
  248. Seo H, Woo J, Shin Y, Ko S. Identification of biomarkers regulated by rexinoids (LGD1069, LG100268 and Ro25-7386) in human breast cells using Affymetrix microarray. Mol Med Rep. 2015;12:800-18 pubmed 出版商
  249. Hossini A, Megges M, Prigione A, Lichtner B, Toliat M, Wruck W, et al. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics. 2015;16:84 pubmed 出版商
  250. Tennakoon A, Izawa T, Wijesundera K, Katou Ichikawa C, Tanaka M, Golbar H, et al. Analysis of glial fibrillary acidic protein (GFAP)-expressing ductular cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA). Exp Mol Pathol. 2015;98:476-85 pubmed 出版商
  251. Yang Y, Deng Q, Feng X, Sun J. Use of the disulfiram/copper complex for breast cancer chemoprevention in MMTV-erbB2 transgenic mice. Mol Med Rep. 2015;12:746-52 pubmed 出版商
  252. Pedro J, Wei Y, Sica V, Maiuri M, Zou Z, Kroemer G, et al. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy. 2015;11:452-9 pubmed 出版商
  253. Yang L, Liu L, Xu Z, Liao W, Feng D, Dong X, et al. EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget. 2015;6:5804-17 pubmed
  254. Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11:253-70 pubmed 出版商
  255. TaÅŸlı P, DoÄŸan A, Demirci S, Åžahin F. Myogenic and neurogenic differentiation of human tooth germ stem cells (hTGSCs) are regulated by pluronic block copolymers. Cytotechnology. 2016;68:319-29 pubmed 出版商
  256. Andreasen C, Ding M, Overgaard S, Bollen P, Andersen T. A reversal phase arrest uncoupling the bone formation and resorption contributes to the bone loss in glucocorticoid treated ovariectomised aged sheep. Bone. 2015;75:32-9 pubmed 出版商
  257. Lin S, Huang S, Kuo H, Chen C, Ma Y, Chu T, et al. Coral-derived compound WA-25 inhibits angiogenesis by attenuating the VEGF/VEGFR2 signaling pathway. Mar Drugs. 2015;13:861-78 pubmed 出版商
  258. Bobba A, Amadoro G, La Piana G, Petragallo V, Calissano P, Atlante A. Glucose-6-phosphate tips the balance in modulating apoptosis in cerebellar granule cells. FEBS Lett. 2015;589:651-8 pubmed 出版商
  259. Gibbs Seymour I, Markiewicz E, Bekker Jensen S, Mailand N, Hutchison C. Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage. Aging Cell. 2015;14:162-9 pubmed 出版商
  260. Zhang M, Schulte J, Heinick A, Piccini I, Rao J, Quaranta R, et al. Universal cardiac induction of human pluripotent stem cells in two and three-dimensional formats: implications for in vitro maturation. Stem Cells. 2015;33:1456-69 pubmed 出版商
  261. Feliciano D, Tolsma T, Farrell K, Aradi A, Di Pietro S. A second Las17 monomeric actin-binding motif functions in Arp2/3-dependent actin polymerization during endocytosis. Traffic. 2015;16:379-97 pubmed 出版商
  262. Amrutkar M, Cansby E, Nuñez Durán E, Pirazzi C, StÃ¥hlman M, Stenfeldt E, et al. Protein kinase STK25 regulates hepatic lipid partitioning and progression of liver steatosis and NASH. FASEB J. 2015;29:1564-76 pubmed 出版商
  263. Xue T, Wei L, Zha D, Qiao L, Lu L, Chen F, et al. Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway. Int J Mol Med. 2015;35:637-44 pubmed 出版商
  264. Miyata M, Lee J, Susuki Miyata S, Wang W, Xu H, Kai H, et al. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M. Nat Commun. 2015;6:6062 pubmed 出版商
