这是一篇来自已证抗体库的有关人类 ADGRE1的综述,是根据95篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ADGRE1 抗体。
ADGRE1 同义词: EMR1; TM7LN3

艾博抗(上海)贸易有限公司
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 1:50; 图 s1c
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 s1c). BMC Med (2022) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7a
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab111101)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7a). Physiol Rep (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab100790)被用于被用于免疫组化在小鼠样本上 (图 3b). J Immunol Res (2022) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 小鼠; 图 s8a
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab111101)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s8a). J Biomed Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5g
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab100790)被用于被用于免疫组化在小鼠样本上 (图 5g). Sci Adv (2022) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s8a, s8c, s8d
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab111101)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s8a, s8c, s8d). Sci Rep (2022) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Neuroinflammation (2021) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化; 小鼠; 1:200; 图 3b
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab111101)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3b). Int J Mol Med (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). Nutrients (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4a). J Inflamm Res (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:200; 图 1b
艾博抗(上海)贸易有限公司 ADGRE1抗体(abcam, ab16911)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1b). PLoS ONE (2021) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Front Pediatr (2021) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab111101)被用于被用于免疫组化在小鼠样本上 (图 3a). J Am Heart Assoc (2021) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化; 小鼠; 图 7j
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, 111101)被用于被用于免疫组化在小鼠样本上 (图 7j). Acta Neuropathol Commun (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:500; 图 5b
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5b). Front Physiol (2021) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab111101)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化; 小鼠; 1:200; 图 5d
艾博抗(上海)贸易有限公司 ADGRE1抗体(AbCam, ab111101)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5d). PLoS ONE (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:300; 图 5b
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5b). Eur J Immunol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2b
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab100790)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2b). J Am Heart Assoc (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 1:100; 图 6a, 6b
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6a, 6b). Animals (Basel) (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 大鼠; 图 2e, 2f
  • 免疫印迹; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, BM8)被用于被用于免疫组化在大鼠样本上 (图 2e, 2f) 和 被用于免疫印迹在小鼠样本上 (图 2a). Oxid Med Cell Longev (2020) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 1f
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫组化在小鼠样本上 (图 1f). World J Gastroenterol (2020) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化; 小鼠; 1:500; 图 5c
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab111101)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 s2m
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab100790)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 s2m). Mol Metab (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1e
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab100790)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). Cell Death Dis (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 人类; 图 s1a
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1a). Cell (2019) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 小鼠; 图 3g
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab111101)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3g). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6f
