这是一篇来自已证抗体库的有关人类 AKT3的综述,是根据157篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合AKT3 抗体。
AKT3 同义词: MPPH; MPPH2; PKB-GAMMA; PKBG; PRKBG; RAC-PK-gamma; RAC-gamma; STK-2

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(Y89)
  • 免疫印迹; 人类; 图 3j
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab32505)被用于被用于免疫印迹在人类样本上 (图 3j). Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(EPR16798)
  • 免疫印迹; 人类; 1:1000; 图 5g, 5h
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab179463)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5g, 5h). Br J Cancer (2022) ncbi
domestic rabbit 单克隆(EPR16798)
  • 免疫印迹; 人类; 1:10,000; 图 7a
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab179463)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 7a). Int J Oncol (2021) ncbi
domestic rabbit 单克隆(EPR16798)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7a
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab179463)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7a). Genes (Basel) (2021) ncbi
domestic rabbit 单克隆(EPR16798)
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab179463)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR16798)
  • 免疫印迹; 大鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab179463)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Cell Prolif (2021) ncbi
domestic rabbit 单克隆(Y89)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab32505)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(EPR16798)
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab179463)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(EPR16798)
  • 免疫印迹; 人类; 图 6a, 6c
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab179463)被用于被用于免疫印迹在人类样本上 (图 6a, 6c). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab106693)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR16798)
  • 免疫印迹; 大鼠; 1:1000; 图 3d
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab179463)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3d). Sci Signal (2019) ncbi
domestic rabbit 单克隆(EPR18853)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab192623)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(EPR16798)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab179463)被用于被用于免疫印迹在人类样本上 (图 5a). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR16798)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
  • 免疫印迹; 人类; 1:1000; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab179463)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a), 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(Y89)
  • 免疫印迹; 人类; 1:10,000; 图 6d
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab32505)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6d). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(EPR18853)
  • 免疫印迹; 人类; 1:5000; 图 6d
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab192623)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6d). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab126811)被用于被用于免疫印迹在人类样本上 (图 7a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EPR16798)
  • 免疫印迹; 小鼠; 1:10,000; 图 5b
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab179463)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5b). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR17671)
  • 免疫印迹; 大鼠; 图 6a
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab185633)被用于被用于免疫印迹在大鼠样本上 (图 6a). Braz J Med Biol Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3f
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab152157)被用于被用于免疫印迹在人类样本上 (图 s3f). Oncogene (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab152157)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2). Cancer Res Treat (2019) ncbi
domestic rabbit 单克隆(Y89)
  • 免疫印迹; 大鼠; 1:2000; 图 2a
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab32505)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2a). Biomed Res Int (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4a
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab196883)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(Y89)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, Y89)被用于被用于免疫印迹在人类样本上 (图 2c). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(Y89)
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab32505)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EPR16798)
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, EPR16798)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Med Sci Monit (2016) ncbi
domestic rabbit 单克隆(Y89)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab32505)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(Y89)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, Y89)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(Y89)
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, AB32505)被用于被用于免疫印迹在小鼠样本上 (图 5a). Biol Sex Differ (2016) ncbi
domestic rabbit 单克隆(EPR16798)
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab179463)被用于. Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(Y89)
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab32505)被用于被用于免疫印迹在人类样本上 (图 2). Sci Adv (2015) ncbi
domestic rabbit 单克隆(EPR16798)
  • 免疫印迹; 人类; 1:1000; 图 4d