  265. Matsuda Y, Kobayashi Ishihara M, Fujikawa D, Ishida T, Watanabe T, Yamagishi M. Epigenetic heterogeneity in HIV-1 latency establishment. Sci Rep. 2015;5:7701 pubmed 出版商
  266. Xue C, Zhang J, Lv Z, Liu H, Huang C, Yang J, et al. Angiotensin II promotes differentiation of mouse c-kit-positive cardiac stem cells into pacemaker-like cells. Mol Med Rep. 2015;11:3249-58 pubmed 出版商
  267. Suzuki T, Kono T, Bochimoto H, Hira Y, Watanabe T, Furukawa H. An injured tissue affects the opposite intact peritoneum during postoperative adhesion formation. Sci Rep. 2015;5:7668 pubmed 出版商
  268. Goossens S, Radaelli E, Blanchet O, Durinck K, Van der Meulen J, Peirs S, et al. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nat Commun. 2015;6:5794 pubmed 出版商
  269. Moser B, Schiefer A, Janik S, Marx A, Prosch H, Pohl W, et al. Adenocarcinoma of the thymus, enteric type: report of 2 cases, and proposal for a novel subtype of thymic carcinoma. Am J Surg Pathol. 2015;39:541-8 pubmed 出版商
  270. Chen J, Wang Z, Xu D, Liu Y, Gao Y. Aquaporin 3 promotes prostate cancer cell motility and invasion via extracellular signal-regulated kinase 1/2-mediated matrix metalloproteinase-3 secretion. Mol Med Rep. 2015;11:2882-8 pubmed 出版商
  271. Karashima T, Taniguchi Y, Shimamoto T, Nao T, Nishikawa H, Fukata S, et al. IgG4-related disease of the paratestis in a patient with Wells syndrome: a case report. Diagn Pathol. 2014;9:225 pubmed 出版商
  272. Law R, Dixon Salazar T, Jerber J, Cai N, Abbasi A, Zaki M, et al. Biallelic truncating mutations in FMN2, encoding the actin-regulatory protein Formin 2, cause nonsyndromic autosomal-recessive intellectual disability. Am J Hum Genet. 2014;95:721-8 pubmed 出版商
  273. Izzo F, Mercogliano F, Venturutti L, Tkach M, Inurrigarro G, Schillaci R, et al. Progesterone receptor activation downregulates GATA3 by transcriptional repression and increased protein turnover promoting breast tumor growth. Breast Cancer Res. 2014;16:491 pubmed 出版商
  274. Kim H, Li A, Ahn S, Song H, Zhang W. Inositol Polyphosphate-5-Phosphatase F (INPP5F) inhibits STAT3 activity and suppresses gliomas tumorigenicity. Sci Rep. 2014;4:7330 pubmed 出版商
  275. Okada H, Takemura G, Kanamori H, Tsujimoto A, Goto K, Kawamura I, et al. Phenotype and physiological significance of the endocardial smooth muscle cells in human failing hearts. Circ Heart Fail. 2015;8:149-55 pubmed 出版商
  276. Yokoyama T, Nakamuta N, Kusakabe T, Yamamoto Y. Sympathetic regulation of vascular tone via noradrenaline and serotonin in the rat carotid body as revealed by intracellular calcium imaging. Brain Res. 2015;1596:126-35 pubmed 出版商
  277. Colman J, Laureano D, Reis T, Krolow R, Dalmaz C, Benetti C, et al. Variations in the neonatal environment modulate adult behavioral and brain responses to palatable food withdrawal in adult female rats. Int J Dev Neurosci. 2015;40:70-5 pubmed 出版商
  278. Mouton J, Loos B, Moolman Smook J, Kinnear C. Ascribing novel functions to the sarcomeric protein, myosin binding protein H (MyBPH) in cardiac sarcomere contraction. Exp Cell Res. 2015;331:338-51 pubmed 出版商
  279. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  280. Roufayel R, Johnston D, Mosser D. The elimination of miR-23a in heat-stressed cells promotes NOXA-induced cell death and is prevented by HSP70. Cell Death Dis. 2014;5:e1546 pubmed 出版商
