这是一篇来自已证抗体库的有关人类 AKT2的综述,是根据180篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合AKT2 抗体。
AKT2 同义词: HIHGHH; PKBB; PKBBETA; PRKBB; RAC-BETA

圣克鲁斯生物技术
小鼠 单克隆(5c10)
  • 免疫印迹; 人类; 1:500; 图 7i
圣克鲁斯生物技术 AKT2抗体(Santa Cruz Biotechnology, sc-81434)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7i). Cancers (Basel) (2021) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 人类; 1:100; 图 7i
圣克鲁斯生物技术 AKT2抗体(Santa Cruz Biotechnology, sc-81433)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 7i). Cancers (Basel) (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 3g, 3h
圣克鲁斯生物技术 AKT2抗体(Santa Cruz, sc-514032)被用于被用于免疫印迹在小鼠样本上 (图 3g, 3h). Front Pharmacol (2021) ncbi
小鼠 单克隆(BDI111)
  • 免疫印迹; 小鼠; 图 3g, 3h
圣克鲁斯生物技术 AKT2抗体(Santa Cruz, sc-56878)被用于被用于免疫印迹在小鼠样本上 (图 3g, 3h). Front Pharmacol (2021) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 人类; 1:1000; 图 1e
圣克鲁斯生物技术 AKT2抗体(Santa, sc-81434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Aging (Albany NY) (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 1e
圣克鲁斯生物技术 AKT2抗体(Santa, sc-514032)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 小鼠; 1:500; 图 6a
圣克鲁斯生物技术 AKT2抗体(Santa Cruz, sc-81433)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 人类; 1:1000; 图 3d
圣克鲁斯生物技术 AKT2抗体(Santa Cruz, sc-81434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Am J Transl Res (2017) ncbi
小鼠 单克隆(BDI111)
  • 免疫印迹; 人类; 1:800; 图 2
圣克鲁斯生物技术 AKT2抗体(Santa Cruz, sc-56878)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 2). BMC Gastroenterol (2017) ncbi
小鼠 单克隆(5c10)
  • 其他; 大鼠; 图 1
圣克鲁斯生物技术 AKT2抗体(Santa Cruz, sc-81434)被用于被用于其他在大鼠样本上 (图 1). Sci Rep (2017) ncbi
小鼠 单克隆(11E6)
  • 其他; 大鼠; 图 1
圣克鲁斯生物技术 AKT2抗体(Santa Cruz, sc-81433)被用于被用于其他在大鼠样本上 (图 1). Sci Rep (2017) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 AKT2抗体(Santa Cruz, sc-81433)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 AKT2抗体(Santa Cruz, sc-81434)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Cell Death Dis (2016) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术 AKT2抗体(Santa Cruz, 11E6)被用于被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2016) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术 AKT2抗体(Santa Cruz, sc-81433)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 AKT2抗体(Santa Cruz Biotechnology, sc-81434)被用于被用于免疫印迹在大鼠样本上浓度为1:500. World J Gastroenterol (2014) ncbi
小鼠 单克隆(F-7)
  • 免疫印迹基因敲除验证; 人类; 图 5
圣克鲁斯生物技术 AKT2抗体(Santa Cruz, sc5270)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(F-7)
  • 免疫印迹基因敲除验证; 人类; 图 1
圣克鲁斯生物技术 AKT2抗体(Santa Cruz Biotechnology, sc5270)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1). Tumour Biol (2014) ncbi
小鼠 单克隆(8B7)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 AKT2抗体(Santa Cruz, sc-81436)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2012) ncbi
赛默飞世尔
domestic rabbit 单克隆(J.314.4)
  • 免疫印迹; 大鼠; 图 3d
赛默飞世尔 AKT2抗体(ThermoFisher, MA5-14916)被用于被用于免疫印迹在大鼠样本上 (图 3d). Molecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛默飞世尔 AKT2抗体(Invitrogen, PA5-36780)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). J Mol Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛默飞世尔 AKT2抗体(Invitrogen, 44-609G)被用于被用于免疫印迹在小鼠样本上 (图 2c). Food Funct (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2d
赛默飞世尔 AKT2抗体(生活技术, 44609G)被用于被用于免疫印迹在人类样本上 (图 s2d). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5d
赛默飞世尔 AKT2抗体(Invitrogen, 44-609G)被用于被用于免疫印迹在小鼠样本上 (图 5d). Ann Anat (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 AKT2抗体(Invitrogen, 44-609G)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Free Radic Biol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4g
赛默飞世尔 AKT2抗体(Invitrogen, 44-609G)被用于被用于免疫印迹在小鼠样本上 (图 4g). Mol Cell Endocrinol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s7
赛默飞世尔 AKT2抗体(Invitrogen, 44-609G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7). Nat Chem Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 AKT2抗体(Invitrogen, 44-C609G)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Mol Nutr Food Res (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 AKT2抗体(Invitrogen, 44-609G)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 AKT2抗体(Invitrogen, 44-609G)被用于. J Nutr Biochem (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 7b
艾博抗(上海)贸易有限公司 AKT2抗体(Abcam, ab38513)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7b). Int J Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 AKT2抗体(Abcam, ab106693)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6f
艾博抗(上海)贸易有限公司 AKT2抗体(Abcam, ab38513)被用于被用于免疫印迹在小鼠样本上 (图 6f). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4a
艾博抗(上海)贸易有限公司 AKT2抗体(Abcam, ab196883)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司 AKT2抗体(Abcam, ab38513)被用于被用于免疫组化在小鼠样本上 (图 st1). Liver Int (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(110B7E)
  • 免疫印迹; pigs ; 图 5i
赛信通(上海)生物试剂有限公司 AKT2抗体(CST, 9614)被用于被用于免疫印迹在pigs 样本上 (图 5i). PLoS Pathog (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 s3a
赛信通(上海)生物试剂有限公司 AKT2抗体(CST, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 AKT2抗体(CST, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Nat Commun (2021) ncbi
小鼠 单克隆(L79B2)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 5239S)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 2b). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 大鼠; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038S)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3a). Exp Ther Med (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technologies, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(5B5)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technologies, 2964)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(5B5)
  • 免疫印迹; 小鼠; 1:1000; 图 7d
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signalling Technology, CST2964)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7d). BMC Biol (2021) ncbi
domestic rabbit 单克隆(D3H2)
  • 免疫印迹; 小鼠; 1:1000; 图 7d
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signalling Technology, CST85995)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7d). BMC Biol (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 1f). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 13038)被用于被用于流式细胞仪在小鼠样本上. Cancer Cell (2021) ncbi
domestic rabbit 单克隆(5B5)
  • 免疫组化-自由浮动切片; 小鼠; 1:250; 图 2a
  • 免疫组化-自由浮动切片; 人类; 1:10; 图 6
赛信通(上海)生物试剂有限公司 AKT2抗体(CST, 5B5)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250 (图 2a) 和 被用于免疫组化-自由浮动切片在人类样本上浓度为1:10 (图 6). Cereb Cortex Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s8a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 9611)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s8a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(110B7E)
  • 免疫沉淀; 小鼠; 图 s8a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 9646)被用于被用于免疫沉淀在小鼠样本上 (图 s8a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell signaling, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signalling Technology, 3063)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. elife (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signalling Technology, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. elife (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 8d
