这是一篇来自已证抗体库的有关人类 AIF的综述,是根据37篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合AIF 抗体。
AIF 同义词: AIF; AUNX1; CMT2D; CMTX4; COWCK; COXPD6; DFNX5; NADMR; NAMSD; PDCD8; SEMDHL

圣克鲁斯生物技术
小鼠 单克隆(E-11)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 AIF抗体(Santa Cruz, sc-390619)被用于被用于免疫印迹在人类样本上 (图 1c). J Cell Biol (2022) ncbi
小鼠 单克隆(E-1)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4, 5, 7
  • 免疫印迹; 人类; 1:250; 图 2
圣克鲁斯生物技术 AIF抗体(Santa Cruz, sc-13116)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4, 5, 7) 和 被用于免疫印迹在人类样本上浓度为1:250 (图 2). Cancers (Basel) (2021) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 人类; 1:1000; 图 4b
圣克鲁斯生物技术 AIF抗体(Santa, sc-13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). EMBO Mol Med (2019) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术 AIF抗体(Santa Cruz, sc-13116)被用于被用于免疫印迹在人类样本上 (图 1b). Nature (2017) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 人类; 1:700; 图 4a
圣克鲁斯生物技术 AIF抗体(Santa Cruz, sc-13116)被用于被用于免疫印迹在人类样本上浓度为1:700 (图 4a). Oncotarget (2016) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 AIF抗体(Santa Cruz Biotechnology, sc-13116)被用于被用于免疫印迹在人类样本上 (图 2). BMC Cancer (2016) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 人类; 图 s8
圣克鲁斯生物技术 AIF抗体(Santa Cruz, sc-13116)被用于被用于免疫印迹在人类样本上 (图 s8). Nature (2016) ncbi
小鼠 单克隆(E-1)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 AIF抗体(SCBT, E-1)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 小鼠; 图 6
  • 免疫印迹; 大鼠; 图 2
圣克鲁斯生物技术 AIF抗体(Santa Cruz, sc-13116)被用于被用于免疫印迹在小鼠样本上 (图 6) 和 被用于免疫印迹在大鼠样本上 (图 2). Cell Death Differ (2016) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术 AIF抗体(Santa Cruz Biotechnology, sc-13116)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(E-1)
  • 免疫细胞化学; 人类; 表 1
  • 免疫印迹; 人类; 1:1000; 表 1
圣克鲁斯生物技术 AIF抗体(Santa Cruz, sc-13116)被用于被用于免疫细胞化学在人类样本上 (表 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Methods Mol Biol (2015) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 AIF抗体(Santa Cruz, Sc-13116)被用于被用于免疫印迹在人类样本上 (图 4). Hum Exp Toxicol (2015) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 大鼠
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 AIF抗体(Santa Cruz Biotechnology, sc-13116)被用于被用于免疫印迹在大鼠样本上, 被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(B-9)
  • 免疫组化-石蜡切片; 人类; 1:200
  • 免疫印迹; 人类
圣克鲁斯生物技术 AIF抗体(Santa Cruz Biotech, sc-55519)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
赛默飞世尔
小鼠 单克隆(4E7E11)
  • proximity ligation assay; 小鼠; 图 3
  • 免疫沉淀; 小鼠; 图 1a
  • 免疫细胞化学; 小鼠; 图 2a
  • 免疫印迹; 小鼠; 图 1c
赛默飞世尔 AIF抗体(Pierce-Thermo Scientific, MA5-15880)被用于被用于proximity ligation assay在小鼠样本上 (图 3), 被用于免疫沉淀在小鼠样本上 (图 1a), 被用于免疫细胞化学在小鼠样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 1c). J Cell Mol Med (2016) ncbi
小鼠 单克隆(4E7E11)
  • 免疫印迹; 人类; 1:4000
赛默飞世尔 AIF抗体(Pierce, MA5-15880)被用于被用于免疫印迹在人类样本上浓度为1:4000. Mitochondrion (2015) ncbi
安迪生物R&D
家羊 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 5c
安迪生物R&D AIF抗体(R&D, AF5824)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 5c). Int J Mol Sci (2021) ncbi
Rockland Immunochemicals
domestic rabbit 多克隆
Rockland Immunochemicals AIF抗体(Rockland Immunochemicals, 200-401-985)被用于. Oncol Rep (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:350; 图 7a
艾博抗(上海)贸易有限公司 AIF抗体(Abcam, ab1998)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:350 (图 7a). J Comp Neurol (2019) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D39D2)
  • 免疫细胞化学; 大鼠; 1:200; 图 2k