  281. Lan N, Luo G, Yang X, Cheng Y, Zhang Y, Wang X, et al. 25-Hydroxyvitamin D3-deficiency enhances oxidative stress and corticosteroid resistance in severe asthma exacerbation. PLoS ONE. 2014;9:e111599 pubmed 出版商
  282. Arai H, Hayashi H, Takahashi K, Koide S, Sato W, Hasegawa M, et al. Tubulointerstitial fibrosis in patients with IgG4-related kidney disease: pathological findings on repeat renal biopsy. Rheumatol Int. 2015;35:1093-101 pubmed 出版商
  283. Bantikassegn A, Song X, Politi K. Isolation of epithelial, endothelial, and immune cells from lungs of transgenic mice with oncogene-induced lung adenocarcinomas. Am J Respir Cell Mol Biol. 2015;52:409-17 pubmed 出版商
  284. Dammer E, Lee A, Duong D, Gearing M, Lah J, Levey A, et al. Quantitative phosphoproteomics of Alzheimer's disease reveals cross-talk between kinases and small heat shock proteins. Proteomics. 2015;15:508-519 pubmed 出版商
  285. Hofmann A, Takahashi T, Duess J, Gosemann J, Puri P. Increased pulmonary vascular expression of Krüppel-like factor 5 and activated survivin in experimental congenital diaphragmatic hernia. Pediatr Surg Int. 2014;30:1191-7 pubmed 出版商
  286. Jia J, Hu Z, Nordman J, Li Z. The schizophrenia susceptibility gene dysbindin regulates dendritic spine dynamics. J Neurosci. 2014;34:13725-36 pubmed 出版商
  287. Warnock J, Bobe G, Duesterdieck Zellmer K. Fibrochondrogenic potential of synoviocytes from osteoarthritic and normal joints cultured as tensioned bioscaffolds for meniscal tissue engineering in dogs. Peerj. 2014;2:e581 pubmed 出版商
  288. Bernard Marissal N, Sunyach C, Marissal T, Raoul C, Pettmann B. Calreticulin levels determine onset of early muscle denervation by fast motoneurons of ALS model mice. Neurobiol Dis. 2015;73:130-6 pubmed 出版商
  289. Portella A, Silveira P, Laureano D, Cardoso S, Bittencourt V, Noschang C, et al. Litter size reduction alters insulin signaling in the ventral tegmental area and influences dopamine-related behaviors in adult rats. Behav Brain Res. 2015;278:66-73 pubmed 出版商
  290. Wang L, Gao T, Wang G. Verrucous hemangioma: a clinicopathological and immunohistochemical analysis of 74 cases. J Cutan Pathol. 2014;41:823-30 pubmed 出版商
  291. Kostić J, Orlić D, Borović M, Beleslin B, MilaÅ¡inović D, Dobrić M, et al. Coronary thrombi neovascularization in patients with ST-elevation myocardial infarction - clinical and angiographic implications. Thromb Res. 2014;134:1038-45 pubmed 出版商
  292. Moser B, Megerle A, Bekos C, Janik S, Szerafin T, Birner P, et al. Local and systemic RAGE axis changes in pulmonary hypertension: CTEPH and iPAH. PLoS ONE. 2014;9:e106440 pubmed 出版商
  293. Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, et al. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS ONE. 2014;9:e106718 pubmed 出版商
  294. Torsvik J, Johansson B, Dalva M, Marie M, Fjeld K, Johansson S, et al. Endocytosis of secreted carboxyl ester lipase in a syndrome of diabetes and pancreatic exocrine dysfunction. J Biol Chem. 2014;289:29097-111 pubmed 出版商
  295. Wennerström A, Lothe I, Sandhu V, Kure E, Myklebost O, Munthe E. Generation and characterisation of novel pancreatic adenocarcinoma xenograft models and corresponding primary cell lines. PLoS ONE. 2014;9:e103873 pubmed 出版商
