这是一篇来自已证抗体库的有关人类 ACTN2的综述,是根据161篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ACTN2 抗体。
ACTN2 同义词: CMD1AA; CMH23; MPD6; MYOCOZ

艾博抗(上海)贸易有限公司
小鼠 单克隆(EA-53)
  • 免疫组化; 小鼠; 图 6d
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab9465)被用于被用于免疫组化在小鼠样本上 (图 6d). J Am Heart Assoc (2021) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 图 1h
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab9465)被用于被用于免疫细胞化学在小鼠样本上 (图 1h). Theranostics (2021) ncbi
domestic rabbit 单克隆(EP2529Y)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab68167)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5b). PLoS ONE (2020) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:200; 图 3e
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab9465)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3e). Cell (2019) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 小鼠; 1:200; 图 5i
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab9465)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5i). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EP2529Y)
  • 免疫细胞化学; 小鼠; 图 6h
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab68167)被用于被用于免疫细胞化学在小鼠样本上 (图 6h). Cell Stem Cell (2017) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 s2b
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab9465)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 s2b). Diabetes (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab9465)被用于被用于免疫印迹在小鼠样本上 (图 4). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:200; 图 s1
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab9465)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP2529Y)
  • 流式细胞仪; 小鼠; 图 2b
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, Ab68167)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Sci Rep (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-石蜡切片; pigs ; 图 6
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab9465)被用于被用于免疫组化-石蜡切片在pigs 样本上 (图 6). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 犬; 图 S1f
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab9465)被用于被用于免疫细胞化学在犬样本上 (图 S1f). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:200; 图 5
  • 免疫细胞化学; 犬; 1:200; 图 5
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab9465)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5) 和 被用于免疫细胞化学在犬样本上浓度为1:200 (图 5). Stem Cells Int (2016) ncbi
domestic rabbit 单克隆(EP2529Y)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s3
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab68167)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s3). Nature (2015) ncbi
小鼠 单克隆(EA-53)
  • 其他; 大鼠; 1:1000; 图 1a
  • 免疫印迹; 大鼠; 图 6a
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab9465)被用于被用于其他在大鼠样本上浓度为1:1000 (图 1a) 和 被用于免疫印迹在大鼠样本上 (图 6a). PLoS ONE (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 ACTN2抗体(abcam, ab9465)被用于被用于免疫细胞化学在小鼠样本上. Tissue Eng Part A (2015) ncbi
domestic rabbit 单克隆(EP2529Y)
  • 流式细胞仪; African green monkey; 图 6
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab68167)被用于被用于流式细胞仪在African green monkey样本上 (图 6). Methods Mol Biol (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, Ab9465)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EP2529Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab68167)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). EMBO Mol Med (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab9465)被用于被用于免疫细胞化学在人类样本上. Int J Nanomedicine (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 人类; 1:100
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, EA-53)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab9465)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Macromol Biosci (2015) ncbi
domestic rabbit 单克隆(EP2529Y)
  • 免疫细胞化学; 小鼠; 1:100
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, AB68167)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Sci Rep (2014) ncbi
domestic rabbit 单克隆(EP2529Y)
  • 免疫组化-石蜡切片; 大鼠
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab68167)被用于被用于免疫组化-石蜡切片在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:500
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab9465)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. J Mol Cell Cardiol (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 ACTN2抗体(Abcam, ab9465)被用于被用于免疫印迹在小鼠样本上. Int J Mol Med (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(H-2)
  • 免疫印迹; 人类; 1:1000; 图 1b
圣克鲁斯生物技术 ACTN2抗体(Santa, sc-17829)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). elife (2019) ncbi
小鼠 单克隆(H-2)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 ACTN2抗体(Santa Cruz, sc-17829)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(H-2)
  • 免疫细胞化学; 人类; 图 3
圣克鲁斯生物技术 ACTN2抗体(Santa Cruz Biotechnology, sc-17829)被用于被用于免疫细胞化学在人类样本上 (图 3). BMC Cancer (2016) ncbi
小鼠 单克隆(H-2)
  • 免疫印迹; 人类; 1:200; 图 6a
圣克鲁斯生物技术 ACTN2抗体(SantaCruz, sc-17829)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6a). Oncotarget (2016) ncbi
小鼠 单克隆(H-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ACTN2抗体(Santa Cruz Biotechnology, sc-17829)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(H-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ACTN2抗体(Santa Cruz, sc-17829)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2016) ncbi
小鼠 单克隆(H-2)
  • 免疫印迹; 人类; 1:6000; 图 s8
圣克鲁斯生物技术 ACTN2抗体(Santa Cruz, sc-17829)被用于被用于免疫印迹在人类样本上浓度为1:6000 (图 s8). BMC Cancer (2015) ncbi
小鼠 单克隆(B-12)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ACTN2抗体(Santa Cruz, sc-166524)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
小鼠 单克隆(H-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ACTN2抗体(Santa Cruz, sc-17829)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(H-2)
  • 免疫印迹; 人类; 图 2A
圣克鲁斯生物技术 ACTN2抗体(Santa Cruz, sc-17829)被用于被用于免疫印迹在人类样本上 (图 2A). Oncotarget (2015) ncbi
小鼠 单克隆(H-2)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 ACTN2抗体(Santa Cruz, sc-17829)被用于被用于免疫细胞化学在人类样本上. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(H-2)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 ACTN2抗体(Santa Cruz, H-2)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mutat Res (2015) ncbi
小鼠 单克隆(H-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ACTN2抗体(Santa Cruz Biotechnology, sc-17829)被用于被用于免疫印迹在人类样本上. Colloids Surf B Biointerfaces (2015) ncbi
小鼠 单克隆(H-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ACTN2抗体(Santa Cruz, sc-17829)被用于被用于免疫印迹在人类样本上 (图 1). Cancer Discov (2015) ncbi
小鼠 单克隆(H-2)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术 ACTN2抗体(santa cruz, sc-17829)被用于被用于免疫印迹在人类样本上 (图 5d). Int J Cancer (2015) ncbi
小鼠 单克隆(H-2)
  • 免疫印迹; 人类; 1:800
圣克鲁斯生物技术 ACTN2抗体(Santa Cruz, sc-17829)被用于被用于免疫印迹在人类样本上浓度为1:800. J Physiol (2014) ncbi
小鼠 单克隆(H-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ACTN2抗体(Santa Cruz Biotechnology, H-2)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛默飞世尔 ACTN2抗体(Thermo Fisher Scientific, PA5-29246)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:250; 图 5k
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 5k). Nat Commun (2021) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; 人类; 1:1000; 图 1l