赛信通(上海)生物试剂有限公司 AIF抗体(CST, 5318s)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 2k). Front Pharmacol (2022) ncbi
domestic rabbit 单克隆(D39D2)
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 AIF抗体(Cell Signaling, 5318)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 AIF抗体(Cell Signaling Technology, 4642)被用于被用于免疫组化在小鼠样本上 (图 4). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D39D2)
  • 免疫细胞化学; 小鼠; 图 s5b
赛信通(上海)生物试剂有限公司 AIF抗体(Cell Signaling, 5318)被用于被用于免疫细胞化学在小鼠样本上 (图 s5b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D39D2)
  • 免疫印迹; 人类; 1:1000; 图 s3m
赛信通(上海)生物试剂有限公司 AIF抗体(Cell Signaling, 5318)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3m). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(D39D2)
  • 免疫细胞化学; 人类; 图 s1
赛信通(上海)生物试剂有限公司 AIF抗体(Cell Signaling Technology, 5318)被用于被用于免疫细胞化学在人类样本上 (图 s1). Autophagy (2019) ncbi
domestic rabbit 单克隆(D39D2)
  • 免疫印迹; 西尼罗河病毒; 图 6e
赛信通(上海)生物试剂有限公司 AIF抗体(Cell Signaling, 5318S)被用于被用于免疫印迹在西尼罗河病毒样本上 (图 6e). Nat Microbiol (2019) ncbi
domestic rabbit 单克隆(D39D2)
  • 免疫印迹; 人类; 图 5l
赛信通(上海)生物试剂有限公司 AIF抗体(Cell Signaling, 5318)被用于被用于免疫印迹在人类样本上 (图 5l). Nat Cell Biol (2019) ncbi
domestic rabbit 单克隆(D39D2)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4b
赛信通(上海)生物试剂有限公司 AIF抗体(Cell Signaling, 5318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4b). Nucleic Acids Res (2019) ncbi
domestic rabbit 单克隆(D39D2)
  • 免疫印迹; 小鼠; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 AIF抗体(Cell Signaling, 5318)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7e). Diabetologia (2019) ncbi
domestic rabbit 单克隆(D39D2)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 AIF抗体(Cell Signaling, 5318)被用于被用于免疫印迹在人类样本上 (图 1d). Mol Cell Biochem (2019) ncbi
domestic rabbit 单克隆(D39D2)
  • 免疫组化; 人类; 1:1500; 图 s2b
赛信通(上海)生物试剂有限公司 AIF抗体(CST, 5318S)被用于被用于免疫组化在人类样本上浓度为1:1500 (图 s2b). Sci Adv (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 5
赛信通(上海)生物试剂有限公司 AIF抗体(Cell Signaling, 4642)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(D39D2)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AIF抗体(Cell Signaling Technology, 5318)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Arch Toxicol (2017) ncbi
domestic rabbit 单克隆(D39D2)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AIF抗体(Cell Signaling Technology, 5318)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 2e
赛信通(上海)生物试剂有限公司 AIF抗体(Cell Signaling, 4642)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2e). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AIF抗体(Cell signaling, 4642)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(D39D2)
  • 免疫细胞化学; 人类; 1:400
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AIF抗体(Cell Signaling, D39D2)被用于被用于免疫细胞化学在人类样本上浓度为1:400 和 被用于免疫印迹在人类样本上浓度为1:1000. Mol Oncol (2015) ncbi
文章列表
  1. Zheng C, Xuan W, Chen Z, Zhang R, Huang X, Zhu Y, et al. CX3CL1 Worsens Cardiorenal Dysfunction and Serves as a Therapeutic Target of Canagliflozin for Cardiorenal Syndrome. Front Pharmacol. 2022;13:848310 pubmed 出版商
  2. Jiang Q, Zhang X, Dai X, Han S, Wu X, Wang L, et al. S6K1-mediated phosphorylation of PDK1 impairs AKT kinase activity and oncogenic functions. Nat Commun. 2022;13:1548 pubmed 出版商
  3. Cardamone M, Gao Y, Kwan J, Hayashi V, Sheeran M, Xu J, et al. Neuralized-like protein 4 (NEURL4) mediates ADP-ribosylation of mitochondrial proteins. J Cell Biol. 2022;221: pubmed 出版商
