这是一篇来自已证抗体库的有关人类 AKT1S1的综述,是根据57篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合AKT1S1 抗体。
AKT1S1 同义词: Lobe; PRAS40

赛默飞世尔
小鼠 单克隆(73P21)
  • 其他; 人类; 图 4c
赛默飞世尔 AKT1S1抗体(Thermo Fisher Scientific, AHO1031)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛默飞世尔 AKT1S1抗体(Thermo Fisher Scientific, 441100G)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 7a
赛默飞世尔 AKT1S1抗体(Biosource, 441100G)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 7a). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 3a
赛默飞世尔 AKT1S1抗体(Biosource, 441100G)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛默飞世尔 AKT1S1抗体(Biosource, 441100G)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3
赛默飞世尔 AKT1S1抗体(Thermo Scientific, PA5-17184)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • proximity ligation assay; 人类; 图 6a
赛默飞世尔 AKT1S1抗体(ThermoFisher Scientific, PA5-34565)被用于被用于proximity ligation assay在人类样本上 (图 6a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛默飞世尔 AKT1S1抗体(生活技术, 44-1100G)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 AKT1S1抗体(Invitrogen, 441100G)被用于. Oncoscience (2015) ncbi
小鼠 单克隆(73P21)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 AKT1S1抗体(Invitrogen, AHO1031)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncoscience (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 AKT1S1抗体(Invitrogen, 44-1100G)被用于. Mol Cell Biol (2015) ncbi
小鼠 单克隆(73P21)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 AKT1S1抗体(BioSource, AHO1031)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Cancer Ther (2014) ncbi
小鼠 单克隆(73P21)
  • 免疫印迹; 人类; 图 1B
赛默飞世尔 AKT1S1抗体(BioSource, 73P21)被用于被用于免疫印迹在人类样本上 (图 1B). J Biol Chem (2007) ncbi
安迪生物R&D
小鼠 单克隆(660928)
  • 免疫印迹; 人类; 图 3e
安迪生物R&D AKT1S1抗体(R&D Systems, MAB6408)被用于被用于免疫印迹在人类样本上 (图 3e). Mol Cell Biol (2017) ncbi
小鼠 单克隆(760502)
  • 免疫印迹; 人类; 图 3a
安迪生物R&D AKT1S1抗体(R&D Systems, MAB6890)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Cell Biol (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D4D2)
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell signaling, 13175)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Front Physiol (2020) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell signaling, 26915)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Front Physiol (2020) ncbi
domestic rabbit 单克隆(D4D2)
  • 免疫印迹; 人类; 1:1000; 图 2a
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technology, 13175)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1s1b
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell signaling, 2610)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1s1b). elife (2019) ncbi
domestic rabbit 单克隆(D4D2)
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 AKT1S1抗体(CST, 13175)被用于被用于免疫印迹在人类样本上 (图 4f). EMBO J (2019) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 AKT1S1抗体(CST, 2691)被用于被用于免疫印迹在人类样本上 (图 4f). EMBO J (2019) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technology, 2691)被用于被用于免疫印迹在人类样本上 (图 4a). Cancer Res (2019) ncbi
domestic rabbit 单克隆(D4D2)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technology, 13175)被用于被用于免疫印迹在人类样本上 (图 4a). Cancer Res (2019) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫沉淀; 人类; 图 4a
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technology, 2691)被用于被用于免疫沉淀在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上 (图 1b). Cell Metab (2019) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 AKT1S1抗体(CST, 2691S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Sci Adv (2018) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Science (2018) ncbi
domestic rabbit 单克隆(D4D2)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 13175)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2610)被用于被用于免疫印迹在人类样本上 (图 5b). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2997)被用于被用于免疫印迹在人类样本上 (图 5b). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