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1l). Commun Biol (2021) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:800; 图 5a
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, AF7811)被用于被用于免疫细胞化学在人类样本上浓度为1:800 (图 5a). Commun Biol (2021) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
西格玛奥德里奇 ACTN2抗体(Sigma, A7732)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). Nat Commun (2021) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; fruit fly ; 1:20,000; 图 s1-1a
西格玛奥德里奇 ACTN2抗体(Sigma, A7732)被用于被用于免疫印迹在fruit fly 样本上浓度为1:20,000 (图 s1-1a). elife (2020) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 小鼠; 1:500; 图 s4-1h, 1i
西格玛奥德里奇 ACTN2抗体(Sigma, A7732)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s4-1h, 1i). elife (2020) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:1000; 图 7b
  • 免疫细胞化学; 猕猴; 1:1000; 图 7b
  • 免疫细胞化学; African green monkey; 1:1000; 图 7b
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, A7811)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 7b), 被用于免疫细胞化学在猕猴样本上浓度为1:1000 (图 7b) 和 被用于免疫细胞化学在African green monkey样本上浓度为1:1000 (图 7b). Cells (2020) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 图 2b
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在人类样本上 (图 2b). Mol Biol Cell (2020) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 小鼠; 1:800; 图 3a
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, A7811)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 3a). Front Cardiovasc Med (2020) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:200; 图 5a
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5a). Stem Cell Res Ther (2020) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-石蜡切片; 小鼠; 图 1d
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1d). JACC Basic Transl Sci (2020) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:1000; 图 1b
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1b). elife (2020) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-冰冻切片; jerboas; 1:1000; 图 5e
西格玛奥德里奇 ACTN2抗体(Sigma, EA53)被用于被用于免疫组化-冰冻切片在jerboas样本上浓度为1:1000 (图 5e). elife (2019) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 人类; 1:200; 图 3a
西格玛奥德里奇 ACTN2抗体(Sigma, EA-53)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3a). Sci Adv (2019) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 人类; 图 1d
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化在人类样本上 (图 1d). Stem Cell Reports (2019) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:100; 图 2a
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2a). Cardiovasc Res (2019) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:500; 图 s1b
  • 免疫细胞化学; African green monkey; 1:500; 图 s1b
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1b) 和 被用于免疫细胞化学在African green monkey样本上浓度为1:500 (图 s1b). elife (2019) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:500; 图 s3d
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s3d). Cell Rep (2019) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:100; 图 ev1c
西格玛奥德里奇 ACTN2抗体(SIGMA, A7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 ev1c). EMBO J (2019) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:250; 图 3f
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 3f). J Cell Sci (2019) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 大鼠; 1:200; 图 6a
西格玛奥德里奇 ACTN2抗体(Sigma, EA-53)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 6a). Mol Biol Cell (2019) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2a
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, EA-53)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2a). J Mol Cell Cardiol (2018) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 图 2a
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, A7811)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). Sci Rep (2018) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:200; 图 1a
西格玛奥德里奇 ACTN2抗体(Sigma, A-7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1a). J Gen Physiol (2018) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 人类; 1:800; 图 1b
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化在人类样本上浓度为1:800 (图 1b). Nat Commun (2018) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 小鼠; 1:400; 图 s4a
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, A17811)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s4a). Cell Rep (2017) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; 人类
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫印迹在人类样本上. PLoS ONE (2017) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:250; 图 s1b
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 s1b). Nature (2017) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:400; 图 1d
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1d). Stem Cell Reports (2017) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 大鼠; 1:100; 图 2b
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7f
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 2b) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 7f). Theranostics (2017) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 小鼠; 1:400; 图 2a
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2a). Nat Commun (2017) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 人类; 图 2a
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, A7811)被用于被用于免疫组化在人类样本上 (图 2a). Mol Biol Cell (2017) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; 大鼠; 1:5000; 图 5b
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, EA-53)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 5b). Mol Cell Biochem (2017) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 大鼠; 1:500; 图 5a
西格玛奥德里奇 ACTN2抗体(Sigma, EA-53)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 5a). Nat Commun (2017) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 st3
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 st3). Sci Rep (2017) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:400; 图 1b
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1b). Sci Rep (2017) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 斑马鱼; 图 s4b
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化在斑马鱼样本上 (图 s4b). Mol Neurodegener (2017) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 图 1d
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在人类样本上 (图 1d). Sci Rep (2017) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s6
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, a7811)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s6). Nat Commun (2017) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 图 s2i
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在人类样本上 (图 s2i). Cell (2016) ncbi
小鼠 单克隆(EA-53)
  • 流式细胞仪; 人类; 1:800; 图 1d
西格玛奥德里奇 ACTN2抗体(Sigma, EA53)被用于被用于流式细胞仪在人类样本上浓度为1:800 (图 1d). Nat Commun (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 图 1d
  • 免疫印迹; 小鼠; 图 1a
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 1a). J Biol Chem (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; 人类; 1:2500; 图 4b
  • 免疫组化; 斑马鱼; 1:100