  4. Paštar V, Lozić M, Kelam N, Filipović N, Bernard B, Katsuyama Y, et al. Connexin Expression Is Altered in Liver Development of Yotari (dab1 -/-) Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  5. Zhao H, Tang J, Chen H, Gu W, Geng H, Wang L, et al. 14,15-EET Reduced Brain Injury from Cerebral Ischemia and Reperfusion via Suppressing Neuronal Parthanatos. Int J Mol Sci. 2021;22: pubmed 出版商
  6. Scagliola A, Miluzio A, Ventura G, Oliveto S, Cordiglieri C, Manfrini N, et al. Targeting of eIF6-driven translation induces a metabolic rewiring that reduces NAFLD and the consequent evolution to hepatocellular carcinoma. Nat Commun. 2021;12:4878 pubmed 出版商
  7. Guo J, Cheng J, Zheng N, Zhang X, Dai X, Zhang L, et al. Copper Promotes Tumorigenesis by Activating the PDK1-AKT Oncogenic Pathway in a Copper Transporter 1 Dependent Manner. Adv Sci (Weinh). 2021;8:e2004303 pubmed 出版商
  8. Letkovska K, Babal P, Cierna Z, Schmidtova S, Lišková V, Kalavska K, et al. Prognostic Value of Apoptosis-Inducing Factor (AIF) in Germ Cell Tumors. Cancers (Basel). 2021;13: pubmed 出版商
  9. Power M, Rogerson L, Schubert T, Berens P, Euler T, Paquet Durand F. Systematic spatiotemporal mapping reveals divergent cell death pathways in three mouse models of hereditary retinal degeneration. J Comp Neurol. 2019;: pubmed 出版商
  10. Ding X, Jiang X, Tian R, Zhao P, Li L, Wang X, et al. RAB2 regulates the formation of autophagosome and autolysosome in mammalian cells. Autophagy. 2019;:1-13 pubmed 出版商
  11. Li M, Johnson J, Truong B, Kim G, Weinbren N, Dittmar M, et al. Identification of antiviral roles for the exon-junction complex and nonsense-mediated decay in flaviviral infection. Nat Microbiol. 2019;4:985-995 pubmed 出版商
  12. Guo J, Dai X, Laurent B, Zheng N, Gan W, Zhang J, et al. AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nat Cell Biol. 2019;21:226-237 pubmed 出版商
  13. Ding D, Liu J, Dong K, Melnick A, Latham K, Chen C. Mitochondrial membrane-based initial separation of MIWI and MILI functions during pachytene piRNA biogenesis. Nucleic Acids Res. 2019;47:2594-2608 pubmed 出版商
  14. Signes A, Cerutti R, Dickson A, Benincá C, Hinchy E, Ghezzi D, et al. APOPT1/COA8 assists COX assembly and is oppositely regulated by UPS and ROS. EMBO Mol Med. 2019;11: pubmed 出版商
  15. Yoshitake S, Murakami T, Suzuma K, Yoshitake T, Uji A, Morooka S, et al. Anti-fumarase antibody promotes the dropout of photoreceptor inner and outer segments in diabetic macular oedema. Diabetologia. 2019;62:504-516 pubmed 出版商
  16. Killackey S, Rahman M, Soares F, Zhang A, Abdel Nour M, Philpott D, et al. The mitochondrial Nod-like receptor NLRX1 modifies apoptosis through SARM1. Mol Cell Biochem. 2019;453:187-196 pubmed 出版商
  17. NGUYEN J, Ray C, Fox A, Mendonça D, Kim J, Krebsbach P. Mammalian EAK-7 activates alternative mTOR signaling to regulate cell proliferation and migration. Sci Adv. 2018;4:eaao5838 pubmed 出版商
  18. Sugiura A, Mattie S, Prudent J, McBride H. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature. 2017;542:251-254 pubmed 出版商
  19. Lu H, Yang X, Tian X, Tang S, Li L, Zhao S, et al. The in vitro and vivo anti-tumor effects and molecular mechanisms of suberoylanilide hydroxamic acid (SAHA) and MG132 on the aggressive phenotypes of gastric cancer cells. Oncotarget. 2016;7:56508-56525 pubmed 出版商
  20. Scott A, Wilkinson A, Wilkinson J. Basal metabolic state governs AIF-dependent growth support in pancreatic cancer cells. BMC Cancer. 2016;16:286 pubmed 出版商