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab179463)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Oncotarget (2015) ncbi
domestic rabbit 单克隆(Y89)
  • 免疫组化; 小鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司 AKT3抗体(Abcam, ab32505)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3). Mol Cancer Res (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-12)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
圣克鲁斯生物技术 AKT3抗体(Santa Cruz, sc-377556)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Cancers (Basel) (2022) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 人类; 1:100; 图 7i
圣克鲁斯生物技术 AKT3抗体(Santa Cruz Biotechnology, sc-81433)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 7i). Cancers (Basel) (2021) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 人类; 1:500; 图 7i
圣克鲁斯生物技术 AKT3抗体(Santa Cruz Biotechnology, sc-81434)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7i). Cancers (Basel) (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 3g, 3h
圣克鲁斯生物技术 AKT3抗体(Santa Cruz, sc-514032)被用于被用于免疫印迹在小鼠样本上 (图 3g, 3h). Front Pharmacol (2021) ncbi
小鼠 单克隆(BDI111)
  • 免疫印迹; 小鼠; 图 3g, 3h
圣克鲁斯生物技术 AKT3抗体(Santa Cruz, sc-56878)被用于被用于免疫印迹在小鼠样本上 (图 3g, 3h). Front Pharmacol (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:350; 图 4c, 6e
  • 免疫印迹; 人类; 1:350; 图 4d
圣克鲁斯生物技术 AKT3抗体(Santa Cruz, sc-514032)被用于被用于免疫印迹在小鼠样本上浓度为1:350 (图 4c, 6e) 和 被用于免疫印迹在人类样本上浓度为1:350 (图 4d). Mol Cell Biol (2021) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 人类; 1:1000; 图 1e
圣克鲁斯生物技术 AKT3抗体(Santa, sc-81434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Aging (Albany NY) (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 1e
圣克鲁斯生物技术 AKT3抗体(Santa, sc-514032)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 小鼠; 1:500; 图 6a
圣克鲁斯生物技术 AKT3抗体(Santa Cruz, sc-81433)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 人类; 1:1000; 图 3d
圣克鲁斯生物技术 AKT3抗体(Santa Cruz, sc-81434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Am J Transl Res (2017) ncbi
小鼠 单克隆(BDI111)
  • 免疫印迹; 人类; 1:800; 图 2
圣克鲁斯生物技术 AKT3抗体(Santa Cruz, sc-56878)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 2). BMC Gastroenterol (2017) ncbi
小鼠 单克隆(11E6)
  • 其他; 大鼠; 图 1
圣克鲁斯生物技术 AKT3抗体(Santa Cruz, sc-81433)被用于被用于其他在大鼠样本上 (图 1). Sci Rep (2017) ncbi
小鼠 单克隆(5c10)
  • 其他; 大鼠; 图 1
圣克鲁斯生物技术 AKT3抗体(Santa Cruz, sc-81434)被用于被用于其他在大鼠样本上 (图 1). Sci Rep (2017) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 AKT3抗体(Santa Cruz, sc-81433)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 AKT3抗体(Santa Cruz, sc-81434)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Cell Death Dis (2016) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术 AKT3抗体(Santa Cruz, 11E6)被用于被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2016) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术 AKT3抗体(Santa Cruz, sc-81433)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 AKT3抗体(Santa Cruz Biotechnology, sc-81434)被用于被用于免疫印迹在大鼠样本上浓度为1:500. World J Gastroenterol (2014) ncbi
赛默飞世尔
domestic rabbit 单克隆(J.314.4)
  • 免疫印迹; 大鼠; 图 3d
赛默飞世尔 AKT3抗体(ThermoFisher, MA5-14916)被用于被用于免疫印迹在大鼠样本上 (图 3d). Molecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛默飞世尔 AKT3抗体(Invitrogen, PA5-36780)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). J Mol Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛默飞世尔 AKT3抗体(Invitrogen, 44-609G)被用于被用于免疫印迹在小鼠样本上 (图 2c). Food Funct (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2d
赛默飞世尔 AKT3抗体(生活技术, 44609G)被用于被用于免疫印迹在人类样本上 (图 s2d). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5d
赛默飞世尔 AKT3抗体(Invitrogen, 44-609G)被用于被用于免疫印迹在小鼠样本上 (图 5d). Ann Anat (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 1:1000; 图 2
赛默飞世尔 AKT3抗体(Invitrogen, 44-609G)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Free Radic Biol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4g
赛默飞世尔 AKT3抗体(Invitrogen, 44-609G)被用于被用于免疫印迹在小鼠样本上 (图 4g). Mol Cell Endocrinol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s7
赛默飞世尔 AKT3抗体(Invitrogen, 44-609G)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7). Nat Chem Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 AKT3抗体(Invitrogen, 44-C609G)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Mol Nutr Food Res (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 AKT3抗体(Invitrogen, 44-609G)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 AKT3抗体(Invitrogen, 44-609G)被用于. J Nutr Biochem (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 AKT3抗体(CST, 13038S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Cell Death Discov (2022) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 5a
  • 免疫印迹; 小鼠; 图 s6a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 s6a). Cancer Commun (Lond) (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 AKT3抗体(CST, 4059)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). iScience (2022) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). Front Immunol (2022) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 12
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 12). Int J Oncol (2022) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 7a, 7c
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell signaling, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a, 7c). elife (2022) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 s3a