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, EA-53)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 4b) 和 被用于免疫组化在斑马鱼样本上浓度为1:100. Am J Hum Genet (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:250; 图 s1
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:1000; 图 3
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3). Skelet Muscle (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-冰冻切片; 小鼠; 表 s5
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化-冰冻切片在小鼠样本上 (表 s5). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-石蜡切片; 斑马鱼; 1:200; 图 1j
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:200 (图 1j). Development (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; 小鼠; 图 s3
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫印迹在小鼠样本上 (图 s3). PLoS ONE (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3a
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3a). J Clin Invest (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 小鼠; 1:200; 图 1B
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1B). PLoS ONE (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫印迹在小鼠样本上 (图 1). J Cell Mol Med (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 2
  • 流式细胞仪; 人类; 1:800; 图 s1
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 2) 和 被用于流式细胞仪在人类样本上浓度为1:800 (图 s1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1b
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1b). Stem Cell Res (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇 ACTN2抗体(Sigma, 7811)被用于被用于免疫印迹在人类样本上 (图 2). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 图 4k
西格玛奥德里奇 ACTN2抗体(Sigma, EA-53)被用于被用于免疫细胞化学在人类样本上 (图 4k). Folia Biol (Praha) (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 斑马鱼; 1:100; 图 7
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 7). Hum Mol Genet (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 大鼠; 1:200; 图 5
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, A7811)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 小鼠; 1:1000; 图 1e
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1e). Development (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-冰冻切片; 小鼠; 图 5
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Cell Rep (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 图 s1a
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上 (图 s1a). Toxicol Sci (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:500; 图 1
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; 人类; 图 9
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, A7811)被用于被用于免疫印迹在人类样本上 (图 9). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:100; 图 4
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, A7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-冰冻切片; 斑马鱼; 图 5
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化-冰冻切片在斑马鱼样本上 (图 5). J Muscle Res Cell Motil (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 小鼠; 1:100-1:200; 图 4
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化在小鼠样本上浓度为1:100-1:200 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(EA-53)
  • 其他; 小鼠; 1:800; 图 2a
西格玛奥德里奇 ACTN2抗体(Sigma, EA-53)被用于被用于其他在小鼠样本上浓度为1:800 (图 2a). PLoS ONE (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:300; 图 2
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; 人类; 1:200
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫印迹在人类样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上. Cell Res (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫印迹在人类样本上 (图 4b). Nat Biotechnol (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 7
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 7). Hum Mol Genet (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 ACTN2抗体(Sigma, EA-53)被用于被用于免疫细胞化学在小鼠样本上. Stem Cells Int (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-石蜡切片; 小鼠; 1:200
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Cardiovasc Res (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-冰冻切片; 小鼠; 图 3
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). Dis Model Mech (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:100; 图 2
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Mol Ther Methods Clin Dev (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-石蜡切片; 小鼠; 图 4
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Cell Death Dis (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-石蜡切片; 小鼠; 1:500
  • 免疫印迹; 小鼠
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, A7811)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 和 被用于免疫印迹在小鼠样本上. Cardiovasc Res (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; 人类
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, clone EA-53)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-冰冻切片; 斑马鱼; 1:100
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:100. Acta Neuropathol (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; 大鼠
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫印迹在大鼠样本上. Cell Commun Signal (2015) ncbi
小鼠 单克隆(EA-53)
  • 流式细胞仪; 人类; 图 1
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于流式细胞仪在人类样本上 (图 1). Methods Mol Biol (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:800; 图 6
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在人类样本上浓度为1:800 (图 6). Stem Cells (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:400; 图 1e
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, A7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1e). PLoS ONE (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:800
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在人类样本上浓度为1:800. Methods Mol Biol (2016) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:500
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, A7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 大鼠; 1:200
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, A7811)被用于被用于免疫组化在大鼠样本上浓度为1:200. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 人类; 1:200
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化在人类样本上浓度为1:200. Cardiovasc Pathol (2015) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:400; 图 3
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 3). Development (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 人类; 1:200; 图 4
西格玛奥德里奇 ACTN2抗体(Sigma, EA53)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Sci Rep (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-冰冻切片; 小鼠; 1:100
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 斑马鱼; 1:100
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化在斑马鱼样本上浓度为1:100. Acta Neuropathol (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 图 4
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上 (图 4). Anat Rec (Hoboken) (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; 小鼠; 1:5000; 图 5
西格玛奥德里奇 ACTN2抗体(Sigma, A-7811)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). Nat Med (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 大鼠
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, EA-53)被用于被用于免疫细胞化学在大鼠样本上. Cardiovasc Res (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:200
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Circ Cardiovasc Genet (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇 ACTN2抗体(Sigma, EA53)被用于被用于免疫组化-冰冻切片在小鼠样本上. Proteome Sci (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 人类