  296. Kornfield T, Newman E. Regulation of blood flow in the retinal trilaminar vascular network. J Neurosci. 2014;34:11504-13 pubmed 出版商
  297. Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS ONE. 2014;9:e104771 pubmed 出版商
  298. Jeon Y, Moon K, Park S, Chung D. Primary pulmonary myxoid sarcomas with EWSR1-CREB1 translocation might originate from primitive peribronchial mesenchymal cells undergoing (myo)fibroblastic differentiation. Virchows Arch. 2014;465:453-61 pubmed 出版商
  299. Zhang X, Ma W, Cui J, Yao H, Zhou H, Ge Y, et al. Regulation of p21 by TWIST2 contributes to its tumor-suppressor function in human acute myeloid leukemia. Oncogene. 2015;34:3000-10 pubmed 出版商
  300. Carlos C, Sonehara N, Oliani S, Burdmann E. Predictive usefulness of urinary biomarkers for the identification of cyclosporine A-induced nephrotoxicity in a rat model. PLoS ONE. 2014;9:e103660 pubmed 出版商
  301. Zheng Y, Hsu F, Xu W, Xie X, Ren X, Gao X, et al. A developmental genetic analysis of the lysine demethylase KDM2 mutations in Drosophila melanogaster. Mech Dev. 2014;133:36-53 pubmed 出版商
  302. Doceul V, Chauveau E, Lara E, Breard E, Sailleau C, Zientara S, et al. Dual modulation of type I interferon response by bluetongue virus. J Virol. 2014;88:10792-802 pubmed 出版商
  303. Dowie M, Grimsey N, Hoffman T, Faull R, Glass M. Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain. J Chem Neuroanat. 2014;59-60:62-71 pubmed 出版商
  304. Cansby E, Nerstedt A, Amrutkar M, Durán E, Smith U, Mahlapuu M. Partial hepatic resistance to IL-6-induced inflammation develops in type 2 diabetic mice, while the anti-inflammatory effect of AMPK is maintained. Mol Cell Endocrinol. 2014;393:143-51 pubmed 出版商
  305. Hu Q, Dong J, DU H, Zhang D, Ren H, Ma M, et al. Constitutive G?i coupling activity of very large G protein-coupled receptor 1 (VLGR1) and its regulation by PDZD7 protein. J Biol Chem. 2014;289:24215-25 pubmed 出版商
  306. Hellesøy M, Blois A, Tiron C, Mannelqvist M, Akslen L, Lorens J. Akt1 activity regulates vessel maturation in a tissue engineering model of angiogenesis. Tissue Eng Part A. 2014;20:2590-603 pubmed 出版商
  307. Howell K, Pillai A. Effects of prenatal hypoxia on schizophrenia-related phenotypes in heterozygous reeler mice: a gene × environment interaction study. Eur Neuropsychopharmacol. 2014;24:1324-36 pubmed 出版商
  308. Morgan K, Black L. Investigation into the effects of varying frequency of mechanical stimulation in a cycle-by-cycle manner on engineered cardiac construct function. J Tissue Eng Regen Med. 2017;11:342-353 pubmed 出版商
  309. Pomianowska E, Sandnes D, Grzyb K, Schjølberg A, Aasrum M, Tveteraas I, et al. Inhibitory effects of prostaglandin E2 on collagen synthesis and cell proliferation in human stellate cells from pancreatic head adenocarcinoma. BMC Cancer. 2014;14:413 pubmed 出版商
  310. Rito M, Schmitt F, Pinto A, André S. Fibromatosis-like metaplastic carcinoma of the breast has a claudin-low immunohistochemical phenotype. Virchows Arch. 2014;465:185-91 pubmed 出版商
  311. Oishi N, Kondo T, Nakazawa T, Mochizuki K, Kasai K, Inoue T, et al. Thyroid-like low-grade nasopharyngeal papillary adenocarcinoma: case report and literature review. Pathol Res Pract. 2014;210:1142-5 pubmed 出版商
  312. Gracanin A, Timmermans Sprang E, van Wolferen M, Rao N, Grizelj J, Vince S, et al. Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression. PLoS ONE. 2014;9:e98698 pubmed 出版商