赛信通(上海)生物试剂有限公司 AKT3抗体(CST, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 AKT3抗体(CST, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 大鼠; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038S)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3a). Exp Ther Med (2021) ncbi
domestic rabbit 单克隆(E1Z3W)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technologies, 14982)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technologies, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 1f). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 13038)被用于被用于流式细胞仪在小鼠样本上. Cancer Cell (2021) ncbi
domestic rabbit 单克隆(E1Z3W)
  • 免疫组化-自由浮动切片; 人类; 1:100; 图 6
  • 免疫组化-自由浮动切片; 小鼠; 1:250; 图 3a
赛信通(上海)生物试剂有限公司 AKT3抗体(CST, E1Z3W)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:100 (图 6) 和 被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250 (图 3a). Cereb Cortex Commun (2021) ncbi
小鼠 单克隆(L47B1)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 7a
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 AKT3抗体(CST, 8018)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 7a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Cereb Cortex Commun (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell signaling, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signalling Technology, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. elife (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 8d
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8d). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 大鼠; 图 6a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在大鼠样本上 (图 6a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 1a, 1b
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a, 1b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 AKT3抗体(CST, 13038)被用于被用于免疫印迹在人类样本上 (图 5e). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, D25E6)被用于被用于免疫印迹在人类样本上 (图 6c). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:2000; 图 5e
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5e). J Inflamm Res (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 AKT3抗体(cell signalling technology, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3g). Theranostics (2021) ncbi
domestic rabbit 单克隆(62A8)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 s2b
  • 免疫沉淀; 人类; 1:100; 图 3a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 3788)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 s2b) 和 被用于免疫沉淀在人类样本上浓度为1:100 (图 3a). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 7d, 7e
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在小鼠样本上 (图 7d, 7e). Theranostics (2021) ncbi
domestic rabbit 单克隆(E1Z3W)
  • 免疫印迹; 人类; 图 2k, 3c
赛信通(上海)生物试剂有限公司 AKT3抗体(CST, 14982)被用于被用于免疫印迹在人类样本上 (图 2k, 3c). Oncogene (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在小鼠样本上 (图 1e). Front Synaptic Neurosci (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 流式细胞仪; 小鼠; 1:100; 图 5f
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 13038)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5f). elife (2021) ncbi
domestic rabbit 单克隆(62A8)
  • 免疫印迹; 小鼠; 图 s2b
赛信通(上海)生物试剂有限公司 AKT3抗体(CST, 3788)被用于被用于免疫印迹在小鼠样本上 (图 s2b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 流式细胞仪; 小鼠; 1:400; 图 2d
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038S)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 2d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Science (2021) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). elife (2020) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038T)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell signaling, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). J Cancer (2020) ncbi
domestic rabbit 单克隆(62A8)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 3788)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). J Biol Chem (2020) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 AKT3抗体(CST, 13038S)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Theranostics (2020) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Cell Div (2020) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 s4a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4a). Cancer Cell (2020) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Oncogenesis (2020) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 4bd
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4bd). J Proteomics (2020) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Science (2019) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 AKT3抗体(CST, 13038S)被用于被用于免疫印迹在人类样本上 (图 5f). Br J Cancer (2019) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 5e, 5f, 5g
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e, 5f, 5g). elife (2019) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 AKT3抗体(CST, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Cell Mol Gastroenterol Hepatol (2019) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038S)被用于被用于免疫印迹在人类样本上 (图 8a). J Immunol (2019) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 s3e