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, EA-53)被用于被用于免疫组化在人类样本上. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 小鼠; 图 4e
西格玛奥德里奇 ACTN2抗体(Sigma, EA-53)被用于被用于免疫组化在小鼠样本上 (图 4e). J Biol Chem (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-石蜡切片; 小鼠
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化-石蜡切片在小鼠样本上. Nucleus (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-冰冻切片; 小鼠; 1:100
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, A7811)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Am J Pathol (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 大西洋鳉; 1:500
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在大西洋鳉样本上浓度为1:500. Comp Biochem Physiol A Mol Integr Physiol (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:200
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Toxicol Sci (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:400
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400. Nat Commun (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 大鼠; 1:300
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在大鼠样本上浓度为1:300. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, A7811)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-冰冻切片; 小鼠; 图 6
  • 免疫印迹; 小鼠; 图 5, 7
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 5, 7). J Cell Sci (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:150; 图 4g
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:150 (图 4g). Stem Cell Reports (2013) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 非洲爪蛙; 1:200; 表 1
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在非洲爪蛙样本上浓度为1:200 (表 1). Methods (2014) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 人类; 1:1000
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Stem Cells Dev (2013) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; domestic rabbit
  • 免疫印迹; 小鼠
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫印迹在domestic rabbit样本上 和 被用于免疫印迹在小鼠样本上. J Mol Cell Cardiol (2013) ncbi
小鼠 单克隆(EA-53)
  • 免疫细胞化学; 小鼠; 1:200
西格玛奥德里奇 ACTN2抗体(Sigma, A7811)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. J Mol Cell Cardiol (2013) ncbi
小鼠 单克隆(EA-53)
  • 流式细胞仪; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, A7811)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Cell Death Dis (2013) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; 小鼠; 1:750
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, EA53)被用于被用于免疫印迹在小鼠样本上浓度为1:750. Biomed Res Int (2013) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化-石蜡切片; 小鼠; 1:2000
西格玛奥德里奇 ACTN2抗体(Sigma, EA53)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000. Cilia (2012) ncbi
小鼠 单克隆(EA-53)
  • 免疫印迹; pigs ; 图 5
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, A7811)被用于被用于免疫印迹在pigs 样本上 (图 5). Mol Cell Proteomics (2011) ncbi
小鼠 单克隆(EA-53)
  • 免疫组化; 小鼠
西格玛奥德里奇 ACTN2抗体(Sigma-Aldrich, A7811)被用于被用于免疫组化在小鼠样本上. J Comp Neurol (2010) ncbi
文章列表
  1. Cui M, Atmanli A, Morales M, Tan W, Chen K, Xiao X, et al. Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance. Nat Commun. 2021;12:5270 pubmed 出版商
  2. Pal S, Nixon B, Glennon M, Shridhar P, Satterfield S, Su Y, et al. Replication Stress Response Modifies Sarcomeric Cardiomyopathy Remodeling. J Am Heart Assoc. 2021;10:e021768 pubmed 出版商
  3. Wang J, Zhou C, Khodabukus A, Tran S, Han S, Carlson A, et al. Three-dimensional tissue-engineered human skeletal muscle model of Pompe disease. Commun Biol. 2021;4:524 pubmed 出版商
  4. Liu M, Li N, Qu C, Gao Y, Wu L, Hu L. Amylin deposition activates HIF1α and 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) signaling in failing hearts of non-human primates. Commun Biol. 2021;4:188 pubmed 出版商
  5. Han Z, Wang X, Xu Z, Cao Y, Gong R, Yu Y, et al. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics. 2021;11:3000-3016 pubmed 出版商
  6. Gladka M, Kohela A, Molenaar B, Versteeg D, Kooijman L, Monshouwer Kloots J, et al. Cardiomyocytes stimulate angiogenesis after ischemic injury in a ZEB2-dependent manner. Nat Commun. 2021;12:84 pubmed 出版商
  7. Li T, Chen Y, Lu T, Wang Y, Lin H, Yao C. A positive feedback loop between Flower and PI(4,5)P2 at periactive zones controls bulk endocytosis in Drosophila. elife. 2020;9: pubmed 出版商
  8. Stefanovic S, Laforest B, Desvignes J, Lescroart F, Argiro L, Maurel Zaffran C, et al. Hox-dependent coordination of mouse cardiac progenitor cell patterning and differentiation. elife. 2020;9: pubmed 出版商
  9. Stauske M, Rodriguez Polo I, Haas W, Knorr D, Borchert T, Streckfuss Bömeke K, et al. Non-Human Primate iPSC Generation, Cultivation, and Cardiac Differentiation under Chemically Defined Conditions. Cells. 2020;9: pubmed 出版商
  10. Taneja N, Neininger A, Burnette D. Coupling to substrate adhesions drives the maturation of muscle stress fibers into myofibrils within cardiomyocytes. Mol Biol Cell. 2020;31:1273-1288 pubmed 出版商
  11. el Azzouzi H, Vilaça A, Feyen D, Gommans W, de Weger R, Doevendans P, et al. Cardiomyocyte Specific Deletion of ADAR1 Causes Severe Cardiac Dysfunction and Increased Lethality. Front Cardiovasc Med. 2020;7:30 pubmed 出版商
  12. Hou M, Han J, Li G, Kwon M, Jiang J, Emani S, et al. Multipotency of mouse trophoblast stem cells. Stem Cell Res Ther. 2020;11:55 pubmed 出版商
  13. Guo X, Kolpakov M, Hooshdaran B, Schappell W, Wang T, Eguchi S, et al. Cardiac Expression of Factor X Mediates Cardiac Hypertrophy and Fibrosis in Pressure Overload. JACC Basic Transl Sci. 2020;5:69-83 pubmed 出版商
  14. Taniguchi Y, Oyama N, Fumoto S, Kinoshita H, Yamashita F, Shimizu K, et al. Tissue suction-mediated gene transfer to the beating heart in mice. PLoS ONE. 2020;15:e0228203 pubmed 出版商
  15. Choi I, Lim H, Cho H, Oh Y, Chou B, Bai H, et al. Transcriptional landscape of myogenesis from human pluripotent stem cells reveals a key role of TWIST1 in maintenance of skeletal muscle progenitors. elife. 2020;9: pubmed 出版商
  16. Tran M, Tsutsumi R, Erberich J, Chen K, Flores M, Cooper K. Evolutionary loss of foot muscle during development with characteristics of atrophy and no evidence of cell death. elife. 2019;8: pubmed 出版商
  17. Ahrens Nicklas R, Pappas C, Farman G, Mayfield R, Larrinaga T, Medne L, et al. Disruption of cardiac thin filament assembly arising from a mutation in LMOD2: A novel mechanism of neonatal dilated cardiomyopathy. Sci Adv. 2019;5:eaax2066 pubmed 出版商
  18. Birket M, Raibaud S, Lettieri M, Adamson A, Letang V, Cervello P, et al. A Human Stem Cell Model of Fabry Disease Implicates LIMP-2 Accumulation in Cardiomyocyte Pathology. Stem Cell Reports. 2019;13:380-393 pubmed 出版商
  19. Tsai S, Ghazizadeh Z, Wang H, Ortega F, Badieyan Z, Hsu Z, et al. A Human Embryonic Stem Cell Reporter Line for Monitoring Chemical-induced Cardiotoxicity. Cardiovasc Res. 2019;: pubmed 出版商
  20. Stefanius K, Servage K, de Souza Santos M, Gray H, Toombs J, Chimalapati S, et al. Human pancreatic cancer cell exosomes, but not human normal cell exosomes, act as an initiator in cell transformation. elife. 2019;8: pubmed 出版商