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab100790)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6f). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s3h
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab100790)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3h). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 s2e
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab100790)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s2e). Breast Cancer Res (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Clin Invest (2018) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s1d
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s1d). Development (2018) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab111101)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2a). Mol Pain (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2c
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab111101)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Int J Legal Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab100790)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 s3
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, AB111101)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 s3). Parasitol Res (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 图 s5a
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫细胞化学在小鼠样本上 (图 s5a). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 9
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 9). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(SP115)
  • 免疫组化-石蜡切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab111101)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Arthritis Res Ther (2016) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠; 图 8a
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, BM8)被用于被用于流式细胞仪在小鼠样本上 (图 8a). Nat Commun (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, BM8)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:10; 图 3
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, Ab16911)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10 (图 3). J Cell Mol Med (2015) ncbi
大鼠 单克隆(BM8)
  • 流式细胞仪; 小鼠
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, BM8)被用于被用于流式细胞仪在小鼠样本上. Immunobiology (2015) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 大鼠
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在大鼠样本上 和 被用于免疫组化-石蜡切片在人类样本上. J Pharmacol Sci (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Stem Cells (2014) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 1:250
  • 免疫组化; 小鼠; 1:250
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 和 被用于免疫组化在小鼠样本上浓度为1:250. Proc Natl Acad Sci U S A (2013) ncbi
大鼠 单克隆(BM8)
  • 免疫细胞化学; 小鼠; 1:100
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 ADGRE1抗体(Abcam, ab16911)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 和 被用于免疫组化在小鼠样本上. J Bone Miner Res (2013) ncbi
赛默飞世尔
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:500-1:1000; 图 s1-2l
赛默飞世尔 ADGRE1抗体(Thermo Fisher Scientific, ma1-91124)被用于被用于免疫组化在小鼠样本上浓度为1:500-1:1000 (图 s1-2l). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
赛默飞世尔 ADGRE1抗体(Thermo Fischer Scientific, PA5-32399)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2g
赛默飞世尔 ADGRE1抗体(Thermo Fisher, PA5-33502)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2g). Int J Oral Maxillofac Surg (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 ADGRE1抗体(Thermo Scientific, PA5-32399)被用于. Carcinogenesis (2015) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 人类; 1:100
赛默飞世尔 ADGRE1抗体(THERMO, MA1-91124)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔 ADGRE1抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Arthritis Res Ther (2012) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔 ADGRE1抗体(Invitrogen, C1:A3)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2011) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 ADGRE1抗体(Caltag, RM2920)被用于被用于流式细胞仪在小鼠样本上 (表 1). Free Radic Res (2010) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔 ADGRE1抗体(Caltag, RM2920)被用于被用于流式细胞仪在小鼠样本上. Bone Marrow Transplant (2010) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 