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 s3e). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, D25E6)被用于被用于免疫印迹在人类样本上 (图 6e). Mol Oncol (2019) ncbi
domestic rabbit 单克隆(E1Z3W)
  • 免疫印迹基因敲除验证; 人类; 图 1a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 14982)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1a). BMC Cancer (2018) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, Inc, 13038)被用于被用于免疫印迹在小鼠样本上 (图 4a). Front Pharmacol (2018) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 7d). Cell (2018) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 130386)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Glia (2018) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 13 038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Cereb Cortex (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 8c
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 4059)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 8c). J Virol (2018) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 AKT3抗体(CST, 13038)被用于被用于免疫印迹在小鼠样本上 (图 2a). Mol Neurobiol (2018) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 大鼠; 图 10b
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在大鼠样本上 (图 10b). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Nat Med (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上 (图 4b). elife (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 3b
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在小鼠样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 4c). Sci Signal (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:500; 图 4d
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4d). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 1a). Nature (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上 (图 1b). FEBS Lett (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technologies, 13038)被用于被用于免疫印迹在人类样本上 (图 5b). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫细胞化学; 小鼠; 1:200; 图 s7d
  • 免疫印迹; 小鼠; 1:1000; 图 s6a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s7d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6a). Nature (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 s5a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 s5a). Front Mol Neurosci (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 s4a,s4b
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a,s4b). Gastroenterology (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Endocrinology (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 7
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 7), 被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 1). elife (2016) ncbi
小鼠 单克隆(L47B1)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, L47B1)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 6b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 流式细胞仪; 人类; 图 s18a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, D25E6)被用于被用于流式细胞仪在人类样本上 (图 s18a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell signaling, 13038)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, D25E6)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 1308)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Tech, 13038)被用于被用于免疫印迹在小鼠样本上 (图 5). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038S)被用于被用于免疫印迹在人类样本上 (图 6e). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 6
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell signaling, 13038P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, D25E6)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncoimmunology (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signalling, 13038)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 AKT3抗体(CST, D25E6)被用于被用于免疫印迹在小鼠样本上 (图 7e). Diabetes (2016) ncbi
domestic rabbit 单克隆(E1Z3W)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 14982)被用于被用于免疫印迹在人类样本上 (图 5d). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell signaling, 13038)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在小鼠样本上 (图 st1). Liver Int (2016) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Neurodegener (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Clin Invest (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Tech, 13038)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Tech, 13038)被用于被用于免疫印迹在人类样本上 (图 3). EMBO J (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 1:1000; 图 s9
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell signaling, 13038)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上 (图 6). elife (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Tech, 13038)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 1,2,3,4,5,6,7
赛信通(上海)生物试剂有限公司 AKT3抗体(cell signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1,2,3,4,5,6,7). EMBO J (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Nat Med (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 人类; 图 2b,3
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在人类样本上 (图 2b,3). Oncol Rep (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 13038)被用于被用于免疫印迹在小鼠样本上 (图 s3). Nature (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 流式细胞仪; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 13038)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Nat Immunol (2014) ncbi
