这是一篇来自已证抗体库的有关人类 AIF1的综述,是根据474篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合AIF1 抗体。
AIF1 同义词: AIF-1; IBA1; IRT-1; IRT1; allograft inflammatory factor 1; interferon gamma responsive transcript; ionized calcium-binding adapter molecule 1; protein G1

艾博抗(上海)贸易有限公司
山羊 多克隆
  • 免疫组化; 大鼠; 1:100; 图8a
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在大鼠样品上浓度为1:100 (图8a). PLoS ONE (2017) ncbi
山羊 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图s5e
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图s5e). Mol Ther (2017) ncbi
山羊 多克隆
  • 免疫组化-P; 小鼠; 1:200
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200. Sci Rep (2017) ncbi
兔 单克隆(EPR6136(2))
  • 免疫组化; 人类; 图1f
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab178680)被用于免疫组化在人类样品上 (图1f). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(1022-5)
  • 细胞化学; 人类; 1:200; 图s3b
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab15690)被用于免疫细胞化学在人类样品上浓度为1:200 (图s3b). Mol Psychiatry (2017) ncbi
山羊 多克隆
  • 免疫印迹; 小鼠; 1:500; 图st1
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, Ab5076)被用于免疫印迹在小鼠样品上浓度为1:500 (图st1). Mov Disord (2016) ncbi
山羊 多克隆
  • IHC-Free; 大鼠; 1:1500; 图5
  • 免疫印迹; 大鼠; 1:1000; 图5
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab48004)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1500 (图5) 和 免疫印迹在大鼠样品上浓度为1:1000 (图5). PLoS ONE (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:100; 图1b
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在小鼠样品上浓度为1:100 (图1b). Biol Psychiatry (2016) ncbi
山羊 多克隆
  • 免疫组化-P; 人类; 1:100; 表1
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (表1). Glia (2017) ncbi
山羊 多克隆
  • 免疫组化-P; 大鼠; 1:400; 图7
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:400 (图7). Oncotarget (2016) ncbi
山羊 多克隆
  • 免疫组化; 大鼠; 1:10,000; 图4a
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在大鼠样品上浓度为1:10,000 (图4a). Brain Behav Immun (2016) ncbi
山羊 多克隆
  • 免疫组化-P; 猕猴; 1:200; 图4
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, 5076)被用于免疫组化-石蜡切片在猕猴样品上浓度为1:200 (图4). J Neuroinflammation (2016) ncbi
山羊 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图2e
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图2e). Neuropharmacology (2016) ncbi
山羊 多克隆
  • 免疫组化-F; 大鼠; 1:500; 图4
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图4). Acta Neuropathol Commun (2016) ncbi
山羊 多克隆
  • 免疫组化-F; 小鼠; 1:400
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, Ab5076)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400. J Neuroinflammation (2016) ncbi
山羊 多克隆
  • 细胞化学; 小鼠; 图s7e
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫细胞化学在小鼠样品上 (图s7e). Cell Rep (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 图1a
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab107159)被用于免疫组化在小鼠样品上 (图1a). Glia (2016) ncbi
山羊 多克隆
  • 免疫组化-P; 小鼠; 1:400; 图3
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400 (图3). Acta Neuropathol Commun (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:100; 图8
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在小鼠样品上浓度为1:100 (图8). Hum Mol Genet (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-P; 小鼠; 1:100; 图4
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab15690)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图4). Sci Rep (2016) ncbi
山羊 多克隆
  • 免疫印迹; 大鼠; 1:500; 图1
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫印迹在大鼠样品上浓度为1:500 (图1). Cell Signal (2016) ncbi
山羊 多克隆
  • 免疫印迹; 小鼠; 1:500; 图1b
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab107159)被用于免疫印迹在小鼠样品上浓度为1:500 (图1b). Sci Rep (2016) ncbi
山羊 多克隆
  • 免疫组化-F; 大鼠; 1:1000; 图1
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000 (图1). Exp Ther Med (2016) ncbi
山羊 多克隆
  • IHC-Free; 小鼠; 1:500; 图5
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab107159)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图5). Sci Rep (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:500; 图3b
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在小鼠样品上浓度为1:500 (图3b). PLoS ONE (2016) ncbi
山羊 多克隆
  • 免疫组化-F; 小鼠; 图1
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在小鼠样品上 (图1). Mol Neurodegener (2016) ncbi
山羊 多克隆
  • 免疫组化-F; 大鼠; 1:200; 图4a
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200 (图4a). Front Neurosci (2016) ncbi
山羊 多克隆
  • 细胞化学; 大鼠; 图s3
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫细胞化学在大鼠样品上 (图s3). PLoS ONE (2016) ncbi
山羊 多克隆
  • 免疫组化-F; 大鼠; 1:100; 图4
  • 免疫印迹; 大鼠; 1:200; 图4
艾博抗(上海)贸易有限公司 AIF1抗体(abcam, ab5076)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100 (图4) 和 免疫印迹在大鼠样品上浓度为1:200 (图4). Mol Med Rep (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-F; 小鼠; 1:5000; 图s3
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab15690)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:5000 (图s3). EMBO Rep (2016) ncbi
鸡 多克隆
  • IHC-Free; 小鼠; 1:2000; 图s2
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, 139590)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:2000 (图s2). PLoS Pathog (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:1000; 图1
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在小鼠样品上浓度为1:1000 (图1). Sci Rep (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:200; 图7
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在小鼠样品上浓度为1:200 (图7). Brain Behav (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:100; 图s13
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在小鼠样品上浓度为1:100 (图s13). Nat Neurosci (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:200; 图9
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab107159)被用于免疫组化在小鼠样品上浓度为1:200 (图9). Epilepsy Res (2015) ncbi
山羊 多克隆
  • 免疫组化-F; 小鼠; 1:100; 图2b
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图2b). J Neuroinflammation (2015) ncbi
山羊 多克隆
  • IHC-Free; 大鼠; 1:250; 图2
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab107159)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:250 (图2). Nat Commun (2015) ncbi
山羊 多克隆
  • 免疫组化-F; 大鼠; 1:2000; 图8a
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab107159)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000 (图8a). PLoS ONE (2015) ncbi
山羊 多克隆
  • 免疫组化-P; 人类; 1:200; 表2
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-石蜡切片在人类样品上浓度为1:200 (表2). Eur J Histochem (2015) ncbi
山羊 多克隆
  • 免疫组化-P; 小鼠; 图3a
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-石蜡切片在小鼠样品上 (图3a). Acta Neuropathol (2015) ncbi
山羊 多克隆
  • 免疫组化-F; 小鼠
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam Inc., ab5076)被用于免疫组化-冰冻切片在小鼠样品上. FASEB J (2016) ncbi
山羊 多克隆
  • 免疫组化-F; 大鼠; 图4
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在大鼠样品上 (图4). Mol Pain (2015) ncbi
山羊 多克隆
  • 免疫组化-P; 小鼠; 1:2000; 图4
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab107159)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2000 (图4). J Cereb Blood Flow Metab (2015) ncbi
山羊 多克隆
  • 免疫组化-F; 小鼠; 1:500
  • 细胞化学; 小鼠; 1:500
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 和 免疫细胞化学在小鼠样品上浓度为1:500. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 1:200
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, 1022?C5)被用于免疫印迹在小鼠样品上浓度为1:200. PLoS ONE (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab107159)被用于免疫组化在小鼠样品上浓度为1:100. J Immunol (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 图2
  • 细胞化学; 小鼠; 图s6
艾博抗(上海)贸易有限公司 AIF1抗体(abcam, ab5076)被用于免疫组化在小鼠样品上 (图2) 和 免疫细胞化学在小鼠样品上 (图s6). Oncotarget (2015) ncbi
山羊 多克隆
  • IHC-Free; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Cereb Cortex (2015) ncbi
山羊 多克隆
  • 免疫组化; 大鼠; 1:600
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在大鼠样品上浓度为1:600. Front Mol Neurosci (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在小鼠样品上浓度为1:200. Stem Cell Res (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab107159)被用于免疫组化在小鼠样品上浓度为1:200. J Neuroinflammation (2015) ncbi
山羊 多克隆
  • 免疫组化-P; 小鼠; 1:700; 图4b
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:700 (图4b). Cell Death Dis (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab107159)被用于免疫组化在小鼠样品上浓度为1:500. J Neurosci (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 大鼠
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab15690)被用于免疫组化在大鼠样品上. Life Sci (2015) ncbi
山羊 多克隆
  • 免疫印迹; 小鼠; 0.5 ug/ml; 图s2
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫印迹在小鼠样品上浓度为0.5 ug/ml (图s2). Nat Commun (2015) ncbi
山羊 多克隆
  • 免疫组化-F; 人类; 1:200; 图s1
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在人类样品上浓度为1:200 (图s1). Nat Neurosci (2015) ncbi
山羊 多克隆
  • 免疫组化; 人类; 1:400; 图1
  • 细胞化学; 人类; 1:200; 图3
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在人类样品上浓度为1:400 (图1) 和 免疫细胞化学在人类样品上浓度为1:200 (图3). Nat Cell Biol (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-P; 大鼠; 1:200
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab15690)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. Mol Neurobiol (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 0.5 ug/ml
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在小鼠样品上浓度为0.5 ug/ml. J Biol Chem (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在小鼠样品上 和 免疫印迹在小鼠样品上. Stem Cells (2015) ncbi
山羊 多克隆
  • 免疫组化-F; 大鼠; 1:500
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. Ann Clin Transl Neurol (2014) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在小鼠样品上浓度为1:100. PLoS ONE (2014) ncbi
山羊 多克隆
  • 免疫组化; 大鼠; 1:100
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在大鼠样品上浓度为1:100. Free Radic Biol Med (2015) ncbi
山羊 多克隆
  • IHC-Free; 人类; 1:500
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab107159)被用于immunohistochemistry - free floating section在人类样品上浓度为1:500. J Bioenerg Biomembr (2015) ncbi
山羊 多克隆
  • IHC-Free; 大鼠; 1:200
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:200. J Neurosci (2014) ncbi
山羊 多克隆
  • 免疫组化-P; 兔
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-石蜡切片在兔样品上. Exp Neurol (2015) ncbi
山羊 多克隆
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在大鼠样品上浓度为1:500. Gene Ther (2014) ncbi
山羊 多克隆
  • IHC-Free; 小鼠; 1:100
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:100. Front Aging Neurosci (2014) ncbi
山羊 多克隆
  • 免疫组化-F; 大鼠; 1:100
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100. Brain Res (2014) ncbi
山羊 多克隆
  • 免疫组化-F; 人类; 1:1000
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在人类样品上浓度为1:1000. J Comp Neurol (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在小鼠样品上浓度为1:500. Stem Cells Dev (2015) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:750
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在小鼠样品上浓度为1:750. PLoS ONE (2014) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:2000
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在小鼠样品上浓度为1:2000. Neurobiol Dis (2014) ncbi
山羊 多克隆
  • 免疫组化-P; 人类; 1:500
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-石蜡切片在人类样品上浓度为1:500. J Chem Neuroanat (2014) ncbi
山羊 多克隆
  • 免疫印迹; 小鼠; 1:500
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫印迹在小鼠样品上浓度为1:500. Neurobiol Dis (2014) ncbi
山羊 多克隆
  • 免疫组化-P; 猪; 1:100
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-石蜡切片在猪样品上浓度为1:100. Brain Res (2014) ncbi
小鼠 单克隆(1022-5)
  • 细胞化学; 大鼠; 1:200
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab15690)被用于免疫细胞化学在大鼠样品上浓度为1:200. J Neuroinflammation (2014) ncbi
山羊 多克隆
  • IHC-Free; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Brain Res Bull (2014) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 小鼠; 1:200; 图s10a
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab15690)被用于免疫组化在小鼠样品上浓度为1:200 (图s10a). Nat Neurosci (2014) ncbi
山羊 多克隆
  • IHC-Free; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Cell Tissue Res (2014) ncbi
山羊 多克隆
  • 免疫组化-P; 小鼠; 1:200
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200. Eur J Pain (2015) ncbi
山羊 多克隆
  • 免疫组化-F; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Alzheimers Dis (2014) ncbi
山羊 多克隆
  • 免疫组化-P; 大鼠; 1:500
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500. J Tissue Eng Regen Med (2017) ncbi
山羊 多克隆
  • 免疫组化; 大鼠; 1:400
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在大鼠样品上浓度为1:400. J Neuroinflammation (2014) ncbi
山羊 多克隆
  • 免疫组化; 大鼠; 1:100
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在大鼠样品上浓度为1:100. Arthritis Res Ther (2014) ncbi
山羊 多克隆
  • 免疫组化-F; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, Ab5076)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Neurosci Methods (2014) ncbi
山羊 多克隆
  • 免疫组化; 猪; 1:500
  • 免疫组化; 兔; 1:500
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在猪样品上浓度为1:500, 在兔样品上浓度为1:500, 和 在大鼠样品上浓度为1:500. Exp Eye Res (2014) ncbi
山羊 多克隆
  • IHC-Free; 小鼠; 1:300
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:300. Glia (2014) ncbi
山羊 多克隆
  • IHC-Free; 小鼠; 1:100
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:100. PLoS ONE (2014) ncbi
山羊 多克隆
  • 免疫印迹; African green monkey; 1:1000
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫印迹在African green monkey样品上浓度为1:1000. Neurosci Lett (2014) ncbi
山羊 多克隆
  • 细胞化学; 小鼠; 1:500
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫细胞化学在小鼠样品上浓度为1:500 和 免疫组化在小鼠样品上浓度为1:500. J Nucl Med (2014) ncbi
山羊 多克隆
  • 免疫组化; 兔
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在兔样品上. Neuropathology (2014) ncbi
山羊 多克隆
  • 免疫组化; 人类; 1:500
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在人类样品上浓度为1:500. Neurobiol Aging (2014) ncbi
山羊 多克隆
  • 免疫组化-F; 大鼠; 1:200
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. Brain Struct Funct (2015) ncbi
山羊 多克隆
  • 免疫组化-F; 小鼠; 1:5000
艾博抗(上海)贸易有限公司 AIF1抗体(Wako, ab5076)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:5000. J Neurosci Res (2014) ncbi
山羊 多克隆
  • 免疫组化-F; 大鼠
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在大鼠样品上. PLoS ONE (2013) ncbi
山羊 多克隆
  • 免疫组化; 大鼠; 1:50
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在大鼠样品上浓度为1:50. Mol Pain (2013) ncbi
小鼠 单克隆(1022-5)
  • 酶联免疫吸附测定; 小鼠; 1:100
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab15690)被用于酶联免疫吸附测定在小鼠样品上浓度为1:100. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-P; 大鼠; 1:200
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab15690)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. J Neuroinflammation (2013) ncbi
山羊 多克隆
  • 免疫组化-P; 猪; 1:600
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-石蜡切片在猪样品上浓度为1:600. Toxicon (2013) ncbi
山羊 多克隆
  • 免疫组化; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在大鼠样品上浓度为1:100 和 免疫印迹在大鼠样品上浓度为1:1000. Pain (2013) ncbi
山羊 多克隆
  • 免疫组化-F; 小鼠; 1:200
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. Front Neurosci (2013) ncbi
山羊 多克隆
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫印迹在小鼠样品上浓度为1:1000. Exp Neurol (2013) ncbi
山羊 多克隆
  • IHC-Free; 小鼠; 1:300
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:300. Glia (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-P; 小鼠; 1:200
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab15690)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200. Radiother Oncol (2013) ncbi
山羊 多克隆
  • 免疫组化-F; 小鼠; 1:100
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100. Neurobiol Aging (2013) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在小鼠样品上浓度为1:1000. Hum Mol Genet (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-F; 大鼠; 1:500
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, Ab15690)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. J Neurotrauma (2013) ncbi
山羊 多克隆
  • IHC-Free; 大鼠; 1:500
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500. Int J Dev Neurosci (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab15690)被用于免疫组化在大鼠样品上浓度为1:200. BMC Neurosci (2013) ncbi
山羊 多克隆
  • IHC-Free; 人类; 1:1000
  • 细胞化学; 人类; 1:1000
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, Ab5076)被用于immunohistochemistry - free floating section在人类样品上浓度为1:1000 和 免疫细胞化学在人类样品上浓度为1:1000. Glia (2013) ncbi
山羊 多克隆
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, Ab5076)被用于免疫组化在大鼠样品上浓度为1:500. Arch Biochem Biophys (2013) ncbi
山羊 多克隆
  • 免疫印迹; 小鼠; 1:1,000
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫印迹在小鼠样品上浓度为1:1,000. PLoS ONE (2013) ncbi
山羊 多克隆
  • 免疫组化; 大鼠
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在大鼠样品上. Neurobiol Dis (2013) ncbi
山羊 多克隆
  • 免疫组化-P; 小鼠; 1:300
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:300. J Am Heart Assoc (2012) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化在小鼠样品上浓度为1:500. Brain Behav Immun (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-P; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab15690)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000. PLoS ONE (2012) ncbi
山羊 多克隆
  • 免疫组化-P; 小鼠; 1:100
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. Mol Neurodegener (2012) ncbi
山羊 多克隆
  • 免疫组化-P; 小鼠; 1:100
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab5076)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100. J Neuroimmunol (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-P; 大鼠; 1:200
艾博抗(上海)贸易有限公司 AIF1抗体(Abcam, ab15690)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. Cell Mol Neurobiol (2013) ncbi
GeneTex
兔 多克隆
  • 免疫组化-F; 小鼠; 1:100; 图7i