ADGRE1抗体(Caltag, A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Am J Pathol (2009) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔 ADGRE1抗体(Caltag Laboratories, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. J Virol (2009) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 ADGRE1抗体(Caltag, C1:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunol Lett (2008) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔 ADGRE1抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Physiol Genomics (2007) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 ADGRE1抗体(Caltag, CI, A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 2). Shock (2007) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔 ADGRE1抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2007) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔 ADGRE1抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Am J Physiol Cell Physiol (2007) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 ADGRE1抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Immunol (2006) ncbi
大鼠 单克隆(CI:A3-1)
  • 免疫组化; 小鼠; 1:100; 图 1
  • 免疫印迹; 小鼠; 1:100; 图 1
赛默飞世尔 ADGRE1抗体(Caltag, CI:A3-1)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:100 (图 1). J Virol (2005) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 ADGRE1抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 5). Infect Immun (2005) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 ADGRE1抗体(Caltag Laboratories, CI:A3?C1)被用于被用于流式细胞仪在小鼠样本上 (图 3). Am J Respir Cell Mol Biol (2005) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔 ADGRE1抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 4 ug/ml; 图 2
赛默飞世尔 ADGRE1抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上浓度为4 ug/ml (图 2). Cytometry A (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 ADGRE1抗体(Caltag, CI: A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔 ADGRE1抗体(Caltag, CI-A3-1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 ADGRE1抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 ADGRE1抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 6). Eur J Immunol (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔 ADGRE1抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (2004) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 ADGRE1抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2003) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔 ADGRE1抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. J Gen Virol (2003) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 6, 7
赛默飞世尔 ADGRE1抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 6, 7). Eur J Immunol (2003) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠
赛默飞世尔 ADGRE1抗体(Caltag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上. Cell Immunol (2002) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔 ADGRE1抗体(Caltag Laboratories, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 8). J Immunol (2001) ncbi
大鼠 单克隆(CI:A3-1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 ADGRE1抗体(CalTag, CI:A3-1)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2001) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-7)
  • 免疫组化-石蜡切片; 小鼠; 图 2g
圣克鲁斯生物技术 ADGRE1抗体(Santa Cruz, sc-377009)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2g). Nat Commun (2022) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 3j
圣克鲁斯生物技术 ADGRE1抗体(Santa Cruz, sc-52664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3j). Acta Pharm Sin B (2022) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3c
圣克鲁斯生物技术 ADGRE1抗体(Santa Cruz, 52664)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3c). Arthritis Res Ther (2022) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
圣克鲁斯生物技术 ADGRE1抗体(Santa Cruz, sc52664)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f). Cancer Sci (2022) ncbi
小鼠 单克隆(C-7)
  • 免疫组化; 小鼠; 200 ug/ml; 图 8a
圣克鲁斯生物技术 ADGRE1抗体(Santa Cruz Biotechnology, sc-377009)被用于被用于免疫组化在小鼠样本上浓度为200 ug/ml (图 8a). Biomed Res Int (2021) ncbi
大鼠 单克隆(6A545)
  • 免疫组化; 小鼠; 图 5i
圣克鲁斯生物技术 ADGRE1抗体(Santa Cruz, sc-71085)被用于被用于免疫组化在小鼠样本上 (图 5i). Front Pharmacol (2021) ncbi
小鼠 单克隆(C-7)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2e