domestic rabbit 单克隆(D4D2)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 13175P)被用于被用于免疫印迹在人类样本上 (图 2c). Breast Cancer Res Treat (2018) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2691)被用于被用于免疫印迹在人类样本上 (图 5). Exp Neurol (2018) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2997)被用于被用于免疫印迹在人类样本上 (图 5). Exp Neurol (2018) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 人类; 图 s5f
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2997)被用于被用于免疫印迹在人类样本上 (图 s5f). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 小鼠; 图 s10
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2997)被用于被用于免疫印迹在小鼠样本上 (图 s10). Science (2017) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2997)被用于被用于免疫印迹在人类样本上 (图 s3a). Mol Cell (2017) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2691)被用于被用于免疫印迹在人类样本上 (图 s3a). Mol Cell (2017) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2997)被用于被用于免疫印迹在人类样本上 (图 5c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2691)被用于被用于免疫印迹在人类样本上 (图 5c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D4D2)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 13175)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2691)被用于被用于免疫印迹在小鼠样本上 (图 4a). Autophagy (2017) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2997)被用于被用于免疫印迹在小鼠样本上 (图 4a). Autophagy (2017) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Am J Physiol Cell Physiol (2017) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2997)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2691)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2997)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 5936)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4-s2a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell signaling, 2610)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4-s2a). elife (2016) ncbi
domestic rabbit 单克隆(D4D2)
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, D4D2)被用于被用于免疫印迹在人类样本上 (图 s6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D4D2)
  • 免疫印迹; 人类; 1:1000; 图 4.a, b, c
赛信通(上海)生物试剂有限公司 AKT1S1抗体(CST, 13175)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4.a, b, c). EJNMMI Res (2016) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4.a, b, c
赛信通(上海)生物试剂有限公司 AKT1S1抗体(CST, CD77D7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4.a, b, c). EJNMMI Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s6c
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 5936)被用于被用于免疫印迹在小鼠样本上 (图 s6c). Cell Rep (2016) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 小鼠; 图 s6c
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2691)被用于被用于免疫印迹在小鼠样本上 (图 s6c). Cell Rep (2016) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2691)被用于被用于免疫印迹在小鼠样本上 (图 3b). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2997)被用于被用于免疫印迹在小鼠样本上 (图 3b). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫细胞化学; 小鼠; 1:500; 图 5
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2997)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5). Hum Mol Genet (2016) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2691)被用于被用于免疫印迹在人类样本上 (图 3a). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technologies, 2610)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2640)被用于被用于免疫印迹在小鼠样本上 (图 2). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2610)被用于被用于免疫印迹在小鼠样本上 (图 2). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2610)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2997)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2997)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technology, 2610S)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technology, 2640S)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer Res (2016) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Tech, 2997)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 小鼠; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2997)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3b). J Cell Sci (2015) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 