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8d). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 大鼠; 图 6a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在大鼠样本上 (图 6a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(110B7E)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 9614)被用于被用于免疫印迹在人类样本上 (图 4c). Neoplasia (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 1a, 1b
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a, 1b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 AKT2抗体(CST, 13038)被用于被用于免疫印迹在人类样本上 (图 5e). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, D25E6)被用于被用于免疫印迹在人类样本上 (图 6c). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:2000; 图 5e
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5e). J Inflamm Res (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 AKT2抗体(cell signalling technology, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Nat Commun (2021) ncbi
小鼠 单克隆(L79B2)
  • 免疫印迹; 小鼠; 图 6b, 7a
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT2抗体(CST, 5239S)被用于被用于免疫印迹在小鼠样本上 (图 6b, 7a) 和 被用于免疫印迹在人类样本上 (图 4a). J Biol Chem (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 9611)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3g). Theranostics (2021) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 3063s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). elife (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 流式细胞仪; 小鼠; 1:100; 图 5f
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 13038)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5f). elife (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 流式细胞仪; 小鼠; 1:400; 图 2d
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038S)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Science (2021) ncbi
domestic rabbit 单克隆(D3H2)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell signalling, 8599)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). elife (2020) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell signalling, 3063)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). elife (2020) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). elife (2020) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038T)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signalling, 9611)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell signaling, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). J Cancer (2020) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 AKT2抗体(CST, 13038S)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Theranostics (2020) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Cell Div (2020) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 s4a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4a). Cancer Cell (2020) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Oncogenesis (2020) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 4bd
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4bd). J Proteomics (2020) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Science (2019) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 AKT2抗体(CST, 13038S)被用于被用于免疫印迹在人类样本上 (图 5f). Br J Cancer (2019) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 5e, 5f, 5g
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e, 5f, 5g). elife (2019) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 AKT2抗体(CST, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Cell Mol Gastroenterol Hepatol (2019) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038S)被用于被用于免疫印迹在人类样本上 (图 8a). J Immunol (2019) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 s3e
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 s3e). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(110B7E)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Biotechnology, 9614)被用于被用于免疫印迹在人类样本上 (图 2e). Int J Mol Sci (2019) ncbi
domestic rabbit 单克隆(110B7E)
  • 免疫印迹; Dictyostelium discoideum; 图 3d
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 9614)被用于被用于免疫印迹在Dictyostelium discoideum样本上 (图 3d). Dev Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3d
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 9611)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3d). Mol Med Rep (2019) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, D25E6)被用于被用于免疫印迹在人类样本上 (图 6e). Mol Oncol (2019) ncbi
domestic rabbit 单克隆(D3H2)
  • 免疫印迹基因敲除验证; 人类; 图 1a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 8599)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1a). BMC Cancer (2018) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹基因敲除验证; 人类; 图 1a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 3063)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1a). BMC Cancer (2018) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, Inc, 13038)被用于被用于免疫印迹在小鼠样本上 (图 4a). Front Pharmacol (2018) ncbi
domestic rabbit 单克隆(D3H2)
  • 免疫印迹; 小鼠; 1:600; 图 1c
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 8599)被用于被用于免疫印迹在小鼠样本上浓度为1:600 (图 1c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 3063)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 11a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 9611)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 11a). Int J Mol Med (2018) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 7d). Cell (2018) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 130386)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Glia (2018) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 13 038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Cereb Cortex (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 9611)被用于被用于免疫印迹在人类样本上 (图 4e). Immunity (2017) ncbi
domestic rabbit 单克隆(110B7E)
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 9614)被用于被用于免疫印迹在小鼠样本上 (图 1d). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 AKT2抗体(CST, 13038)被用于被用于免疫印迹在小鼠样本上 (图 2a). Mol Neurobiol (2018) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 AKT2抗体(cst, 3063)被用于被用于免疫印迹在小鼠样本上 (图 4b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 大鼠; 图 10b
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在大鼠样本上 (图 10b). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Nat Med (2017) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫细胞化学; 人类; 1:1000; 图 4a
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 3063)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上 (图 4b). elife (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 3b
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在小鼠样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 4c). Sci Signal (2017) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 3063)被用于被用于免疫印迹在人类样本上 (图 3a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:500; 图 4d
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4d). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 1a). Nature (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上 (图 1b). FEBS Lett (2017) ncbi
domestic rabbit 单克隆(5B5)
  • 免疫印迹; 人类; 1:2000; 图 7a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 2964)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D3H2)
  • 免疫印迹; 人类; 1:2000; 图 6b
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 8599)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6b). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D3H2)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 8599)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technologies, 13038)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫细胞化学; 小鼠; 1:200; 图 s7d