  21. WARD M, Gilad Y. A generally conserved response to hypoxia in iPSC-derived cardiomyocytes from humans and chimpanzees. elife. 2019;8: pubmed 出版商
  22. Yap L, Wang J, Moreno Moral A, Chong L, Sun Y, Harmston N, et al. In Vivo Generation of Post-infarct Human Cardiac Muscle by Laminin-Promoted Cardiovascular Progenitors. Cell Rep. 2019;26:3231-3245.e9 pubmed 出版商
  23. Anderson R, Lagnado A, Maggiorani D, Walaszczyk A, Dookun E, Chapman J, et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 2019;38: pubmed 出版商
  24. Zhao Y, Rafatian N, Feric N, Cox B, Aschar Sobbi R, Wang E, et al. A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling. Cell. 2019;176:913-927.e18 pubmed 出版商
  25. Fan J, Liu L, Liu Q, Cui Y, Yao B, Zhang M, et al. CKIP-1 limits foam cell formation and inhibits atherosclerosis by promoting degradation of Oct-1 by REGγ. Nat Commun. 2019;10:425 pubmed 出版商
  26. Li Y, Merkel C, Zeng X, Heier J, Cantrell P, Sun M, et al. The N-cadherin interactome in primary cardiomyocytes as defined using quantitative proximity proteomics. J Cell Sci. 2019;132: pubmed 出版商
  27. Ly T, Pappas C, Johnson D, Schlecht W, Colpan M, Galkin V, et al. Effects of cardiomyopathy-linked mutations K15N and R21H in tropomyosin on thin-filament regulation and pointed-end dynamics. Mol Biol Cell. 2019;30:268-281 pubmed 出版商
  28. Pappas C, Farman G, Mayfield R, Konhilas J, Gregorio C. Cardiac-specific knockout of Lmod2 results in a severe reduction in myofilament force production and rapid cardiac failure. J Mol Cell Cardiol. 2018;122:88-97 pubmed 出版商
  29. Manalo A, Schroer A, Fenix A, Shancer Z, Coogan J, Brolsma T, et al. Loss of CENP-F Results in Dilated Cardiomyopathy with Severe Disruption of Cardiac Myocyte Architecture. Sci Rep. 2018;8:7546 pubmed 出版商
  30. Yu H, Yuan C, Westenbroek R, Catterall W. The AKAP Cypher/Zasp contributes to β-adrenergic/PKA stimulation of cardiac CaV1.2 calcium channels. J Gen Physiol. 2018;150:883-889 pubmed 出版商
  31. Anderson D, Kaplan D, Bell K, Koutsis K, Haynes J, Mills R, et al. NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nat Commun. 2018;9:1373 pubmed 出版商
  32. Fujita J, Freire P, Coarfa C, Benham A, Gunaratne P, Schneider M, et al. Ronin Governs Early Heart Development by Controlling Core Gene Expression Programs. Cell Rep. 2017;21:1562-1573 pubmed 出版商
  33. Al Maqtari T, Hong K, Vajravelu B, Moktar A, Cao P, Moore J, et al. Transcription factor-induced activation of cardiac gene expression in human c-kit+ cardiac progenitor cells. PLoS ONE. 2017;12:e0174242 pubmed 出版商
  34. Keckesova Z, Donaher J, De Cock J, Freinkman E, Lingrell S, Bachovchin D, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681-686 pubmed 出版商
  35. Abad M, Hashimoto H, Zhou H, Morales M, Chen B, Bassel Duby R, et al. Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity. Stem Cell Reports. 2017;8:548-560 pubmed 出版商
  36. Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, et al. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics. 2017;7:664-676 pubmed 出版商
  37. Ragni C, Diguet N, Le Garrec J, Novotova M, Resende T, Pop S, et al. Amotl1 mediates sequestration of the Hippo effector Yap1 downstream of Fat4 to restrict heart growth. Nat Commun. 2017;8:14582 pubmed 出版商
  38. Lin Y, Zhen Y, Chien K, Lee I, Lin W, Chen M, et al. LIMCH1 regulates nonmuscle myosin-II activity and suppresses cell migration. Mol Biol Cell. 2017;28:1054-1065 pubmed 出版商
  39. Kovacs A, Kalász J, Pasztor E, Toth A, Papp Z, Dhalla N, et al. Myosin heavy chain and cardiac troponin T damage is associated with impaired myofibrillar ATPase activity contributing to sarcomeric dysfunction in Ca2+-paradox rat hearts. Mol Cell Biochem. 2017;430:57-68 pubmed 出版商
  40. Fukuda R, Gunawan F, Beisaw A, Jiménez Amilburu V, Maischein H, Kostin S, et al. Proteolysis regulates cardiomyocyte maturation and tissue integration. Nat Commun. 2017;8:14495 pubmed 出版商
  41. Dadson K, Hauck L, Hao Z, Grothe D, Rao V, Mak T, et al. The E3 ligase Mule protects the heart against oxidative stress and mitochondrial dysfunction through Myc-dependent inactivation of Pgc-1α and Pink1. Sci Rep. 2017;7:41490 pubmed 出版商
  42. Omatsu Kanbe M, Nozuchi N, Nishino Y, Mukaisho K, Sugihara H, Matsuura H. Identification of cardiac progenitors that survive in the ischemic human heart after ventricular myocyte death. Sci Rep. 2017;7:41318 pubmed 出版商
  43. Guimarães Camboa N, Cattaneo P, Sun Y, Moore Morris T, Gu Y, Dalton N, et al. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. Cell Stem Cell. 2017;20:345-359.e5 pubmed 出版商
  44. Ohki Y, Wenninger Weinzierl A, Hruscha A, Asakawa K, Kawakami K, Haass C, et al. Glycine-alanine dipeptide repeat protein contributes to toxicity in a zebrafish model of C9orf72 associated neurodegeneration. Mol Neurodegener. 2017;12:6 pubmed 出版商
  45. Christoforou N, Chakraborty S, Kirkton R, Adler A, Addis R, Leong K. Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage. Sci Rep. 2017;7:40285 pubmed 出版商
  46. Tang J, Shen D, Caranasos T, Wang Z, Vandergriff A, Allen T, et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun. 2017;8:13724 pubmed 出版商
  47. Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed 出版商
  48. Kempf H, Olmer R, Haase A, Franke A, Bolesani E, Schwanke K, et al. Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat Commun. 2016;7:13602 pubmed 出版商
  49. Huang S, Zhou A, Nguyen D, Zhang H, Benz E. Protein 4.1R Influences Myogenin Protein Stability and Skeletal Muscle Differentiation. J Biol Chem. 2016;291:25591-25607 pubmed
  50. O Grady G, Best H, Sztal T, Schartner V, Sanjuan Vazquez M, Donkervoort S, et al. Variants in the Oxidoreductase PYROXD1 Cause Early-Onset Myopathy with Internalized Nuclei and Myofibrillar Disorganization. Am J Hum Genet. 2016;99:1086-1105 pubmed 出版商
  51. Okata S, Yuasa S, Suzuki T, Ito S, Makita N, Yoshida T, et al. Embryonic type Na+ channel ?-subunit, SCN3B masks the disease phenotype of Brugada syndrome. Sci Rep. 2016;6:34198 pubmed 出版商
  52. Ow J, Palanichamy Kala M, Rao V, Choi M, Bharathy N, Taneja R. G9a inhibits MEF2C activity to control sarcomere assembly. Sci Rep. 2016;6:34163 pubmed 出版商
  53. Kim E, Page P, Dellefave Castillo L, McNally E, Wyatt E. Direct reprogramming of urine-derived cells with inducible MyoD for modeling human muscle disease. Skelet Muscle. 2016;6:32 pubmed 出版商
  54. Rader E, Turk R, Willer T, Beltrán D, Inamori K, Peterson T, et al. Role of dystroglycan in limiting contraction-induced injury to the sarcomeric cytoskeleton of mature skeletal muscle. Proc Natl Acad Sci U S A. 2016;113:10992-7 pubmed 出版商
  55. Cheng F, Miao L, Wu Q, Gong X, Xiong J, Zhang J. Vinculin b deficiency causes epicardial hyperplasia and coronary vessel disorganization in zebrafish. Development. 2016;143:3522-3531 pubmed
  56. Saisana M, Griffin S, May F. Importance of the type I insulin-like growth factor receptor in HER2, FGFR2 and MET-unamplified gastric cancer with and without Ras pathway activation. Oncotarget. 2016;7:54445-54462 pubmed 出版商