小鼠; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3b). J Cell Sci (2015) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technology, 2691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D4D2)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technology, 13175)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2691)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2691)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technology, C77D7)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cancer Res (2015) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technology, D23C7)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cancer Res (2015) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technology, 2997)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technology, 2691)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technology, 2997)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell signaling, 2691P)被用于被用于免疫印迹在人类样本上 (图 1a). J Cell Biochem (2015) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell signaling, 2997)被用于被用于免疫印迹在人类样本上 (图 1a). J Cell Biochem (2015) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technology, 2997)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS Genet (2014) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technology, 2691)被用于被用于免疫印迹在小鼠样本上. Cell Signal (2014) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling, 2997)被用于被用于免疫印迹在人类样本上. Cancer Res (2013) ncbi
domestic rabbit 单克隆(C77D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technology, 2997S)被用于被用于免疫印迹在人类样本上. Biochem J (2013) ncbi
domestic rabbit 单克隆(D23C7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT1S1抗体(Cell Signaling Technology, 2691S)被用于被用于免疫印迹在人类样本上. Biochem J (2013) ncbi
文章列表
  1. Arc Chagnaud C, Py G, Fovet T, Roumanille R, Demangel R, Pagano A, et al. Evaluation of an Antioxidant and Anti-inflammatory Cocktail Against Human Hypoactivity-Induced Skeletal Muscle Deconditioning. Front Physiol. 2020;11:71 pubmed 出版商
  2. VASAN N, Razavi P, Johnson J, Shao H, Shah H, Antoine A, et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science. 2019;366:714-723 pubmed 出版商
  3. Jewell J, Fu V, Hong A, Yu F, Meng D, Melick C, et al. GPCR signaling inhibits mTORC1 via PKA phosphorylation of Raptor. elife. 2019;8: pubmed 出版商
  4. Gioran A, Piazzesi A, Bertan F, Schroer J, Wischhof L, Nicotera P, et al. Multi-omics identify xanthine as a pro-survival metabolite for nematodes with mitochondrial dysfunction. EMBO J. 2019;38: pubmed 出版商
  5. Bishnupuri K, Alvarado D, Khouri A, Shabsovich M, Chen B, Dieckgraefe B, et al. IDO1 and kynurenine pathway metabolites activate PI3K-Akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Cancer Res. 2019;: pubmed 出版商
  6. Son S, Park S, Lee H, Siddiqi F, Lee J, Menzies F, et al. Leucine Signals to mTORC1 via Its Metabolite Acetyl-Coenzyme A. Cell Metab. 2019;29:192-201.e7 pubmed 出版商
  7. NGUYEN J, Ray C, Fox A, Mendonça D, Kim J, Krebsbach P. Mammalian EAK-7 activates alternative mTOR signaling to regulate cell proliferation and migration. Sci Adv. 2018;4:eaao5838 pubmed 出版商
  8. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  9. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920-926 pubmed 出版商
  10. Nan H, Han L, Ma J, Yang C, Su R, He J. STX3 represses the stability of the tumor suppressor PTEN to activate the PI3K-Akt-mTOR signaling and promotes the growth of breast cancer cells. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1684-1692 pubmed 出版商
  11. Bostner J, Alayev A, Berman A, Fornander T, Nordenskjold B, Holz M, et al. Raptor localization predicts prognosis and tamoxifen response in estrogen receptor-positive breast cancer. Breast Cancer Res Treat. 2018;168:17-27 pubmed 出版商
  12. Guo J, Jayaprakash P, Dan J, Wise P, Jang G, Liang C, et al. PRAS40 Connects Microenvironmental Stress Signaling to Exosome-Mediated Secretion. Mol Cell Biol. 2017;37: pubmed 出版商