  • 免疫印迹; 小鼠; 1:1000; 图 s6a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s7d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6a). Nature (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 s5a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 s5a). Front Mol Neurosci (2016) ncbi
domestic rabbit 单克隆(D3H2)
  • 免疫印迹; 人类; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 8599)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(5B5)
  • 免疫印迹; 人类; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 2964)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 s4a,s4b
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a,s4b). Gastroenterology (2017) ncbi
domestic rabbit 单克隆(5B5)
  • 免疫印迹; 人类; 图 s6a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell signaling, 2964)被用于被用于免疫印迹在人类样本上 (图 s6a). Sci Adv (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Endocrinology (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 7
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 7), 被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 1). elife (2016) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, D6G4)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 6b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 流式细胞仪; 人类; 图 s18a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, D25E6)被用于被用于流式细胞仪在人类样本上 (图 s18a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 3063)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell signaling, 13038)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, D25E6)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 3063)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 1308)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; fission yeast; 图 5
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 9611)被用于被用于免疫印迹在fission yeast样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Tech, 13038)被用于被用于免疫印迹在小鼠样本上 (图 5). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038S)被用于被用于免疫印迹在人类样本上 (图 6e). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 大鼠; 1:1000; 图 6
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell signaling, 13038P)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, D25E6)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncoimmunology (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signalling, 13038)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(110B7E)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 9614)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 3063)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(110B7E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell signaling, 9646)被用于被用于免疫印迹在人类样本上 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 大鼠; 图 6
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell signaling, 3063)被用于被用于免疫印迹在大鼠样本上 (图 6). Mol Metab (2016) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signalling Technology, 3063)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 AKT2抗体(CST, D25E6)被用于被用于免疫印迹在小鼠样本上 (图 7e). Diabetes (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell signaling, 13038)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(110B7E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 9614)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Commun (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在小鼠样本上 (图 st1). Liver Int (2016) ncbi
domestic rabbit 单克隆(110B7E)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signalling, 9614)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(110B7E)
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 9614)被用于. elife (2015) ncbi
domestic rabbit 单克隆(110B7E)
  • 免疫沉淀; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology., 9646)被用于被用于免疫沉淀在小鼠样本上 (图 1b). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 3063)被用于被用于免疫印迹在人类样本上 (图 5f). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(L79B2)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, L79B2)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(5B5)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 2964)被用于被用于免疫印迹在人类样本上 (图 3b). Physiol Res (2016) ncbi
domestic rabbit 单克隆(23C8D2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 10001)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(5B5)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 2964)被用于被用于免疫印迹在人类样本上 (图 1). Drug Des Devel Ther (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Neurodegener (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Clin Invest (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Tech, 13038)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Tech, 13038)被用于被用于免疫印迹在人类样本上 (图 3). EMBO J (2015) ncbi
小鼠 单克隆(L79B2)
  • 免疫印迹; 小鼠; 1:1000; 图 s9
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell signaling, 5239)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 小鼠; 1:1000; 图 s9
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell signaling, 3063)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D3H2)
  • 免疫印迹; 小鼠; 1:1000; 图 s9
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell signaling, 8599)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 s9
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell signaling, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 3063)被用于被用于免疫印迹在人类样本上 (图 6). Am J Physiol Regul Integr Comp Physiol (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 6). elife (2015) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 3063)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(5B5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 2964)被用于被用于免疫印迹在小鼠样本上. J Mol Cell Cardiol (2015) ncbi
domestic rabbit 单克隆(5B5)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 2964)被用于被用于免疫印迹在大鼠样本上 (图 3). Kidney Int (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Tech, 13038)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(110B7E)
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 9614)被用于. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 1,2,3,4,5,6,7
赛信通(上海)生物试剂有限公司 AKT2抗体(cell signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1,2,3,4,5,6,7). EMBO J (2015) ncbi
domestic rabbit 单克隆(D3H2)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 8599)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D3H2)
  • 免疫印迹; 小鼠; 1:500; 图 5
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 8599)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 3063)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nat Med (2015) ncbi
domestic rabbit 单克隆(D3H2)
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 8599)被用于被用于免疫印迹在小鼠样本上 (图 2f). Autophagy (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 2b,3
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在人类样本上 (图 2b,3). Oncol Rep (2015) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell signaling, 3063)被用于被用于免疫印迹在小鼠样本上. Dev Biol (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上 (图 s3). Nature (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 流式细胞仪; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 13038)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Nat Immunol (2014) ncbi