  313. Cho Y, Ko I, Kim S, Lee S, Shin M, Kim C, et al. Oral mucosa stem cells alleviates spinal cord injury-induced neurogenic bladder symptoms in rats. J Biomed Sci. 2014;21:43 pubmed 出版商
  314. Wang X, Bledsoe K, Graham R, Asmann Y, Viswanatha D, Lewis J, et al. Recurrent PAX3-MAML3 fusion in biphenotypic sinonasal sarcoma. Nat Genet. 2014;46:666-8 pubmed 出版商
  315. Verstegen A, Tagliatti E, Lignani G, Marte A, Stolero T, Atias M, et al. Phosphorylation of synapsin I by cyclin-dependent kinase-5 sets the ratio between the resting and recycling pools of synaptic vesicles at hippocampal synapses. J Neurosci. 2014;34:7266-80 pubmed 出版商
  316. Yuan B, Wan P, Chu D, Nie J, Cao Y, Luo W, et al. A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice. Am J Pathol. 2014;184:1967-80 pubmed 出版商
  317. Srikhajon K, Shynlova O, Preechapornprasert A, Chanrachakul B, Lye S. A new role for monocytes in modulating myometrial inflammation during human labor. Biol Reprod. 2014;91:10 pubmed 出版商
  318. Cheng Y, Cao A, Zheng J, Wang H, Sun Y, Liu C, et al. Airway hyperresponsiveness induced by repeated esophageal infusion of HCl in guinea pigs. Am J Respir Cell Mol Biol. 2014;51:701-8 pubmed 出版商
  319. Mori F, Watanabe Y, Miki Y, Tanji K, Odagiri S, Eto K, et al. Ubiquitin-negative, eosinophilic neuronal cytoplasmic inclusions associated with stress granules and autophagy: an immunohistochemical investigation of two cases. Neuropathology. 2014;34:140-7 pubmed
  320. Moreau J, Artap S, Shi H, Chapman G, Leone G, Sparrow D, et al. Cited2 is required in trophoblasts for correct placental capillary patterning. Dev Biol. 2014;392:62-79 pubmed 出版商
  321. Bach F, Rutten K, Hendriks K, Riemers F, Cornelissen P, de Bruin A, et al. The paracrine feedback loop between vitamin D? (1,25(OH)?D?) and PTHrP in prehypertrophic chondrocytes. J Cell Physiol. 2014;229:1999-2014 pubmed 出版商
  322. Quintin J, Le Péron C, Palierne G, Bizot M, Cunha S, Sérandour A, et al. Dynamic estrogen receptor interactomes control estrogen-responsive trefoil Factor (TFF) locus cell-specific activities. Mol Cell Biol. 2014;34:2418-36 pubmed 出版商
  323. Kabaroff L, Gupta A, Menezes S, Babichev Y, Kandel R, Swallow C, et al. Development of genetically flexible mouse models of sarcoma using RCAS-TVA mediated gene delivery. PLoS ONE. 2014;9:e94817 pubmed 出版商
  324. Schroder W, Major L, Le T, Gardner J, Sweet M, Janciauskiene S, et al. Tumor cell-expressed SerpinB2 is present on microparticles and inhibits metastasis. Cancer Med. 2014;3:500-13 pubmed 出版商
  325. Laurent R, Nallet A, Obert L, Nicod L, Gindraux F. Storage and qualification of viable intact human amniotic graft and technology transfer to a tissue bank. Cell Tissue Bank. 2014;15:267-75 pubmed 出版商
  326. Carloni S, Albertini M, Galluzzi L, Buonocore G, Proietti F, Balduini W. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways. Exp Neurol. 2014;255:103-12 pubmed 出版商
  327. Mia M, Boersema M, Bank R. Interleukin-1? attenuates myofibroblast formation and extracellular matrix production in dermal and lung fibroblasts exposed to transforming growth factor-?1. PLoS ONE. 2014;9:e91559 pubmed 出版商