domestic rabbit 单克隆(62A8)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling Technology, 3788)被用于被用于免疫印迹在人类样本上 (图 2). Blood (2015) ncbi
domestic rabbit 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 AKT3抗体(Cell Signaling, 13038)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell (2014) ncbi
文章列表
  1. Mukherjee B, Tiwari A, Palo A, Pattnaik N, Samantara S, Dixit M. Reduced expression of FRG1 facilitates breast cancer progression via GM-CSF/MEK-ERK axis by abating FRG1 mediated transcriptional repression of GM-CSF. Cell Death Discov. 2022;8:442 pubmed 出版商
  2. Chen F, Xiao M, Feng J, Wufur R, Liu K, Hu S, et al. Different Inhibition of Nrf2 by Two Keap1 Isoforms α and β to Shape Malignant Behaviour of Human Hepatocellular Carcinoma. Int J Mol Sci. 2022;23: pubmed 出版商
  3. Liu C, Zheng S, Wang Z, Wang S, Wang X, Yang L, et al. KRAS-G12D mutation drives immune suppression and the primary resistance of anti-PD-1/PD-L1 immunotherapy in non-small cell lung cancer. Cancer Commun (Lond). 2022;42:828-847 pubmed 出版商
  4. Narayan S, Raza A, Mahmud I, Koo N, Garrett T, LAW M, et al. Sensitization of FOLFOX-resistant colorectal cancer cells via the modulation of a novel pathway involving protein phosphatase 2A. iScience. 2022;25:104518 pubmed 出版商
  5. Chen J, Meng J, Li X, Li X, Liu Y, Jin C, et al. HA/CD44 Regulates the T Helper 1 Cells Differentiation by Activating Annexin A1/Akt/mTOR Signaling to Drive the Pathogenesis of EAP. Front Immunol. 2022;13:875412 pubmed 出版商
  6. Geng F, Yang W, Song D, Hou H, Han B, Chen Y, et al. MDIG, a 2‑oxoglutarate‑dependent oxygenase, acts as an oncogene and predicts the prognosis of multiple types of cancer. Int J Oncol. 2022;61: pubmed 出版商
  7. Yan W, Han Q, Gong L, Zhan X, Li W, Guo Z, et al. MBD3 promotes hepatocellular carcinoma progression and metastasis through negative regulation of tumour suppressor TFPI2. Br J Cancer. 2022;: pubmed 出版商
  8. Zerfaoui M, Toraih E, Ruiz E, Errami Y, Attia A, Krzysztof M, et al. Nuclear Localization of BRAFV600E Is Associated with HMOX-1 Upregulation and Aggressive Behavior of Melanoma Cells. Cancers (Basel). 2022;14: pubmed 出版商
  9. Cao X, Shi T, Zhang C, Jin W, Song L, Zhang Y, et al. ACE2 pathway regulates thermogenesis and energy metabolism. elife. 2022;11: pubmed 出版商
  10. Goel S, Bhatia V, Kundu S, Biswas T, Carskadon S, Gupta N, et al. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun. 2021;12:5325 pubmed 出版商
  11. Huang J, Xiao R, Wang X, Khadka B, Fang Z, Yu M, et al. MicroRNA‑93 knockdown inhibits acute myeloid leukemia cell growth via inactivating the PI3K/AKT pathway by upregulating DAB2. Int J Oncol. 2021;59: pubmed 出版商
  12. Tang X, Li G, Shi L, Su F, Qian M, Liu Z, et al. Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3β-SIRT7 axis. Nat Commun. 2021;12:5058 pubmed 出版商
  13. Meng L, Zhang Y, Li D, Shang X, Hao X, Chen X, et al. TIMP3 attenuates cerebral ischemia/reperfusion-induced apoptosis and oxidative stress in neurocytes by regulating the AKT pathway. Exp Ther Med. 2021;22:973 pubmed 出版商
  14. Laliotis G, Chavdoula E, Paraskevopoulou M, Kaba A, La Ferlita A, Singh S, et al. AKT3-mediated IWS1 phosphorylation promotes the proliferation of EGFR-mutant lung adenocarcinomas through cell cycle-regulated U2AF2 RNA splicing. Nat Commun. 2021;12:4624 pubmed 出版商
  15. Li P, Cao S, Huang Y, Zhang Y, Liu J, Cai X, et al. A novel chemical inhibitor suppresses breast cancer cell growth and metastasis through inhibiting HPIP oncoprotein. Cell Death Discov. 2021;7:198 pubmed 出版商
  16. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  17. Levenga J, Wong H, Milstead R, LaPlante L, Hoeffer C. Immunohistological Examination of AKT Isoforms in the Brain: Cell-Type Specificity That May Underlie AKT's Role in Complex Brain Disorders and Neurological Disease. Cereb Cortex Commun. 2021;2:tgab036 pubmed 出版商
  18. Xu L, Zhang X, Xin Y, Ma J, Yang C, Zhang X, et al. Depdc5 deficiency exacerbates alcohol-induced hepatic steatosis via suppression of PPARα pathway. Cell Death Dis. 2021;12:710 pubmed 出版商
  19. Kearney A, Norris D, Ghomlaghi M, Kin Lok Wong M, Humphrey S, Carroll L, et al. Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. elife. 2021;10: pubmed 出版商
  20. Wang W, Lu G, Liu H, Xiong Z, Leung H, Cao R, et al. Pten Regulates Cardiomyocyte Differentiation by Modulating Non-CG Methylation via Dnmt3. Adv Sci (Weinh). 2021;:e2100849 pubmed 出版商
  21. Zhang X, Zhao S, Yuan Q, Zhu L, Li F, Wang H, et al. TXNIP, a novel key factor to cause Schwann cell dysfunction in diabetic peripheral neuropathy, under the regulation of PI3K/Akt pathway inhibition-induced DNMT1 and DNMT3a overexpression. Cell Death Dis. 2021;12:642 pubmed 出版商
  22. Yin S, Liu L, Brobbey C, PALANISAMY V, Ball L, Olsen S, et al. PRMT5-mediated arginine methylation activates AKT kinase to govern tumorigenesis. Nat Commun. 2021;12:3444 pubmed 出版商
  23. Lai W, Zhu W, Xiao C, Li X, Wang Y, Han Y, et al. HJURP promotes proliferation in prostate cancer cells through increasing CDKN1A degradation via the GSK3β/JNK signaling pathway. Cell Death Dis. 2021;12:583 pubmed 出版商