圣克鲁斯生物技术 ADGRE1抗体(Santa Cruz, sc-377009)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2e). Antioxidants (Basel) (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化; 小鼠; 图 7a
圣克鲁斯生物技术 ADGRE1抗体(Santa Cruz, sc-52664)被用于被用于免疫组化在小鼠样本上 (图 7a). Cell Death Dis (2021) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 9e
圣克鲁斯生物技术 ADGRE1抗体(Santa Cruz Biotechnolog, sc-52664)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 9e). elife (2019) ncbi
小鼠 单克隆(C-7)
  • 流式细胞仪; 大鼠; 图 3j
圣克鲁斯生物技术 ADGRE1抗体(Santa Cruz, sc-377009)被用于被用于流式细胞仪在大鼠样本上 (图 3j). J Cell Physiol (2019) ncbi
大鼠 单克隆(BM8)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
圣克鲁斯生物技术 ADGRE1抗体(Santa Cruz, sc-52664)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(C-7)
  • 免疫组化-冰冻切片; 仓鼠; 1:500; 图 4
圣克鲁斯生物技术 ADGRE1抗体(SantaCruz, sc-377009)被用于被用于免疫组化-冰冻切片在仓鼠样本上浓度为1:500 (图 4). Biomed Res Int (2014) ncbi
大鼠 单克隆(6A545)
  • 免疫组化-冰冻切片; 小鼠
圣克鲁斯生物技术 ADGRE1抗体(Santa Cruz Biotechnology, sc-71085)被用于被用于免疫组化-冰冻切片在小鼠样本上. Cancer Sci (2014) ncbi
Novus Biologicals
大鼠 单克隆(CI-A3-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3
Novus Biologicals ADGRE1抗体(Novus, NB600-404)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3). Mol Med Rep (2021) ncbi
文章列表
  1. Moore T, Cheng L, Wolf D, Ngo J, Segawa M, Zhu X, et al. Parkin regulates adiposity by coordinating mitophagy with mitochondrial biogenesis in white adipocytes. Nat Commun. 2022;13:6661 pubmed 出版商
  2. Tong J, Li D, Meng H, Sun D, Lan X, Ni M, et al. Targeting a novel inducible GPX4 alternative isoform to alleviate ferroptosis and treat metabolic-associated fatty liver disease. Acta Pharm Sin B. 2022;12:3650-3666 pubmed 出版商
  3. Chen T, Shi Z, Zhao Y, Meng X, Zhao S, Zheng L, et al. LncRNA Airn maintains LSEC differentiation to alleviate liver fibrosis via the KLF2-eNOS-sGC pathway. BMC Med. 2022;20:335 pubmed 出版商
  4. Abousaad S, Ahmed F, Abouzeid A, Ongeri E. Meprin β expression modulates the interleukin-6 mediated JAK2-STAT3 signaling pathway in ischemia/reperfusion-induced kidney injury. Physiol Rep. 2022;10:e15468 pubmed 出版商
  5. Wang F, Li M, Zhang A, Li H, Jiang C, Guo J. PCSK9 Modulates Macrophage Polarization-Mediated Ventricular Remodeling after Myocardial Infarction. J Immunol Res. 2022;2022:7685796 pubmed 出版商
  6. Zhang L, Zheng D, Yan Y, Yu Y, Chen R, Li Z, et al. Myeloid cell-specific deletion of Capns1 prevents macrophage polarization toward the M1 phenotype and reduces interstitial lung disease in the bleomycin model of systemic sclerosis. Arthritis Res Ther. 2022;24:148 pubmed 出版商
  7. Chou P, Luo C, Wali N, Lin W, Ng S, Wang C, et al. A chemical probe inhibitor targeting STAT1 restricts cancer stem cell traits and angiogenesis in colorectal cancer. J Biomed Sci. 2022;29:20 pubmed 出版商
  8. Xu J, Li Z, Tower R, Negri S, Wang Y, Meyers C, et al. NGF-p75 signaling coordinates skeletal cell migration during bone repair. Sci Adv. 2022;8:eabl5716 pubmed 出版商
  9. Chen B, Li R, Kubota A, Alex L, Frangogiannis N. Identification of macrophages in normal and injured mouse tissues using reporter lines and antibodies. Sci Rep. 2022;12:4542 pubmed 出版商
  10. Wang Q, Chen Y, Xie Y, Yang D, Sun Y, Yuan Y, et al. Histone H1.2 promotes hepatocarcinogenesis by regulating signal transducer and activator of transcription 3 signaling. Cancer Sci. 2022;113:1679-1692 pubmed 出版商
  11. Ye Q, Chen H, Ma H, Xiang X, Hu S, Xia C, et al. Xiaoyu Xiezhuo Drink Protects against Ischemia-Reperfusion Acute Kidney Injury in Aged Mice through Inhibiting the TGF-β1/Smad3 and HIF1 Signaling Pathways. Biomed Res Int. 2021;2021:9963732 pubmed 出版商
  12. Zhang P, Schlecht A, Wolf J, Boneva S, Laich Y, Koch J, et al. The role of interferon regulatory factor 8 for retinal tissue homeostasis and development of choroidal neovascularisation. J Neuroinflammation. 2021;18:215 pubmed 出版商
  13. Guo W, Liu J, Cheng L, Liu Z, Zheng X, Liang H, et al. Metformin Alleviates Steatohepatitis in Diet-Induced Obese Mice in a SIRT1-Dependent Way. Front Pharmacol. 2021;12:704112 pubmed 出版商
  14. Zhao J, Chen J, Li Y, Xia L, Wu Y. Bruton's tyrosine kinase regulates macrophage‑induced inflammation in the diabetic kidney via NLRP3 inflammasome activation. Int J Mol Med. 2021;48: pubmed 出版商