  • 免疫组化-P; 小鼠; 1:100; 图4e
GeneTex AIF1抗体(GeneTex, GTX100042)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图7i) 和 免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图4e). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图4
GeneTex AIF1抗体(Genetex, GTX101495)被用于免疫组化-石蜡切片在小鼠样品上 (图4). Sci Rep (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:500; 图4d
GeneTex AIF1抗体(GeneTex, GTX100042)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图4d). Dis Model Mech (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图3a-c
GeneTex AIF1抗体(Gene Tex, GTX100042)被用于免疫组化在小鼠样品上 (图3a-c). Sci Rep (2016) ncbi
赛默飞世尔
兔 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图3c
赛默飞世尔 AIF1抗体(Invitrogen, PA5-21274)被用于免疫印迹在小鼠样品上浓度为1:3000 (图3c). J Mol Neurosci (2017) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:2400; 图6
赛默飞世尔 AIF1抗体(Thermo Scientific, PA5-27436)被用于免疫印迹在大鼠样品上浓度为1:2400 (图6). Exp Neurol (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 图4a
赛默飞世尔 AIF1抗体(Thermo Fisher Scientific, PA5- 27436)被用于immunohistochemistry - free floating section在小鼠样品上 (图4a). J Neurosci (2015) ncbi
山羊 多克隆
  • 免疫印迹; 小鼠
赛默飞世尔 AIF1抗体(Thermo Fisher Scientific, PA5-18039)被用于免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(1022-5)
  • 免疫组化-P; 小鼠; 1:100; 表1
圣克鲁斯生物技术 AIF1抗体(Santa Cruz, sc-1022-5)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (表1). PLoS ONE (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-F; 大鼠; 1:100; 图3
圣克鲁斯生物技术 AIF1抗体(Santa Cruz, sc-32725)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100 (图3). Mol Brain (2015) ncbi
小鼠 单克隆(1022-5)
  • 细胞化学; 大鼠; 图3
  • 免疫印迹; 大鼠; 图2
圣克鲁斯生物技术 AIF1抗体(Santa Cruz, sc-32725)被用于免疫细胞化学在大鼠样品上 (图3) 和 免疫印迹在大鼠样品上 (图2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-P; 小鼠; 1:300; 图2
  • 免疫组化; 小鼠; 1:10; 图6
圣克鲁斯生物技术 AIF1抗体(Santa Cruz, SC-32725)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:300 (图2) 和 免疫组化在小鼠样品上浓度为1:10 (图6). J Neuroinflammation (2010) ncbi
Novus Biologicals
山羊 多克隆
  • 免疫印迹; 小鼠; 1:300
Novus Biologicals AIF1抗体(Wako, NB100-1028)被用于免疫印迹在小鼠样品上浓度为1:300. Mol Brain (2016) ncbi
山羊 多克隆
  • 免疫组化; 小鼠; 图6a
Novus Biologicals AIF1抗体(Novus, NB100-1028)被用于免疫组化在小鼠样品上 (图6a). J Neuropathol Exp Neurol (2016) ncbi
Synaptic Systems
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 1:2000; 图6
Synaptic Systems AIF1抗体(Synaptic Systems, 234004)被用于免疫组化在小鼠样品上浓度为1:2000 (图6). PLoS ONE (2016) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 1:500; 图s3
Synaptic Systems AIF1抗体(Synaptic Systems, 234 004)被用于免疫组化在小鼠样品上浓度为1:500 (图s3). Nat Neurosci (2015) ncbi
LifeSpan Biosciences
山羊 多克隆
  • 免疫组化-P; 小鼠; 1:200; 图1a
LifeSpan Biosciences AIF1抗体(LifeSpan Bioscience, LS-B2645)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图1a). J Vis Exp (2016) ncbi
武汉三鹰
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图7
武汉三鹰 AIF1抗体(Proteintech, 10904-1-AP)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图7). BMC Neurosci (2013) ncbi
Wako Chemicals USA
兔 多克隆
  • 免疫组化; 大鼠; 1:1000; 图4
Wako Chemicals USA AIF1抗体(Dako, 019-19741)被用于免疫组化在大鼠样品上浓度为1:1000 (图4). Acta Neurobiol Exp (Wars) (2017) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:750; 图5a
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:750 (图5a). Brain Behav Immun (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1 ug/ml; 图s2a
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1 ug/ml (图s2a). J Neuroinflammation (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图4F'
Wako Chemicals USA AIF1抗体(Wako Pure Chemical, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000 (图4F'). elife (2017) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图8j
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图8j). Front Neuroanat (2017) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图s2a
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图s2a). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100; 图5d
Wako Chemicals USA AIF1抗体(WAKO, 019-1974)被用于免疫组化在小鼠样品上浓度为1:100 (图5d). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:600; 图5a
Wako Chemicals USA AIF1抗体(wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:600 (图5a). Front Aging Neurosci (2017) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000; 图2a
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图2a). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200; 图s4
Wako Chemicals USA AIF1抗体(Wako chemicals, 019-19741)被用于免疫组化在小鼠样品上浓度为1:200 (图s4). Proc Natl Acad Sci U S A (2017) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图st1
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上 (图st1). Sci Rep (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图5b
Wako Chemicals USA AIF1抗体(Novachem, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000 (图5b). PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图1c
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上 (图1c). Nat Commun (2017) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 表1
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上 (表1). Neuron (2017) ncbi
兔 多克隆
  • 免疫组化-F; 猪; 1:20,000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在猪样品上浓度为1:20,000. PLoS ONE (2017) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:400
Wako Chemicals USA AIF1抗体(Waco, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400. J Neuroinflammation (2017) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图4a
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图4a). Mol Oncol (2016) ncbi
兔 多克隆
  • IHC-Free; 人类; 图s27
Wako Chemicals USA AIF1抗体(Wako, 016-20001)被用于immunohistochemistry - free floating section在人类样品上 (图s27). Hum Mol Genet (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图5d
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:500 (图5d). Neurotherapeutics (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:600; 图4e
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:600 (图4e). Acta Neuropathol (2017) ncbi
兔 多克隆
  • 细胞化学; African green monkey; 1:300; 图11
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫细胞化学在African green monkey样品上浓度为1:300 (图11). Front Aging Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:200; 图1a
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图1a). J Vis Exp (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图9b
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上 (图9b). Future Sci OA (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图3a
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000 (图3a). Front Cell Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图s4a
Wako Chemicals USA AIF1抗体(WAKO, 019-19741)被用于免疫组化在小鼠样品上浓度为1:500 (图s4a). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-F; 人类; 图5e
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化-冰冻切片在人类样品上 (图5e). Front Immunol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:250; 图s5b
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:250 (图s5b). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:5000; 图1h
Wako Chemicals USA AIF1抗体(WAKO化学品, 016-20001)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:5000 (图1h). Exp Eye Res (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:2000; 图s5
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:2000 (图s5). PLoS Genet (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:200; 图1i
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在人类样品上浓度为1:200 (图1i). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:2000; 表1
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在人类样品上浓度为1:2000 (表1). Ann Neurol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400; 表1
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:400 (表1). Brain Struct Funct (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:500; 图4g
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图4g). J Exp Med (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 图2c
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上 (图2c). Neuroimage (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1 ug/ml; 图1c
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1 ug/ml (图1c). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图2c
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:500 (图2c). Brain (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图4c
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上 (图4c). BMC Ophthalmol (2016) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:5000; 表2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:5000 (表2). Front Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图3a
  • 细胞化学; 小鼠; 图1b
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上 (图3a) 和 免疫细胞化学在小鼠样品上 (图1b). Proc Natl Acad Sci U S A (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 图s6
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在人类样品上 (图s6). Neurology (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 图s10a
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图s10a). Nat Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图2a
Wako Chemicals USA AIF1抗体(Wako Pure Chemicals, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000 (图2a). Nat Commun (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:100; 图2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:100 (图2). Cell Rep (2016) ncbi
兔 多克隆
  • 免疫组化; African green monkey; 1:300; 图5
Wako Chemicals USA AIF1抗体(Wako Pure Chemical Industries Ltd, 019-19741)被用于免疫组化在African green monkey样品上浓度为1:300 (图5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5e
  • 免疫组化; 小鼠; 图5d
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫印迹在小鼠样品上 (图5e) 和 免疫组化在小鼠样品上 (图5d). Glia (2017) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 图2b
Wako Chemicals USA AIF1抗体(Wako Lab, 019-19741)被用于免疫组化在大鼠样品上 (图2b). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1000; 图3
Wako Chemicals USA AIF1抗体(Wako chemicals, 019-19741)被用于免疫组化在人类样品上浓度为1:1000 (图3). J Alzheimers Dis (2017) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图1
Wako Chemicals USA AIF1抗体(WAKO, 019-19741)被用于免疫组化在小鼠样品上 (图1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 01919741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. Glia (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:2000; 图4
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000 (图4). Neural Plast (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:10,000; 表2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:10,000 (表2). Glia (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图7a
Wako Chemicals USA AIF1抗体(WAKO, 019-19741)被用于免疫组化在小鼠样品上浓度为1:500 (图7a). Exp Neurol (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:1000; 图4b
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫细胞化学在人类样品上浓度为1:1000 (图4b). Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:300; 图2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:300 (图2). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 图7c
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫细胞化学在小鼠样品上 (图7c). EMBO Mol Med (2016) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:1000; 图2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000 (图2). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:700; 图5a
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:700 (图5a). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:500; 图4b
Wako Chemicals USA AIF1抗体(WAKO, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图4b). PLoS Negl Trop Dis (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图2h
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上 (图2h). JCI Insight (2016) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:20,000; 图6
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:20,000 (图6). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 图6
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图6). EMBO J (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:500; 图s2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图s2). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:2000; 图2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2000 (图2). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:3000; 图4
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:3000 (图4). Mol Neurodegener (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1 ug/ml; 图1a
  • 免疫组化; 大鼠; 2.5 ug/ml; 图12b
  • 细胞化学; 大鼠; 2.5 ug/ml; 图2a
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫印迹在大鼠样品上浓度为1 ug/ml (图1a), 免疫组化在大鼠样品上浓度为2.5 ug/ml (图12b), 和 免疫细胞化学在大鼠样品上浓度为2.5 ug/ml (图2a). Glia (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:10,000; 图1
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:10,000 (图1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图1c
Wako Chemicals USA AIF1抗体(Wako Pure Chemical Industries, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000 (图1c). Neurobiol Learn Mem (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图6d
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上 (图6d). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000; 图5
Wako Chemicals USA AIF1抗体(WAKO, 019-19741)被用于免疫组化在大鼠样品上浓度为1:1000 (图5). Neuroscience (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:700; 图6
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:700 (图6). Front Cell Neurosci (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500; 图5
Wako Chemicals USA AIF1抗体(WAKO, 019-19741)被用于免疫细胞化学在小鼠样品上浓度为1:500 (图5). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:100; 图4
Wako Chemicals USA AIF1抗体(WAKO, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100 (图4). Nature (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 图4
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫细胞化学在小鼠样品上 (图4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图1
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000 (图1). elife (2016) ncbi
兔 多克隆
  • 免疫组化; domestic ferret; 1:1000; 图9e
Wako Chemicals USA AIF1抗体(Wako, 019019741)被用于免疫组化在domestic ferret样品上浓度为1:1000 (图9e). Shock (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图3e
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上 (图3e). Nat Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图6
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000 (图6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图5
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上 (图5). BMC Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:600; 图5
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:600 (图5). Theranostics (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 0.1 ug/ml; 图s3
  • 免疫组化; 小鼠; 0.2 ug/ml; 图5
Wako Chemicals USA AIF1抗体(Wako Pure Chemical Industries, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为0.1 ug/ml (图s3) 和 免疫组化在小鼠样品上浓度为0.2 ug/ml (图5). Sci Rep (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:10,000; 图7b
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:10,000 (图7b). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图s2b
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000 (图s2b). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400; 图1a
Wako Chemicals USA AIF1抗体(WAKO, 019-19741)被用于免疫组化在小鼠样品上浓度为1:400 (图1a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:200; 图s4
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图s4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上. J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:4000; 图2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在人类样品上浓度为1:4000 (图2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:50,000; 图2
Wako Chemicals USA AIF1抗体(Wako Pure Chemical Industries, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50,000 (图2). J Comp Pathol (2016) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:500; 图4b
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500 (图4b). J Dent Res (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图1
Wako Chemicals USA AIF1抗体(WAKO, 019-19741)被用于免疫组化在人类样品上 (图1). Nat Commun (2016) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:1000; 图3a
Wako Chemicals USA AIF1抗体(Wako, 019-1974)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 (图3a). Endocrinology (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:500; 图1
Wako Chemicals USA AIF1抗体(WAKO, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:500 (图1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400; 图6
Wako Chemicals USA AIF1抗体(Wako Pure Chemical Industries, 01919741)被用于免疫组化在小鼠样品上浓度为1:400 (图6). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:200; 图5a
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 (图5a). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
兔 多克隆
  • IHC-Free; 人类; 1:500; 图1
Wako Chemicals USA AIF1抗体(Wako, 1919741)被用于immunohistochemistry - free floating section在人类样品上浓度为1:500 (图1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图s1
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图s1). Eur J Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:20,000; 图7d
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:20,000 (图7d). Mol Ther Methods Clin Dev (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000; 图s4