  21. Jeong J, Noh M, Choi J, Lee H, Kim S. Neuroprotective and antioxidant activities of bamboo salt soy sauce against H2O2-induced oxidative stress in rat cortical neurons. Exp Ther Med. 2016;11:1201-1210 pubmed
  22. Jiang L, Shestov A, Swain P, Yang C, Parker S, Wang Q, et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature. 2016;532:255-8 pubmed 出版商
  23. Du K, Farhood A, Jaeschke H. Mitochondria-targeted antioxidant Mito-Tempo protects against acetaminophen hepatotoxicity. Arch Toxicol. 2017;91:761-773 pubmed 出版商
  24. Nagase M, Kurihara H, Aiba A, Young M, Sakai T. Deletion of Rac1GTPase in the Myeloid Lineage Protects against Inflammation-Mediated Kidney Injury in Mice. PLoS ONE. 2016;11:e0150886 pubmed 出版商
  25. Lei L, Spradling A. Mouse oocytes differentiate through organelle enrichment from sister cyst germ cells. Science. 2016;352:95-9 pubmed 出版商
  26. Denuc A, Núñez E, Calvo E, Loureiro M, Miro Casas E, Guarás A, et al. New protein-protein interactions of mitochondrial connexin 43 in mouse heart. J Cell Mol Med. 2016;20:794-803 pubmed 出版商
  27. Gao S, Chen X, Jin H, Ren S, Liu Z, Fang X, et al. Overexpression of ErbB2 renders breast cancer cells susceptible to 3-BrPA through the increased dissociation of hexokinase II from mitochondrial outer membrane. Oncol Lett. 2016;11:1567-1573 pubmed
  28. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  29. Sabirzhanov B, Stoica B, Zhao Z, Loane D, Wu J, Dorsey S, et al. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ. 2016;23:654-68 pubmed 出版商
  30. Koh D, Powell D, Blake S, Hoffman J, Hopkins M, Feng X. Enhanced cytotoxicity in triple-negative and estrogen receptor‑positive breast adenocarcinoma cells due to inhibition of the transient receptor potential melastatin-2 channel. Oncol Rep. 2015;34:1589-98 pubmed 出版商
  31. Loureiro R, Magalhães Novais S, Mesquita K, Baldeiras I, Sousa I, Tavares L, et al. Melatonin antiproliferative effects require active mitochondrial function in embryonal carcinoma cells. Oncotarget. 2015;6:17081-96 pubmed
  32. Kettwig M, Schubach M, Zimmermann F, Klinge L, Mayr J, Biskup S, et al. From ventriculomegaly to severe muscular atrophy: expansion of the clinical spectrum related to mutations in AIFM1. Mitochondrion. 2015;21:12-8 pubmed 出版商
  33. Vega Naredo I, Cunha Oliveira T, Serafim T, Sardao V, Oliveira P. Analysis of pro-apoptotic protein trafficking to and from mitochondria. Methods Mol Biol. 2015;1241:163-80 pubmed 出版商
  34. Iwaniuk A, JabÅ‚oÅ„ska E, JabÅ‚oÅ„ski J, Ratajczak Wrona W, Garley M. Expression of selected proteins of the extrinsic and intrinsic pathways of apoptosis in human leukocytes exposed to N-nitrosodimethylamine. Hum Exp Toxicol. 2015;34:591-600 pubmed 出版商
  35. Passaro C, Volpe M, Botta G, Scamardella E, Perruolo G, Gillespie D, et al. PARP inhibitor olaparib increases the oncolytic activity of dl922-947 in in vitro and in vivo model of anaplastic thyroid carcinoma. Mol Oncol. 2015;9:78-92 pubmed 出版商
  36. Sabirzhanov B, Zhao Z, Stoica B, Loane D, Wu J, Borroto C, et al. Downregulation of miR-23a and miR-27a following experimental traumatic brain injury induces neuronal cell death through activation of proapoptotic Bcl-2 proteins. J Neurosci. 2014;34:10055-71 pubmed 出版商
  37. Xu S, Wu H, Nie H, Yue L, Jiang H, Xiao S, et al. AIF downregulation and its interaction with STK3 in renal cell carcinoma. PLoS ONE. 2014;9:e100824 pubmed 出版商