  13. Oblinger J, Burns S, Huang J, Pan L, Ren Y, Shen R, et al. Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation. Exp Neurol. 2018;299:299-307 pubmed 出版商
  14. Sinha S, Thomas D, Chan S, Gao Y, Brunen D, Torabi D, et al. Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data. Nat Commun. 2017;8:15580 pubmed 出版商
  15. Ip W, Hoshi N, Shouval D, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356:513-519 pubmed 出版商
  16. Gupta A, Anjomani Virmouni S, Koundouros N, Dimitriadi M, Choo Wing R, Valle A, et al. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation. Mol Cell. 2017;65:999-1013.e7 pubmed 出版商
  17. Merhi A, Delree P, Marini A. The metabolic waste ammonium regulates mTORC2 and mTORC1 signaling. Sci Rep. 2017;7:44602 pubmed 出版商
  18. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  19. Mondello P, Derenzini E, Asgari Z, Philip J, Brea E, SESHAN V, et al. Dual inhibition of histone deacetylases and phosphoinositide 3-kinase enhances therapeutic activity against B cell lymphoma. Oncotarget. 2017;8:14017-14028 pubmed 出版商
  20. Kissing S, Rudnik S, Damme M, Lüllmann Rauch R, Ichihara A, Kornak U, et al. Disruption of the vacuolar-type H+-ATPase complex in liver causes MTORC1-independent accumulation of autophagic vacuoles and lysosomes. Autophagy. 2017;13:670-685 pubmed 出版商
  21. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  22. Gross S, Rotwein P. Quantification of growth factor signaling and pathway cross talk by live-cell imaging. Am J Physiol Cell Physiol. 2017;312:C328-C340 pubmed 出版商
  23. Kang Y, Balter B, Csizmadia E, Haas B, Sharma H, Bronson R, et al. Contribution of classical end-joining to PTEN inactivation in p53-mediated glioblastoma formation and drug-resistant survival. Nat Commun. 2017;8:14013 pubmed 出版商
  24. Rahman A, Haugh J. Kinetic Modeling and Analysis of the Akt/Mechanistic Target of Rapamycin Complex 1 (mTORC1) Signaling Axis Reveals Cooperative, Feedforward Regulation. J Biol Chem. 2017;292:2866-2872 pubmed 出版商
  25. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  26. Li R, Xu J, Fu C, Zhang J, Zheng Y, Jia H, et al. Regulation of mTORC1 by lysosomal calcium and calmodulin. elife. 2016;5: pubmed 出版商
  27. Carbonneau M, M Gagné L, Lalonde M, Germain M, Motorina A, Guiot M, et al. The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nat Commun. 2016;7:12700 pubmed 出版商
  28. Mirkheshti N, Park S, Jiang S, Cropper J, Werner S, Song C, et al. Dual targeting of androgen receptor and mTORC1 by salinomycin in prostate cancer. Oncotarget. 2016;7:62240-62254 pubmed 出版商
  29. Maynard J, Emmas S, Blé F, Barjat H, Lawrie E, Hancox U, et al. The use of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) as a pathway-specific biomarker with AZD8186, a PI3K?/? inhibitor. EJNMMI Res. 2016;6:62 pubmed 出版商
  30. Tsai S, Rodriguez A, Dastidar S, Del Greco E, Carr K, Sitzmann J, et al. Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice. Cell Rep. 2016;16:1903-14 pubmed 出版商
  31. Diez H, Benitez M, Fernandez S, Torres Aleman I, Garrido J, Wandosell F. Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation. Biochim Biophys Acta. 2016;1863:2574-2583 pubmed 出版商
  32. Wu X, Schneider N, Platen A, Mitra I, Blazek M, Zengerle R, et al. In situ characterization of the mTORC1 during adipogenesis of human adult stem cells on chip. Proc Natl Acad Sci U S A. 2016;113:E4143-50 pubmed 出版商
  33. Hakim S, Dyson J, Feeney S, Davies E, Sriratana A, Koenig M, et al. Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet. 2016;25:2295-2313 pubmed
  34. Su K, Cao J, Tang Z, Dai S, He Y, Sampson S, et al. HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth. Nat Cell Biol. 2016;18:527-39 pubmed 出版商
  35. Gandin V, Masvidal L, Cargnello M, Gyenis L, McLaughlan S, Cai Y, et al. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nat Commun. 2016;7:11127 pubmed 出版商