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图s4). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图1c
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上 (图1c). Nature (2016) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:300; 图5
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在大鼠样品上浓度为1:300 (图5). Hum Mol Genet (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:2000. Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1000; 图4j
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000 (图4j). Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:300; 图10a
Wako Chemicals USA AIF1抗体(WAKO, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:300 (图10a). Infect Immun (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图4a
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上 (图4a). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:1000; 图5
Wako Chemicals USA AIF1抗体(Wako, 019-10741)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400; 图s1
Wako Chemicals USA AIF1抗体(Waco, 019-19741)被用于免疫组化在小鼠样品上浓度为1:400 (图s1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化; 人类; 图5
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化在人类样品上 (图5). Part Fibre Toxicol (2016) ncbi
兔 多克隆
  • 免疫组化-P; 羊; 1:250; 图4
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在羊样品上浓度为1:250 (图4). Pediatr Crit Care Med (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1000 ng/ml; 图s1
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在人类样品上浓度为1000 ng/ml (图s1). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图4a
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上 (图4a). J Mol Neurosci (2016) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500; 图s6a
  • 细胞化学; 小鼠; 1:500; 图s6b
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫细胞化学在人类样品上浓度为1:500 (图s6a) 和 在小鼠样品上浓度为1:500 (图s6b). Acta Neuropathol (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:400; 图3
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:400 (图3). Hum Mol Genet (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:5000; 图5
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:5000 (图5). Am J Pathol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图3
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上 (图3). Glia (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图7
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫印迹在大鼠样品上 (图7). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:5000; 图s1
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:5000 (图s1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:4000; 图1
Wako Chemicals USA AIF1抗体(WAKO化学品, 019-C19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:4000 (图1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫印迹在小鼠样品上浓度为1:5000 (图2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 0.05 ug/ml; 图4
Wako Chemicals USA AIF1抗体(Wako Pure Chemicals, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为0.05 ug/ml (图4). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:1000; 图6
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 (图6). Exp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:1500; 图2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1500 (图2). Aging (Albany NY) (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:500; 图2z
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图2z). Neurobiol Dis (2016) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:3000; 图2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:3000 (图2). J Cell Biol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:300; 图3
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化在小鼠样品上浓度为1:300 (图3). Nature (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:400; 图5
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:400 (图5). Front Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图1
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上 (图1). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图1
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上 (图1). J Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:500; 图5
Wako Chemicals USA AIF1抗体(Wako Pure Chemical Industries, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 (图5). Neuroimage (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000; 图2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图2). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上. J Transl Med (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图7
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:500 (图7). Autophagy (2016) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图s1
Wako Chemicals USA AIF1抗体(WAKO化学品, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上 (图s1). Eur J Immunol (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图4
Wako Chemicals USA AIF1抗体(WAK, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图4). Gene Ther (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:250; 图s10
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:250 (图s10). Brain (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图6
Wako Chemicals USA AIF1抗体(Wako Pure Chemical Industries, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000 (图6). Nat Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:3000; 图1
Wako Chemicals USA AIF1抗体(Wako Chemical, 019-19741)被用于免疫组化-石蜡切片在人类样品上浓度为1:3000 (图1). Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400; 图5c
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:400 (图5c). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:200; 图4
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在大鼠样品上浓度为1:200 (图4). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:2000; 图3
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化在人类样品上浓度为1:2000 (图3). Acta Neuropathol Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图s3a
Wako Chemicals USA AIF1抗体(Wako, 016-20001)被用于免疫组化在小鼠样品上浓度为1:500 (图s3a). Am J Pathol (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:10,000; 图2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:10,000 (图2). Neurosci Lett (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500; 图5
Wako Chemicals USA AIF1抗体(Wakochemical, 019-19741)被用于免疫细胞化学在小鼠样品上浓度为1:500 (图5). Sci Rep (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000; 图3a
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000 (图3a). Brain Behav Immun (2016) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 图5b
Wako Chemicals USA AIF1抗体(wako, 01919741)被用于免疫细胞化学在小鼠样品上 (图5b). Neurochem Res (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000; 图7
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000 (图7). Eur J Neurosci (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000; 图4
Wako Chemicals USA AIF1抗体(Wako Pure Chemicals, 019?C19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图4). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:300; 图s22
Wako Chemicals USA AIF1抗体(Wako Biochemicals, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:300 (图s22). Nat Biotechnol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图8
Wako Chemicals USA AIF1抗体(Wako, 019e19741)被用于免疫组化在小鼠样品上浓度为1:500 (图8). Neuropharmacology (2016) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:3000; 图2
Wako Chemicals USA AIF1抗体(Wako, 016-20001)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:3000 (图2). J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:800; 图3
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化在小鼠样品上浓度为1:800 (图3). Stem Cell Res Ther (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图6
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上 (图6). PLoS ONE (2015) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:300; 图6
Wako Chemicals USA AIF1抗体(Wako, 019?C19741)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:300 (图6). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图6b
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:500 (图6b). Sci Rep (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:800; 图7
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:800 (图7). Anesthesiology (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
  • 免疫组化; 人类; 图1
  • 免疫组化; 小鼠; 图5
Wako Chemicals USA AIF1抗体(Wako Pure Chemical, 019-19741)被用于免疫印迹在人类样品上 (图1) 和 免疫组化在人类样品上 (图1) 和 在小鼠样品上 (图5). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化; 猪; 1:1000; 图6
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在猪样品上浓度为1:1000 (图6). J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图3
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000 (图3). Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图7
Wako Chemicals USA AIF1抗体(Wako Pure Chemical, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上 (图7). J Neurosci Res (2016) ncbi
兔 多克隆
  • 免疫组化-F; 人类; 1:500; 图2i
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在人类样品上浓度为1:500 (图2i). Brain (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000 (图2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图3a
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上 (图3a). Acta Neuropathol (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图3
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上 (图3). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:300
Wako Chemicals USA AIF1抗体(Wako BioProducts, 016-20.001)被用于免疫印迹在小鼠样品上浓度为1:300. FASEB J (2016) ncbi
兔 多克隆
  • 细胞化学; 羊; 1:250; 图2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫细胞化学在羊样品上浓度为1:250 (图2). Front Cell Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:250; 图5
Wako Chemicals USA AIF1抗体(Wako, 01919741)被用于免疫组化在人类样品上浓度为1:250 (图5). Mol Neurodegener (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:300; 图3
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:300 (图3). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上. Hum Mol Genet (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:3000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:3000. J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化在小鼠样品上浓度为1:500. Front Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图6
Wako Chemicals USA AIF1抗体(Wako, 019-C19741)被用于免疫印迹在大鼠样品上浓度为1:500 (图6). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-F; 狗; 1:500
  • 免疫组化-P; 狗; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在狗样品上浓度为1:500 和 免疫组化-石蜡切片在狗样品上浓度为1:500. J Comp Neurol (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2000
Wako Chemicals USA AIF1抗体(Wako, 016-20001)被用于免疫组化在小鼠样品上浓度为1:2000. Behav Brain Res (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图4,5
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上 (图4,5). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako chemicals, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000. J Neuroimmunol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:500. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400; 表2
Wako Chemicals USA AIF1抗体(Wako Pure Chemical, 019-19741)被用于免疫组化在小鼠样品上浓度为1:400 (表2). Eur J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图ev1
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:500 (图ev1). EMBO Mol Med (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:300
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:300. Glia (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫细胞化学在小鼠样品上浓度为1:500. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(WAKO, 019-19741)被用于免疫组化在小鼠样品上浓度为1:500. Mol Neurodegener (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1 ug/ml
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫细胞化学在小鼠样品上浓度为1 ug/ml. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000. J Immunol (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:2000; 图2a
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:2000 (图2a). Mol Psychiatry (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图11
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上 (图11). Mol Cell Biol (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:250; 图5b
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250 (图5b). Brain (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上. Front Mol Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图7d
  • 免疫组化; 小鼠; 图7f
Wako Chemicals USA AIF1抗体(Wako Chemicals USA, 019-19741)被用于免疫印迹在小鼠样品上浓度为1:1000 (图7d) 和 免疫组化在小鼠样品上 (图7f). PLoS ONE (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:400
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:400. Brain (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:500; 图6a,b
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500 (图6a,b). Brain Res (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2000; 图s3
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化在小鼠样品上浓度为1:2000 (图s3). PLoS ONE (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:2000
Wako Chemicals USA AIF1抗体(Wako Pure Chemical Industries, 019-C19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:2000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图s7
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图s7). Nat Med (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上. Glia (2015) ncbi
兔 多克隆
  • 细胞化学; 大鼠; 1:250; 图s3b
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫细胞化学在大鼠样品上浓度为1:250 (图s3b). Cell Death Differ (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:10,000; 图4
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:10,000 (图4). J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图s10
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000 (图s10). Nature (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠
Wako Chemicals USA AIF1抗体(Wako Chemicals, catalog 019-19741)被用于免疫组化-石蜡切片在小鼠样品上. J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:800
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在大鼠样品上浓度为1:800. Tissue Eng Part A (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:10000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:10000. J Neuroinflammation (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:200. Neuroimage (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在大鼠样品上浓度为1:1000. Front Cell Neurosci (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫细胞化学在小鼠样品上浓度为1:500. J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠
Wako Chemicals USA AIF1抗体(Wako, 01919741)被用于免疫组化-石蜡切片在小鼠样品上. Eur J Neurosci (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:500. J Neurosci (2015) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫细胞化学在小鼠样品上浓度为1:1000. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 2 ug/ml; 图s2
  • FC; 小鼠; 1 ug/ml; 图s2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为2 ug/ml (图s2) 和 流式细胞仪在小鼠样品上浓度为1 ug/ml (图s2). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2000
  • 细胞化学; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19,741)被用于免疫组化在小鼠样品上浓度为1:2000 和 免疫细胞化学在小鼠样品上浓度为1:1000. Neurobiol Aging (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:250
Wako Chemicals USA AIF1抗体(Wako Pure Chemical Industries, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:250. Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:400
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在人类样品上浓度为1:400. Brain (2015) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:400
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400. J Neurosci (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1000. Neuroscience (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:250
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:250. Ann Neurol (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:250
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250. Nat Neurosci (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:3000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:3000. Glia (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako Pure Chemical Industries, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. Curr Gene Ther (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:500. Neuropharmacology (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:250; 图5
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化在小鼠样品上浓度为1:250 (图5). Age (Dordr) (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图3e
Wako Chemicals USA AIF1抗体(Wako, 019?C19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图3e). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500; 图8
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化在小鼠样品上浓度为1:500 (图8). elife (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图4
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图4). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:500; 图6
Wako Chemicals USA AIF1抗体(Wako Chemicals USA, 019-19741)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500 (图6). J Neuroimmune Pharmacol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:600; 图2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:600 (图2). Acta Neuropathol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图1
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上 (图1). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 图s1c
