这是一篇来自已证抗体库的有关人类 ACTH的综述,是根据28篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ACTH 抗体。
ACTH 同义词: ACTH; CLIP; LPH; MSH; NPP; OBAIRH; POC

艾博抗(上海)贸易有限公司
小鼠 单克隆
  • 其他; 人类; 1:200; 图 5b
  • 免疫组化-石蜡切片; 人类; 1:400; 图 5a
  • 免疫印迹; 人类; 1:400; 图 3a
艾博抗(上海)贸易有限公司 ACTH抗体(Abcam, ab199007)被用于被用于其他在人类样本上浓度为1:200 (图 5b), 被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 5a) 和 被用于免疫印迹在人类样本上浓度为1:400 (图 3a). J Mol Histol (2022) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:4000; 图 5c
艾博抗(上海)贸易有限公司 ACTH抗体(Abcam, ab32893)被用于被用于免疫组化在小鼠样本上浓度为1:4000 (图 5c). Front Endocrinol (Lausanne) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1d
艾博抗(上海)贸易有限公司 ACTH抗体(Abcam, ab74976)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1d). Front Endocrinol (Lausanne) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
艾博抗(上海)贸易有限公司 ACTH抗体(Abcam, ab74976)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Oncol Lett (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司 ACTH抗体(Abcam, ab322893)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). Neural Dev (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4
艾博抗(上海)贸易有限公司 ACTH抗体(abcam, ab32893)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Nat Commun (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(SPM333)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 st1
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 st1
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 st1
圣克鲁斯生物技术 ACTH抗体(Santa, sc-52980)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 st1), 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 st1) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 st1). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(SPM333)
  • 免疫印迹; 大鼠; 1:1000; 图 1c
圣克鲁斯生物技术 ACTH抗体(SCBT, sc-52980)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). Endocrinology (2016) ncbi
小鼠 单克隆(B427)
  • 免疫组化-石蜡切片; 人类; 图 1
圣克鲁斯生物技术 ACTH抗体(santa cruz, sc-57 021)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). J Clin Endocrinol Metab (2015) ncbi
小鼠 单克隆(NOC1/35)
  • 免疫组化; 小鼠; 1:50; 图 5
圣克鲁斯生物技术 ACTH抗体(Santa Cruz, sc-47705)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5). PLoS ONE (2013) ncbi
Novus Biologicals
小鼠 单克隆(SPM333)
  • 免疫组化; 小鼠; 图 3f
Novus Biologicals ACTH抗体(Novus Biologicals, NBP2-32911)被用于被用于免疫组化在小鼠样本上 (图 3f). Cell Mol Gastroenterol Hepatol (2022) ncbi
赛默飞世尔
domestic goat 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:100; 图 s3c
  • 免疫印迹基因敲除验证; 小鼠; 1:4000; 图 s3d
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1c
  • 免疫印迹; 小鼠; 1:4000; 图 2e
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
赛默飞世尔 ACTH抗体(Thermo Fischer, 18368)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:100 (图 s3c), 被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:4000 (图 s3d), 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1c), 被用于免疫印迹在小鼠样本上浓度为1:4000 (图 2e) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c). Nat Commun (2021) ncbi
ImmunoStar
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:2000; 图 s2e
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 s1c
ImmunoStar ACTH抗体(Immunostar, 20063)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 s2e) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 s1c). iScience (2021) ncbi
Phoenix Pharmaceuticals
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 s4b
Phoenix Pharmaceuticals ACTH抗体(Phoenix Pharmaceuticals, H-029-30)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 s4b). Front Mol Neurosci (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s1c
Phoenix Pharmaceuticals ACTH抗体(Phoenix Pharmaceuticals, H-029-30)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s1c). Cell Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:20,000; 图 4a
Phoenix Pharmaceuticals ACTH抗体(Phoenix Pharmaceuticals, H029-30)被用于被用于免疫组化在小鼠样本上浓度为1:20,000 (图 4a). PLoS Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:8000; 图 2b
Phoenix Pharmaceuticals ACTH抗体(Phoenix Pharmaceuticals, H-029-30)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:8000 (图 2b). Eneuro (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 7b