小鼠 单克隆(L79B2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 5239)被用于被用于免疫印迹在人类样本上 (图 2). Blood (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 13038)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell (2014) ncbi
domestic rabbit 单克隆(D3H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 8599)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
domestic rabbit 单克隆(110B7E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 9614)被用于被用于免疫印迹在小鼠样本上 (图 3). Mol Metab (2014) ncbi
domestic rabbit 单克隆(5B5)
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 2964)被用于被用于免疫印迹在小鼠样本上 (图 8). Mol Metab (2014) ncbi
domestic rabbit 单克隆(110B7E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 110B7E)被用于被用于免疫印迹在人类样本上. FEBS J (2014) ncbi
domestic rabbit 单克隆(110B7E)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 9614)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2014) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signalling Technology, 3063)被用于被用于免疫印迹在人类样本上. Scand J Med Sci Sports (2014) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 3063)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 3063)被用于被用于免疫印迹在大鼠样本上. J Inorg Biochem (2014) ncbi
domestic rabbit 单克隆(23C8D2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 10001)被用于被用于免疫印迹在小鼠样本上. Cell Signal (2014) ncbi
domestic rabbit 单克隆(D6G4)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 3063)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cell Proteomics (2013) ncbi
domestic rabbit 单克隆(110B7E)
  • 免疫印迹; 人类; 图 9
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling Technology, 9614)被用于被用于免疫印迹在人类样本上 (图 9). Blood (2013) ncbi
domestic rabbit 单克隆(110B7E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 AKT2抗体(Cell Signaling, 9614)被用于被用于免疫印迹在小鼠样本上. Nature (2012) ncbi
碧迪BD
小鼠 单克隆(J1-223.371)
  • 流式细胞仪; 人类; 图 4a
碧迪BD AKT2抗体(BD, J1-223.371)被用于被用于流式细胞仪在人类样本上 (图 4a). J Exp Med (2019) ncbi
小鼠 单克隆(J1-223.371)
  • 流式细胞仪; 人类; 图 1
碧迪BD AKT2抗体(BD Biosciences, 558275)被用于被用于流式细胞仪在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(J1-223.371)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD AKT2抗体(BD Biosciences, 558275)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
小鼠 单克隆(J1-223.371)
  • 免疫印迹; 人类
碧迪BD AKT2抗体(BD Biosciences, 558316)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
文章列表
  1. Wang Z, Chen J, Wu X, Ma D, Zhang X, Li R, et al. PCV2 targets cGAS to inhibit type I interferon induction to promote other DNA virus infection. PLoS Pathog. 2021;17:e1009940 pubmed 出版商
  2. Goel S, Bhatia V, Kundu S, Biswas T, Carskadon S, Gupta N, et al. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun. 2021;12:5325 pubmed 出版商
  3. Huang J, Xiao R, Wang X, Khadka B, Fang Z, Yu M, et al. MicroRNA‑93 knockdown inhibits acute myeloid leukemia cell growth via inactivating the PI3K/AKT pathway by upregulating DAB2. Int J Oncol. 2021;59: pubmed 出版商
  4. Tang X, Li G, Shi L, Su F, Qian M, Liu Z, et al. Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3β-SIRT7 axis. Nat Commun. 2021;12:5058 pubmed 出版商
  5. Feng W, Cao Z, Lim P, Zhao H, Luo H, Mao N, et al. Rapid interrogation of cancer cell of origin through CRISPR editing. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  6. Meng L, Zhang Y, Li D, Shang X, Hao X, Chen X, et al. TIMP3 attenuates cerebral ischemia/reperfusion-induced apoptosis and oxidative stress in neurocytes by regulating the AKT pathway. Exp Ther Med. 2021;22:973 pubmed 出版商
  7. Laliotis G, Chavdoula E, Paraskevopoulou M, Kaba A, La Ferlita A, Singh S, et al. AKT3-mediated IWS1 phosphorylation promotes the proliferation of EGFR-mutant lung adenocarcinomas through cell cycle-regulated U2AF2 RNA splicing. Nat Commun. 2021;12:4624 pubmed 出版商
  8. Coudert L, Osseni A, Gangloff Y, Schaeffer L, Leblanc P. The ESCRT-0 subcomplex component Hrs/Hgs is a master regulator of myogenesis via modulation of signaling and degradation pathways. BMC Biol. 2021;19:153 pubmed 出版商
  9. Li P, Cao S, Huang Y, Zhang Y, Liu J, Cai X, et al. A novel chemical inhibitor suppresses breast cancer cell growth and metastasis through inhibiting HPIP oncoprotein. Cell Death Discov. 2021;7:198 pubmed 出版商
  10. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  11. Levenga J, Wong H, Milstead R, LaPlante L, Hoeffer C. Immunohistological Examination of AKT Isoforms in the Brain: Cell-Type Specificity That May Underlie AKT's Role in Complex Brain Disorders and Neurological Disease. Cereb Cortex Commun. 2021;2:tgab036 pubmed 出版商
  12. Bruce J, Sánchez Alvarez R, Sans M, Sugden S, Qi N, James A, et al. Insulin protects acinar cells during pancreatitis by preserving glycolytic ATP supply to calcium pumps. Nat Commun. 2021;12:4386 pubmed 出版商
  13. Xu L, Zhang X, Xin Y, Ma J, Yang C, Zhang X, et al. Depdc5 deficiency exacerbates alcohol-induced hepatic steatosis via suppression of PPARα pathway. Cell Death Dis. 2021;12:710 pubmed 出版商
  14. Kearney A, Norris D, Ghomlaghi M, Kin Lok Wong M, Humphrey S, Carroll L, et al. Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. elife. 2021;10: pubmed 出版商
  15. Wang W, Lu G, Liu H, Xiong Z, Leung H, Cao R, et al. Pten Regulates Cardiomyocyte Differentiation by Modulating Non-CG Methylation via Dnmt3. Adv Sci (Weinh). 2021;:e2100849 pubmed 出版商
  16. Zhang X, Zhao S, Yuan Q, Zhu L, Li F, Wang H, et al. TXNIP, a novel key factor to cause Schwann cell dysfunction in diabetic peripheral neuropathy, under the regulation of PI3K/Akt pathway inhibition-induced DNMT1 and DNMT3a overexpression. Cell Death Dis. 2021;12:642 pubmed 出版商
  17. Tian L, Chen C, Guo Y, Zhang F, Mi J, Feng Q, et al. mTORC2 regulates ribonucleotide reductase to promote DNA replication and gemcitabine resistance in non-small cell lung cancer. Neoplasia. 2021;23:643-652 pubmed 出版商
  18. Yin S, Liu L, Brobbey C, PALANISAMY V, Ball L, Olsen S, et al. PRMT5-mediated arginine methylation activates AKT kinase to govern tumorigenesis. Nat Commun. 2021;12:3444 pubmed 出版商
  19. Lai W, Zhu W, Xiao C, Li X, Wang Y, Han Y, et al. HJURP promotes proliferation in prostate cancer cells through increasing CDKN1A degradation via the GSK3β/JNK signaling pathway. Cell Death Dis. 2021;12:583 pubmed 出版商
  20. Schwiebs A, Faqar Uz Zaman F, Herrero San Juan M, Radeke H. S1P Lyase Regulates Intestinal Stem Cell Quiescence via Ki-67 and FOXO3. Int J Mol Sci. 2021;22: pubmed 出版商
  21. Li L, Yang L, Yang F, Zhao X, Xue S, Gong F. Ginkgo biloba Extract 50 (GBE50) Ameliorates Insulin Resistance, Hepatic Steatosis and Liver Injury in High Fat Diet-Fed Mice. J Inflamm Res. 2021;14:1959-1971 pubmed 出版商
  22. Luo L, Zhang Z, Qiu N, Ling L, Jia X, Song Y, et al. Disruption of FOXO3a-miRNA feedback inhibition of IGF2/IGF-1R/IRS1 signaling confers Herceptin resistance in HER2-positive breast cancer. Nat Commun. 2021;12:2699 pubmed 出版商
  23. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  24. Li X, Huang K, Liu X, Ruan H, Ma L, Liang J, et al. Ellagic Acid Attenuates BLM-Induced Pulmonary Fibrosis via Inhibiting Wnt Signaling Pathway. Front Pharmacol. 2021;12:639574 pubmed 出版商
  25. Chen Y, Hu W, Li Q, Zhao S, Zhao D, Zhang S, et al. NGBR is required to ameliorate type 2 diabetes in mice by enhancing insulin sensitivity. J Biol Chem. 2021;296:100624 pubmed 出版商
  26. Kim D, Park J, Choi H, Kim C, Bae E, Ma S, et al. The critical role of FXR is associated with the regulation of autophagy and apoptosis in the progression of AKI to CKD. Cell Death Dis. 2021;12:320 pubmed 出版商