Wako Chemicals USA AIF1抗体(Wako, 019-197419)被用于免疫组化-冰冻切片在小鼠样品上 (图s1c). EMBO Mol Med (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. J Neurosci (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 19-19741)被用于免疫细胞化学在人类样品上浓度为1:1000. Ann Clin Transl Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:1000; 图st4
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在人类样品上浓度为1:1000 (图st4). Nat Commun (2015) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:100
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫细胞化学在人类样品上浓度为1:100. J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000; 图5
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000 (图5). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:1500
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:1500. Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:200
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:200. J Stroke Cerebrovasc Dis (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫印迹在小鼠样品上. J Neuroinflammation (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 图3d
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上 (图3d). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000; 图2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000 (图2). Autophagy (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:500. J Neuroinflammation (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上. J Neurosci (2014) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. Neuroscience (2015) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:3000; 表1
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:3000 (表1). Brain Behav Immun (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:500. Mol Cell Neurosci (2014) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:1000; 图4
Wako Chemicals USA AIF1抗体(Wako, 019?C19741)被用于免疫细胞化学在人类样品上浓度为1:1000 (图4). Neuropathology (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化在小鼠样品上浓度为1:200. Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. Mol Neurobiol (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(WAKO, 016-20001)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Comp Neurol (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako BioProducts, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000. ASN Neuro (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:1000
  • 细胞化学; 大鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000 和 免疫细胞化学在大鼠样品上浓度为1:1000. Neurochem Res (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1 ug/mL
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1 ug/mL. J Comp Neurol (2015) ncbi
兔 多克隆
  • IHC-Free; African green monkey; 1:200; 表1
Wako Chemicals USA AIF1抗体(Wako, #019-19741)被用于immunohistochemistry - free floating section在African green monkey样品上浓度为1:200 (表1). J Comp Neurol (2015) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:1000. Neuroscience (2014) ncbi
兔 多克隆
  • 细胞化学; 大鼠
Wako Chemicals USA AIF1抗体(Wako Pure Chemical Industries, 019-19741)被用于免疫细胞化学在大鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:600; 图4
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:600 (图4). J Neuroinflammation (2014) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:100
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:100. Front Aging Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在大鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 016-20001)被用于免疫印迹在人类样品上浓度为1:1000. Brain Pathol (2015) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:200
Wako Chemicals USA AIF1抗体(Wako Pure Chemical Industries, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:200. J Anat (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(WAKO, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在大鼠样品上浓度为1:500. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:2000
Wako Chemicals USA AIF1抗体(Wako, 016-20001)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000. Neuropharmacology (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上. Neuroreport (2014) ncbi
兔 多克隆
  • 免疫组化; 人类
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化在人类样品上. Oncogene (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Neurosci Res (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:400. Cereb Cortex (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图2
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图2). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:7500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:7500. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:2000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. Front Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. Invest Ophthalmol Vis Sci (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:200
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在人类样品上浓度为1:200. Brain Pathol (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. Biochim Biophys Acta (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019?C19741)被用于免疫组化在小鼠样品上. Ann Neurol (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1500
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1500. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:400; 图3
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:400 (图3). J Neurochem (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:5000
Wako Chemicals USA AIF1抗体(Wako Chemicals, 016-20001)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:5000. Environ Health Perspect (2014) ncbi
兔 多克隆
  • 免疫组化-P; 人类
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在人类样品上. Orphanet J Rare Dis (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 0.5 ug/ml
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为0.5 ug/ml. Sci Rep (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1,000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1,000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:800
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化在人类样品上浓度为1:800. Ann Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Neurotrauma (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500; 图3
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500 (图3). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Exp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1,500
Wako Chemicals USA AIF1抗体(Wako Pure Chemical Industries, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1,500. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在大鼠样品上浓度为1:500. Hum Gene Ther (2014) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:3000
  • 免疫组化-P; 小鼠; 1:3000
  • 免疫组化-P; 大鼠; 1:3000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在人类样品上浓度为1:3000, 在小鼠样品上浓度为1:3000, 和 在大鼠样品上浓度为1:3000. Acta Neuropathol (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上. J Thromb Haemost (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
Wako Chemicals USA AIF1抗体(WAKO, 016-20001)被用于免疫印迹在小鼠样品上. J Neuroinflammation (2014) ncbi
兔 多克隆
  • 细胞化学; 小鼠
Wako Chemicals USA AIF1抗体(WAKO, 019-19741)被用于免疫细胞化学在小鼠样品上. J Neuroinflammation (2014) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Glia (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:500
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化在人类样品上浓度为1:500. J Cereb Blood Flow Metab (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上. Glia (2014) ncbi
兔 多克隆
  • 免疫组化; Styela clava; 1:250
Wako Chemicals USA AIF1抗体(Wako, 019-1974)被用于免疫组化在Styela clava样品上浓度为1:250. Acta Biomater (2014) ncbi
兔 多克隆
  • 免疫组化; 人类; 1:1000
  • 免疫组化; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在人类样品上浓度为1:1000 和 在小鼠样品上浓度为1:1000. Acta Neuropathol Commun (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:400
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:400. Cell Transplant (2015) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:25000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在大鼠样品上浓度为1:25000. Neurobiol Aging (2014) ncbi
兔 多克隆
  • 细胞化学; 小鼠; 1:50
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫细胞化学在小鼠样品上浓度为1:50. J Gerontol A Biol Sci Med Sci (2014) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:100
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:100. Acta Neuropathol Commun (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在大鼠样品上浓度为1:1000. J Neurochem (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:2000
Wako Chemicals USA AIF1抗体(Wako, 016-20001)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:2000. Neuropharmacology (2014) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:100
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100. Mediators Inflamm (2013) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:200
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200. Neuroimage (2014) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:500. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:3,000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在人类样品上浓度为1:3,000. Ann Neurol (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1000. Brain Behav Immun (2014) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:350
Wako Chemicals USA AIF1抗体(Wako chemicals, 019-19741)被用于免疫组化在小鼠样品上浓度为1:350. Mediators Inflamm (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
  • 免疫组化; 人类
  • 细胞化学; 人类
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫印迹在人类样品上 和 在小鼠样品上, 免疫组化在人类样品上, 和 免疫细胞化学在人类样品上. Virol J (2013) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500. Hum Gene Ther (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:2000
Wako Chemicals USA AIF1抗体(Wako Pure Chemical Industries, 019-19741)被用于免疫组化在大鼠样品上浓度为1:2000. Eur J Neurosci (2013) ncbi
兔 多克隆
  • 细胞化学; 大鼠
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫细胞化学在大鼠样品上. Neuropharmacology (2013) ncbi
兔 多克隆
  • 免疫组化-P; 仓鼠
  • 细胞化学; 仓鼠
  • 免疫印迹; 仓鼠
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在仓鼠样品上, 免疫细胞化学在仓鼠样品上, 和 免疫印迹在仓鼠样品上. J Mol Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. Neuroscience (2013) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠
  • 免疫印迹; 小鼠
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上 和 免疫印迹在小鼠样品上. Biochim Biophys Acta (2013) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako Pure Chemicals, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500. J Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠
Wako Chemicals USA AIF1抗体(Wako Pure Chemical, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:2000
Wako Chemicals USA AIF1抗体(WAKO, 019-19741)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000. J Neuroinflammation (2012) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000
Wako Chemicals USA AIF1抗体(WAKO, 019-19741)被用于免疫组化在大鼠样品上浓度为1:1000. Gene Ther (2013) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 1:10000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:10000. J Mol Neurosci (2013) ncbi
兔 多克隆
  • 免疫组化; 大鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在大鼠样品上浓度为1:1000. J Comp Neurol (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:4000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化在小鼠样品上浓度为1:4000. Glia (2012) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:500. J Neuroinflammation (2012) ncbi
兔 多克隆
  • IHC-Free; 小鼠; 1:200
Wako Chemicals USA AIF1抗体(Wako chemicals, 016-20001)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200. J Comp Neurol (2012) ncbi
兔 多克隆
  • 免疫组化-P; 小鼠; 图4
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化-石蜡切片在小鼠样品上 (图4). PLoS ONE (2011) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Comp Neurol (2011) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:1000
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:500
Wako Chemicals USA AIF1抗体(WAKO, 016-20001)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:500. J Comp Neurol (2010) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:1500
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化在小鼠样品上浓度为1:1500. J Comp Neurol (2009) ncbi
兔 多克隆
  • IHC-Free; 大鼠; 1:500
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于immunohistochemistry - free floating section在大鼠样品上浓度为1:500. J Comp Neurol (2008) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:2000
Wako Chemicals USA AIF1抗体(Wako Chemicals, 019-19741)被用于免疫组化在小鼠样品上浓度为1:2000. J Comp Neurol (2008) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:250
Wako Chemicals USA AIF1抗体(Wako, 019-19741)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:250. J Comp Neurol (2008) ncbi
默克密理博中国
小鼠 单克隆(20A12.1)
  • 免疫组化-P; 小鼠; 1:50; 图4d
默克密理博中国 AIF1抗体(Millipore, MABN92)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50 (图4d). Mol Vis (2016) ncbi
小鼠 单克隆(20A12.1)
  • 免疫印迹; 人类; 图2b
默克密理博中国 AIF1抗体(chemicon, MABN92)被用于免疫印迹在人类样品上 (图2b). EMBO Mol Med (2016) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化; 小鼠; 1:50; 图5d
默克密理博中国 AIF1抗体(Millipore, MABN92)被用于免疫组化在小鼠样品上浓度为1:50 (图5d). Mol Vis (2016) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化; 小鼠; 1:100; 图1
默克密理博中国 AIF1抗体(millipore, MABN92)被用于免疫组化在小鼠样品上浓度为1:100 (图1). J Neuroinflammation (2016) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化-P; 小鼠; 1:200; 图2
默克密理博中国 AIF1抗体(EMD Millipore, MABN92)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:200 (图2). BMC Neurosci (2015) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化; 人类; 图3
默克密理博中国 AIF1抗体(Millipore, 20A12.1)被用于免疫组化在人类样品上 (图3). Neuropathology (2016) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化-P; 小鼠; 1:1000
默克密理博中国 AIF1抗体(Millipore, MABN92)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000. Neoplasia (2015) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化; 小鼠; 1:300
  • 免疫组化; 大鼠; 1:300
默克密理博中国 AIF1抗体(Millipore, MABN92)被用于免疫组化在小鼠样品上浓度为1:300 和 在大鼠样品上浓度为1:300. Neurobiol Dis (2015) ncbi
小鼠 单克隆(20A12.1)
  • 免疫印迹; 大鼠; 1:500
默克密理博中国 AIF1抗体(Millipore, MABN92)被用于免疫印迹在大鼠样品上浓度为1:500. Mol Pain (2014) ncbi
小鼠 单克隆(20A12.1)
  • 细胞化学; 小鼠; 1:200
默克密理博中国 AIF1抗体(Millipore, MABN92)被用于免疫细胞化学在小鼠样品上浓度为1:200. Chem Res Toxicol (2014) ncbi
小鼠 单克隆(20A12.1)
  • 免疫印迹; 小鼠; 1:250
默克密理博中国 AIF1抗体(Millipore, MABN92)被用于免疫印迹在小鼠样品上浓度为1:250. J Neurochem (2013) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化; 大鼠; 1:2000
默克密理博中国 AIF1抗体(Millipore, MABN92)被用于免疫组化在大鼠样品上浓度为1:2000. Eur J Neurosci (2013) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化-F; 大鼠; 1:1000
默克密理博中国 AIF1抗体(Millipore, MABN92)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:1000. Comp Immunol Microbiol Infect Dis (2013) ncbi
小鼠 单克隆(20A12.1)
  • 免疫组化-F; 大鼠; 1:2000
默克密理博中国 AIF1抗体(Millipore, MABN92)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:2000. J Neuroinflammation (2012) ncbi
文章列表
  1. Alexandra C Vaughn et al. (2017). "Energy-dense diet triggers changes in gut microbiota, reorganization of gut‑brain vagal communication and increases body fat accumulation.".PMID 28379213
  2. Nina P Connolly et al. (2017). "Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer.".PMID 28358926
  3. Hui Rong et al. (2017). "The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats.".PMID 28302458
  4. Maria I Fonseca et al. (2017). "Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain.".PMID 28264694
  5. Stephanie A Bucks et al. (2017). "Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice.".PMID 28263708
  6. Diego Pignataro et al. (2017). "Adeno-Associated Viral Vectors Serotype 8 for Cell-Specific Delivery of Therapeutic Genes in the Central Nervous System".PMID 28239341
  7. Xinguang Yang et al. (2017). "Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway.".PMID 28238066
  8. Corey L Williams et al. (2017). "Gene Therapeutic Reversal of Peripheral Olfactory Impairment in Bardet-Biedl Syndrome.".PMID 28237838
  9. Mario J Aragon et al. (2017). "Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment.".PMID 28223486
  10. Meghan S Vermillion et al. (2017). "Intrauterine Zika virus infection of pregnant immunocompetent mice models transplacental transmission and adverse perinatal outcomes".PMID 28220786
  11. Tingting Zheng et al. (2017). "Plasma Exosomes Spread and Cluster Around β-Amyloid Plaques in an Animal Model of Alzheimer's Disease".PMID 28203202
  12. Hedwich F Kuipers et al. (2017). "Phosphorylation of αB-crystallin supports reactive astrogliosis in demyelination.".PMID 28196893
  13. Erin Mai F Lim et al. (2017). "AlphaB-crystallin regulates remyelination after peripheral nerve injury".PMID 28137843
  14. Ping Kei Yip et al. (2017). "Galectin-3 released in response to traumatic brain injury acts as an alarmin orchestrating brain immune response and promoting neurodegeneration".PMID 28128358
  15. Sandy Stayte et al. (2017). "Activin A Inhibits MPTP and LPS-Induced Increases in Inflammatory Cell Populations and Loss of Dopamine Neurons in the Mouse Midbrain In Vivo".PMID 28121982
  16. Stefan A Berghoff et al. (2017). "Dietary cholesterol promotes repair of demyelinated lesions in the adult brain".PMID 28117328
  17. Yusuf Tufail et al. (2017). "Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia".PMID 28111081