Phoenix Pharmaceuticals ACTH抗体(Phoenix Pharmaceuticals, H-029-30)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 7b). J Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 2b
Phoenix Pharmaceuticals ACTH抗体(Phoenix pharmaceuticals, H-029-30)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2b). Mol Metab (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:3000; 图 4d
Phoenix Pharmaceuticals ACTH抗体(Phoenix Pharmaceuticals, H-029-30)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:3000 (图 4d). Nat Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:20,000; 图 8
Phoenix Pharmaceuticals ACTH抗体(pheonix, H-029-30)被用于被用于免疫组化在大鼠样本上浓度为1:20,000 (图 8). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4
Phoenix Pharmaceuticals ACTH抗体(Phoenix Pharmaceuticals, H-029-30)被用于被用于免疫组化在小鼠样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 6
Phoenix Pharmaceuticals ACTH抗体(Phoenix Pharmaceuticals, H-029-30)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 6). J Comp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 2d
Phoenix Pharmaceuticals ACTH抗体(Phoenix Pharmapseuticals, H-029-30)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 2d). Neuropsychopharmacology (2016) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(02A3)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 st2
丹科医疗器械技术服务(上海)有限公司 ACTH抗体(Dako, M3501)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 st2). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(02A3)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 ACTH抗体(DAKO, 02A3)被用于被用于免疫组化在人类样本上. Pituitary (2016) ncbi
小鼠 单克隆(02A3)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 ACTH抗体(DAKO, 02A3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Endocr Pathol (2016) ncbi
小鼠 单克隆(02A3)
  • 免疫组化-石蜡切片; 人类; 图 2
丹科医疗器械技术服务(上海)有限公司 ACTH抗体(Dako, O2A3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Endocr Pathol (2015) ncbi
小鼠 单克隆(02A3)
  • 免疫组化-石蜡切片; 小鼠; 图 3
丹科医疗器械技术服务(上海)有限公司 ACTH抗体(Dako, M3501)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(02A3)
  • 免疫组化-自由浮动切片; 小鼠; 1:500
丹科医疗器械技术服务(上海)有限公司 ACTH抗体(Dako, M3501)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500. J Comp Neurol (2012) ncbi
文章列表
  1. Yesmin R, Watanabe M, Sinha A, Ishibashi M, Wang T, Fukuda A. A subpopulation of agouti-related peptide neurons exciting corticotropin-releasing hormone axon terminals in median eminence led to hypothalamic-pituitary-adrenal axis activation in response to food restriction. Front Mol Neurosci. 2022;15:990803 pubmed 出版商
  2. Duan S, Sawyer T, Sontz R, Wieland B, Diaz A, Merchant J. GFAP-directed Inactivation of Men1 Exploits Glial Cell Plasticity in Favor of Neuroendocrine Reprogramming. Cell Mol Gastroenterol Hepatol. 2022;14:1025-1051 pubmed 出版商
  3. Ishii J, Sato Yazawa H, Kashiwagi K, Nakadate K, Iwamoto M, Kohno K, et al. Endocrine secretory granule production is caused by a lack of REST and intragranular secretory content and accelerated by PROX1. J Mol Histol. 2022;53:437-448 pubmed 出版商
  4. Zhang D, Yamaguchi S, Zhang X, Yang B, Kurooka N, Sugawara R, et al. Upregulation of Mir342 in Diet-Induced Obesity Mouse and the Hypothalamic Appetite Control. Front Endocrinol (Lausanne). 2021;12:727915 pubmed 出版商
  5. Gómez Valadés A, Pozo M, Varela L, Boudjadja M, Ramirez S, Chivite I, et al. Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis. Cell Metab. 2021;: pubmed 出版商
  6. Fleming Martinez A, D xf6 ppler H, Bastea L, Edenfield B, Patel T, Leitges M, et al. Dysfunctional EGFR and oxidative stress-induced PKD1 signaling drive formation of DCLK1+ pancreatic stem cells. iScience. 2021;24:102019 pubmed 出版商
  7. Deshpande D, Agarwal N, Fleming T, Gaveriaux Ruff C, Klose C, Tappe Theodor A, et al. Loss of POMC-mediated antinociception contributes to painful diabetic neuropathy. Nat Commun. 2021;12:426 pubmed 出版商
  8. Park S, Jang A, Bouret S. Maternal obesity-induced endoplasmic reticulum stress causes metabolic alterations and abnormal hypothalamic development in the offspring. PLoS Biol. 2020;18:e3000296 pubmed 出版商
  9. Liu S, Liu Z, Chen F, Xu W, Yuan G. Adrenocorticotropic Hormone-Producing Paraganglioma With Low Plasma ACTH Level: A Case Report and Review of the Literature. Front Endocrinol (Lausanne). 2019;10:936 pubmed 出版商