  328. Gao L, Yue M, Davis J, Hyjek E, Schuger L. In pulmonary lymphangioleiomyomatosis expression of progesterone receptor is frequently higher than that of estrogen receptor. Virchows Arch. 2014;464:495-503 pubmed 出版商
  329. Ohshima J, Lee Y, Sasai M, Saitoh T, Su Ma J, Kamiyama N, et al. Role of mouse and human autophagy proteins in IFN-?-induced cell-autonomous responses against Toxoplasma gondii. J Immunol. 2014;192:3328-35 pubmed 出版商
  330. Chen F, Becker A, LoTurco J. Contribution of tumor heterogeneity in a new animal model of CNS tumors. Mol Cancer Res. 2014;12:742-53 pubmed 出版商
  331. Wagner D, Bonenfant N, Parsons C, Sokocevic D, Brooks E, Borg Z, et al. Comparative decellularization and recellularization of normal versus emphysematous human lungs. Biomaterials. 2014;35:3281-97 pubmed 出版商
  332. Wagner D, Bonenfant N, Sokocevic D, Desarno M, Borg Z, Parsons C, et al. Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration. Biomaterials. 2014;35:2664-79 pubmed 出版商
  333. Morgan K, Black L. Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Tissue Eng Part A. 2014;20:1654-67 pubmed 出版商
  334. Qi M, Zhang J, Zeng W, Chen X. DNAJB1 stabilizes MDM2 and contributes to cancer cell proliferation in a p53-dependent manner. Biochim Biophys Acta. 2014;1839:62-9 pubmed 出版商
  335. Bronner D, O Riordan M, He Y. Caspase-2 mediates a Brucella abortus RB51-induced hybrid cell death having features of apoptosis and pyroptosis. Front Cell Infect Microbiol. 2013;3:83 pubmed 出版商
  336. Yu Y, Xiao C, Tan L, Wang Q, Li X, Feng Y. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-? signalling. Br J Cancer. 2014;110:724-32 pubmed 出版商
  337. Bi J, Wang R, Zhang Y, Han X, Ampah K, Liu W, et al. Identification of nucleolin as a lipid-raft-dependent ?1-integrin-interacting protein in A375 cell migration. Mol Cells. 2013;36:507-17 pubmed 出版商
  338. Hasty P, Livi C, Dodds S, Jones D, Strong R, Javors M, et al. eRapa restores a normal life span in a FAP mouse model. Cancer Prev Res (Phila). 2014;7:169-78 pubmed 出版商
  339. Fuentes T, Appleby N, Tsay E, Martinez J, Bailey L, Hasaniya N, et al. Human neonatal cardiovascular progenitors: unlocking the secret to regenerative ability. PLoS ONE. 2013;8:e77464 pubmed 出版商
  340. Sadakata T, Kakegawa W, Shinoda Y, Hosono M, Katoh Semba R, Sekine Y, et al. CAPS1 deficiency perturbs dense-core vesicle trafficking and Golgi structure and reduces presynaptic release probability in the mouse brain. J Neurosci. 2013;33:17326-34 pubmed 出版商
  341. Yu L, Cheng H, Yang S. Clinicopathological and extensive immunohistochemical study of a type II pleuropulmonary blastoma. Fetal Pediatr Pathol. 2014;33:1-8 pubmed 出版商
  342. Yasuno K, Nishiyama S, Kobayashi R, Yoshimura H, Takahashi K, Omachi T, et al. Proliferative lesions of intra-epidermal cytokeratin CAM5.2-positive cells in canine nipples. J Comp Pathol. 2014;150:18-26 pubmed 出版商
  343. Liu Y, Jin Y, Li J, Seto E, Kuo E, Yu W, et al. Inactivation of Cdc42 in neural crest cells causes craniofacial and cardiovascular morphogenesis defects. Dev Biol. 2013;383:239-52 pubmed 出版商
  344. Sollome J, Thavathiru E, Camenisch T, Vaillancourt R. HER2/HER3 regulates extracellular acidification and cell migration through MTK1 (MEKK4). Cell Signal. 2014;26:70-82 pubmed 出版商