  18. Srinivasu Kallakuri et al. (2017). "Neuronal Injury and Glial Changes Are Hallmarks of Open Field Blast Exposure in Swine Frontal Lobe".PMID 28107370
  19. Lei Zhao et al. (2017). "Photoreceptor protection via blockade of BET epigenetic readers in a murine model of inherited retinal degeneration".PMID 28103888
  20. Dwijit GuhaSarkar et al. (2016). "Intracranial AAV-IFN-β gene therapy eliminates invasive xenograft glioblastoma and improves survival in orthotopic syngeneic murine model".PMID 28098415
  21. Yoshinori Tanaka et al. (2017). "Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes".PMID 28073925
  22. Tanya Aggarwal et al. (2017). "Boundary Cap Neural Crest Stem Cells Promote Survival of Mutant SOD1 Motor Neurons".PMID 28070746
  23. Hideyuki Takahashi et al. (2017). "Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network".PMID 28070672
  24. Juan D Rodriguez-Callejas et al. (2016). "Evidence of Tau Hyperphosphorylation and Dystrophic Microglia in the Common Marmoset".PMID 28066237
  25. Marie Victoire Guillot-Sestier et al. (2016). "Quantitative 3D In Silico Modeling (q3DISM) of Cerebral Amyloid-beta Phagocytosis in Rodent Models of Alzheimer's Disease".PMID 28060279
  26. Shutao Wang et al. (2017). "Non-invasive, Focused Ultrasound-Facilitated Gene Delivery for Optogenetics".PMID 28059117
  27. Chelsea M Larabee et al. (2016). "Loss of Nrf2 exacerbates the visual deficits and optic neuritis elicited by experimental autoimmune encephalomyelitis".PMID 28050123
  28. Francesca Cappellini et al. (2015). "New synthesis and biodistribution of the D-amino acid oxidase-magnetic nanoparticle system".PMID 28031918
  29. Nina Hellström Erkenstam et al. (2016). "Temporal Characterization of Microglia/Macrophage Phenotypes in a Mouse Model of Neonatal Hypoxic-Ischemic Brain Injury".PMID 28018179
  30. Minshu Li et al. (2016). "Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity".PMID 27994144
  31. Beata Jablonska et al. (2016). "Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury".PMID 27991597
  32. Nicole Schäfer et al. (2016). "Complement Regulator FHR-3 Is Elevated either Locally or Systemically in a Selection of Autoimmune Diseases".PMID 27965669
  33. C M Sellgren et al. (2017). "Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors".PMID 27956744
  34. Andrew C Wang et al. (2016). "Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration".PMID 27956640
  35. Despina Kokona et al. (2016). "Imaging of macrophage dynamics with optical coherence tomography in anterior ischemic optic neuropathy".PMID 27914988
  36. Shuaiyu Wang et al. (2016). "The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying".PMID 27911893
  37. Hanna Retallack et al. (2016). "Zika virus cell tropism in the developing human brain and inhibition by azithromycin".PMID 27911847
  38. Nicolas Dzamko et al. (2016). "LRRK2 levels and phosphorylation in Parkinson's disease brain and cases with restricted Lewy bodies".PMID 27911006
  39. Jeffrey H Kordower et al. (2016). "Robust graft survival and normalized dopaminergic innervation do not obligate recovery in a Parkinson disease patient".PMID 27900791
  40. Gabriela Hurtado-Alvarado et al. (2016). "A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction".PMID 27893847
  41. James Fraser et al. (2016). "Cell-type-specific expression of NFIX in the developing and adult cerebellum".PMID 27878595
  42. Jennifer L Hodges et al. (2016). "Astrocytic Contributions to Synaptic and Learning Abnormalities in a Mouse Model of Fragile X Syndrome".PMID 27865451
  43. Alexander Mildner et al. (2017). "P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases".PMID 27862351
  44. Yasufumi Hayano et al. (2016). "Dorsal horn interneuron-derived Netrin-4 contributes to spinal sensitization in chronic pain via Unc5B".PMID 27856613
  45. Neele Saskia Hübner et al. (2016). "The connectomics of brain demyelination: Functional and structural patterns in the cuprizone mouse model".PMID 27845252
  46. Debbie Le Blon et al. (2016). "Intracerebral transplantation of interleukin 13-producing mesenchymal stem cells limits microgliosis, oligodendrocyte loss and demyelination in the cuprizone mouse model".PMID 27829467
  47. Jun Zha et al. (2016). "A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses".PMID 27824125
  48. Cyril Laurent et al. (2017). "Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy".PMID 27818384
  49. Shulin Pan et al. (2016). "Resveratrol post-treatment protects against neonatal brain injury after hypoxia-ischemia".PMID 27811363
  50. Seo Hee Cho et al. (2016). "Neonatal disease environment limits the efficacy of retinal transplantation in the LCA8 mouse model".PMID 27809828
  51. Daniel J Shepherd et al. (2016). "Anti-Nogo-A Immunotherapy Does Not Alter Hippocampal Neurogenesis after Stroke in Adult Rats".PMID 27803646
  52. Klara Kirschbaum et al. (2016). "In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis".PMID 27799546
  53. Xinhua Zhan et al. (2016). "Gram-negative bacterial molecules associate with Alzheimer disease pathology".PMID 27784770
  54. Sandra Goebbels et al. (2016). "A neuronal PI(3,4,5)P3-dependent program of oligodendrocyte precursor recruitment and myelination".PMID 27775720
  55. Jonathan D Teo et al. (2016). "Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats".PMID 27746186
  56. Satoru Koyanagi et al. (2016). "Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia".PMID 27739425
  57. Matias Alvarez-Saavedra et al. (2016). "Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice".PMID 27732860
  58. Jingjing He et al. (2016). "Neuroprotective Effects of 7, 8-dihydroxyflavone on Midbrain Dopaminergic Neurons in MPP+-treated Monkeys".PMID 27731318
  59. Kristina Hofmann et al. (2017). "Tanycytes and a differential fatty acid metabolism in the hypothalamus".PMID 27726181
  60. Yi Pang et al. (2016). "Early Postnatal Lipopolysaccharide Exposure Leads to Enhanced Neurogenesis and Impaired Communicative Functions in Rats".PMID 27723799
  61. Doortje W Dekens et al. (2017). "Neutrophil Gelatinase-Associated Lipocalin and its Receptors in Alzheimer's Disease (AD) Brain Regions: Differential Findings in AD with and without Depression".PMID 27716662
  62. Tomoyuki Yamanaka et al. (2016). "Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS".PMID 27687130
  63. Caroline Guglielmetti et al. (2016). "Interleukin-13 immune gene therapy prevents CNS inflammation and demyelination via alternative activation of microglia and macrophages".PMID 27685637
  64. Mateus Vidigal de Castro et al. (2016). "Direct Spinal Ventral Root Repair following Avulsion: Effectiveness of a New Heterologous Fibrin Sealant on Motoneuron Survival and Regeneration".PMID 27642524
  65. T Draheim et al. (2016). "Activation of the astrocytic Nrf2/ARE system ameliorates the formation of demyelinating lesions in a multiple sclerosis animal model".PMID 27641725
  66. Qimei Wu et al. (2016). "Chronic mild stress accelerates the progression of Parkinson's disease in A53T α-synuclein transgenic mice".PMID 27637804
  67. Wei Li Kuan et al. (2016). "α-Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function".PMID 27632900
  68. Sherry Dadsetan et al. (2016). "Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy".PMID 27623772
  69. Augusto F Schmidt et al. (2016). "Intra-amniotic LPS causes acute neuroinflammation in preterm rhesus macaques".PMID 27596440
  70. Sriram Balusu et al. (2016). "Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles".PMID 27596437
  71. Sheu Ran Choi et al. (2016). "Astrocyte sigma-1 receptors modulate connexin 43 expression leading to the induction of below-level mechanical allodynia in spinal cord injured mice".PMID 27567941
  72. Johannes Steffen et al. (2016). "Revisiting rodent models: Octodon degus as Alzheimer's disease model?".PMID 27566602
  73. Rana S Dhillon et al. (2016). "Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy".PMID 27552807
  74. André Luis Bombeiro et al. (2016). "MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury".PMID 27551751
  75. James M Hillis et al. (2016). "Cuprizone demyelination induces a unique inflammatory response in the subventricular zone".PMID 27550173
  76. Stefanie Papp et al. (2016). "Liver Necrosis and Lethal Systemic Inflammation in a Murine Model of Rickettsia typhi Infection: Role of Neutrophils, Macrophages and NK Cells".PMID 27548618
  77. Haim Belinson et al. (2016). "Dual epithelial and immune cell function of Dvl1 regulates gut microbiota composition and intestinal homeostasis".PMID 27525310
  78. Kelly M McAteer et al. (2016). "Short and Long Term Behavioral and Pathological Changes in a Novel Rodent Model of Repetitive Mild Traumatic Brain Injury".PMID 27505027
  79. An Ting Liou et al. (2016). "A new animal model containing human SCARB2 and lacking stat-1 is highly susceptible to EV71".PMID 27499235
  80. Siv Vingill et al. (2016). "Loss of FBXO7 (PARK15) results in reduced proteasome activity and models a parkinsonism-like phenotype in mice".PMID 27497298
  81. Heike Wolf et al. (2016). "A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease".PMID 27491075
  82. Raman Saggu et al. (2016). "Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia".PMID 27487766
  83. Seung Hye Lee et al. (2016). "Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement".PMID 27475227
  84. Vuk Palibrk et al. (2016). "PML regulates neuroprotective innate immunity and neuroblast commitment in a hypoxic-ischemic encephalopathy model".PMID 27468695
  85. Sandro Alves et al. (2016). "Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins".PMID 27465358
  86. Kohichi Kawahara et al. (2016). "The novel monoclonal antibody 9F5 reveals expression of a fragment of GPNMB/osteoactivin processed by furin-like protease(s) in a subpopulation of microglia in neonatal rat brain".PMID 27464357
  87. Moonseok Choi et al. (2016). "Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus".PMID 27460927
  88. Fumiko Takayama et al. (2016). "Diurnal dynamic behavior of microglia in response to infected bacteria through the UDP-P2Y6 receptor system".PMID 27445174
  89. Jianguo Xu et al. (2016). "Microglial activation induced by the alarmin S100B is regulated by poly(ADP-ribose) polymerase-1".PMID 27444121
  90. Masaaki Sato et al. (2016). "In vivo two-photon imaging of striatal neuronal circuits in mice".PMID 27400866
  91. Tzu Ying Chuang et al. (2016). "LRP1 expression in microglia is protective during CNS autoimmunity".PMID 27400748
  92. Khalil Miloudi et al. (2016). "Truncated netrin-1 contributes to pathological vascular permeability in diabetic retinopathy".PMID 27400127
  93. Natalie A Duggett et al. (2016). "Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy".PMID 27393249
  94. Alexandre Janer et al. (2016). "SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome".PMID 27390132
  95. André L Bombeiro et al. (2016). "Enhanced Immune Response in Immunodeficient Mice Improves Peripheral Nerve Regeneration Following Axotomy".PMID 27378849
  96. Annika Sommer et al. (2016). "Infiltrating T lymphocytes reduce myeloid phagocytosis activity in synucleinopathy model".PMID 27364890
  97. Michael J Vasek et al. (2016). "A complement-microglial axis drives synapse loss during virus-induced memory impairment".PMID 27337340
  98. Wing Yip Tam et al. (2016). "The association between laminin and microglial morphology in vitro".PMID 27334934
  99. Aurélia Vernay et al. (2016). "A transgenic mouse expressing CHMP2Bintron5 mutant in neurons develops histological and behavioural features of amyotrophic lateral sclerosis and frontotemporal dementia".PMID 27329763
  100. Kerstin Ure et al. (2016). "Restoration of Mecp2 expression in GABAergic neurons is sufficient to rescue multiple disease features in a mouse model of Rett syndrome".PMID 27328321
  101. Elizabeth B Hutchinson et al. (2016). "Quantitative MRI and DTI Abnormalities During the Acute Period Following CCI in the Ferret".PMID 27294688
  102. Shima Safaiyan et al. (2016). "Age-related myelin degradation burdens the clearance function of microglia during aging".PMID 27294511
  103. Yusuke Sawada et al. (2016). "Inflammation-induced reversible switch of the neuron-specific enolase promoter from Purkinje neurons to Bergmann glia".PMID 27291422
  104. Hwajin Kim et al. (2016). "A mitochondrial division inhibitor, Mdivi-1, inhibits mitochondrial fragmentation and attenuates kainic acid-induced hippocampal cell death".PMID 27287829
  105. Loic Auderset et al. (2016). "Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System".PMID 27280679
  106. Ruimin Huang et al. (2016). "High Precision Imaging of Microscopic Spread of Glioblastoma with a Targeted Ultrasensitive SERRS Molecular Imaging Probe".PMID 27279902
  107. Yuta Morisaki et al. (2016). "Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix Metalloproteinase-9".PMID 27264390
  108. Yoshinori Hayashi et al. (2016). "BK channels in microglia are required for morphine-induced hyperalgesia".PMID 27241733
  109. Vir B Singh et al. (2016). "Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice".PMID 27241024
  110. Malte Puchert et al. (2016). "Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise".PMID 27237374
  111. Akira Nagaoka et al. (2016). "Abnormal intrinsic dynamics of dendritic spines in a fragile X syndrome mouse model in vivo".PMID 27221801
  112. Sharon Lim et al. (2016). "Co-option of pre-existing vascular beds in adipose tissue controls tumor growth rates and angiogenesis".PMID 27203675
  113. Clément Ricard et al. (2016). "Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice".PMID 27193333
  114. R Marignier et al. (2016). "Neuromyelitis optica study model based on chronic infusion of autoantibodies in rat cerebrospinal fluid".PMID 27193196
  115. Keith A Wharton et al. (2016). "JC Polyomavirus Abundance and Distribution in Progressive Multifocal Leukoencephalopathy (PML) Brain Tissue Implicates Myelin Sheath in Intracerebral Dissemination of Infection".PMID 27191595
  116. Sudhir Thakurela et al. (2016). "The transcriptome of mouse central nervous system myelin".PMID 27173133
  117. Gerburg Keilhoff et al. (2016). "Selected gene profiles of stressed NSC-34 cells and rat spinal cord following peripheral nerve reconstruction and minocycline treatment".PMID 27168790
  118. J W Finnie et al. (2016). "Temporal Sequence of Autolysis in the Cerebellar Cortex of the Mouse".PMID 27156898
  119. T Tamagawa et al. (2016). "Involvement of Microglial P2Y12 Signaling in Tongue Cancer Pain".PMID 27151915
  120. Yunlong Yang et al. (2016). "The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages".PMID 27150562
  121. Margaret A Mohr et al. (2016). "Neurons and Glial Cells Are Added to the Female Rat Anteroventral Periventricular Nucleus During Puberty".PMID 27145006
  122. Gergely Szalay et al. (2016). "Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke".PMID 27139776
  123. Chelsea M Larabee et al. (2016). "Myelin-specific Th17 cells induce severe relapsing optic neuritis with irreversible loss of retinal ganglion cells in C57BL/6 mice".PMID 27122964
  124. Kuan I Lee et al. (2016). "Role of transient receptor potential ankyrin 1 channels in Alzheimer's disease".PMID 27121378
  125. Hsin I Tong et al. (2016). "Monocyte Trafficking, Engraftment, and Delivery of Nanoparticles and an Exogenous Gene into the Acutely Inflamed Brain Tissue - Evaluations on Monocyte-Based Delivery System for the Central Nervous System".PMID 27115998
  126. Fredrik Anesten et al. (2016). "Preproglucagon neurons in the hindbrain have IL-6 receptor-α and show Ca2+ influx in response to IL-6".PMID 27097661
  127. David S Bouvier et al. (2016). "High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease".PMID 27090093
  128. Radouil Tzekov et al. (2016). "Sub-Chronic Neuropathological and Biochemical Changes in Mouse Visual System after Repetitive Mild Traumatic Brain Injury".PMID 27088355
  129. Bianca Brüggen et al. (2016). "Defective ceramide synthases in mice cause reduced amplitudes in electroretinograms and altered sphingolipid composition in retina and cornea".PMID 27086873
  130. Abdelwahed Chtarto et al. (2016). "A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses".PMID 27069954
  131. Sun Kwang Kim et al. (2016). "Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain".PMID 27064281
  132. Lawrence Fourgeaud et al. (2016). "TAM receptors regulate multiple features of microglial physiology".PMID 27049947
  133. Pete A Williams et al. (2016). "Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma".PMID 27048300
  134. Jianjing Yang et al. (2016). "Interleukin-4 Ameliorates the Functional Recovery of Intracerebral Hemorrhage Through the Alternative Activation of Microglia/Macrophage".PMID 27013935