  10. Johnson C, Hong W, Micevych P. Optogenetic Activation of β-Endorphin Terminals in the Medial Preoptic Nucleus Regulates Female Sexual Receptivity. Eneuro. 2020;7: pubmed 出版商
  11. Pomeranz L, Ekstrand M, Latcha K, Smith G, Enquist L, Friedman J. Gene Expression Profiling with Cre-Conditional Pseudorabies Virus Reveals a Subset of Midbrain Neurons That Participate in Reward Circuitry. J Neurosci. 2017;37:4128-4144 pubmed 出版商
  12. Jeong J, Lee D, Jo Y. Cholinergic neurons in the dorsomedial hypothalamus regulate food intake. Mol Metab. 2017;6:306-312 pubmed 出版商
  13. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  14. Fenselau H, Campbell J, Verstegen A, Madara J, Xu J, Shah B, et al. A rapidly acting glutamatergic ARC?PVH satiety circuit postsynaptically regulated by ?-MSH. Nat Neurosci. 2017;20:42-51 pubmed 出版商
  15. Wittmann G, Farkas E, Szilvásy Szabó A, Gereben B, Fekete C, Lechan R. Variable proopiomelanocortin expression in tanycytes of the adult rat hypothalamus and pituitary stalk. J Comp Neurol. 2017;525:411-441 pubmed 出版商
  16. Pu J, Wang Z, Zhou H, Zhong A, Jin K, Ruan L, et al. Isolated double adrenocorticotropic hormone-secreting pituitary adenomas: A case report and review of the literature. Oncol Lett. 2016;12:585-590 pubmed
  17. Sokolowski K, Tran T, Esumi S, Kamal Y, Oboti L, Lischinsky J, et al. Molecular and behavioral profiling of Dbx1-derived neurons in the arcuate, lateral and ventromedial hypothalamic nuclei. Neural Dev. 2016;11:12 pubmed 出版商
  18. Casar Borota O, Øystese K, Sundstrom M, Melchior L, Popovic V. A high-throughput analysis of the IDH1(R132H) protein expression in pituitary adenomas. Pituitary. 2016;19:407-14 pubmed 出版商
  19. Kabra D, Pfuhlmann K, García Cáceres C, Schriever S, Casquero García V, Kebede A, et al. Hypothalamic leptin action is mediated by histone deacetylase 5. Nat Commun. 2016;7:10782 pubmed 出版商
  20. Zséli G, Vida B, Martinez A, Lechan R, Khan A, Fekete C. Elucidation of the anatomy of a satiety network: Focus on connectivity of the parabrachial nucleus in the adult rat. J Comp Neurol. 2016;524:2803-27 pubmed 出版商
  21. Pandit R, Omrani A, Luijendijk M, de Vrind V, van Rozen A, Ophuis R, et al. Melanocortin 3 Receptor Signaling in Midbrain Dopamine Neurons Increases the Motivation for Food Reward. Neuropsychopharmacology. 2016;41:2241-51 pubmed 出版商
  22. Mercau M, Repetto E, Perez M, Martinez Calejman C, Sánchez Puch S, Finkielstein C, et al. Moderate Exercise Prevents Functional Remodeling of the Anterior Pituitary Gland in Diet-Induced Insulin Resistance in Rats: Role of Oxidative Stress and Autophagy. Endocrinology. 2016;157:1135-45 pubmed 出版商
  23. Manojlović Gacić E, Skender Gazibara M, Popovic V, Soldatovic I, Boricic N, Raičević S, et al. Oncogene-Induced Senescence in Pituitary Adenomas--an Immunohistochemical Study. Endocr Pathol. 2016;27:1-11 pubmed 出版商
  24. Lu J, Adam B, Jack A, Lam A, Broad R, Chik C. Immune Cell Infiltrates in Pituitary Adenomas: More Macrophages in Larger Adenomas and More T Cells in Growth Hormone Adenomas. Endocr Pathol. 2015;26:263-72 pubmed 出版商
  25. Teng X, Jin T, Brent G, Wu A, Teng W, Shan Z. A Patient With a Thyrotropin-Secreting Microadenoma and Resistance to Thyroid Hormone (P453T). J Clin Endocrinol Metab. 2015;100:2511-4 pubmed 出版商
  26. O Hara L, Curley M, Tedim Ferreira M, Cruickshanks L, Milne L, Smith L. Pituitary androgen receptor signalling regulates prolactin but not gonadotrophins in the male mouse. PLoS ONE. 2015;10:e0121657 pubmed 出版商
  27. Shen H, Canas P, García Sanz P, Lan J, Boison D, Moratalla R, et al. Adenosine A?A receptors in striatal glutamatergic terminals and GABAergic neurons oppositely modulate psychostimulant action and DARPP-32 phosphorylation. PLoS ONE. 2013;8:e80902 pubmed 出版商
  28. Kühne C, Puk O, Graw J, Hrabe de Angelis M, Schutz G, Wurst W, et al. Visualizing corticotropin-releasing hormone receptor type 1 expression and neuronal connectivities in the mouse using a novel multifunctional allele. J Comp Neurol. 2012;520:3150-80 pubmed 出版商