  345. Xu Y, Xu Y, Liao L, Zhou N, Theissen S, Liao X, et al. Inducible knockout of Twist1 in young and adult mice prolongs hair growth cycle and has mild effects on general health, supporting Twist1 as a preferential cancer target. Am J Pathol. 2013;183:1281-1292 pubmed 出版商
  346. Kubota F, Matsuyama A, Shibuya R, Nakamoto M, Hisaoka M. Desmin-positivity in spindle cells: under-recognized immunophenotype of lipoblastoma. Pathol Int. 2013;63:353-7 pubmed 出版商
  347. Zanetti B, Gomes W, Han S. Identification, selection, and enrichment of cardiomyocyte precursors. Biomed Res Int. 2013;2013:390789 pubmed 出版商
  348. Lee P, Yau D, Lau P, Chan J. Plexiform fibromyxoma (plexiform angiomyxoid myofibroblastic tumor) of stomach: an unusual presentation as a fistulating abscess. Int J Surg Pathol. 2014;22:286-90 pubmed 出版商
  349. Chandra S, Priyadarshini R, Madhavan V, Tikoo S, Hussain M, Mudgal R, et al. Enhancement of c-Myc degradation by BLM helicase leads to delayed tumor initiation. J Cell Sci. 2013;126:3782-95 pubmed 出版商
  350. Andersen T, Abdelgawad M, Kristensen H, Hauge E, Rolighed L, Bollerslev J, et al. Understanding coupling between bone resorption and formation: are reversal cells the missing link?. Am J Pathol. 2013;183:235-46 pubmed 出版商
  351. Henderson Y, Toro Serra R, Chen Y, Ryu J, Frederick M, Zhou G, et al. Src inhibitors in suppression of papillary thyroid carcinoma growth. Head Neck. 2014;36:375-84 pubmed 出版商
  352. Sakaki Yumoto M, Liu J, Ramalho Santos M, Yoshida N, Derynck R. Smad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state. J Biol Chem. 2013;288:18546-60 pubmed 出版商
  353. Pantaleo M, Astolfi A, Urbini M, Nannini M, Paterini P, Indio V, et al. Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST. Eur J Hum Genet. 2014;22:32-9 pubmed 出版商
  354. Murata Y, Constantine Paton M. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci. 2013;33:5040-52 pubmed 出版商
  355. Xu J, Deng X, Tang M, Li L, Xiao L, Yang L, et al. Tyrosylprotein sulfotransferase-1 and tyrosine sulfation of chemokine receptor 4 are induced by Epstein-Barr virus encoded latent membrane protein 1 and associated with the metastatic potential of human nasopharyngeal carcinoma. PLoS ONE. 2013;8:e56114 pubmed 出版商
  356. Chu P, Nakamoto N, Ebinuma H, Usui S, Saeki K, Matsumoto A, et al. C-C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology. 2013;58:337-50 pubmed 出版商
  357. McCoy F, Darbandi R, Chen S, Eckard L, Dodd K, Jones K, et al. Metabolic regulation of CaMKII protein and caspases in Xenopus laevis egg extracts. J Biol Chem. 2013;288:8838-48 pubmed 出版商
  358. Abu El Asrar A, Nawaz M, Ola M, De Hertogh G, Opdenakker G, Geboes K. Expression of thrombospondin-2 as a marker in proliferative diabetic retinopathy. Acta Ophthalmol. 2013;91:e169-77 pubmed 出版商
  359. Braun N, Sen K, Alscher M, Fritz P, Kimmel M, Morelle J, et al. Periostin: a matricellular protein involved in peritoneal injury during peritoneal dialysis. Perit Dial Int. 2013;33:515-28 pubmed 出版商
  360. Sánchez Alvarez R, Martinez Outschoorn U, Lin Z, Lamb R, Hulit J, Howell A, et al. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention. Cell Cycle. 2013;12:289-301 pubmed 出版商
  361. Peddigari S, Li P, Rabe J, Martin S. hnRNPL and nucleolin bind LINE-1 RNA and function as host factors to modulate retrotransposition. Nucleic Acids Res. 2013;41:575-85 pubmed 出版商