  27. Li D, Sun S, Fu J, Ouyang S, Zhao Q, Su L, et al. NAD+-boosting therapy alleviates nonalcoholic fatty liver disease via stimulating a novel exerkine Fndc5/irisin. Theranostics. 2021;11:4381-4402 pubmed 出版商
  28. Alghanem A, Abello J, Maurer J, Kumar A, Ta C, Gunasekar S, et al. The SWELL1-LRRC8 complex regulates endothelial AKT-eNOS signaling and vascular function. elife. 2021;10: pubmed 出版商
  29. Sun Z, Yao Y, You M, Liu J, Guo W, Qi Z, et al. The kinase PDK1 is critical for promoting T follicular helper cell differentiation. elife. 2021;10: pubmed 出版商
  30. Xu K, Yin N, Peng M, Stamatiades E, Shyu A, Li P, et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science. 2021;371:405-410 pubmed 出版商
  31. Kumar A, Xie L, Ta C, Hinton A, Gunasekar S, Minerath R, et al. SWELL1 regulates skeletal muscle cell size, intracellular signaling, adiposity and glucose metabolism. elife. 2020;9: pubmed 出版商
  32. Chu N, Viennet T, Bae H, Salguero A, Boeszoermenyi A, Arthanari H, et al. The structural determinants of PH domain-mediated regulation of Akt revealed by segmental labeling. elife. 2020;9: pubmed 出版商
  33. Yu W, Hua Y, Qiu H, Hao J, Zou K, Li Z, et al. PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis. 2020;11:506 pubmed 出版商
  34. Lechertier T, Reynolds L, Kim H, Pedrosa A, Gómez Escudero J, Muñoz Félix J, et al. Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat Commun. 2020;11:2810 pubmed 出版商
  35. Du Z, Dong J, Li M, Zhang J, Bi J, Ren Y, et al. Overexpression of Platelet-Derived Growth Factor Receptor Α D842V Mutants Prevents Liver Regeneration and Chemically Induced Hepatocarcinogenesis via Inhibition of MET and EGFR. J Cancer. 2020;11:4614-4624 pubmed 出版商
  36. Li X, Wu Y, Zhao J, Wang H, Tan J, Yang M, et al. Distinct cardiac energy metabolism and oxidative stress adaptations between obese and non-obese type 2 diabetes mellitus. Theranostics. 2020;10:2675-2695 pubmed 出版商
  37. Dong C, Zhang J, Fang S, Liu F. IGFBP5 increases cell invasion and inhibits cell proliferation by EMT and Akt signaling pathway in Glioblastoma multiforme cells. Cell Div. 2020;15:4 pubmed 出版商
  38. Cheung E, DeNicola G, Nixon C, Blyth K, Labuschagne C, Tuveson D, et al. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell. 2020;37:168-182.e4 pubmed 出版商
  39. Xu C, Zhang M, Bian L, Li Y, Yao Y, Li D. N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis. 2020;9:4 pubmed 出版商
  40. Yang N, Yu L, Deng Y, Han Q, Wang J, Yu L, et al. Identification and characterization of proteins that are differentially expressed in adipose tissue of olanzapine-induced insulin resistance rat by iTRAQ quantitative proteomics. J Proteomics. 2020;212:103570 pubmed 出版商
  41. VASAN N, Razavi P, Johnson J, Shao H, Shah H, Antoine A, et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science. 2019;366:714-723 pubmed 出版商
  42. Li J, Liu Z, Wang L, Xu H, Wang Y. Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep. 2019;39: pubmed 出版商
  43. Chen Q, Yang C, Chen L, Zhang J, Ge W, Yuan H, et al. YY1 targets tubulin polymerisation-promoting protein to inhibit migration, invasion and angiogenesis in pancreatic cancer via p38/MAPK and PI3K/AKT pathways. Br J Cancer. 2019;121:912-921 pubmed 出版商
  44. Helsley R, Varadharajan V, Brown A, Gromovsky A, Schugar R, Ramachandiran I, et al. Obesity-linked suppression of membrane-bound O-acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver disease. elife. 2019;8: pubmed 出版商
  45. Shan L, Liu W, Zhan Y. Sulfated polysaccharide of Sepiella maindroni ink targets Akt and overcomes resistance to the FGFR inhibitor AZD4547 in bladder cancer. Aging (Albany NY). 2019;11:7780-7795 pubmed 出版商
  46. Jin Y, Li Y, Wang X, Yang Y. Secretory leukocyte protease inhibitor suppresses HPV E6-expressing HNSCC progression by mediating NF-κB and Akt pathways. Cancer Cell Int. 2019;19:220 pubmed 出版商
  47. Gao C, Chen G, Zhang D, Zhang J, Kuan S, Hu W, et al. PYK2 Is Involved in Premalignant Acinar Cell Reprogramming and Pancreatic Ductal Adenocarcinoma Maintenance by Phosphorylating β-CateninY654. Cell Mol Gastroenterol Hepatol. 2019;8:561-578 pubmed 出版商
  48. Birtley J, Alomary M, Zanini E, Antony J, Maben Z, Weaver G, et al. Inactivating mutations and X-ray crystal structure of the tumor suppressor OPCML reveal cancer-associated functions. Nat Commun. 2019;10:3134 pubmed 出版商
  49. Gu C, Wang L, Zurawski S, Oh S. Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation. J Immunol. 2019;: pubmed 出版商
  50. Bazzari F, Abdallah D, El Abhar H. Chenodeoxycholic Acid Ameliorates AlCl3-Induced Alzheimer's Disease Neurotoxicity and Cognitive Deterioration via Enhanced Insulin Signaling in Rats. Molecules. 2019;24: pubmed 出版商
  51. Fenwick C, Loredo Varela J, Joo V, Pellaton C, Farina A, Rajah N, et al. Tumor suppression of novel anti-PD-1 antibodies mediated through CD28 costimulatory pathway. J Exp Med. 2019;: pubmed 出版商
  52. Pan C, Jin L, Wang X, Li Y, Chun J, Boese A, et al. Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance. J Clin Invest. 2019;129:2431-2445 pubmed 出版商
  53. Yoo S, Lee C, An H, Lee J, Lee H, Kang H, et al. RSK2-Mediated ELK3 Activation Enhances Cell Transformation and Breast Cancer Cell Growth by Regulation of c-fos Promoter Activity. Int J Mol Sci. 2019;20: pubmed 出版商
  54. Nichols J, Paschke P, Peak Chew S, Williams T, Tweedy L, Skehel M, et al. The Atypical MAP Kinase ErkB Transmits Distinct Chemotactic Signals through a Core Signaling Module. Dev Cell. 2019;48:491-505.e9 pubmed 出版商
  55. Ran Z, Zhang Y, Wen X, Ma J. Curcumin inhibits high glucose‑induced inflammatory injury in human retinal pigment epithelial cells through the ROS‑PI3K/AKT/mTOR signaling pathway. Mol Med Rep. 2019;19:1024-1031 pubmed 出版商
  56. Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, et al. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol. 2019;13:792-810 pubmed 出版商
  57. Wang J, Zhao W, Guo H, Fang Y, Stockman S, Bai S, et al. AKT isoform-specific expression and activation across cancer lineages. BMC Cancer. 2018;18:742 pubmed 出版商
  58. Li R, Sahu S, Schachner M. Phenelzine, a small organic compound mimicking the functions of cell adhesion molecule L1, promotes functional recovery after mouse spinal cord injury. Restor Neurol Neurosci. 2018;36:469-483 pubmed 出版商
  59. Yu Y, Shen Q, Lai Y, Park S, Ou X, Lin D, et al. Anti-inflammatory Effects of Curcumin in Microglial Cells. Front Pharmacol. 2018;9:386 pubmed 出版商
  60. Silva M, Davoli Ferreira M, Medina T, Sesti Costa R, Silva G, Lopes C, et al. Canonical PI3Kγ signaling in myeloid cells restricts Trypanosoma cruzi infection and dampens chagasic myocarditis. Nat Commun. 2018;9:1513 pubmed 出版商
  61. Song H, Li X, Liu Y, Lu W, Cui Z, Zhou L, et al. Carnosic acid protects mice from high-fat diet-induced NAFLD by regulating MARCKS. Int J Mol Med. 2018;42:193-207 pubmed 出版商
  62. Xiao G, Chan L, Klemm L, Braas D, Chen Z, Geng H, et al. B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. Cell. 2018;173:470-484.e18 pubmed 出版商
  63. Rizzi C, Tiberi A, Giustizieri M, Marrone M, Gobbo F, Carucci N, et al. NGF steers microglia toward a neuroprotective phenotype. Glia. 2018;66:1395-1416 pubmed 出版商