  24. Schwiebs A, Faqar Uz Zaman F, Herrero San Juan M, Radeke H. S1P Lyase Regulates Intestinal Stem Cell Quiescence via Ki-67 and FOXO3. Int J Mol Sci. 2021;22: pubmed 出版商
  25. Li L, Yang L, Yang F, Zhao X, Xue S, Gong F. Ginkgo biloba Extract 50 (GBE50) Ameliorates Insulin Resistance, Hepatic Steatosis and Liver Injury in High Fat Diet-Fed Mice. J Inflamm Res. 2021;14:1959-1971 pubmed 出版商
  26. Luo L, Zhang Z, Qiu N, Ling L, Jia X, Song Y, et al. Disruption of FOXO3a-miRNA feedback inhibition of IGF2/IGF-1R/IRS1 signaling confers Herceptin resistance in HER2-positive breast cancer. Nat Commun. 2021;12:2699 pubmed 出版商
  27. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  28. Li X, Huang K, Liu X, Ruan H, Ma L, Liang J, et al. Ellagic Acid Attenuates BLM-Induced Pulmonary Fibrosis via Inhibiting Wnt Signaling Pathway. Front Pharmacol. 2021;12:639574 pubmed 出版商
  29. Li D, Sun S, Fu J, Ouyang S, Zhao Q, Su L, et al. NAD+-boosting therapy alleviates nonalcoholic fatty liver disease via stimulating a novel exerkine Fndc5/irisin. Theranostics. 2021;11:4381-4402 pubmed 出版商
  30. Buikhuisen J, Gomez Barila P, Torang A, Dekker D, de Jong J, Cameron K, et al. AKT3 Expression in Mesenchymal Colorectal Cancer Cells Drives Growth and Is Associated with Epithelial-Mesenchymal Transition. Cancers (Basel). 2021;13: pubmed 出版商
  31. Lou P, Bi X, Tian Y, Li G, Kang Q, Lv C, et al. MiR-22 modulates brown adipocyte thermogenesis by synergistically activating the glycolytic and mTORC1 signaling pathways. Theranostics. 2021;11:3607-3623 pubmed 出版商
  32. Galbraith L, Mui E, Nixon C, Hedley A, Strachan D, Mackay G, et al. PPAR-gamma induced AKT3 expression increases levels of mitochondrial biogenesis driving prostate cancer. Oncogene. 2021;40:2355-2366 pubmed 出版商
  33. Safari M, Obexer D, Baier Bitterlich G, zur Nedden S. PKN1 Is a Novel Regulator of Hippocampal GluA1 Levels. Front Synaptic Neurosci. 2021;13:640495 pubmed 出版商
  34. Sun Z, Yao Y, You M, Liu J, Guo W, Qi Z, et al. The kinase PDK1 is critical for promoting T follicular helper cell differentiation. elife. 2021;10: pubmed 出版商
  35. Wan X, Zhou M, Huang F, Zhao N, Chen X, Wu Y, et al. AKT1-CREB stimulation of PDGFRα expression is pivotal for PTEN deficient tumor development. Cell Death Dis. 2021;12:172 pubmed 出版商
  36. Burgess S, Gibbs H, Toomes C, Coletta P, Bell S. The Role of Csmd1 during Mammary Gland Development. Genes (Basel). 2021;12: pubmed 出版商
  37. Delgado E, Erickson H, Tao J, Monga S, Duncan A, Anakk S. Scaffolding Protein IQGAP1 is Dispensable But Its Overexpression Promotes Hepatocellular Carcinoma via YAP1 Signaling. Mol Cell Biol. 2021;: pubmed 出版商
  38. Li H, Xu W, Xia Z, Liu W, Pan G, Ding J, et al. Hsa_circ_0000199 facilitates chemo-tolerance of triple-negative breast cancer by interfering with miR-206/613-led PI3K/Akt/mTOR signaling. Aging (Albany NY). 2021;13:4522-4551 pubmed 出版商
  39. Xu K, Yin N, Peng M, Stamatiades E, Shyu A, Li P, et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science. 2021;371:405-410 pubmed 出版商
  40. Li Z, Meng Y, Liu C, Liu H, Cao W, Tong C, et al. Kcnh2 mediates FAK/AKT-FOXO3A pathway to attenuate sepsis-induced cardiac dysfunction. Cell Prolif. 2021;54:e12962 pubmed 出版商
  41. Chu N, Viennet T, Bae H, Salguero A, Boeszoermenyi A, Arthanari H, et al. The structural determinants of PH domain-mediated regulation of Akt revealed by segmental labeling. elife. 2020;9: pubmed 出版商
  42. Yu W, Hua Y, Qiu H, Hao J, Zou K, Li Z, et al. PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis. 2020;11:506 pubmed 出版商
  43. Du Z, Dong J, Li M, Zhang J, Bi J, Ren Y, et al. Overexpression of Platelet-Derived Growth Factor Receptor Α D842V Mutants Prevents Liver Regeneration and Chemically Induced Hepatocarcinogenesis via Inhibition of MET and EGFR. J Cancer. 2020;11:4614-4624 pubmed 出版商
  44. Collins M, Stransky L, Forgac M. AKT Ser/Thr kinase increases V-ATPase-dependent lysosomal acidification in response to amino acid starvation in mammalian cells. J Biol Chem. 2020;295:9433-9444 pubmed 出版商
  45. Li X, Wu Y, Zhao J, Wang H, Tan J, Yang M, et al. Distinct cardiac energy metabolism and oxidative stress adaptations between obese and non-obese type 2 diabetes mellitus. Theranostics. 2020;10:2675-2695 pubmed 出版商
  46. Dong C, Zhang J, Fang S, Liu F. IGFBP5 increases cell invasion and inhibits cell proliferation by EMT and Akt signaling pathway in Glioblastoma multiforme cells. Cell Div. 2020;15:4 pubmed 出版商
  47. Padthaisong S, Thanee M, Namwat N, Phetcharaburanin J, Klanrit P, Khuntikeo N, et al. A panel of protein kinase high expression is associated with postoperative recurrence in cholangiocarcinoma. BMC Cancer. 2020;20:154 pubmed 出版商
  48. Hu D, Chen H, Lou L, Zhang H, Yang G. SKA3 promotes lung adenocarcinoma metastasis through the EGFR-PI3K-Akt axis. Biosci Rep. 2020;40: pubmed 出版商
  49. Gu Y, Zhu Z, Pei H, Xu D, Jiang Y, Zhang L, et al. Long non-coding RNA NNT-AS1 promotes cholangiocarcinoma cells proliferation and epithelial-to-mesenchymal transition through down-regulating miR-203. Aging (Albany NY). 2020;12:2333-2346 pubmed 出版商
  50. Cheung E, DeNicola G, Nixon C, Blyth K, Labuschagne C, Tuveson D, et al. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell. 2020;37:168-182.e4 pubmed 出版商