  362. Helmy K, Halliday J, Fomchenko E, Setty M, Pitter K, Hafemeister C, et al. Identification of global alteration of translational regulation in glioma in vivo. PLoS ONE. 2012;7:e46965 pubmed 出版商
  363. Chen Y, Sundvik M, Rozov S, Priyadarshini M, Panula P. MANF regulates dopaminergic neuron development in larval zebrafish. Dev Biol. 2012;370:237-49 pubmed 出版商
  364. Wakabayashi T, Kosaka J, Mori T, Yamada H. Prolonged expression of Puma in cholinergic amacrine cells during the development of rat retina. J Histochem Cytochem. 2012;60:777-88 pubmed
  365. Farahani R, Sarrafpour B, Simonian M, Li Q, Hunter N. Directed glia-assisted angiogenesis in a mature neurosensory structure: pericytes mediate an adaptive response in human dental pulp that maintains blood-barrier function. J Comp Neurol. 2012;520:3803-26 pubmed 出版商
  366. Lee C, Hwang I, Park C, Lee H, Park D, Kang S, et al. Innate immunity markers in culprit plaques of acute myocardial infarction or stable angina. Biomarkers. 2012;17:209-15 pubmed 出版商
  367. Marquardt J, Seo D, Gómez Quiroz L, Uchida K, Gillen M, Kitade M, et al. Loss of c-Met accelerates development of liver fibrosis in response to CCl(4) exposure through deregulation of multiple molecular pathways. Biochim Biophys Acta. 2012;1822:942-51 pubmed 出版商
  368. Kee H, Kim J, Joung H, Choe N, Lee S, Eom G, et al. Ret finger protein inhibits muscle differentiation by modulating serum response factor and enhancer of polycomb1. Cell Death Differ. 2012;19:121-31 pubmed 出版商
  369. Tai C, Shen S, Lee W, Liao C, Deng W, Chiou H, et al. Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp Cell Res. 2010;316:2969-81 pubmed 出版商
  370. Kurz A, Double K, Lastres Becker I, Tozzi A, Tantucci M, Bockhart V, et al. A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice. PLoS ONE. 2010;5:e11464 pubmed 出版商
  371. Polo M, Arnoni M, Riggio M, Wargon V, Lanari C, Novaro V. Responsiveness to PI3K and MEK inhibitors in breast cancer. Use of a 3D culture system to study pathways related to hormone independence in mice. PLoS ONE. 2010;5:e10786 pubmed 出版商
  372. Bijl N, Sokolovic M, Vrins C, Langeveld M, Moerland P, Ottenhoff R, et al. Modulation of glycosphingolipid metabolism significantly improves hepatic insulin sensitivity and reverses hepatic steatosis in mice. Hepatology. 2009;50:1431-41 pubmed 出版商
  373. Ryan P, Nguyen V, Gholoum S, Carpineta L, Abish S, Ahmed N, et al. Polypoid PEComa in the rectum of a 15-year-old girl: case report and review of PEComa in the gastrointestinal tract. Am J Surg Pathol. 2009;33:475-82 pubmed 出版商
  374. Holthouse D, Dallas P, Ford J, Fabian V, Murch A, Watson M, et al. Classic and desmoplastic medulloblastoma: complete case reports and characterizations of two new cell lines. Neuropathology. 2009;29:398-409 pubmed 出版商
  375. Marín Briggiler C, Veiga M, Matos M, Echeverría M, Furlong L, Vazquez Levin M. Expression of epithelial cadherin in the human male reproductive tract and gametes and evidence of its participation in fertilization. Mol Hum Reprod. 2008;14:561-71 pubmed 出版商
  376. Rigau V, Morin M, Rousset M, de Bock F, Lebrun A, Coubes P, et al. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain. 2007;130:1942-56 pubmed