  64. Xu M, Han X, Liu R, Li Y, Qi C, Yang Z, et al. PDK1 Deficit Impairs the Development of the Dentate Gyrus in Mice. Cereb Cortex. 2019;29:1185-1198 pubmed 出版商
  65. Coelho M, de Carné Trécesson S, Rana S, Zecchin D, Moore C, Molina Arcas M, et al. Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity. 2017;47:1083-1099.e6 pubmed 出版商
  66. Kim M, Morales L, Baek M, Slaga T, DiGiovanni J, Kim D. UVB-induced nuclear translocation of TC-PTP by AKT/14-3-3? axis inhibits keratinocyte survival and proliferation. Oncotarget. 2017;8:90674-90692 pubmed 出版商
  67. Urbanska M, Gozdz A, Macias M, Cymerman I, Liszewska E, Kondratiuk I, et al. GSK3β Controls mTOR and Prosurvival Signaling in Neurons. Mol Neurobiol. 2018;55:6050-6062 pubmed 出版商
  68. Protack C, Foster T, Hashimoto T, Yamamoto K, Lee M, Kraehling J, et al. Eph-B4 regulates adaptive venous remodeling to improve arteriovenous fistula patency. Sci Rep. 2017;7:15386 pubmed 出版商
  69. Gasparotto J, Girardi C, Somensi N, Ribeiro C, Moreira J, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226-244 pubmed 出版商
  70. Mai W, Gosa L, Daniëls V, Ta L, Tsang J, Higgins B, et al. Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nat Med. 2017;23:1342-1351 pubmed 出版商
  71. Zhao Y, Xie Z, Lin J, Liu P. MiR-144-3p inhibits cell proliferation and induces apoptosis in multiple myeloma by targeting c-Met. Am J Transl Res. 2017;9:2437-2446 pubmed
  72. Weng Y, Shi Y, Xia X, Zhou W, Wang H, Wang C. A multi-shRNA vector enhances the silencing efficiency of exogenous and endogenous genes in human cells. Oncol Lett. 2017;13:1553-1562 pubmed 出版商
  73. Zhang X, Spiegelman N, Nelson O, Jing H, Lin H. SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. elife. 2017;6: pubmed 出版商
  74. CAROMILE L, Dortche K, Rahman M, Grant C, Stoddard C, Ferrer F, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10: pubmed 出版商
  75. Ansa Addo E, Zhang Y, Yang Y, Hussey G, Howley B, Salem M, et al. Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling. J Clin Invest. 2017;127:1321-1337 pubmed 出版商
  76. Persico M, Masarone M, Damato A, Ambrosio M, Federico A, Rosato V, et al. "Non alcoholic fatty liver disease and eNOS dysfunction in humans". BMC Gastroenterol. 2017;17:35 pubmed 出版商
  77. Møller A, Kampmann U, Hedegaard J, Thorsen K, Nordentoft I, Vendelbo M, et al. Altered gene expression and repressed markers of autophagy in skeletal muscle of insulin resistant patients with type 2 diabetes. Sci Rep. 2017;7:43775 pubmed 出版商
  78. Yang X, Huo F, Liu B, Liu J, Chen T, Li J, et al. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway. J Mol Neurosci. 2017;61:581-589 pubmed 出版商
  79. Cen M, Hu P, Cai Z, Fang T, Zhang J, Lu M. TIEG1 deficiency confers enhanced myocardial protection in the infarcted heart by mediating the Pten/Akt signalling pathway. Int J Mol Med. 2017;39:569-578 pubmed 出版商
  80. Peng M, Yin N, Li M. SZT2 dictates GATOR control of mTORC1 signalling. Nature. 2017;543:433-437 pubmed 出版商
  81. Kocic G, Veljkovic A, Kocic H, Colic M, Mihajlović D, Tomovic K, et al. Depurinized milk downregulates rat thymus MyD88/Akt/p38 function, NF-κB-mediated inflammation, caspase-1 activity but not the endonuclease pathway: in vitro/in vivo study. Sci Rep. 2017;7:41971 pubmed 出版商
  82. Sugg K, Korn M, Sarver D, Markworth J, Mendias C. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy. FEBS Lett. 2017;591:801-809 pubmed 出版商
  83. Chamma C, Bargut T, Mandarim de Lacerda C, Aguila M. A rich medium-chain triacylglycerol diet benefits adiposity but has adverse effects on the markers of hepatic lipogenesis and beta-oxidation. Food Funct. 2017;8:778-787 pubmed 出版商
  84. Feng L, Xue D, Chen E, Zhang W, Gao X, Yu J, et al. HMGB1 promotes the secretion of multiple cytokines and potentiates the osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Exp Ther Med. 2016;12:3941-3947 pubmed 出版商
  85. Yoo S, Latifkar A, Cerione R, Antonyak M. Cool-associated Tyrosine-phosphorylated Protein 1 Is Required for the Anchorage-independent Growth of Cervical Carcinoma Cells by Binding Paxillin and Promoting AKT Activation. J Biol Chem. 2017;292:3947-3957 pubmed 出版商
  86. Major J, Dewan A, Salih M, Leddy J, Tuana B. E2F6 Impairs Glycolysis and Activates BDH1 Expression Prior to Dilated Cardiomyopathy. PLoS ONE. 2017;12:e0170066 pubmed 出版商
  87. Tam K, Dalal K, Hsing M, Cheng C, Khosravi S, Yenki P, et al. Androgen receptor transcriptionally regulates semaphorin 3C in a GATA2-dependent manner. Oncotarget. 2017;8:9617-9633 pubmed 出版商
  88. Ren H, Liu F, Huang G, Liu Y, Shen J, Zhou P, et al. Positive feedback loop of IL-1β/Akt/RARα/Akt signaling mediates oncogenic property of RARα in gastric carcinoma. Oncotarget. 2017;8:6718-6729 pubmed 出版商
  89. Martins F, Bargut T, Aguila M, Mandarim de Lacerda C. Thermogenesis, fatty acid synthesis with oxidation, and inflammation in the brown adipose tissue of ob/ob (-/-) mice. Ann Anat. 2017;210:44-51 pubmed 出版商
  90. Cabre R, Naudi A, Dominguez Gonzalez M, Ayala V, Jove M, Mota Martorell N, et al. Sixty years old is the breakpoint of human frontal cortex aging. Free Radic Biol Med. 2017;103:14-22 pubmed 出版商
  91. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  92. Grabinski T, Kanaan N. Novel Non-phosphorylated Serine 9/21 GSK3?/? Antibodies: Expanding the Tools for Studying GSK3 Regulation. Front Mol Neurosci. 2016;9:123 pubmed
  93. He X, Liu Z, Xia Y, Xu J, Lv G, Wang L, et al. HOXB7 overexpression promotes cell proliferation and correlates with poor prognosis in gastric cancer patients by inducing expression of both AKT and MARKs. Oncotarget. 2017;8:1247-1261 pubmed 出版商
  94. Kim H, Kim M, Park Y, Park I, Kim T, Yang S, et al. Prostaglandin E2 Activates YAP and a Positive-Signaling Loop to Promote Colon Regeneration After Colitis but Also Carcinogenesis in Mice. Gastroenterology. 2017;152:616-630 pubmed 出版商
  95. Vidimar V, Gius D, Chakravarti D, Bulun S, Wei J, Kim J. Dysfunctional MnSOD leads to redox dysregulation and activation of prosurvival AKT signaling in uterine leiomyomas. Sci Adv. 2016;2:e1601132 pubmed
  96. Cardoso R, Burns A, Moeller J, Skinner D, Padmanabhan V. Developmental Programming: Insulin Sensitizer Prevents the GnRH-Stimulated LH Hypersecretion in a Sheep Model of PCOS. Endocrinology. 2016;157:4641-4653 pubmed
  97. Graus Nunes F, Marinho T, Barbosa da Silva S, Aguila M, Mandarim de Lacerda C, Souza Mello V. Differential effects of angiotensin receptor blockers on pancreatic islet remodelling and glucose homeostasis in diet-induced obese mice. Mol Cell Endocrinol. 2017;439:54-64 pubmed 出版商
  98. Kunzler A, Zeidán Chuliá F, Gasparotto J, Girardi C, Klafke K, Petiz L, et al. Changes in Cell Cycle and Up-Regulation of Neuronal Markers During SH-SY5Y Neurodifferentiation by Retinoic Acid are Mediated by Reactive Species Production and Oxidative Stress. Mol Neurobiol. 2017;54:6903-6916 pubmed 出版商
  99. Cizmecioglu O, Ni J, Xie S, Zhao J, Roberts T. Rac1-mediated membrane raft localization of PI3K/p110? is required for its activation by GPCRs or PTEN loss. elife. 2016;5: pubmed 出版商
  100. Nonomiya Y, Noguchi K, Tanaka N, Kasagaki T, Katayama K, Sugimoto Y. Effect of AKT3 expression on MYC- and caspase-8-dependent apoptosis caused by polo-like kinase inhibitors in HCT 116 cells. Cancer Sci. 2016;107:1877-1887 pubmed 出版商