  15. Abbate J, Macri F, Arfuso F, Iaria C, Capparucci F, Anfuso C, et al. Anti-Atherogenic Effect of 10% Supplementation of Anchovy (Engraulis encrasicolus) Waste Protein Hydrolysates in ApoE-Deficient Mice. Nutrients. 2021;13: pubmed 出版商
  16. Choi E, Jeong J, Jang H, Ahn Y, Kim K, An H, et al. Skeletal Lipocalin-2 Is Associated with Iron-Related Oxidative Stress in ob/ob Mice with Sarcopenia. Antioxidants (Basel). 2021;10: pubmed 出版商
  17. Li L, Yang L, Yang F, Zhao X, Xue S, Gong F. Ginkgo biloba Extract 50 (GBE50) Ameliorates Insulin Resistance, Hepatic Steatosis and Liver Injury in High Fat Diet-Fed Mice. J Inflamm Res. 2021;14:1959-1971 pubmed 出版商
  18. Tan S, Liu X, Chen L, Wu X, Tao L, Pan X, et al. Fas/FasL mediates NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to drive liver fibrosis. Cell Death Dis. 2021;12:474 pubmed 出版商
  19. Maier A, Reichhart N, Gonnermann J, Kociok N, Riechardt A, Gundlach E, et al. Effects of TNFα receptor TNF-Rp55- or TNF-Rp75- deficiency on corneal neovascularization and lymphangiogenesis in the mouse. PLoS ONE. 2021;16:e0245143 pubmed 出版商
  20. Cheah F, Presicce P, Tan T, Carey B, Kallapur S. Studying the Effects of Granulocyte-Macrophage Colony-Stimulating Factor on Fetal Lung Macrophages During the Perinatal Period Using the Mouse Model. Front Pediatr. 2021;9:614209 pubmed 出版商
  21. Zhou M, Wang X, Shi Y, Ding Y, Li X, Xie T, et al. Deficiency of ITGAM Attenuates Experimental Abdominal Aortic Aneurysm in Mice. J Am Heart Assoc. 2021;10:e019900 pubmed 出版商
  22. Reyes J, Ekmark Lewén S, Perdiki M, Klingstedt T, Hoffmann A, Wiechec E, et al. Accumulation of alpha-synuclein within the liver, potential role in the clearance of brain pathology associated with Parkinson's disease. Acta Neuropathol Commun. 2021;9:46 pubmed 出版商
  23. Li J, Zhang H, Dong Y, Wang X, Wang G. Omega-3FAs Can Inhibit the Inflammation and Insulin Resistance of Adipose Tissue Caused by HHcy Induced Lipids Profile Changing in Mice. Front Physiol. 2021;12:628122 pubmed 出版商
  24. Wang X, Zhao Y, Zhou D, Tian Y, Feng G, Lu Z. Gab2 deficiency suppresses high-fat diet-induced obesity by reducing adipose tissue inflammation and increasing brown adipose function in mice. Cell Death Dis. 2021;12:212 pubmed 出版商
  25. Khatib Shahidi R, M Hoffmann J, Hedjazifar S, Bonnet L, K Baboota R, Heasman S, et al. Adult mice are unresponsive to AAV8-Gremlin1 gene therapy targeting the liver. PLoS ONE. 2021;16:e0247300 pubmed 出版商
  26. Chen L, Wu H, Ren C, Liu G, Zhang W, Liu W, et al. Inhibition of PDGF-BB reduces alkali-induced corneal neovascularization in mice. Mol Med Rep. 2021;23:1 pubmed 出版商
  27. Hidalgo Sastre A, Kuebelsbeck L, Jochheim L, Staufer L, Altmayr F, Johannes W, et al. Toll-like receptor 3 expression in myeloid cells is essential for efficient regeneration after acute pancreatitis in mice. Eur J Immunol. 2021;51:1182-1194 pubmed 出版商
  28. Sharma N, Hans C. Interleukin 12p40 Deficiency Promotes Abdominal Aortic Aneurysm by Activating CCN2/MMP2 Pathways. J Am Heart Assoc. 2021;10:e017633 pubmed 出版商
  29. Abbate J, Macri F, Capparucci F, Iaria C, Briguglio G, Cicero L, et al. Administration of Protein Hydrolysates from Anchovy (Engraulis Encrasicolus) Waste for Twelve Weeks Decreases Metabolic Dysfunction-Associated Fatty Liver Disease Severity in ApoE-/-Mice. Animals (Basel). 2020;10: pubmed 出版商
  30. Kalinski A, Yoon C, Huffman L, Duncker P, Kohen R, Passino R, et al. Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement. elife. 2020;9: pubmed 出版商
  31. Yifan Z, Benxiang N, Zheng X, Luwei X, Liuhua Z, Yuzheng G, et al. Ceftriaxone Calcium Crystals Induce Acute Kidney Injury by NLRP3-Mediated Inflammation and Oxidative Stress Injury. Oxid Med Cell Longev. 2020;2020:6428498 pubmed 出版商
  32. Tashita C, Hoshi M, Hirata A, Nakamoto K, Ando T, Hattori T, et al. Kynurenine plays an immunosuppressive role in 2,4,6-trinitrobenzene sulfate-induced colitis in mice. World J Gastroenterol. 2020;26:918-932 pubmed 出版商
  33. von Roemeling C, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11:1508 pubmed 出版商
  34. Xu M, Ge C, Qin Y, Lou D, Li Q, Feng J, et al. Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation. Mol Metab. 2020;34:112-123 pubmed 出版商