  135. Ishaq A Viringipurampeer et al. (2016). "NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration".PMID 27008885
  136. Hiromu Monai et al. (2016). "Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain".PMID 27000523
  137. Sofia Anastasiadou et al. (2016). "The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration".PMID 26980486
  138. Anke Osterloh et al. (2016). "Persisting Rickettsia typhi Causes Fatal Central Nervous System Inflammation".PMID 26975992
  139. Braden C McFarland et al. (2016). "Loss of SOCS3 in myeloid cells prolongs survival in a syngeneic model of glioma".PMID 26967393
  140. Lukas Jennewein et al. (2016). "Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas".PMID 26956048
  141. Chuntao Zhao et al. (2016). "Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation".PMID 26955760
  142. G O Sipe et al. (2016). "Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex".PMID 26948129
  143. Jaycie L Loewen et al. (2016). "Neuronal Injury, Gliosis, and Glial Proliferation in Two Models of Temporal Lobe Epilepsy".PMID 26945036
  144. Vishruti Makani et al. (2016). "BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR".PMID 26939023
  145. Ai Ling Xu et al. (2016). "Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats".PMID 26936330
  146. Sumihiro Maeda et al. (2016). "Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice".PMID 26931567
  147. Camilla Recordati et al. (2016). "Tissue distribution and acute toxicity of silver after single intravenous administration in mice: nano-specific and size-dependent effects".PMID 26926244
  148. Hai Lun Liu et al. (2016). "Can Monitoring Fetal Intestinal Inflammation Using Heart Rate Variability Analysis Signal Incipient Necrotizing Enterocolitis of the Neonate?".PMID 26914621
  149. Maria I Fonseca et al. (2016). "Analysis of the Putative Role of CR1 in Alzheimer's Disease: Genetic Association, Expression and Function".PMID 26914463
  150. Minako Matsumoto et al. (2016). "Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Is Involved in Adult Mouse Hippocampal Neurogenesis After Stroke".PMID 26910758
  151. Lisa Zondler et al. (2016). "Peripheral monocytes are functionally altered and invade the CNS in ALS patients".PMID 26910103
  152. Aris Polyzos et al. (2016). "Mitochondrial targeting of XJB-5-131 attenuates or improves pathophysiology in HdhQ150 animals with well-developed disease phenotypes".PMID 26908614
  153. Carla M Cabral et al. (2016). "Neurons are the Primary Target Cell for the Brain-Tropic Intracellular Parasite Toxoplasma gondii".PMID 26895155
  154. Zhen Puyang et al. (2016). "Retinal Ganglion Cell Loss is Delayed Following Optic Nerve Crush in NLRP3 Knockout Mice".PMID 26893104
  155. Charisse N Winston et al. (2016). "Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma".PMID 26857506
  156. Kanchan Bisht et al. (2016). "Dark microglia: A new phenotype predominantly associated with pathological states".PMID 26847266
  157. Jennifer L Furman et al. (2016). "Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury".PMID 26843634
  158. Aarti Sharma et al. (2016). "ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function".PMID 26842965
  159. Micha M M Wilhelmus et al. (2016). "Catalytically active tissue transglutaminase colocalises with Aβ pathology in Alzheimer's disease mouse models".PMID 26837469
  160. Hongyun Li et al. (2016). "Cerebral Apolipoprotein-D Is Hypoglycosylated Compared to Peripheral Tissues and Is Variably Expressed in Mouse and Human Brain Regions".PMID 26829325
  161. Eiichi Tokuda et al. (2016). "Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase".PMID 26810478
  162. Corinne A Lee-Kubli et al. (2016). "Analysis of the behavioral, cellular and molecular characteristics of pain in severe rodent spinal cord injury".PMID 26808661
  163. Iris Kim et al. (2015). "A postnatal peak in microglial development in the mouse hippocampus is correlated with heightened sensitivity to seizure triggers".PMID 26807334
  164. María Eugenia Matzkin et al. (2016). "Alterations in oxidative, inflammatory and apoptotic events in short-lived and long-lived mice testes".PMID 26805572
  165. Amber R Hackett et al. (2016). "STAT3 and SOCS3 regulate NG2 cell proliferation and differentiation after contusive spinal cord injury".PMID 26804026
  166. Anne Korwitz et al. (2016). "Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria".PMID 26783299
  167. Seung Kyun Kang et al. (2016). "Bioresorbable silicon electronic sensors for the brain".PMID 26779949
  168. Sohee Lee et al. (2015). "Chronic Stress Decreases Cerebrovascular Responses During Rat Hindlimb Electrical Stimulation".PMID 26778944
  169. Peng Yuan et al. (2016). "Attenuation of β-Amyloid Deposition and Neurotoxicity by Chemogenetic Modulation of Neural Activity".PMID 26758850
  170. Hong Lian et al. (2016). "Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease".PMID 26758846
  171. Qiang Liu et al. (2016). "Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation".PMID 26752157
  172. Hong Shuai Liu et al. (2016). "Astragaloside IV inhibits microglia activation via glucocorticoid receptor mediated signaling pathway".PMID 26750705
  173. Heiko Backes et al. (2016). "Glucose consumption of inflammatory cells masks metabolic deficits in the brain".PMID 26747749
  174. Ahmed M Osman et al. (2016). "Caspase inhibition impaired the neural stem/progenitor cell response after cortical ischemia in mice".PMID 26734998
  175. Mark S Kindy et al. (2016). "A therapeutic cancer vaccine against GL261 murine glioma".PMID 26727970
  176. Cuicui Xie et al. (2016). "Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury".PMID 26727396
  177. Karolina Slowicka et al. (2016). "Optineurin deficiency in mice is associated with increased sensitivity to Salmonella but does not affect proinflammatory NF-κB signaling".PMID 26677802
  178. J A Gilkes et al. (2016). "Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10".PMID 26674264
  179. Laura T Haas et al. (2016). "Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease".PMID 26667279
  180. Maria Traka et al. (2016). "Oligodendrocyte death results in immune-mediated CNS demyelination".PMID 26656646
  181. Romana Hoftberger et al. (2015). "Autoimmune encephalitis in humans: how closely does it reflect multiple sclerosis ?".PMID 26637427
  182. Eva M Jimenez-Mateos et al. (2015). "microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus".PMID 26631939
  183. Haihan Jiao et al. (2015). "Spatiotemporal Cadence of Macrophage Polarisation in a Model of Light-Induced Retinal Degeneration".PMID 26630454
  184. Bruno A Benítez et al. (2015). "Clinically early-stage CSPα mutation carrier exhibits remarkable terminal stage neuronal pathology with minimal evidence of synaptic loss".PMID 26610600
  185. Yulia Grishchuk et al. (2016). "Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV".PMID 26608452
  186. Tianqing Xiong et al. (2015). "The progressive changes of filamentous actin cytoskeleton in the hippocampal neurons after pilocarpine-induced status epilepticus".PMID 26600371
  187. Carolin Dahlke et al. (2015). "Inflammation and neuronal death in the motor cortex of the wobbler mouse, an ALS animal model".PMID 26597538
  188. Montasir Elahi et al. (2016). "Short-term treadmill exercise increased tau insolubility and neuroinflammation in tauopathy model mice".PMID 26592481
  189. Marie Josée Beaudet et al. (2015). "High yield extraction of pure spinal motor neurons, astrocytes and microglia from single embryo and adult mouse spinal cord".PMID 26577180
  190. Sabine Hellwig et al. (2016). "Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice".PMID 26576722
  191. Chelsea M Larabee et al. (2015). "Expression profiling of the ubiquitin conjugating enzyme UbcM2 in murine brain reveals modest age-dependent decreases in specific neurons".PMID 26566974
  192. Jia Zhu et al. (2016). "Protein Interacting C-Kinase 1 Modulates Surface Expression of P2Y6 Purinoreceptor, Actin Polymerization and Phagocytosis in Microglia".PMID 26566795
  193. Hongfei Sang et al. (2016). "Opposite roles of bradykinin B1 and B2 receptors during cerebral ischaemia-reperfusion injury in experimental diabetic rats".PMID 26565562
  194. Valeriy G Ostapchenko et al. (2015). "The Transient Receptor Potential Melastatin 2 (TRPM2) Channel Contributes to β-Amyloid Oligomer-Related Neurotoxicity and Memory Impairment".PMID 26558786
  195. Carmela Giordano et al. (2015). "Repeated 6-Hz Corneal Stimulation Progressively Increases FosB/ΔFosB Levels in the Lateral Amygdala and Induces Seizure Generalization to the Hippocampus".PMID 26555229
  196. Sung Il Park et al. (2015). "Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics".PMID 26551059
  197. Angélica Maria Sabogal-Guáqueta et al. (2016). "Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice".PMID 26549854
  198. Leonardo Gatticchi et al. (2015). "The Tm7sf2 Gene Deficiency Protects Mice against Endotoxin-Induced Acute Kidney Injury".PMID 26540160
  199. Jonathan D Cherry et al. (2015). "Arginase 1+ microglia reduce Aβ plaque deposition during IL-1β-dependent neuroinflammation".PMID 26538310
  200. Virginie Neirinckx et al. (2015). "Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury".PMID 26530515
  201. Larissa G P Langhi et al. (2015). "Lipid-Laden Multilocular Cells in the Aging Thymus Are Phenotypically Heterogeneous".PMID 26509710
  202. Julia Marschallinger et al. (2015). "Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug".PMID 26506265
  203. Jie Liu et al. (2015). "Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation".PMID 26499517
  204. Maral Tajerian et al. (2015). "Differential Efficacy of Ketamine in the Acute versus Chronic Stages of Complex Regional Pain Syndrome in Mice".PMID 26492479
  205. Yan Gu et al. (2015). "Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage".PMID 26475712
  206. Won Ho Shin et al. (2015). "Induction of microglial toll-like receptor 4 by prothrombin kringle-2: a potential pathogenic mechanism in Parkinson's disease".PMID 26440368
  207. Jackalina M Van Kampen et al. (2015). "The Progressive BSSG Rat Model of Parkinson's: Recapitulating Multiple Key Features of the Human Disease".PMID 26439489
  208. Audrey D Lafrenaye et al. (2015). "Microglia processes associate with diffusely injured axons following mild traumatic brain injury in the micro pig".PMID 26438203
  209. Hirohide Asai et al. (2015). "Depletion of microglia and inhibition of exosome synthesis halt tau propagation".PMID 26436904
  210. D E Korzhevskii et al. (2015). "Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde".PMID 26428887
  211. Naoto Watamura et al. (2016). "Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer's disease model mice: Involvement of Cdk5 phosphorylation and the effect of ATRA treatment".PMID 26400044
  212. Patricia L Musolino et al. (2015). "Brain endothelial dysfunction in cerebral adrenoleukodystrophy".PMID 26377633
  213. Insup Choi et al. (2015). "LRRK2 G2019S mutation attenuates microglial motility by inhibiting focal adhesion kinase".PMID 26365310
  214. Emma L Clayton et al. (2015). "Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology".PMID 26358247
  215. Harshvardhan Rolyan et al. (2015). "Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused by Lamin B1 Overexpression".PMID 26311780
  216. Ana C Zarpelon et al. (2016). "Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain".PMID 26310268
  217. Mingju Cao et al. (2015). "Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation".PMID 26300730
  218. Il Shin Lee et al. (2015). "Human neural stem cells alleviate Alzheimer-like pathology in a mouse model".PMID 26293123
  219. Kuti Baruch et al. (2015). "Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer's disease pathology".PMID 26284939
  220. Casey Cook et al. (2015). "Tau deposition drives neuropathological, inflammatory and behavioral abnormalities independently of neuronal loss in a novel mouse model".PMID 26276810
  221. Hugo Peluffo et al. (2015). "CD300f immunoreceptor contributes to peripheral nerve regeneration by the modulation of macrophage inflammatory phenotype".PMID 26259611
  222. Mark D Meadowcroft et al. (2015). "Cortical iron regulation and inflammatory response in Alzheimer's disease and APPSWE/PS1ΔE9 mice: a histological perspective".PMID 26257600
  223. Hong Qiang Qiu et al. (2015). "Koumine enhances spinal cord 3α-hydroxysteroid oxidoreductase expression and activity in a rat model of neuropathic pain".PMID 26255228
  224. Jun ichi Satoh et al. (2016). "TMEM119 marks a subset of microglia in the human brain".PMID 26250788
  225. William Galbavy et al. (2015). "Neuroimmune and Neuropathic Responses of Spinal Cord and Dorsal Root Ganglia in Middle Age".PMID 26241743
  226. Tomas Smolek et al. (2016). "Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment".PMID 26239295
  227. Manuel Lutzenberger et al. (2015). "Ablation of CCAAT/Enhancer-Binding Protein Delta (C/EBPD): Increased Plaque Burden in a Murine Alzheimer's Disease Model".PMID 26230261
  228. Paula L McClean et al. (2015). "Prophylactic liraglutide treatment prevents amyloid plaque deposition, chronic inflammation and memory impairment in APP/PS1 mice".PMID 26205827
  229. Sebastien Gingras et al. (2015). "SCYL2 Protects CA3 Pyramidal Neurons from Excitotoxicity during Functional Maturation of the Mouse Hippocampus".PMID 26203146
  230. Maria Nordheim Alme et al. (2015). "Fingolimod does not enhance cerebellar remyelination in the cuprizone model".PMID 26198937
  231. Youjun Chen et al. (2015). "Pten Mutations Alter Brain Growth Trajectory and Allocation of Cell Types through Elevated β-Catenin Signaling".PMID 26180201
  232. Deepti Chugh et al. (2015). "Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2".PMID 26177381
  233. Shotaro Michinaga et al. (2015). "Improvement of cold injury-induced mouse brain edema by endothelin ETB antagonists is accompanied by decreases in matrixmetalloproteinase 9 and vascular endothelial growth factor-A".PMID 26174228
  234. Lian Zhao et al. (2015). "Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration".PMID 26139610
  235. Shweta S Puntambekar et al. (2015). "Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination".PMID 26132901
  236. Bastian Zinnhardt et al. (2015). "Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke".PMID 26126867
  237. Yueguang Liu et al. (2015). "Ascl1 Converts Dorsal Midbrain Astrocytes into Functional Neurons In Vivo".PMID 26109658
  238. Xing Lin Tan et al. (2015). "Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment".PMID 26104027
  239. Katarina Kapuralin et al. (2015). "STAM2, a member of the endosome-associated complex ESCRT-0 is highly expressed in neurons".PMID 26101075
  240. Kimberleve Rolón-Reyes et al. (2015). "Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway".PMID 26098895
  241. Kirsten S Evonuk et al. (2015). "Inhibition of System Xc(-) Transporter Attenuates Autoimmune Inflammatory Demyelination".PMID 26071560
  242. A Currais et al. (2016). "Dietary glycemic index modulates the behavioral and biochemical abnormalities associated with autism spectrum disorder".PMID 26055422
  243. Mei Du et al. (2015). "Transgenic Mice Overexpressing Serum Retinol-Binding Protein Develop Progressive Retinal Degeneration through a Retinoid-Independent Mechanism".PMID 26055327
  244. Yosef Koronyo et al. (2015). "Therapeutic effects of glatiramer acetate and grafted CD115⁺ monocytes in a mouse model of Alzheimer's disease".PMID 26049087
  245. Sandra Siegert et al. (2015). "The schizophrenia risk gene product miR-137 alters presynaptic plasticity".PMID 26005852
  246. Amir Pozner et al. (2015). "Intracellular calcium dynamics in cortical microglia responding to focal laser injury in the PC::G5-tdT reporter mouse".PMID 26005403
  247. Hanadie Yousef et al. (2015). "Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal".PMID 26003168
  248. Lei Pei et al. (2015). "A Novel Mechanism of Spine Damages in Stroke via DAPK1 and Tau".PMID 25995053
  249. Dhaval P Bhatt et al. (2015). "A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain".PMID 25992783
  250. David B Wang et al. (2015). "Loss of endophilin-B1 exacerbates Alzheimer's disease pathology".PMID 25981964
  251. C S Janota et al. (2015). "Glio-vascular changes during ageing in wild-type and Alzheimer's disease-like APP/PS1 mice".PMID 25966615
  252. Peng Liu et al. (2015). "Characterization of a Novel Mouse Model of Alzheimer's Disease--Amyloid Pathology and Unique β-Amyloid Oligomer Profile".PMID 25946042
  253. Masaaki Sato et al. (2015). "Generation and Imaging of Transgenic Mice that Express G-CaMP7 under a Tetracycline Response Element".PMID 25946002