  57. Nandi S, Zheng H, Sharma N, Shahshahan H, Patel K, Mishra P. Lack of miR-133a Decreases Contractility of Diabetic Hearts: A Role for Novel Cross Talk Between Tyrosine Aminotransferase and Tyrosine Hydroxylase. Diabetes. 2016;65:3075-90 pubmed 出版商
  58. Flores Perez A, Marchat L, Rodríguez Cuevas S, Bautista V, Fuentes Mera L, Romero Zamora D, et al. Suppression of cell migration is promoted by miR-944 through targeting of SIAH1 and PTP4A1 in breast cancer cells. BMC Cancer. 2016;16:379 pubmed 出版商
  59. Kudová J, Prochazkova J, Vašíček O, Perecko T, Sedláčková M, Pesl M, et al. HIF-1alpha Deficiency Attenuates the Cardiomyogenesis of Mouse Embryonic Stem Cells. PLoS ONE. 2016;11:e0158358 pubmed 出版商
  60. Boogerd C, Aneas I, Sakabe N, Dirschinger R, Cheng Q, Zhou B, et al. Probing chromatin landscape reveals roles of endocardial TBX20 in septation. J Clin Invest. 2016;126:3023-35 pubmed 出版商
  61. Lambert M, Richard E, Duban Deweer S, Krzewinski F, Deracinois B, Dupont E, et al. O-GlcNAcylation is a key modulator of skeletal muscle sarcomeric morphometry associated to modulation of protein-protein interactions. Biochim Biophys Acta. 2016;1860:2017-30 pubmed 出版商
  62. Kanda M, Nagai T, Takahashi T, Liu M, Kondou N, Naito A, et al. Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction. PLoS ONE. 2016;11:e0156562 pubmed 出版商
  63. Zhang L, Lu X, Gui L, Wu Y, Sims S, Wang G, et al. Inhibition of Rac1 reduces store overload-induced calcium release and protects against ventricular arrhythmia. J Cell Mol Med. 2016;20:1513-22 pubmed 出版商
  64. Mannhardt I, Breckwoldt K, Letuffe Brenière D, Schaaf S, Schulz H, Neuber C, et al. Human Engineered Heart Tissue: Analysis of Contractile Force. Stem Cell Reports. 2016;7:29-42 pubmed 出版商
  65. Shi H, Drummond C, Fan X, Haller S, Liu J, Malhotra D, et al. Hiding inside? Intracellular expression of non-glycosylated c-kit protein in cardiac progenitor cells. Stem Cell Res. 2016;16:795-806 pubmed 出版商
  66. Maillet A, TAN K, Chai X, Sadananda S, Mehta A, Ooi J, et al. Modeling Doxorubicin-Induced Cardiotoxicity in Human Pluripotent Stem Cell Derived-Cardiomyocytes. Sci Rep. 2016;6:25333 pubmed 出版商
  67. Winter L, Türk M, Harter P, Mittelbronn M, Kornblum C, Norwood F, et al. Downstream effects of plectin mutations in epidermolysis bullosa simplex with muscular dystrophy. Acta Neuropathol Commun. 2016;4:44 pubmed 出版商
  68. Liu S, Zhou F, Shen Y, Zhang Y, Yin H, Zeng Y, et al. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells. Oncotarget. 2016;7:32876-92 pubmed 出版商
  69. Suchanek J, Suchánková Kleplová T, Rehacek V, Browne K, Soukup T. Proliferative Capacity and Phenotypical Alteration of Multipotent Ecto-Mesenchymal Stem Cells from Human Exfoliated Deciduous Teeth Cultured in Xenogeneic and Allogeneic Media. Folia Biol (Praha). 2016;62:1-14 pubmed
  70. Wang X, Hodgkinson C, Lu K, Payne A, Pratt R, Dzau V. Selenium Augments microRNA Directed Reprogramming of Fibroblasts to Cardiomyocytes via Nanog. Sci Rep. 2016;6:23017 pubmed 出版商
  71. Ruparelia A, Oorschot V, Ramm G, Bryson Richardson R. FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Hum Mol Genet. 2016;25:2131-2142 pubmed
  72. Cannavo A, Liccardo D, Eguchi A, Elliott K, Traynham C, Ibetti J, et al. Myocardial pathology induced by aldosterone is dependent on non-canonical activities of G protein-coupled receptor kinases. Nat Commun. 2016;7:10877 pubmed 出版商
  73. Yu W, Huang X, Tian X, Zhang H, He L, Wang Y, et al. GATA4 regulates Fgf16 to promote heart repair after injury. Development. 2016;143:936-49 pubmed 出版商
  74. Passer D, van de Vrugt A, Atmanli A, Domian I. Atypical Protein Kinase C-Dependent Polarized Cell Division Is Required for Myocardial Trabeculation. Cell Rep. 2016;14:1662-1672 pubmed 出版商
  75. Kanazawa H, Tseliou E, Dawkins J, de Couto G, Gallet R, Malliaras K, et al. Durable Benefits of Cellular Postconditioning: Long-Term Effects of Allogeneic Cardiosphere-Derived Cells Infused After Reperfusion in Pigs with Acute Myocardial Infarction. J Am Heart Assoc. 2016;5: pubmed 出版商
  76. Zhang W, St Clair D, Butterfield A, Vore M. Loss of Mrp1 Potentiates Doxorubicin-Induced Cytotoxicity in Neonatal Mouse Cardiomyocytes and Cardiac Fibroblasts. Toxicol Sci. 2016;151:44-56 pubmed 出版商
  77. Eng G, Lee B, Protas L, Gagliardi M, Brown K, Kass R, et al. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun. 2016;7:10312 pubmed 出版商
  78. Maggio I, Stefanucci L, Janssen J, Liu J, Chen X, Mouly V, et al. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations. Nucleic Acids Res. 2016;44:1449-70 pubmed 出版商
  79. Black J, Zhang H, Kim J, Getz G, Whetstine J. Regulation of Transient Site-specific Copy Gain by MicroRNA. J Biol Chem. 2016;291:4862-71 pubmed 出版商
  80. Loperfido M, Jarmin S, Dastidar S, Di Matteo M, Perini I, Moore M, et al. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts. Nucleic Acids Res. 2016;44:744-60 pubmed 出版商
  81. Palazzolo G, Quattrocelli M, Toelen J, Dominici R, Anastasia L, Tettamenti G, et al. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells. Stem Cells Int. 2016;2016:4969430 pubmed 出版商
  82. Monian P, Jiang X. The Cellular Apoptosis Susceptibility Protein (CAS) Promotes Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-induced Apoptosis and Cell Proliferation. J Biol Chem. 2016;291:2379-88 pubmed 出版商
  83. Ban K, Wile B, Cho K, Kim S, Song M, Kim S, et al. Non-genetic Purification of Ventricular Cardiomyocytes from Differentiating Embryonic Stem Cells through Molecular Beacons Targeting IRX-4. Stem Cell Reports. 2015;5:1239-1249 pubmed 出版商
  84. Furlan S, Mosole S, Murgia M, Nagaraj N, Argenton F, Volpe P, et al. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio. J Muscle Res Cell Motil. 2016;37:27-39 pubmed 出版商
  85. Kraut B, Maier H, Kókai E, Fiedler K, Boettger T, Illing A, et al. Cardiac-Specific Activation of IKK2 Leads to Defects in Heart Development and Embryonic Lethality. PLoS ONE. 2015;10:e0141591 pubmed 出版商
  86. Pasini L, Re A, Tebaldi T, Ricci G, Boi S, Adami V, et al. TrkA is amplified in malignant melanoma patients and induces an anti-proliferative response in cell lines. BMC Cancer. 2015;15:777 pubmed 出版商
  87. Saito Y, Nakamura K, Yoshida M, Sugiyama H, Ohe T, Kurokawa J, et al. Enhancement of Spontaneous Activity by HCN4 Overexpression in Mouse Embryonic Stem Cell-Derived Cardiomyocytes - A Possible Biological Pacemaker. PLoS ONE. 2015;10:e0138193 pubmed 出版商
  88. Zhao Y, Londono P, Cao Y, Sharpe E, Proenza C, O Rourke R, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;6:8243 pubmed 出版商
  89. Jeong M, Kim S, Kang H, Park K, Park W, Yang S, et al. Cucurbitacin I Attenuates Cardiomyocyte Hypertrophy via Inhibition of Connective Tissue Growth Factor (CCN2) and TGF- β/Smads Signalings. PLoS ONE. 2015;10:e0136236 pubmed 出版商
  90. Fu Y, Huang C, Xu X, Gu H, Ye Y, Jiang C, et al. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res. 2015;25:1013-24 pubmed 出版商
  91. Subbaiah V, Zhang Y, Rajagopalan D, Abdullah L, Yeo Teh N, Tomaić V, et al. E3 ligase EDD1/UBR5 is utilized by the HPV E6 oncogene to destabilize tumor suppressor TIP60. Oncogene. 2016;35:2062-74 pubmed 出版商