  35. Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, et al. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 2019;10:918 pubmed 出版商
  36. Xu M, Xu H, Lin Y, Sun X, Wang L, Fang Z, et al. LECT2, a Ligand for Tie1, Plays a Crucial Role in Liver Fibrogenesis. Cell. 2019;178:1478-1492.e20 pubmed 出版商
  37. Jung M, Wells D, Rusch J, Ahmad S, Marchini J, Myers S, et al. Unified single-cell analysis of testis gene regulation and pathology in five mouse strains. elife. 2019;8: pubmed 出版商
  38. Sivaram N, McLaughlin P, Han H, Petrenko O, Jiang Y, Ballou L, et al. Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer. J Clin Invest. 2019;130: pubmed 出版商
  39. Liu M, Yin L, Li W, Hu J, Wang H, Ye B, et al. C1q/TNF-related protein-9 promotes macrophage polarization and improves cardiac dysfunction after myocardial infarction. J Cell Physiol. 2019;234:18731-18747 pubmed 出版商
  40. Zhu W, Zhao Z, Chou F, Zuo L, Liu T, Yeh S, et al. Loss of the androgen receptor suppresses intrarenal calcium oxalate crystals deposition via altering macrophage recruitment/M2 polarization with change of the miR-185-5p/CSF-1 signals. Cell Death Dis. 2019;10:275 pubmed 出版商
  41. Georgouli M, Herraiz C, Crosas Molist E, Fanshawe B, Maiques O, Perdrix A, et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757-774.e23 pubmed 出版商
  42. Chute C, Yang X, Meyer K, Yang N, O Neil K, Kasza I, et al. Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res. 2018;20:66 pubmed 出版商
  43. Qing X, Chinenov Y, Redecha P, Madaio M, Roelofs J, FARBER G, et al. iRhom2 promotes lupus nephritis through TNF-? and EGFR signaling. J Clin Invest. 2018;128:1397-1412 pubmed 出版商
  44. Gao Z, Daquinag A, Su F, Snyder B, Kolonin M. PDGFRα/PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development. 2018;145: pubmed 出版商
  45. Nagashima H, Shinoda M, Honda K, Kamio N, Watanabe M, Suzuki T, et al. CXCR4 signaling in macrophages contributes to periodontal mechanical hypersensitivity in Porphyromonas gingivalis-induced periodontitis in mice. Mol Pain. 2017;13:1744806916689269 pubmed 出版商
  46. Zhang H, Yue Y, Sun T, Wu X, Xiong S. Transmissible endoplasmic reticulum stress from myocardiocytes to macrophages is pivotal for the pathogenesis of CVB3-induced viral myocarditis. Sci Rep. 2017;7:42162 pubmed 出版商
  47. Ji X, Chen Y, Ye G, Dong M, Lin K, Han J, et al. Detection of RAGE expression and its application to diabetic wound age estimation. Int J Legal Med. 2017;131:691-698 pubmed 出版商
  48. Zhang Y, Yu J, Grachtchouk V, Qin T, Lumeng C, Sartor M, et al. Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer. Oncotarget. 2017;8:5761-5773 pubmed 出版商
  49. Du M, Wang X, Tan X, Li X, Huang D, Huang K, et al. Nkx2-5 Is Expressed in Atherosclerotic Plaques and Attenuates Development of Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed
  50. Lizardo K, Almonte V, Law C, Aiyyappan J, Cui M, Nagajyothi J. Diet regulates liver autophagy differentially in murine acute Trypanosoma cruzi infection. Parasitol Res. 2017;116:711-723 pubmed 出版商
  51. Tian S, Li C, Ran R, Chen S. Surfactant protein A deficiency exacerbates renal interstitial fibrosis following obstructive injury in mice. Biochim Biophys Acta Mol Basis Dis. 2017;1863:509-517 pubmed 出版商
  52. Cox A, Barrandon O, Cai E, Rios J, Chavez J, Bonnyman C, et al. Resolving Discrepant Findings on ANGPTL8 in ?-Cell Proliferation: A Collaborative Approach to Resolving the Betatrophin Controversy. PLoS ONE. 2016;11:e0159276 pubmed 出版商
  53. Khullar S, Katebi N, Herlofson B, Tvedt D, Olsen B. Evidence to support the hypothesis of tuberculosis as a cause of extreme osteonecrosis and osteomyelitis of the mandible in a West African population. Int J Oral Maxillofac Surg. 2016;45:1600-1606 pubmed 出版商
  54. Akashi K, Saegusa J, Sendo S, Nishimura K, Okano T, Yagi K, et al. Knockout of endothelin type B receptor signaling attenuates bleomycin-induced skin sclerosis in mice. Arthritis Res Ther. 2016;18:113 pubmed 出版商
  55. Vance M, Llanga T, Bennett W, Woodard K, Murlidharan G, Chungfat N, et al. AAV Gene Therapy for MPS1-associated Corneal Blindness. Sci Rep. 2016;6:22131 pubmed 出版商