  254. J Michael Gee et al. (2015). "Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation".PMID 25926768
  255. Konrad Gabrusiewicz et al. (2015). "Macrophage Ablation Reduces M2-Like Populations and Jeopardizes Tumor Growth in a MAFIA-Based Glioma Model".PMID 25925380
  256. Lucas Vicuña et al. (2015). "The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell-derived leukocyte elastase".PMID 25915831
  257. Paschalis Theotokis et al. (2015). "Connexin43 and connexin47 alterations after neural precursor cells transplantation in experimental autoimmune encephalomyelitis".PMID 25914045
  258. D Jimenez-Blasco et al. (2015). "Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5-Nrf2 pathway".PMID 25909891
  259. Scott J Webster et al. (2015). "Closed head injury in an age-related Alzheimer mouse model leads to an altered neuroinflammatory response and persistent cognitive impairment".PMID 25904805
  260. Fadi J Najm et al. (2015). "Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo".PMID 25896324
  261. Pietro Luigi Poliani et al. (2015). "TREM2 sustains microglial expansion during aging and response to demyelination".PMID 25893602
  262. Jeffrey S Hakim et al. (2015). "Positively Charged Oligo[Poly(Ethylene Glycol) Fumarate] Scaffold Implantation Results in a Permissive Lesion Environment after Spinal Cord Injury in Rat".PMID 25891264
  263. Elias Gebara et al. (2015). "Taurine increases hippocampal neurogenesis in aging mice".PMID 25889858
  264. Rebecca K Sheean et al. (2015). "Effect of thymic stimulation of CD4+ T cell expansion on disease onset and progression in mutant SOD1 mice".PMID 25889790
  265. Adam D Bachstetter et al. (2015). "Attenuation of traumatic brain injury-induced cognitive impairment in mice by targeting increased cytokine levels with a small molecule experimental therapeutic".PMID 25886256
  266. T Noro et al. (2015). "Spermidine promotes retinal ganglion cell survival and optic nerve regeneration in adult mice following optic nerve injury".PMID 25880087
  267. Nimrod Miller et al. (2015). "Non-aggregating tau phosphorylation by cyclin-dependent kinase 5 contributes to motor neuron degeneration in spinal muscular atrophy".PMID 25878277
  268. Jasmien Orije et al. (2015). "Longitudinal monitoring of metabolic alterations in cuprizone mouse model of multiple sclerosis using 1H-magnetic resonance spectroscopy".PMID 25871629
  269. Patricia Rivera et al. (2015). "Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context".PMID 25870539
  270. Lauren R Kett et al. (2015). "α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2".PMID 25855184
  271. Jenna L Leclerc et al. (2015). "Genetic deletion of the prostaglandin E2 E prostanoid receptor subtype 3 improves anatomical and functional outcomes after intracerebral hemorrhage".PMID 25847406
  272. Nora E Szabo et al. (2015). "Hoxb8 intersection defines a role for Lmx1b in excitatory dorsal horn neuron development, spinofugal connectivity, and nociception".PMID 25834049
  273. Sung Tae Kim et al. (2015). "Protective effects of phosphatidylcholine on oxaliplatin-induced neuropathy in rats".PMID 25817232
  274. Joanna Slusarczyk et al. (2015). "Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells".PMID 25814933
  275. Rieko Muramatsu et al. (2015). "Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system".PMID 25795781
  276. Han Seok Koh et al. (2015). "The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia".PMID 25790768
  277. Hongyun Li et al. (2015). "Apolipoprotein D modulates amyloid pathology in APP/PS1 Alzheimer's disease mice".PMID 25784209
  278. Sheng Juan Jin et al. (2015). "Neuroprotective effects of activated protein C on intrauterine inflammation-induced neonatal white matter injury are associated with the downregulation of fibrinogen-like protein 2/fibroleukin prothrombinase and the inhibition of pro-inflammatory cytokine".PMID 25777531
  279. Peter Bedner et al. (2015). "Astrocyte uncoupling as a cause of human temporal lobe epilepsy".PMID 25765328
  280. Anne Cécile Boulay et al. (2015). "Immune quiescence of the brain is set by astroglial connexin 43".PMID 25762685
  281. Jessica M Collins et al. (2015). "The effect of focal brain injury on beta-amyloid plaque deposition, inflammation and synapses in the APP/PS1 mouse model of Alzheimer's disease".PMID 25747037
  282. W Liu et al. (2015). "Adolescent intermittent ethanol exposure enhances ethanol activation of the nucleus accumbens while blunting the prefrontal cortex responses in adult rat".PMID 25727639
  283. Adam C Kaufman et al. (2015). "Fyn inhibition rescues established memory and synapse loss in Alzheimer mice".PMID 25707991
  284. Jeffery D Haines et al. (2015). "Nuclear export inhibitors avert progression in preclinical models of inflammatory demyelination".PMID 25706475
  285. Nàdia Villacampa et al. (2015). "Astrocyte-targeted production of IL-10 induces changes in microglial reactivity and reduces motor neuron death after facial nerve axotomy".PMID 25691003
  286. Hong Xu et al. (2014). "Tau silencing by siRNA in the P301S mouse model of tauopathy".PMID 25687501
  287. Angélica Maria Sabogal-Guáqueta et al. (2015). "The flavonoid quercetin ameliorates Alzheimer's disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer's disease model mice".PMID 25666032
  288. D Porquet et al. (2015). "Amyloid and tau pathology of familial Alzheimer's disease APP/PS1 mouse model in a senescence phenotype background (SAMP8)".PMID 25663420
  289. Paolo Dametto et al. (2015). "Neurodegeneration and unfolded-protein response in mice expressing a membrane-tethered flexible tail of PrP".PMID 25658480
  290. Hermann C Altmeppen et al. (2015). "The sheddase ADAM10 is a potent modulator of prion disease".PMID 25654651
  291. Jun Nagai et al. (2015). "Crmp4 deletion promotes recovery from spinal cord injury by neuroprotection and limited scar formation".PMID 25652774
  292. Junfeng Zhang et al. (2015). "The choice of general anesthetics may not affect neuroinflammation and impairment of learning and memory after surgery in elderly rats".PMID 25649847
  293. Claudia Cantoni et al. (2015). "TREM2 regulates microglial cell activation in response to demyelination in vivo".PMID 25631124
  294. Carlo Condello et al. (2015). "Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques".PMID 25630253
  295. Anna G Orr et al. (2015). "Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory".PMID 25622143
  296. Yasuhiko Kizuka et al. (2015). "An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease".PMID 25592972
  297. Daisuke Nakayama et al. (2015). "Long-delayed expression of the immediate early gene Arc/Arg3.1 refines neuronal circuits to perpetuate fear memory".PMID 25589774
  298. Wenchao Zhou et al. (2015). "Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth".PMID 25580734
  299. Shailendra Kumar Maurya et al. (2016). "Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators".PMID 25575682
  300. Manoj Kumar et al. (2014). "Endogenous cerebellar neurogenesis in adult mice with progressive ataxia".PMID 25574472
  301. Steven Goossens et al. (2015). "ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling".PMID 25565005
  302. Lukas Bunse et al. (2015). "Proximity ligation assay evaluates IDH1R132H presentation in gliomas".PMID 25555220
  303. Charlotte B Jendresen et al. (2015). "Overexpression of heparanase lowers the amyloid burden in amyloid-β precursor protein transgenic mice".PMID 25548284
  304. Chien Cheng Chen et al. (2014). "Berberine protects against neuronal damage via suppression of glia-mediated inflammation in traumatic brain injury".PMID 25546475
  305. Edmund R Hollis et al. (2015). "A novel and robust conditioning lesion induced by ethidium bromide".PMID 25541322
  306. Hanadie Yousef et al. (2015). "Age-Associated Increase in BMP Signaling Inhibits Hippocampal Neurogenesis".PMID 25538007
  307. Syoichiro Kono et al. (2015). "Neurovascular protection by telmisartan via reducing neuroinflammation in stroke-resistant spontaneously hypertensive rat brain after ischemic stroke".PMID 25534368
  308. Melissa A Cunningham et al. (2014). "Estrogen receptor alpha deficiency protects against development of cognitive impairment in murine lupus".PMID 25510908
  309. Ying Li et al. (2015). "Toll-like receptor 4 enhancement of non-NMDA synaptic currents increases dentate excitability after brain injury".PMID 25497689
  310. Chika Okusa et al. (2014). "Subplate in a rat model of preterm hypoxia-ischemia".PMID 25493282
  311. Tasuku Nishihara et al. (2015). "Matrix metalloproteinase-14 both sheds cell surface neuronal glial antigen 2 (NG2) proteoglycan on macrophages and governs the response to peripheral nerve injury".PMID 25488667
  312. Chinmoy Sarkar et al. (2014). "Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury".PMID 25484084
  313. Courtney Bricker-Anthony et al. (2014). "Exacerbation of blast-induced ocular trauma by an immune response".PMID 25472427
  314. Dianer Yang et al. (2014). "Blocking lymphocyte trafficking with FTY720 prevents inflammation-sensitized hypoxic-ischemic brain injury in newborns".PMID 25471584
  315. Marietta Zille et al. (2014). "Influence of pigment epithelium-derived factor on outcome after striatal cerebral ischemia in the mouse".PMID 25470280
  316. Rachel C Lazarus et al. (2015). "Protein carbonylation after traumatic brain injury: cell specificity, regional susceptibility, and gender differences".PMID 25462645
  317. B Paniagua-Torija et al. (2015). "Spinal cord injury induces a long-lasting upregulation of interleukin-1β in astrocytes around the central canal".PMID 25453765
  318. Beatriz Almolda et al. (2015). "Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10".PMID 25449577
  319. Lindsay A Hohsfield et al. (2014). "Vascular pathology of 20-month-old hypercholesterolemia mice in comparison to triple-transgenic and APPSwDI Alzheimer's disease mouse models".PMID 25447943
  320. Yuri Inose et al. (2015). "Activated microglia in ischemic stroke penumbra upregulate MCP-1 and CCR2 expression in response to lysophosphatidylcholine derived from adjacent neurons and astrocytes".PMID 25443158
  321. Li jun Xu et al. (2015). "Post-stroke treatment with miR-181 antagomir reduces injury and improves long-term behavioral recovery in mice after focal cerebral ischemia".PMID 25433215
  322. María José Pérez-Alvarez et al. (2015). "Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus".PMID 25377795
  323. Arpad Dobolyi et al. (2015). "Localization of SUCLA2 and SUCLG2 subunits of succinyl CoA ligase within the cerebral cortex suggests the absence of matrix substrate-level phosphorylation in glial cells of the human brain".PMID 25370487
  324. C Levy et al. (2015). "Cell-specific and developmental expression of lectican-cleaving proteases in mouse hippocampus and neocortex".PMID 25349050
  325. Dennis Y Chuang et al. (2014). "Dietary Sutherlandia and elderberry mitigate cerebral ischemia-induced neuronal damage and attenuate p47phox and phospho-ERK1/2 expression in microglial cells".PMID 25324465
  326. Oswald Steward et al. (2014). "Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury".PMID 25319698
  327. Elzbieta Wiernasz et al. (2014). "Ttyh1 protein is expressed in glia in vitro and shows elevated expression in activated astrocytes following status epilepticus".PMID 25316497
  328. Lynnmaria Nazareth et al. (2015). "Olfactory ensheathing cells are the main phagocytic cells that remove axon debris during early development of the olfactory system".PMID 25312022
  329. Gregory B Stanton et al. (2015). "Cytogenesis in the adult monkey motor cortex: perivascular NG2 cells are the major adult born cell type".PMID 25308320
  330. Leticia Forny-Germano et al. (2014). "Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates".PMID 25297091
  331. Muhammad T K Zia et al. (2015). "Postnatal glucocorticoid-induced hypomyelination, gliosis, and neurologic deficits are dose-dependent, preparation-specific, and reversible".PMID 25263581
  332. P S Rajput et al. (2014). "Protease activated receptor-1 mediates cytotoxicity during ischemia using in vivo and in vitro models".PMID 25261684
  333. Jie Zhang et al. (2014). "Myelin basic protein induces neuron-specific toxicity by directly damaging the neuronal plasma membrane".PMID 25255088
  334. D Young et al. (2014). "Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy".PMID 25231174
  335. Sungho Lee et al. (2014). "Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway".PMID 25209291
  336. Hans G Novrup et al. (2014). "Central but not systemic administration of XPro1595 is therapeutic following moderate spinal cord injury in mice".PMID 25204558
  337. Debora Cutuli et al. (2014). "n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice".PMID 25202271
  338. Gabriella Pál et al. (2014). "Induction of transforming growth factor beta receptors following focal ischemia in the rat brain".PMID 25192322
  339. Lih Fen Lue et al. (2015). "TREM2 Protein Expression Changes Correlate with Alzheimer's Disease Neurodegenerative Pathologies in Post-Mortem Temporal Cortices".PMID 25186950
  340. G Berdugo-Vega et al. (2014). "GFAP immunoreactivity within the rat nucleus ambiguus after laryngeal nerve injury".PMID 25181319
  341. Konstantin Astafurov et al. (2014). "Oral microbiome link to neurodegeneration in glaucoma".PMID 25180891
  342. Taijun Yunoki et al. (2014). "Anti-oxidative nutrient-rich diet protects against acute ischemic brain damage in rats".PMID 25175837
  343. Matthew T J Lowe et al. (2015). "Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity".PMID 25159005
  344. Shilpa D Kadam et al. (2015). "Systemic injection of CD34(+)-enriched human cord blood cells modulates poststroke neural and glial response in a sex-dependent manner in CD1 mice".PMID 25121827
  345. Weiyong Shen et al. (2014). "Systemic administration of erythropoietin inhibits retinopathy in RCS rats".PMID 25119659
  346. David O'Sullivan et al. (2014). "Treatment with the antipsychotic agent, risperidone, reduces disease severity in experimental autoimmune encephalomyelitis".PMID 25116424
  347. Paula L McClean et al. (2014). "Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer's disease".PMID 25107586
  348. Tao Huang et al. (2014). "Hypoxia-inducible factor-1α upregulation in microglia following hypoxia protects against ischemia-induced cerebral infarction".PMID 25089804
  349. Sebastien Milesi et al. (2014). "Redistribution of PDGFRβ cells and NG2DsRed pericytes at the cerebrovasculature after status epilepticus".PMID 25088711
  350. A Patsialou et al. (2015). "Autocrine CSF1R signaling mediates switching between invasion and proliferation downstream of TGFβ in claudin-low breast tumor cells".PMID 25088194
  351. Kentaro Hayakawa et al. (2014). "Lipopolysaccharide preconditioning facilitates M2 activation of resident microglia after spinal cord injury".PMID 25044014
  352. Stephanie Griemsmann et al. (2015). "Characterization of Panglial Gap Junction Networks in the Thalamus, Neocortex, and Hippocampus Reveals a Unique Population of Glial Cells".PMID 25037920
  353. Giulia E Tyzack et al. (2014). "Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression".PMID 25014177
  354. Spencer U McKinstry et al. (2014). "Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits".PMID 25009276
  355. Patrick Aldrin-Kirk et al. (2014). "Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons".PMID 24999658
  356. YungChia Chen et al. (2014). "A modified controlled cortical impact technique to model mild traumatic brain injury mechanics in mice".PMID 24994996
  357. Courtney Bricker-Anthony et al. (2014). "Molecular changes and vision loss in a mouse model of closed-globe blast trauma".PMID 24994864
  358. Christian Hagel et al. (2015). "Upregulation of Shiga toxin receptor CD77/Gb3 and interleukin-1β expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms".PMID 24989888
  359. Megan J Dowie et al. (2014). "Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain".PMID 24978314
  360. Kai Yvonne Shivers et al. (2014). "PACAP27 prevents Parkinson-like neuronal loss and motor deficits but not microglia activation induced by prostaglandin J2".PMID 24970746
  361. Hans Georg König et al. (2014). "The BCL-2 family protein Bid is critical for pro-inflammatory signaling in astrocytes".PMID 24956542
  362. Vanja Tepavcevic et al. (2014). "Early netrin-1 expression impairs central nervous system remyelination".PMID 24942777
  363. Xiang Zhou et al. (2014). "Brain CD47 expression in a swine model of intracerebral hemorrhage".PMID 24931767
  364. Monica Moreno et al. (2014). "Conditional ablation of astroglial CCL2 suppresses CNS accumulation of M1 macrophages and preserves axons in mice with MOG peptide EAE".PMID 24920622