  51. Xu C, Zhang M, Bian L, Li Y, Yao Y, Li D. N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis. 2020;9:4 pubmed 出版商
  52. Yang N, Yu L, Deng Y, Han Q, Wang J, Yu L, et al. Identification and characterization of proteins that are differentially expressed in adipose tissue of olanzapine-induced insulin resistance rat by iTRAQ quantitative proteomics. J Proteomics. 2020;212:103570 pubmed 出版商
  53. VASAN N, Razavi P, Johnson J, Shao H, Shah H, Antoine A, et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science. 2019;366:714-723 pubmed 出版商
  54. Li J, Liu Z, Wang L, Xu H, Wang Y. Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep. 2019;39: pubmed 出版商
  55. Chen Q, Yang C, Chen L, Zhang J, Ge W, Yuan H, et al. YY1 targets tubulin polymerisation-promoting protein to inhibit migration, invasion and angiogenesis in pancreatic cancer via p38/MAPK and PI3K/AKT pathways. Br J Cancer. 2019;121:912-921 pubmed 出版商
  56. Helsley R, Varadharajan V, Brown A, Gromovsky A, Schugar R, Ramachandiran I, et al. Obesity-linked suppression of membrane-bound O-acyltransferase 7 (MBOAT7) drives non-alcoholic fatty liver disease. elife. 2019;8: pubmed 出版商
  57. Wang H, Wei Y, Pu Y, Jiang D, Jiang X, Zhang Y, et al. Brain-derived neurotrophic factor stimulation of T-type Ca2+ channels in sensory neurons contributes to increased peripheral pain sensitivity. Sci Signal. 2019;12: pubmed 出版商
  58. Shan L, Liu W, Zhan Y. Sulfated polysaccharide of Sepiella maindroni ink targets Akt and overcomes resistance to the FGFR inhibitor AZD4547 in bladder cancer. Aging (Albany NY). 2019;11:7780-7795 pubmed 出版商
  59. Jin Y, Li Y, Wang X, Yang Y. Secretory leukocyte protease inhibitor suppresses HPV E6-expressing HNSCC progression by mediating NF-κB and Akt pathways. Cancer Cell Int. 2019;19:220 pubmed 出版商
  60. Gao C, Chen G, Zhang D, Zhang J, Kuan S, Hu W, et al. PYK2 Is Involved in Premalignant Acinar Cell Reprogramming and Pancreatic Ductal Adenocarcinoma Maintenance by Phosphorylating β-CateninY654. Cell Mol Gastroenterol Hepatol. 2019;8:561-578 pubmed 出版商
  61. Yin Y, Zhang Q, Zhao Q, Ding G, Wei C, Chang L, et al. Tongxinluo Attenuates Myocardiac Fibrosis after Acute Myocardial Infarction in Rats via Inhibition of Endothelial-to-Mesenchymal Transition. Biomed Res Int. 2019;2019:6595437 pubmed 出版商
  62. Birtley J, Alomary M, Zanini E, Antony J, Maben Z, Weaver G, et al. Inactivating mutations and X-ray crystal structure of the tumor suppressor OPCML reveal cancer-associated functions. Nat Commun. 2019;10:3134 pubmed 出版商
  63. Tang K, Tang H, Du Y, Tian T, Xiong S. PAR-2 promotes cell proliferation, migration and invasion through activating PI3K/AKT signaling pathway in oral squamous cell carcinoma. Biosci Rep. 2019;: pubmed 出版商
  64. Gu C, Wang L, Zurawski S, Oh S. Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation. J Immunol. 2019;: pubmed 出版商
  65. Fei J, Sun Y, Duan Y, Xia J, Yu S, Ouyang P, et al. Low concentration of rutin treatment might alleviate the cardiotoxicity effect of pirarubicin on cardiomyocytes via activation of PI3K/AKT/mTOR signaling pathway. Biosci Rep. 2019;: pubmed 出版商
  66. Bazzari F, Abdallah D, El Abhar H. Chenodeoxycholic Acid Ameliorates AlCl3-Induced Alzheimer's Disease Neurotoxicity and Cognitive Deterioration via Enhanced Insulin Signaling in Rats. Molecules. 2019;24: pubmed 出版商
  67. Pan C, Jin L, Wang X, Li Y, Chun J, Boese A, et al. Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance. J Clin Invest. 2019;129:2431-2445 pubmed 出版商
  68. Liu X, Zhao P, Wang X, Wang L, Zhu Y, Song Y, et al. Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J Exp Clin Cancer Res. 2019;38:184 pubmed 出版商
  69. Zhang J, Bai R, Li M, Ye H, Wu C, Wang C, et al. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun. 2019;10:1858 pubmed 出版商
  70. You Y, Qin Z, Zhang H, Yuan Z, Yu X. MicroRNA-153 promotes brain-derived neurotrophic factor and hippocampal neuron proliferation to alleviate autism symptoms through inhibition of JAK-STAT pathway by LEPR. Biosci Rep. 2019;: pubmed 出版商
  71. Zhang X, Qin Q, Dai H, Cai S, Zhou C, Guan J. Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression. Braz J Med Biol Res. 2019;52:e7994 pubmed 出版商
  72. Rossi F, Legnini I, Megiorni F, Colantoni A, Santini T, Morlando M, et al. Circ-ZNF609 regulates G1-S progression in rhabdomyosarcoma. Oncogene. 2019;38:3843-3854 pubmed 出版商
  73. Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, et al. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol. 2019;13:792-810 pubmed 出版商
  74. Li L, Kim H, Park S, Lee S, Kim L, Lee J, et al. Genetic Profiles Associated with Chemoresistance in Patient-Derived Xenograft Models of Ovarian Cancer. Cancer Res Treat. 2019;51:1117-1127 pubmed 出版商
  75. Wang J, Zhao W, Guo H, Fang Y, Stockman S, Bai S, et al. AKT isoform-specific expression and activation across cancer lineages. BMC Cancer. 2018;18:742 pubmed 出版商
  76. Li R, Sahu S, Schachner M. Phenelzine, a small organic compound mimicking the functions of cell adhesion molecule L1, promotes functional recovery after mouse spinal cord injury. Restor Neurol Neurosci. 2018;36:469-483 pubmed 出版商