  56. Phinney D, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix C, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472 pubmed 出版商
  57. Hanot Mambres D, Machelart A, Vanderwinden J, De Trez C, Ryffel B, Letesson J, et al. In Situ Characterization of Splenic Brucella melitensis Reservoir Cells during the Chronic Phase of Infection in Susceptible Mice. PLoS ONE. 2015;10:e0137835 pubmed 出版商
  58. Brown A, Simmen R, Raj V, Van T, MacLeod S, Simmen F. Krüppel-like factor 9 (KLF9) prevents colorectal cancer through inhibition of interferon-related signaling. Carcinogenesis. 2015;36:946-55 pubmed 出版商
  59. Malik I, Stange I, Martius G, Cameron S, Rave Fränk M, Hess C, et al. Role of PECAM-1 in radiation-induced liver inflammation. J Cell Mol Med. 2015;19:2441-52 pubmed 出版商
  60. Hiemstra I, Vrijland K, Hogenboom M, Bouma G, Kraal G, den Haan J. Intestinal epithelial cell transported TLR2 ligand stimulates Ly6C⁺ monocyte differentiation in a G-CSF dependent manner. Immunobiology. 2015;220:1255-65 pubmed 出版商
  61. Fukuda M, Aoki T, Manabe T, Maekawa A, Shirakawa T, Kataoka H, et al. Exacerbation of intracranial aneurysm and aortic dissection in hypertensive rat treated with the prostaglandin F-receptor antagonist AS604872. J Pharmacol Sci. 2014;126:230-42 pubmed
  62. Lu H, Tzeng T, Liou S, Chang C, Yang C, Wu M, et al. Ruscogenin ameliorates experimental nonalcoholic steatohepatitis via suppressing lipogenesis and inflammatory pathway. Biomed Res Int. 2014;2014:652680 pubmed 出版商
  63. Droguett A, Krall P, Burgos M, Valderrama G, Carpio D, Ardiles L, et al. Tubular overexpression of gremlin induces renal damage susceptibility in mice. PLoS ONE. 2014;9:e101879 pubmed 出版商
  64. Majumder M, Xin X, Liu L, Girish G, Lala P. Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions. Cancer Sci. 2014;105:1142-51 pubmed 出版商
  65. Suga H, Rennert R, Rodrigues M, Sorkin M, Glotzbach J, Januszyk M, et al. Tracking the elusive fibrocyte: identification and characterization of collagen-producing hematopoietic lineage cells during murine wound healing. Stem Cells. 2014;32:1347-60 pubmed 出版商
  66. Martinod K, Demers M, Fuchs T, Wong S, Brill A, Gallant M, et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A. 2013;110:8674-9 pubmed 出版商
  67. Wintges K, Beil F, Albers J, Jeschke A, Schweizer M, Claass B, et al. Impaired bone formation and increased osteoclastogenesis in mice lacking chemokine (C-C motif) ligand 5 (Ccl5). J Bone Miner Res. 2013;28:2070-80 pubmed 出版商
  68. Sekine C, Koyanagi A, Koyama N, Hozumi K, Chiba S, Yagita H. Differential regulation of osteoclastogenesis by Notch2/Delta-like 1 and Notch1/Jagged1 axes. Arthritis Res Ther. 2012;14:R45 pubmed 出版商
  69. Hufford M, Kim T, Sun J, Braciale T. Antiviral CD8+ T cell effector activities in situ are regulated by target cell type. J Exp Med. 2011;208:167-80 pubmed 出版商
  70. Thompson J, Chu Y, Glass J, Tapp A, Brown S. The manganese superoxide dismutase mimetic, M40403, protects adult mice from lethal total body irradiation. Free Radic Res. 2010;44:529-40 pubmed 出版商
  71. Thompson J, Chu Y, Glass J, Brown S. Absence of IL-23p19 in donor allogeneic cells reduces mortality from acute GVHD. Bone Marrow Transplant. 2010;45:712-22 pubmed 出版商
  72. Dewals B, Hoving J, Leeto M, Marillier R, Govender U, Cutler A, et al. IL-4Ralpha responsiveness of non-CD4 T cells contributes to resistance in schistosoma mansoni infection in pan-T cell-specific IL-4Ralpha-deficient mice. Am J Pathol. 2009;175:706-16 pubmed 出版商
  73. Siegemund S, Hartl A, von Buttlar H, Dautel F, Raue R, Freudenberg M, et al. Conventional bone marrow-derived dendritic cells contribute to toll-like receptor-independent production of alpha/beta interferon in response to inactivated parapoxvirus ovis. J Virol. 2009;83:9411-22 pubmed 出版商
  74. Culshaw S, Millington O, Brewer J, McInnes I. Murine neutrophils present Class II restricted antigen. Immunol Lett. 2008;118:49-54 pubmed 出版商
  75. Chen H, ORDOG T, Chen J, YOUNG D, Bardsley M, Redelman D, et al. Differential gene expression in functional classes of interstitial cells of Cajal in murine small intestine. Physiol Genomics. 2007;31:492-509 pubmed