  365. Lin Qiang Huang et al. (2014). "Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-α and IL-1β-induced Na-K-Cl Cotransporter up-regulation".PMID 24916922
  366. Binnur Eroglu et al. (2014). "Therapeutic inducers of the HSP70/HSP110 protect mice against traumatic brain injury".PMID 24903326
  367. Joshua L Allen et al. (2014). "Early postnatal exposure to ultrafine particulate matter air pollution: persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice".PMID 24901756
  368. Paulino Barragán-Iglesias et al. (2014). "Role of spinal P2Y6 and P2Y11 receptors in neuropathic pain in rats: possible involvement of glial cells".PMID 24886406
  369. Jun ichi Satoh et al. (2014). "LC3, an autophagosome marker, is expressed on oligodendrocytes in Nasu-Hakola disease brains".PMID 24886140
  370. Rob Steger et al. (2014). "Chronic caffeine ingestion causes microglia activation, but not proliferation in the healthy brain".PMID 24881873
  371. Patricia Paez-Gonzalez et al. (2014). "Identification of distinct ChAT⁺ neurons and activity-dependent control of postnatal SVZ neurogenesis".PMID 24880216
  372. Barrie S Rich et al. (2014). "Endogenous antibodies for tumor detection".PMID 24875800
  373. Sang Jae Cho et al. (2014). "Anoctamin 1 expression in the mouse auditory brainstem".PMID 24853671
  374. Z Y Chen et al. (2015). "Spinal toll-like receptor 4-mediated signalling pathway contributes to visceral hypersensitivity induced by neonatal colonic irritation in rats".PMID 24842692
  375. Hikmat Assi et al. (2014). "Assessing the role of STAT3 in DC differentiation and autologous DC immunotherapy in mouse models of GBM".PMID 24806510
  376. Francesca Cicchetti et al. (2014). "Mutant huntingtin is present in neuronal grafts in Huntington disease patients".PMID 24798518
  377. Rachel E Bennett et al. (2014). "Acute reduction of microglia does not alter axonal injury in a mouse model of repetitive concussive traumatic brain injury".PMID 24797413
  378. Zhipeng Xu et al. (2014). "Peripheral surgical wounding and age-dependent neuroinflammation in mice".PMID 24796537
  379. Yuhong Fu et al. (2014). "Age-dependent alterations of the hippocampal cell composition and proliferative potential in the hAβPPSwInd-J20 mouse".PMID 24787919
  380. Liana Roberts Stein et al. (2014). "Expression of Nampt in hippocampal and cortical excitatory neurons is critical for cognitive function".PMID 24760840
  381. Vikas Singh et al. (2014). "Isolation and characterization of microglia from adult mouse brain: selected applications for ex vivo evaluation of immunotoxicological alterations following in vivo xenobiotic exposure".PMID 24754514
  382. Niclas König et al. (2017). "Murine neural crest stem cells and embryonic stem cell-derived neuron precursors survive and differentiate after transplantation in a model of dorsal root avulsion".PMID 24753366
  383. Kelli G Sharp et al. (2014). "A re-assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury".PMID 24747827
  384. Wen Shen et al. (2014). "CXCL12 in astrocytes contributes to bone cancer pain through CXCR4-mediated neuronal sensitization and glial activation in rat spinal cord".PMID 24735601
  385. Zachary R Gallaher et al. (2014). "Neural proliferation in the dorsal root ganglia of the adult rat following capsaicin-induced neuronal death".PMID 24700150
  386. Anna Eskilsson et al. (2014). "Distribution of microsomal prostaglandin E synthase-1 in the mouse brain".PMID 24668417
  387. Kirstan A Vessey et al. (2014). "Adenosine triphosphate-induced photoreceptor death and retinal remodeling in rats".PMID 24639102
  388. Ngoc B Lu-Nguyen et al. (2014). "Transgenic expression of human glial cell line-derived neurotrophic factor from integration-deficient lentiviral vectors is neuroprotective in a rodent model of Parkinson's disease".PMID 24635742
  389. Cornelia Schuh et al. (2014). "Oxidative tissue injury in multiple sclerosis is only partly reflected in experimental disease models".PMID 24622774
  390. G raldine Pottier et al. (2014). "[¹⁸F]DPA-714 as a biomarker for positron emission tomography imaging of rheumatoid arthritis in an animal model".PMID 24621017
  391. K Hultman et al. (2014). "Plasmin deficiency leads to fibrin accumulation and a compromised inflammatory response in the mouse brain".PMID 24612416
  392. Ingrid R Niesman et al. (2014). "Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice".PMID 24593993
  393. João Nuno Alves et al. (2014). "AAV vector-mediated secretion of chondroitinase provides a sensitive tracer for axonal arborisations".PMID 24583077
  394. Chandrakumar Balaratnasingam et al. (2014). "Comparative quantitative study of astrocytes and capillary distribution in optic nerve laminar regions".PMID 24560677
  395. Lionel Nobs et al. (2014). "Stage-specific requirement for cyclin D1 in glial progenitor cells of the cerebral cortex".PMID 24550001
  396. Philipp Pieroh et al. (2014). "Temporal dynamics of glyoxalase 1 in secondary neuronal injury".PMID 24498315
  397. Jamie McQueen et al. (2014). "Restoration of oligodendrocyte pools in a mouse model of chronic cerebral hypoperfusion".PMID 24498301
  398. Rocío Talaverón et al. (2014). "Implanted neural progenitor cells regulate glial reaction to brain injury and establish gap junctions with host glial cells".PMID 24481572
  399. Sebastien Lenglet et al. (2014). "Recombinant tissue plasminogen activator enhances microglial cell recruitment after stroke in mice".PMID 24473480
  400. Tomasz Rusielewicz et al. (2014). "Accelerated repair of demyelinated CNS lesions in the absence of non-muscle myosin IIB".PMID 24470341
  401. Kelsey A Potter et al. (2014). "Curcumin-releasing mechanically adaptive intracortical implants improve the proximal neuronal density and blood-brain barrier stability".PMID 24468582
  402. Stephanie L Willard et al. (2014). "Altered expression of glial and synaptic markers in the anterior hippocampus of behaviorally depressed female monkeys".PMID 24440617
  403. Emma R O'Brien et al. (2014). "Glial activation in the early stages of brain metastasis: TSPO as a diagnostic biomarker".PMID 24434290
  404. Mu Yang et al. (2014). "A new animal model of spontaneous autoimmune peripheral polyneuropathy: implications for Guillain-Barré syndrome".PMID 24401681
  405. Sawang Kesdangsakonwut et al. (2014). "Survival of rabid rabbits after intrathecal immunization".PMID 24397792
  406. Natacha Coppieters et al. (2014). "Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain".PMID 24387984
  407. Roberta Costa et al. (2015). "Distinct in vitro properties of embryonic and extraembryonic fibroblast-like cells are reflected in their in vivo behavior following grafting in the adult mouse brain".PMID 24380384
  408. Luciana Pinato et al. (2015). "Selective protection of the cerebellum against intracerebroventricular LPS is mediated by local melatonin synthesis".PMID 24363121
  409. Victor Tapias et al. (2014). "Pomegranate juice exacerbates oxidative stress and nigrostriatal degeneration in Parkinson's disease".PMID 24315037
  410. Ulrika Beitnere et al. (2014). "Mildronate improves cognition and reduces amyloid-β pathology in transgenic Alzheimer's disease mice".PMID 24273007
  411. Zsuzsanna Tucsek et al. (2014). "Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease".PMID 24269929
  412. Mary Ní Fhlathartaigh et al. (2013). "Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination".PMID 24252779
  413. Kendall Mitchell et al. (2014). "LPS antagonism of TGF-β signaling results in prolonged survival and activation of rat primary microglia".PMID 24251648
  414. Thomas H Sanderson et al. (2013). "Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment".PMID 24223835
  415. Feng Jiang et al. (2013). "Activation of mammalian target of rapamycin mediates rat pain-related responses induced by BmK I, a sodium channel-specific modulator".PMID 24099268
  416. Dominik F Aschauer et al. (2013). "Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain".PMID 24086725
  417. Meng Shan Tan et al. (2014). "IL12/23 p40 inhibition ameliorates Alzheimer's disease-associated neuropathology and spatial memory in SAMP8 mice".PMID 24047617
  418. Alexandre Savard et al. (2013). "Involvement of neuronal IL-1β in acquired brain lesions in a rat model of neonatal encephalopathy".PMID 24007297
  419. Luciana A Cholich et al. (2013). "Experimental intoxication of guinea pigs with Ipomoea carnea: behavioural and neuropathological alterations".PMID 23994428
  420. Su Liu et al. (2013). "EphrinB-EphB receptor signaling contributes to bone cancer pain via Toll-like receptor and proinflammatory cytokines in rat spinal cord".PMID 23973554
  421. Paula L McClean et al. (2014). "Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer's disease".PMID 23973293
  422. Elias Gebara et al. (2013). "Adult hippocampal neurogenesis inversely correlates with microglia in conditions of voluntary running and aging".PMID 23970848
  423. Catarina Raposo et al. (2013). "Sildenafil (Viagra) protective effects on neuroinflammation: the role of iNOS/NO system in an inflammatory demyelination model".PMID 23970812
  424. Elisa J Cops et al. (2013). "Tissue-type plasminogen activator is an extracellular mediator of Purkinje cell damage and altered gait".PMID 23939410
  425. Caroline Guglielmetti et al. (2014). "Multimodal imaging of subventricular zone neural stem/progenitor cells in the cuprizone mouse model reveals increased neurogenic potential for the olfactory bulb pathway, but no contribution to remyelination of the corpus callosum".PMID 23933305
  426. Johannes Prox et al. (2013). "Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions".PMID 23926248
  427. Deepak K Kaushik et al. (2013). "Interleukin-1β orchestrates underlying inflammatory responses in microglia via Krüppel-like factor 4".PMID 23895397
  428. Simon Hametner et al. (2013). "Iron and neurodegeneration in the multiple sclerosis brain".PMID 23868451
  429. Lionel Nobs et al. (2013). "Cyclin D1 is required for proliferation of Olig2-expressing progenitor cells in the injured cerebral cortex".PMID 23839966
  430. Laura B Buckman et al. (2014). "Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system".PMID 23831150
  431. Anurag Maheshwari et al. (2013). "Local overexpression of interleukin-11 in the central nervous system limits demyelination and enhances remyelination".PMID 23818742
  432. Qi Shi et al. (2013). "Brain microglia were activated in sporadic CJD but almost unchanged in fatal familial insomnia and G114V genetic CJD".PMID 23816234
  433. Joshua T Dilworth et al. (2013). "Pulsed low-dose irradiation of orthotopic glioblastoma multiforme (GBM) in a pre-clinical model: effects on vascularization and tumor control".PMID 23791366
  434. Andrea Pristerà et al. (2013). "Impact of N-tau on adult hippocampal neurogenesis, anxiety, and memory".PMID 23769395
  435. Erica D Koval et al. (2013). "Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice".PMID 23740943
  436. Karin Löw et al. (2013). "Direct and retrograde transduction of nigral neurons with AAV6, 8, and 9 and intraneuronal persistence of viral particles".PMID 23600720
  437. Carl J L Sogn et al. (2013). "Rare contacts between synapses and microglial processes containing high levels of Iba1 and actin--a postembedding immunogold study in the healthy rat brain".PMID 23590220
  438. Robert W Regenhardt et al. (2013). "Anti-inflammatory effects of angiotensin-(1-7) in ischemic stroke".PMID 23583926
  439. Wu Ling Xie et al. (2013). "Abnormal activation of microglia accompanied with disrupted CX3CR1/CX3CL1 pathway in the brains of the hamsters infected with scrapie agent 263K".PMID 23526370
  440. Neil G Harris et al. (2013). "Chondroitinase enhances cortical map plasticity and increases functionally active sprouting axons after brain injury".PMID 23517225
  441. Dusica Bajic et al. (2013). "Morphine-enhanced apoptosis in selective brain regions of neonatal rats".PMID 23499314
  442. Chung Ching Chio et al. (2013). "Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α".PMID 23496862
  443. Amy M Smith et al. (2013). "The transcription factor PU.1 is critical for viability and function of human brain microglia".PMID 23483680
  444. Colin P McGuckin et al. (2013). "Ischemic brain injury: a consortium analysis of key factors involved in mesenchymal stem cell-mediated inflammatory reduction".PMID 23466243
  445. K Murakami et al. (2013). "In vivo analysis of kallikrein-related peptidase 6 (KLK6) function in oligodendrocyte development and the expression of myelin proteins".PMID 23376368
  446. Gary P Brennan et al. (2013). "Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo".PMID 23359526
  447. Elaine L Pranski et al. (2013). "RING finger protein 11 (RNF11) modulates susceptibility to 6-OHDA-induced nigral degeneration and behavioral deficits through NF-κB signaling in dopaminergic cells".PMID 23318928
  448. Ryan A Frieler et al. (2012). "Myeloid mineralocorticoid receptor during experimental ischemic stroke: effects of model and sex".PMID 23316294
  449. Le Zhang et al. (2013). "Prolonged diet induced obesity has minimal effects towards brain pathology in mouse model of cerebral amyloid angiopathy: implications for studying obesity-brain interactions in mice".PMID 23313575
  450. Yvonne Couch et al. (2013). "Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia".PMID 23305936
  451. David Amschl et al. (2013). "Time course and progression of wild type α-synuclein accumulation in a transgenic mouse model".PMID 23302418
  452. Donna J Calu et al. (2013). "Optogenetic inhibition of dorsal medial prefrontal cortex attenuates stress-induced reinstatement of palatable food seeking in female rats".PMID 23283335
  453. Ji Nan Sheu et al. (2013). "Resveratrol suppresses calcium-mediated microglial activation and rescues hippocampal neurons of adult rats following acute bacterial meningitis".PMID 23273676
  454. Lin Cao et al. (2012). "Isoflurane induces learning impairment that is mediated by interleukin 1β in rodents".PMID 23251531
  455. Alexander Slowik et al. (2012). "Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells".PMID 23164356
  456. Kazuya Kuboyama et al. (2012). "Protein tyrosine phosphatase receptor type z negatively regulates oligodendrocyte differentiation and myelination".PMID 23144976
  457. Lars Ove Brandenburg et al. (2013). "CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells".PMID 23141747
  458. Xiao yan Zhu et al. (2013). "Temporal distribution of p300/CBP immunoreactivity in the adult rat spinal dorsal horn following chronic constriction injury (CCI)".PMID 23129231
  459. Jenna M Ziebell et al. (2012). "Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury".PMID 23111107
  460. H Peluffo et al. (2013). "Efficient gene expression from integration-deficient lentiviral vectors in the spinal cord".PMID 23076378
  461. T Schmidt et al. (2013). "Regional heterogeneity of cuprizone-induced demyelination: topographical aspects of the midline of the corpus callosum".PMID 23054589
  462. Daniel Garcia-Ovejero et al. (2013). "A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord".PMID 22791629
  463. Tim Clarner et al. (2012). "Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions".PMID 22689449
  464. Huaqing Liu et al. (2012). "Immunodominant fragments of myelin basic protein initiate T cell-dependent pain".PMID 22676642
  465. Jae Hyuk Yi et al. (2012). "Alterations in sulfated chondroitin glycosaminoglycans following controlled cortical impact injury in mice".PMID 22628090
  466. Maryla Krajewska et al. (2011). "Neuronal deletion of caspase 8 protects against brain injury in mouse models of controlled cortical impact and kainic acid-induced excitotoxicity".PMID 21957448
  467. Alejandra Bosco et al. (2011). "Early microglia activation in a mouse model of chronic glaucoma".PMID 21246546
  468. Emily Roltsch et al. (2010). "PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation".PMID 21080947
  469. Terri L Petkau et al. (2010). "Progranulin expression in the developing and adult murine brain".PMID 20737593
  470. Jianmin Su et al. (2010). "Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses".PMID 19937713
  471. Igor Jakovcevski et al. (2009). "Close homologue of adhesion molecule L1 promotes survival of Purkinje and granule cells and granule cell migration during murine cerebellar development".PMID 19226508
  472. Zhengang Yang et al. (2008). "Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum".PMID 18720478
  473. Karen Bulloch et al. (2008). "CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain".PMID 18386786
  474. Richard L Benton et al. (2008). "Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse".PMID 18092342