  92. Birket M, Ribeiro M, Verkerk A, Ward D, Leitoguinho A, Den Hartogh S, et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol. 2015;33:970-9 pubmed 出版商
  93. Li F, Buck D, De Winter J, Kolb J, Meng H, Birch C, et al. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy. Hum Mol Genet. 2015;24:5219-33 pubmed 出版商
  94. Kimura W, Xiao F, Canseco D, Muralidhar S, Thet S, Zhang H, et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 2015;523:226-30 pubmed 出版商
  95. Yang J, Kaur K, Ong L, Eisenberg C, Eisenberg L. Inhibition of G9a Histone Methyltransferase Converts Bone Marrow Mesenchymal Stem Cells to Cardiac Competent Progenitors. Stem Cells Int. 2015;2015:270428 pubmed 出版商
  96. Ma S, Yin N, Qi X, Pfister S, Zhang M, Ma R, et al. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER). Oncotarget. 2015;6:13320-33 pubmed
  97. Fan X, Hughes B, Ali M, Cho W, Lopez W, Schulz R. Dynamic Alterations to α-Actinin Accompanying Sarcomere Disassembly and Reassembly during Cardiomyocyte Mitosis. PLoS ONE. 2015;10:e0129176 pubmed 出版商
  98. Amente S, Milazzo G, Sorrentino M, Ambrosio S, Di Palo G, Lania L, et al. Lysine-specific demethylase (LSD1/KDM1A) and MYCN cooperatively repress tumor suppressor genes in neuroblastoma. Oncotarget. 2015;6:14572-83 pubmed
  99. Wei K, Díaz Trelles R, Liu Q, Diez Cuñado M, Scimia M, Cai W, et al. Developmental origin of age-related coronary artery disease. Cardiovasc Res. 2015;107:287-94 pubmed 出版商
  100. Tian L, Ding S, You Y, Li T, Liu Y, Wu X, et al. Leiomodin-3-deficient mice display nemaline myopathy with fast-myofiber atrophy. Dis Model Mech. 2015;8:635-41 pubmed 出版商
  101. Zatti S, Martewicz S, Serena E, Uno N, Giobbe G, Kazuki Y, et al. Complete restoration of multiple dystrophin isoforms in genetically corrected Duchenne muscular dystrophy patient-derived cardiomyocytes. Mol Ther Methods Clin Dev. 2014;1:1 pubmed 出版商
  102. Liang X, Ding Y, Zhang Y, Chai Y, He J, Chiu S, et al. Activation of NRG1-ERBB4 signaling potentiates mesenchymal stem cell-mediated myocardial repairs following myocardial infarction. Cell Death Dis. 2015;6:e1765 pubmed 出版商
  103. Mastrototaro G, Liang X, Li X, Carullo P, Piroddi N, Tesi C, et al. Nebulette knockout mice have normal cardiac function, but show Z-line widening and up-regulation of cardiac stress markers. Cardiovasc Res. 2015;107:216-25 pubmed 出版商
  104. Kalinowska M, Chávez A, Lutzu S, Castillo P, Bukauskas F, Francesconi A. Actinin-4 Governs Dendritic Spine Dynamics and Promotes Their Remodeling by Metabotropic Glutamate Receptors. J Biol Chem. 2015;290:15909-20 pubmed 出版商
  105. Sztal T, Zhao M, Williams C, Oorschot V, Parslow A, Giousoh A, et al. Zebrafish models for nemaline myopathy reveal a spectrum of nemaline bodies contributing to reduced muscle function. Acta Neuropathol. 2015;130:389-406 pubmed 出版商
  106. Sin Y, Martin T, Wills L, Currie S, Baillie G. Small heat shock protein 20 (Hsp20) facilitates nuclear import of protein kinase D 1 (PKD1) during cardiac hypertrophy. Cell Commun Signal. 2015;13:16 pubmed 出版商
  107. Chien P, Lin C, Hsiao L, Yang C. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol. 2015;409:59-72 pubmed 出版商
  108. Suhaeri M, Subbiah R, Van S, Du P, Kim I, Lee K, et al. Cardiomyoblast (h9c2) differentiation on tunable extracellular matrix microenvironment. Tissue Eng Part A. 2015;21:1940-51 pubmed 出版商
  109. Hoynowski S, Ludlow J. Isolation, culturing, and characterization of cardiac muscle cells from nonhuman primate heart tissue. Methods Mol Biol. 2015;1299:133-43 pubmed 出版商
  110. Jha R, Xu R, Xu C. Efficient differentiation of cardiomyocytes from human pluripotent stem cells with growth factors. Methods Mol Biol. 2015;1299:115-31 pubmed 出版商
  111. Ambrosio S, Amente S, Napolitano G, Di Palo G, Lania L, Majello B. MYC impairs resolution of site-specific DNA double-strand breaks repair. Mutat Res. 2015;774:6-13 pubmed 出版商
  112. Kim M, Horst A, Blinka S, Stamm K, Mahnke D, Schuman J, et al. Activin-A and Bmp4 levels modulate cell type specification during CHIR-induced cardiomyogenesis. PLoS ONE. 2015;10:e0118670 pubmed 出版商
  113. Zhang M, Schulte J, Heinick A, Piccini I, Rao J, Quaranta R, et al. Universal cardiac induction of human pluripotent stem cells in two and three-dimensional formats: implications for in vitro maturation. Stem Cells. 2015;33:1456-69 pubmed 出版商
  114. Choi S, Lee H, Choi J, Kim J, Park C, Joo H, et al. Cyclosporin A induces cardiac differentiation but inhibits hemato-endothelial differentiation of P19 cells. PLoS ONE. 2015;10:e0117410 pubmed 出版商
  115. van den Berg C, Elliott D, Braam S, Mummery C, Davis R. Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined Conditions. Methods Mol Biol. 2016;1353:163-80 pubmed 出版商
  116. Clarke J, Lyra e Silva N, Figueiredo C, Frozza R, Ledo J, Beckman D, et al. Alzheimer-associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol Med. 2015;7:190-210 pubmed 出版商
  117. Shen Y, Gao M, Ma Y, Yu H, Cui F, Gregersen H, et al. Effect of surface chemistry on the integrin induced pathway in regulating vascular endothelial cells migration. Colloids Surf B Biointerfaces. 2015;126:188-97 pubmed 出版商
  118. Asiri A, Marwani H, Khan S, Webster T. Understanding greater cardiomyocyte functions on aligned compared to random carbon nanofibers in PLGA. Int J Nanomedicine. 2015;10:89-96 pubmed 出版商
  119. Van Rechem C, Black J, Boukhali M, Aryee M, Gräslund S, Haas W, et al. Lysine demethylase KDM4A associates with translation machinery and regulates protein synthesis. Cancer Discov. 2015;5:255-63 pubmed 出版商
  120. Reuter S, Soonpaa M, Firulli A, Chang A, Field L. Recombinant neuregulin 1 does not activate cardiomyocyte DNA synthesis in normal or infarcted adult mice. PLoS ONE. 2014;9:e115871 pubmed 出版商
  121. Fichna J, Karolczak J, Potulska Chromik A, Miszta P, Berdynski M, Sikorska A, et al. Two desmin gene mutations associated with myofibrillar myopathies in Polish families. PLoS ONE. 2014;9:e115470 pubmed 出版商
  122. Hou Y, Jayasinghe I, Crossman D, Baddeley D, Soeller C. Nanoscale analysis of ryanodine receptor clusters in dyadic couplings of rat cardiac myocytes. J Mol Cell Cardiol. 2015;80:45-55 pubmed 出版商
  123. Matte I, Lane D, Laplante C, Garde Granger P, Rancourt C, Piché A. Ovarian cancer ascites enhance the migration of patient-derived peritoneal mesothelial cells via cMet pathway through HGF-dependent and -independent mechanisms. Int J Cancer. 2015;137:289-98 pubmed 出版商
  124. Swager S, Delfín D, Rastogi N, Wang H, Canan B, Fedorov V, et al. Claudin-5 levels are reduced from multiple cell types in human failing hearts and are associated with mislocalization of ephrin-B1. Cardiovasc Pathol. 2015;24:160-167 pubmed 出版商
  125. Chen Y, Wang J, Shen B, Chan C, Wang C, Zhao Y, et al. Engineering a freestanding biomimetic cardiac patch using biodegradable poly(lactic-co-glycolic acid) (PLGA) and human embryonic stem cell-derived ventricular cardiomyocytes (hESC-VCMs). Macromol Biosci. 2015;15:426-36 pubmed 出版商