  101. Cunningham C, Li S, Vizeacoumar F, Bhanumathy K, Lee J, Parameswaran S, et al. Therapeutic relevance of the protein phosphatase 2A in cancer. Oncotarget. 2016;7:61544-61561 pubmed 出版商
  102. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed 出版商
  103. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed 出版商
  104. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed 出版商
  105. Møller C, Kjøbsted R, Enriori P, Jensen T, Garcia Rudaz C, Litwak S, et al. ?-MSH Stimulates Glucose Uptake in Mouse Muscle and Phosphorylates Rab-GTPase-Activating Protein TBC1D1 Independently of AMPK. PLoS ONE. 2016;11:e0157027 pubmed 出版商
  106. Pan B, Huang X, Deng C. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats. Sci Rep. 2016;6:30040 pubmed 出版商
  107. Ma T, Fan B, Zhang C, Zhao H, Han C, Gao C, et al. Metabonomics applied in exploring the antitumour mechanism of physapubenolide on hepatocellular carcinoma cells by targeting glycolysis through the Akt-p53 pathway. Sci Rep. 2016;6:29926 pubmed 出版商
  108. Monica V, Lo Iacono M, Bracco E, Busso S, di Blasio L, Primo L, et al. Dasatinib modulates sensitivity to pemetrexed in malignant pleural mesothelioma cell lines. Oncotarget. 2016;7:76577-76589 pubmed 出版商
  109. Shriver M, Marimuthu S, Paul C, Geist J, Seale T, Konstantopoulos K, et al. Giant obscurins regulate the PI3K cascade in breast epithelial cells via direct binding to the PI3K/p85 regulatory subunit. Oncotarget. 2016;7:45414-45428 pubmed 出版商
  110. Chan W, Ismail H, Mayaki D, Sanchez V, Tiedemann K, Davis E, et al. Fibulin-5 Regulates Angiopoietin-1/Tie-2 Receptor Signaling in Endothelial Cells. PLoS ONE. 2016;11:e0156994 pubmed 出版商
  111. Ma N, Ma Y, Nakashima A, Kikkawa U, Furuyashiki T. The Loss of Lam2 and Npr2-Npr3 Diminishes the Vacuolar Localization of Gtr1-Gtr2 and Disinhibits TORC1 Activity in Fission Yeast. PLoS ONE. 2016;11:e0156239 pubmed 出版商
  112. Yang Z, Jiang Q, Chen S, Hu C, Shen H, Huang P, et al. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep. 2016;14:790-6 pubmed 出版商
  113. Wang N, Dong B, Quan Y, Chen Q, Chu M, Xu J, et al. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status. Stem Cell Reports. 2016;6:668-678 pubmed 出版商
  114. Vorvis C, Hatziapostolou M, Mahurkar Joshi S, Koutsioumpa M, Williams J, Donahue T, et al. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1124-37 pubmed 出版商
  115. Kumar A, Abbas W, Colin L, Khan K, Bouchat S, Varin A, et al. Tuning of AKT-pathway by Nef and its blockade by protease inhibitors results in limited recovery in latently HIV infected T-cell line. Sci Rep. 2016;6:24090 pubmed 出版商
  116. Yu Z, Zhao G, Li P, Li Y, Zhou G, Chen Y, et al. Temozolomide in combination with metformin act synergistically to inhibit proliferation and expansion of glioma stem-like cells. Oncol Lett. 2016;11:2792-2800 pubmed
  117. Maselli A, Capoccia S, Pugliese P, Raggi C, Cirulli F, Fabi A, et al. Autoantibodies specific to estrogen receptor alpha act as estrogen agonists and their levels correlate with breast cancer cell proliferation. Oncoimmunology. 2016;5:e1074375 pubmed
  118. Pan B, Huang X, Deng C. Aripiprazole and Haloperidol Activate GSK3?-Dependent Signalling Pathway Differentially in Various Brain Regions of Rats. Int J Mol Sci. 2016;17:459 pubmed 出版商
  119. Li X, Dai X, Wan L, Inuzuka H, Sun L, North B. Smurf1 regulation of DAB2IP controls cell proliferation and migration. Oncotarget. 2016;7:26057-69 pubmed 出版商
  120. Richter B, Sliter D, Herhaus L, Stolz A, Wang C, Beli P, et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A. 2016;113:4039-44 pubmed 出版商
  121. An X, Zhao Z, Luo Y, Zhang R, Tang X, Hao D, et al. Netrin-1 suppresses the MEK/ERK pathway and ITGB4 in pancreatic cancer. Oncotarget. 2016;7:24719-33 pubmed 出版商
  122. de Castro Barbosa T, Ingerslev L, Alm P, Versteyhe S, Massart J, Rasmussen M, et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol Metab. 2016;5:184-197 pubmed 出版商
  123. Nim S, Jeon J, Corbi Verge C, Seo M, Ivarsson Y, Moffat J, et al. Pooled screening for antiproliferative inhibitors of protein-protein interactions. Nat Chem Biol. 2016;12:275-81 pubmed 出版商
  124. Andersen T, Schmidt J, Pedersen M, Krustrup P, Bangsbo J. The Effects of 52 Weeks of Soccer or Resistance Training on Body Composition and Muscle Function in +65-Year-Old Healthy Males--A Randomized Controlled Trial. PLoS ONE. 2016;11:e0148236 pubmed 出版商
  125. Lakshmipathi J, Alvarez Perez J, Rosselot C, Casinelli G, Stamateris R, Rausell Palamos F, et al. PKCζ Is Essential for Pancreatic β-Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2. Diabetes. 2016;65:1283-96 pubmed 出版商
  126. Cherepkova M, Sineva G, Pospelov V. Leukemia inhibitory factor (LIF) withdrawal activates mTOR signaling pathway in mouse embryonic stem cells through the MEK/ERK/TSC2 pathway. Cell Death Dis. 2016;7:e2050 pubmed 出版商
  127. Kim K, Qiang L, Hayden M, Sparling D, Purcell N, Pajvani U. mTORC1-independent Raptor prevents hepatic steatosis by stabilizing PHLPP2. Nat Commun. 2016;7:10255 pubmed 出版商
  128. Wang C, Che L, Hu J, Zhang S, Jiang L, Latte G, et al. Activated mutant forms of PIK3CA cooperate with RasV12 or c-Met to induce liver tumour formation in mice via AKT2/mTORC1 cascade. Liver Int. 2016;36:1176-86 pubmed 出版商
  129. Tollenaere M, Villumsen B, Blasius M, Nielsen J, Wagner S, Bartek J, et al. p38- and MK2-dependent signalling promotes stress-induced centriolar satellite remodelling via 14-3-3-dependent sequestration of CEP131/AZI1. Nat Commun. 2015;6:10075 pubmed 出版商
  130. Xu D, Shan B, Lee B, Zhu K, Zhang T, Sun H, et al. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system. elife. 2015;4:e10510 pubmed 出版商
  131. Li M, Quan C, Toth R, Campbell D, MacKintosh C, Wang H, et al. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders. J Biol Chem. 2015;290:30030-41 pubmed 出版商
  132. Ramlee M, Yan T, Cheung A, Chuah C, Li S. High-throughput genotyping of CRISPR/Cas9-mediated mutants using fluorescent PCR-capillary gel electrophoresis. Sci Rep. 2015;5:15587 pubmed 出版商
  133. Vajravelu B, Hong K, Al Maqtari T, Cao P, Keith M, Wysoczynski M, et al. C-Kit Promotes Growth and Migration of Human Cardiac Progenitor Cells via the PI3K-AKT and MEK-ERK Pathways. PLoS ONE. 2015;10:e0140798 pubmed 出版商
  134. Caruso M, Zhang X, Ma D, Yang Z, Qi Y, Yi Z. Novel Endogenous, Insulin-Stimulated Akt2 Protein Interaction Partners in L6 Myoblasts. PLoS ONE. 2015;10:e0140255 pubmed 出版商
  135. Vigelso A, Prats C, Ploug T, Dela F, Helge J. Higher muscle content of perilipin 5 and endothelial lipase protein in trained than untrained middle-aged men. Physiol Res. 2016;65:293-302 pubmed
  136. Borges C, Salles A, Bringhenti I, Souza Mello V, Mandarim de Lacerda C, Aguila M. Adverse effects of vitamin D deficiency on the Pi3k/Akt pathway and pancreatic islet morphology in diet-induced obese mice. Mol Nutr Food Res. 2016;60:346-57 pubmed 出版商
  137. Reinardy J, Corey D, Golzio C, Mueller S, Katsanis N, Kontos C. Phosphorylation of Threonine 794 on Tie1 by Rac1/PAK1 Reveals a Novel Angiogenesis Regulatory Pathway. PLoS ONE. 2015;10:e0139614 pubmed 出版商
  138. Chiang K, Chen H, Hsu S, Pang J, Wang S, Hsu J, et al. PTEN insufficiency modulates ER+ breast cancer cell cycle progression and increases cell growth in vitro and in vivo. Drug Des Devel Ther. 2015;9:4631-8 pubmed 出版商