  36. Liu D, Bordicchia M, Zhang C, Fang H, Wei W, Li J, et al. Activation of mTORC1 is essential for ?-adrenergic stimulation of adipose browning. J Clin Invest. 2016;126:1704-16 pubmed 出版商
  37. Lynch J, McEwen R, Crafter C, McDermott U, Garnett M, Barry S, et al. Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen. Oncotarget. 2016;7:22128-39 pubmed 出版商
  38. Singh A, Joshi S, Zulcic M, Alcaraz M, GARLICH J, Morales G, et al. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma. PLoS ONE. 2016;11:e0150836 pubmed 出版商
  39. Webber P, Park C, Qui M, Ramalingam S, Khuri F, Fu H, et al. Combination of heat shock protein 90 and focal adhesion kinase inhibitors synergistically inhibits the growth of non-small cell lung cancer cells. Oncoscience. 2015;2:765-776 pubmed
  40. Nemazanyy I, Montagnac G, Russell R, Morzyglod L, Burnol A, Guan K, et al. Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling. Nat Commun. 2015;6:8283 pubmed 出版商
  41. Agarwal S, Bell C, Taylor S, Moran R. p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb. Mol Cancer Res. 2016;14:66-77 pubmed 出版商
  42. Heinemann A, Cullinane C, De Paoli Iseppi R, Wilmott J, Gunatilake D, Madore J, et al. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling. Oncotarget. 2015;6:21507-21 pubmed
  43. Gross S, Rotwein P. Akt signaling dynamics in individual cells. J Cell Sci. 2015;128:2509-19 pubmed 出版商
  44. DiPilato L, Ahmad F, Harms M, Seale P, Manganiello V, Birnbaum M. The Role of PDE3B Phosphorylation in the Inhibition of Lipolysis by Insulin. Mol Cell Biol. 2015;35:2752-60 pubmed 出版商
  45. Sadowski S, Boufraqech M, Zhang L, Mehta A, Kapur P, Zhang Y, et al. Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis. Oncotarget. 2015;6:18038-49 pubmed
  46. Fonseca B, Zakaria C, Jia J, Graber T, Svitkin Y, Tahmasebi S, et al. La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1). J Biol Chem. 2015;290:15996-6020 pubmed 出版商
  47. Samse K, Emathinger J, Hariharan N, Quijada P, Ilves K, Völkers M, et al. Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells. J Biol Chem. 2015;290:13935-47 pubmed 出版商
  48. Sadok A, McCarthy A, Caldwell J, Collins I, Garrett M, Yeo M, et al. Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer Res. 2015;75:2272-84 pubmed 出版商
  49. Hausmann S, Brandt E, Köchel C, Einsele H, Bargou R, Seggewiss Bernhardt R, et al. Loss of serum and glucocorticoid-regulated kinase 3 (SGK3) does not affect proliferation and survival of multiple myeloma cell lines. PLoS ONE. 2015;10:e0122689 pubmed 出版商
  50. Panneerselvam J, Jin J, Shanker M, Lauderdale J, BATES J, Wang Q, et al. IL-24 inhibits lung cancer cell migration and invasion by disrupting the SDF-1/CXCR4 signaling axis. PLoS ONE. 2015;10:e0122439 pubmed 出版商
  51. Alayev A, Berger S, Kramer M, Schwartz N, Holz M. The combination of rapamycin and resveratrol blocks autophagy and induces apoptosis in breast cancer cells. J Cell Biochem. 2015;116:450-7 pubmed 出版商
  52. Godde N, Sheridan J, Smith L, Pearson H, Britt K, Galea R, et al. Scribble modulates the MAPK/Fra1 pathway to disrupt luminal and ductal integrity and suppress tumour formation in the mammary gland. PLoS Genet. 2014;10:e1004323 pubmed 出版商
  53. Yu P, Laird A, Du X, Wu J, Won K, Yamaguchi K, et al. Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol Cancer Ther. 2014;13:1078-91 pubmed 出版商
  54. Frey J, Jacobs B, Goodman C, Hornberger T. A role for Raptor phosphorylation in the mechanical activation of mTOR signaling. Cell Signal. 2014;26:313-22 pubmed 出版商
  55. Paugh B, Zhu X, Qu C, Endersby R, Diaz A, Zhang J, et al. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res. 2013;73:6219-29 pubmed 出版商
  56. BENTLEY C, Jurinka S, Kljavin N, Vartanian S, Ramani S, Gonzalez L, et al. A requirement for wild-type Ras isoforms in mutant KRas-driven signalling and transformation. Biochem J. 2013;452:313-20 pubmed 出版商
  57. Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguchi S, et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem. 2007;282:20329-39 pubmed