  126. Jiang X, Zhang H, Yin S, Zhang Y, Yang W, Zheng W, et al. Specific deficiency of Plzf paralog, Zbtb20, in Sertoli cells does not affect spermatogenesis and fertility in mice. Sci Rep. 2014;4:7062 pubmed 出版商
  127. Nam Y, Lubczyk C, Bhakta M, Zang T, Fernandez Perez A, McAnally J, et al. Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors. Development. 2014;141:4267-78 pubmed 出版商
  128. Tchao J, Han L, Lin B, Yang L, Tobita K. Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells. Sci Rep. 2014;4:6614 pubmed 出版商
  129. He L, Tian X, Zhang H, Hu T, Huang X, Zhang L, et al. BAF200 is required for heart morphogenesis and coronary artery development. PLoS ONE. 2014;9:e109493 pubmed 出版商
  130. Ruparelia A, Oorschot V, Vaz R, Ramm G, Bryson Richardson R. Zebrafish models of BAG3 myofibrillar myopathy suggest a toxic gain of function leading to BAG3 insufficiency. Acta Neuropathol. 2014;128:821-33 pubmed 出版商
  131. Pacak C, Hammer P, Mackay A, Dowd R, Wang K, Masuzawa A, et al. Superparamagnetic iron oxide nanoparticles function as a long-term, multi-modal imaging label for non-invasive tracking of implanted progenitor cells. PLoS ONE. 2014;9:e108695 pubmed 出版商
  132. Strakova J, Dean J, Sharpe K, Meyers T, Odom G, Townsend D. Dystrobrevin increases dystrophin's binding to the dystrophin-glycoprotein complex and provides protection during cardiac stress. J Mol Cell Cardiol. 2014;76:106-15 pubmed 出版商
  133. White J, Barro M, Makarenkova H, Sanger J, Sanger J. Localization of sarcomeric proteins during myofibril assembly in cultured mouse primary skeletal myotubes. Anat Rec (Hoboken). 2014;297:1571-84 pubmed 出版商
  134. Wein N, Vulin A, Falzarano M, Szigyarto C, Maiti B, Findlay A, et al. Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice. Nat Med. 2014;20:992-1000 pubmed 出版商
  135. Bingen B, Engels M, Schalij M, Jangsangthong W, Neshati Z, Feola I, et al. Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Cardiovasc Res. 2014;104:194-205 pubmed 出版商
  136. Martinez Fernandez A, Nelson T, Reyes S, Alekseev A, Secreto F, Perez Terzic C, et al. iPS cell-derived cardiogenicity is hindered by sustained integration of reprogramming transgenes. Circ Cardiovasc Genet. 2014;7:667-76 pubmed 出版商
  137. Can T, Faas L, Ashford D, Dowle A, Thomas J, O Toole P, et al. Proteomic analysis of laser capture microscopy purified myotendinous junction regions from muscle sections. Proteome Sci. 2014;12:25 pubmed 出版商
  138. Janbaz A, Lindström M, Liu J, Pedrosa Domellöf F. Intermediate filaments in the human extraocular muscles. Invest Ophthalmol Vis Sci. 2014;55:5151-9 pubmed 出版商
  139. Kudo Sakamoto Y, Akazawa H, Ito K, Takano J, Yano M, Yabumoto C, et al. Calpain-dependent cleavage of N-cadherin is involved in the progression of post-myocardial infarction remodeling. J Biol Chem. 2014;289:19408-19 pubmed 出版商
  140. Shin J, Le Dour C, Sera F, Iwata S, Homma S, Joseph L, et al. Depletion of lamina-associated polypeptide 1 from cardiomyocytes causes cardiac dysfunction in mice. Nucleus. 2014;5:260-459 pubmed 出版商
  141. Yuan B, Wan P, Chu D, Nie J, Cao Y, Luo W, et al. A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice. Am J Pathol. 2014;184:1967-80 pubmed 出版商
  142. Gignac S, Vo N, Mikhaeil M, Alexander J, Maclatchy D, Schulte P, et al. Derivation of a continuous myogenic cell culture from an embryo of common killifish, Fundulus heteroclitus. Comp Biochem Physiol A Mol Integr Physiol. 2014;175:15-27 pubmed 出版商
  143. Clements M, Thomas N. High-throughput multi-parameter profiling of electrophysiological drug effects in human embryonic stem cell derived cardiomyocytes using multi-electrode arrays. Toxicol Sci. 2014;140:445-61 pubmed 出版商
  144. Lei Q, Pan X, Chang S, Malkowicz S, Guzzo T, Malykhina A. Response of the human detrusor to stretch is regulated by TREK-1, a two-pore-domain (K2P) mechano-gated potassium channel. J Physiol. 2014;592:3013-30 pubmed 出版商
  145. Shao D, Zhai P, Del Re D, Sciarretta S, Yabuta N, Nojima H, et al. A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nat Commun. 2014;5:3315 pubmed 出版商
  146. Yu J, Lee A, Lin W, Lin C, Wu Y, Tsai W. Electrospun PLGA fibers incorporated with functionalized biomolecules for cardiac tissue engineering. Tissue Eng Part A. 2014;20:1896-907 pubmed 出版商
  147. Seki T, Yuasa S, Kusumoto D, Kunitomi A, Saito Y, Tohyama S, et al. Generation and characterization of functional cardiomyocytes derived from human T cell-derived induced pluripotent stem cells. PLoS ONE. 2014;9:e85645 pubmed 出版商
  148. Facciuto F, Bugnon Valdano M, Marziali F, Massimi P, Banks L, Cavatorta A, et al. Human papillomavirus (HPV)-18 E6 oncoprotein interferes with the epithelial cell polarity Par3 protein. Mol Oncol. 2014;8:533-43 pubmed 出版商
  149. Zemljic Harpf A, Godoy J, Platoshyn O, Asfaw E, Busija A, Domenighetti A, et al. Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci. 2014;127:1104-16 pubmed 出版商
  150. Weidgang C, Russell R, Tata P, Kühl S, Illing A, Muller M, et al. TBX3 Directs Cell-Fate Decision toward Mesendoderm. Stem Cell Reports. 2013;1:248-65 pubmed 出版商
  151. Carberry S, Brinkmeier H, Zhang Y, Winkler C, Ohlendieck K. Comparative proteomic profiling of soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne muscular dystrophy. Int J Mol Med. 2013;32:544-56 pubmed 出版商
  152. Nworu C, Krieg P, Gregorio C. Preparation of developing Xenopus muscle for sarcomeric protein localization by high-resolution imaging. Methods. 2014;66:370-9 pubmed 出版商
  153. Christoforou N, Chellappan M, Adler A, Kirkton R, Wu T, Addis R, et al. Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming. PLoS ONE. 2013;8:e63577 pubmed 出版商
  154. Alicea B, Murthy S, Keaton S, Cobbett P, Cibelli J, Suhr S. Defining the diversity of phenotypic respecification using multiple cell lines and reprogramming regimens. Stem Cells Dev. 2013;22:2641-54 pubmed 出版商
  155. DeSantiago J, Bare D, Ke Y, Sheehan K, Solaro R, Banach K. Functional integrity of the T-tubular system in cardiomyocytes depends on p21-activated kinase 1. J Mol Cell Cardiol. 2013;60:121-8 pubmed 出版商
  156. Addis R, Ifkovits J, Pinto F, Kellam L, Esteso P, Rentschler S, et al. Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. J Mol Cell Cardiol. 2013;60:97-106 pubmed 出版商
  157. Horrillo A, Pezzolla D, Fraga M, Aguilera Y, Salguero Aranda C, Tejedo J, et al. Zebularine regulates early stages of mESC differentiation: effect on cardiac commitment. Cell Death Dis. 2013;4:e570 pubmed 出版商
  158. Roehrich M, Spicher A, Milano G, Vassalli G. Characterization of cardiac-resident progenitor cells expressing high aldehyde dehydrogenase activity. Biomed Res Int. 2013;2013:503047 pubmed 出版商
  159. Willaredt M, Gorgas K, Gardner H, Tucker K. Multiple essential roles for primary cilia in heart development. Cilia. 2012;1:23 pubmed 出版商
  160. Yun Hong Y, Chih Fan C, Chia Wei C, Yen Chung C. A study of the spatial protein organization of the postsynaptic density isolated from porcine cerebral cortex and cerebellum. Mol Cell Proteomics. 2011;10:M110.007138 pubmed 出版商
  161. Suzuki N, Bekkers J. Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers. J Comp Neurol. 2010;518:1670-87 pubmed 出版商