  139. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  140. Krishnan N, Krishnan K, Connors C, Choy M, Page R, Peti W, et al. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome. J Clin Invest. 2015;125:3163-77 pubmed 出版商
  141. Patergnani S, Giorgi C, Maniero S, Missiroli S, Maniscalco P, Bononi I, et al. The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition. Oncotarget. 2015;6:23427-44 pubmed
  142. Reis C, Chen P, Srinivasan S, Aguet F, Mettlen M, Schmid S. Crosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis. EMBO J. 2015;34:2132-46 pubmed 出版商
  143. Braccini L, Ciraolo E, Campa C, Perino A, Longo D, Tibolla G, et al. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat Commun. 2015;6:7400 pubmed 出版商
  144. Albers P, Bojsen Møller K, Dirksen C, Serup A, Kristensen D, Frystyk J, et al. Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol. 2015;309:R510-24 pubmed 出版商
  145. Rueda Rincon N, Bloch K, Derua R, Vyas R, Harms A, Hankemeier T, et al. p53 attenuates AKT signaling by modulating membrane phospholipid composition. Oncotarget. 2015;6:21240-54 pubmed
  146. Unni A, Lockwood W, Zejnullahu K, Lee Lin S, Varmus H. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. elife. 2015;4:e06907 pubmed 出版商
  147. Hellesøy M, Lorens J. Cellular context-mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis. Mol Biol Cell. 2015;26:2698-711 pubmed 出版商
  148. Bargut T, Mandarim de Lacerda C, Aguila M. A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice. J Nutr Biochem. 2015;26:960-9 pubmed 出版商
  149. Seo K, Lee S, Ye B, Kim Y, Bae S, Kim C. Mechanical stretch enhances the expression and activity of osteopontin and MMP-2 via the Akt1/AP-1 pathways in VSMC. J Mol Cell Cardiol. 2015;85:13-24 pubmed 出版商
  150. Li J, Ren J, Liu X, Jiang L, He W, Yuan W, et al. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis. Kidney Int. 2015;88:515-27 pubmed 出版商
  151. Rozanski C, Utley A, Carlson L, Farren M, Murray M, Russell L, et al. CD28 Promotes Plasma Cell Survival, Sustained Antibody Responses, and BLIMP-1 Upregulation through Its Distal PYAP Proline Motif. J Immunol. 2015;194:4717-28 pubmed 出版商
  152. Li X, Tao J, Cigliano A, Sini M, Calderaro J, Azoulay D, et al. Co-activation of PIK3CA and Yap promotes development of hepatocellular and cholangiocellular tumors in mouse and human liver. Oncotarget. 2015;6:10102-15 pubmed
  153. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed 出版商
  154. Desantis A, Bruno T, Catena V, De Nicola F, Goeman F, Iezzi S, et al. Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy. EMBO J. 2015;34:1214-30 pubmed 出版商
  155. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  156. Jeffery E, Church C, Holtrup B, Colman L, Rodeheffer M. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat Cell Biol. 2015;17:376-85 pubmed 出版商
  157. Bitler B, Aird K, Garipov A, Li H, Amatangelo M, Kossenkov A, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 2015;21:231-8 pubmed 出版商
  158. Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. 2015;11:271-84 pubmed 出版商
  159. Loeuillard E, Bertrand J, Herranen A, Melchior C, Guérin C, Coëffier M, et al. 2,4,6-trinitrobenzene sulfonic acid-induced chronic colitis with fibrosis and modulation of TGF-β1 signaling. World J Gastroenterol. 2014;20:18207-15 pubmed 出版商
  160. Huang C, Sheng S, Li R, Sun X, Liu J, Huang G. Lactate promotes resistance to glucose starvation via upregulation of Bcl-2 mediated by mTOR activation. Oncol Rep. 2015;33:875-84 pubmed 出版商
  161. Bisson J, Mills B, Paul Helt J, Zwaka T, Cohen E. Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT. Dev Biol. 2015;398:80-96 pubmed 出版商
  162. Banks A, McAllister F, Camporez J, Zushin P, Jurczak M, Laznik Bogoslavski D, et al. An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ. Nature. 2015;517:391-5 pubmed 出版商
  163. Backer R, Helbig C, Gentek R, Kent A, Laidlaw B, Dominguez C, et al. A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol. 2014;15:1143-51 pubmed 出版商
  164. Badolia R, Manne B, Dangelmaier C, Chernoff J, Kunapuli S. Gq-mediated Akt translocation to the membrane: a novel PIP3-independent mechanism in platelets. Blood. 2015;125:175-84 pubmed 出版商
  165. Peng M, Yin N, Li M. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell. 2014;159:122-133 pubmed 出版商
  166. Vanli G, Peltzer N, Dubuis G, Widmann C. The activity of the anti-apoptotic fragment generated by the caspase-3/p120 RasGAP stress-sensing module displays strict Akt isoform specificity. Cell Signal. 2014;26:2992-7 pubmed 出版商
  167. Kleinert M, Sylow L, Fazakerley D, Krycer J, Thomas K, Oxbøll A, et al. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo. Mol Metab. 2014;3:630-41 pubmed 出版商
  168. Watanabe T, Nakamura S, Ono T, Ui S, Yagi S, Kagawa H, et al. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma. Biochem Biophys Res Commun. 2014;451:93-100 pubmed 出版商
  169. Choi Y, Kim Y, Jeong H, Jin Y, Yeo C, Lee K. Akt enhances Runx2 protein stability by regulating Smurf2 function during osteoblast differentiation. FEBS J. 2014;281:3656-66 pubmed 出版商
  170. Dai X, North B, Inuzuka H. Negative regulation of DAB2IP by Akt and SCFFbw7 pathways. Oncotarget. 2014;5:3307-15 pubmed
  171. Andersen T, Schmidt J, Thomassen M, Hornstrup T, Frandsen U, Randers M, et al. A preliminary study: effects of football training on glucose control, body composition, and performance in men with type 2 diabetes. Scand J Med Sci Sports. 2014;24 Suppl 1:43-56 pubmed 出版商
  172. Elliott V, Rychahou P, Zaytseva Y, Evers B. Activation of c-Met and upregulation of CD44 expression are associated with the metastatic phenotype in the colorectal cancer liver metastasis model. PLoS ONE. 2014;9:e97432 pubmed 出版商
  173. Sahlberg S, Spiegelberg D, Glimelius B, Stenerlow B, Nestor M. Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells. PLoS ONE. 2014;9:e94621 pubmed 出版商
  174. Sahlberg S, Gustafsson A, Pendekanti P, Glimelius B, Stenerlow B. The influence of AKT isoforms on radiation sensitivity and DNA repair in colon cancer cell lines. Tumour Biol. 2014;35:3525-34 pubmed 出版商
  175. Domingues N, Pelletier J, Ostenson C, Castro M. Therapeutic properties of VO(dmpp)2 as assessed by in vitro and in vivo studies in type 2 diabetic GK rats. J Inorg Biochem. 2014;131:115-22 pubmed 出版商
  176. Frey J, Jacobs B, Goodman C, Hornberger T. A role for Raptor phosphorylation in the mechanical activation of mTOR signaling. Cell Signal. 2014;26:313-22 pubmed 出版商
  177. Iacovides D, Johnson A, Wang N, Boddapati S, Korkola J, Gray J. Identification and quantification of AKT isoforms and phosphoforms in breast cancer using a novel nanofluidic immunoassay. Mol Cell Proteomics. 2013;12:3210-20 pubmed 出版商
  178. Lu J, Zavorotinskaya T, Dai Y, Niu X, Castillo J, Sim J, et al. Pim2 is required for maintaining multiple myeloma cell growth through modulating TSC2 phosphorylation. Blood. 2013;122:1610-20 pubmed 出版商
  179. Wang Y, Li G, Goode J, Paz J, Ouyang K, Screaton R, et al. Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature. 2012;485:128-32 pubmed 出版商
  180. Riaz A, Zeller K, Johansson S. Receptor-specific mechanisms regulate phosphorylation of AKT at Ser473: role of RICTOR in ?1 integrin-mediated cell survival. PLoS ONE. 2012;7:e32081 pubmed 出版商