  76. Noel G, Guo X, Wang Q, Schwemberger S, Byrum D, Ogle C. Postburn monocytes are the major producers of TNF-alpha in the heterogeneous splenic macrophage population. Shock. 2007;27:312-9 pubmed
  77. de Jersey J, Snelgrove S, Palmer S, Teteris S, Mullbacher A, Miller J, et al. Beta cells cannot directly prime diabetogenic CD8 T cells in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2007;104:1295-300 pubmed
  78. Chen H, Redelman D, Ro S, Ward S, ORDOG T, Sanders K. Selective labeling and isolation of functional classes of interstitial cells of Cajal of human and murine small intestine. Am J Physiol Cell Physiol. 2007;292:C497-507 pubmed
  79. Hewitson J, Jenkins G, Hamblin P, Mountford A. CD40/CD154 interactions are required for the optimal maturation of skin-derived APCs and the induction of helminth-specific IFN-gamma but not IL-4. J Immunol. 2006;177:3209-17 pubmed
  80. Rempel J, Quina L, Blakely Gonzales P, Buchmeier M, Gruol D. Viral induction of central nervous system innate immune responses. J Virol. 2005;79:4369-81 pubmed
  81. Reissinger A, Skinner J, Yuk M. Downregulation of mitogen-activated protein kinases by the Bordetella bronchiseptica Type III secretion system leads to attenuated nonclassical macrophage activation. Infect Immun. 2005;73:308-16 pubmed
  82. Jennings J, Linderman D, Hu B, Sonstein J, Curtis J. Monocytes recruited to the lungs of mice during immune inflammation ingest apoptotic cells poorly. Am J Respir Cell Mol Biol. 2005;32:108-17 pubmed
  83. Mischenko V, Kapina M, Eruslanov E, Kondratieva E, Lyadova I, Young D, et al. Mycobacterial dissemination and cellular responses after 1-lobe restricted tuberculosis infection of genetically susceptible and resistant mice. J Infect Dis. 2004;190:2137-45 pubmed
  84. ORDOG T, Redelman D, Horváth V, Miller L, Horowitz B, Sanders K. Quantitative analysis by flow cytometry of interstitial cells of Cajal, pacemakers, and mediators of neurotransmission in the gastrointestinal tract. Cytometry A. 2004;62:139-49 pubmed
  85. Mangan N, Fallon R, Smith P, Van Rooijen N, McKenzie A, Fallon P. Helminth infection protects mice from anaphylaxis via IL-10-producing B cells. J Immunol. 2004;173:6346-56 pubmed
  86. Zheng S, Jiang J, Shen H, Chen Y. Reduced apoptosis and ameliorated listeriosis in TRAIL-null mice. J Immunol. 2004;173:5652-8 pubmed
  87. Mattner J, Wandersee Steinhäuser A, Pahl A, Rollinghoff M, Majeau G, Hochman P, et al. Protection against progressive leishmaniasis by IFN-beta. J Immunol. 2004;172:7574-82 pubmed
  88. Schleicher U, Mattner J, Blos M, Schindler H, Rollinghoff M, Karaghiosoff M, et al. Control of Leishmania major in the absence of Tyk2 kinase. Eur J Immunol. 2004;34:519-29 pubmed
  89. Eruslanov E, Majorov K, Orlova M, Mischenko V, Kondratieva T, Apt A, et al. Lung cell responses to M. tuberculosis in genetically susceptible and resistant mice following intratracheal challenge. Clin Exp Immunol. 2004;135:19-28 pubmed
  90. Cook A, Braine E, Hamilton J. The phenotype of inflammatory macrophages is stimulus dependent: implications for the nature of the inflammatory response. J Immunol. 2003;171:4816-23 pubmed
  91. Reading P, Smith G. A kinetic analysis of immune mediators in the lungs of mice infected with vaccinia virus and comparison with intradermal infection. J Gen Virol. 2003;84:1973-83 pubmed
  92. Blos M, Schleicher U, Soares Rocha F, Meissner U, Rollinghoff M, Bogdan C. Organ-specific and stage-dependent control of Leishmania major infection by inducible nitric oxide synthase and phagocyte NADPH oxidase. Eur J Immunol. 2003;33:1224-34 pubmed
  93. Stavitsky A, Xianli J. In vitro and in vivo regulation by macrophage migration inhibitory factor (MIF) of expression of MHC-II, costimulatory, adhesion, receptor, and cytokine molecules. Cell Immunol. 2002;217:95-104 pubmed
  94. Saio M, Radoja S, Marino M, Frey A. Tumor-infiltrating macrophages induce apoptosis in activated CD8(+) T cells by a mechanism requiring cell contact and mediated by both the cell-associated form of TNF and nitric oxide. J Immunol. 2001;167:5583-93 pubmed
  95. Radoja S, Saio M, Frey A. CD8+ tumor-infiltrating lymphocytes are primed for Fas-mediated activation-induced cell death but are not apoptotic in situ. J Immunol. 2001;166:6074-83 pubmed