  77. Yu Y, Shen Q, Lai Y, Park S, Ou X, Lin D, et al. Anti-inflammatory Effects of Curcumin in Microglial Cells. Front Pharmacol. 2018;9:386 pubmed 出版商
  78. Xiao G, Chan L, Klemm L, Braas D, Chen Z, Geng H, et al. B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. Cell. 2018;173:470-484.e18 pubmed 出版商
  79. Rizzi C, Tiberi A, Giustizieri M, Marrone M, Gobbo F, Carucci N, et al. NGF steers microglia toward a neuroprotective phenotype. Glia. 2018;66:1395-1416 pubmed 出版商
  80. Xu M, Han X, Liu R, Li Y, Qi C, Yang Z, et al. PDK1 Deficit Impairs the Development of the Dentate Gyrus in Mice. Cereb Cortex. 2019;29:1185-1198 pubmed 出版商
  81. Workman A, Zhu L, Keel B, Smith T, Jones C. The Wnt Signaling Pathway Is Differentially Expressed during the Bovine Herpesvirus 1 Latency-Reactivation Cycle: Evidence That Two Protein Kinases Associated with Neuronal Survival, Akt3 and BMPR2, Are Expressed at Higher Levels during Latency. J Virol. 2018;92: pubmed 出版商
  82. Urbanska M, Gozdz A, Macias M, Cymerman I, Liszewska E, Kondratiuk I, et al. GSK3β Controls mTOR and Prosurvival Signaling in Neurons. Mol Neurobiol. 2018;55:6050-6062 pubmed 出版商
  83. Gasparotto J, Girardi C, Somensi N, Ribeiro C, Moreira J, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226-244 pubmed 出版商
  84. Mai W, Gosa L, Daniëls V, Ta L, Tsang J, Higgins B, et al. Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nat Med. 2017;23:1342-1351 pubmed 出版商
  85. Zhao Y, Xie Z, Lin J, Liu P. MiR-144-3p inhibits cell proliferation and induces apoptosis in multiple myeloma by targeting c-Met. Am J Transl Res. 2017;9:2437-2446 pubmed
  86. Zhang X, Spiegelman N, Nelson O, Jing H, Lin H. SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. elife. 2017;6: pubmed 出版商
  87. El Gamal H, Eid A, Munusamy S. Renoprotective Effects of Aldose Reductase Inhibitor Epalrestat against High Glucose-Induced Cellular Injury. Biomed Res Int. 2017;2017:5903105 pubmed 出版商
  88. CAROMILE L, Dortche K, Rahman M, Grant C, Stoddard C, Ferrer F, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10: pubmed 出版商
  89. Persico M, Masarone M, Damato A, Ambrosio M, Federico A, Rosato V, et al. "Non alcoholic fatty liver disease and eNOS dysfunction in humans". BMC Gastroenterol. 2017;17:35 pubmed 出版商
  90. Yang X, Huo F, Liu B, Liu J, Chen T, Li J, et al. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway. J Mol Neurosci. 2017;61:581-589 pubmed 出版商
  91. Cen M, Hu P, Cai Z, Fang T, Zhang J, Lu M. TIEG1 deficiency confers enhanced myocardial protection in the infarcted heart by mediating the Pten/Akt signalling pathway. Int J Mol Med. 2017;39:569-578 pubmed 出版商
  92. Peng M, Yin N, Li M. SZT2 dictates GATOR control of mTORC1 signalling. Nature. 2017;543:433-437 pubmed 出版商
  93. Kocic G, Veljkovic A, Kocic H, Colic M, Mihajlović D, Tomovic K, et al. Depurinized milk downregulates rat thymus MyD88/Akt/p38 function, NF-κB-mediated inflammation, caspase-1 activity but not the endonuclease pathway: in vitro/in vivo study. Sci Rep. 2017;7:41971 pubmed 出版商
  94. Sugg K, Korn M, Sarver D, Markworth J, Mendias C. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy. FEBS Lett. 2017;591:801-809 pubmed 出版商
  95. Chamma C, Bargut T, Mandarim de Lacerda C, Aguila M. A rich medium-chain triacylglycerol diet benefits adiposity but has adverse effects on the markers of hepatic lipogenesis and beta-oxidation. Food Funct. 2017;8:778-787 pubmed 出版商
  96. Feng L, Xue D, Chen E, Zhang W, Gao X, Yu J, et al. HMGB1 promotes the secretion of multiple cytokines and potentiates the osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Exp Ther Med. 2016;12:3941-3947 pubmed 出版商
  97. Jafari N, Kim H, Park R, Li L, Jang M, Morris A, et al. CRISPR-Cas9 Mediated NOX4 Knockout Inhibits Cell Proliferation and Invasion in HeLa Cells. PLoS ONE. 2017;12:e0170327 pubmed 出版商
  98. Tam K, Dalal K, Hsing M, Cheng C, Khosravi S, Yenki P, et al. Androgen receptor transcriptionally regulates semaphorin 3C in a GATA2-dependent manner. Oncotarget. 2017;8:9617-9633 pubmed 出版商
  99. Ren H, Liu F, Huang G, Liu Y, Shen J, Zhou P, et al. Positive feedback loop of IL-1β/Akt/RARα/Akt signaling mediates oncogenic property of RARα in gastric carcinoma. Oncotarget. 2017;8:6718-6729 pubmed 出版商
  100. Martins F, Bargut T, Aguila M, Mandarim de Lacerda C. Thermogenesis, fatty acid synthesis with oxidation, and inflammation in the brown adipose tissue of ob/ob (-/-) mice. Ann Anat. 2017;210:44-51 pubmed 出版商
  101. Cabre R, Naudi A, Dominguez Gonzalez M, Ayala V, Jove M, Mota Martorell N, et al. Sixty years old is the breakpoint of human frontal cortex aging. Free Radic Biol Med. 2017;103:14-22 pubmed 出版商
  102. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  103. Grabinski T, Kanaan N. Novel Non-phosphorylated Serine 9/21 GSK3?/? Antibodies: Expanding the Tools for Studying GSK3 Regulation. Front Mol Neurosci. 2016;9:123 pubmed
  104. Kim H, Kim M, Park Y, Park I, Kim T, Yang S, et al. Prostaglandin E2 Activates YAP and a Positive-Signaling Loop to Promote Colon Regeneration After Colitis but Also Carcinogenesis in Mice. Gastroenterology. 2017;152:616-630 pubmed 出版商
  105. Song H, Li L, Zhong L, Yang R, Jiang K, Yang X, et al. NLS?RAR? modulates acute promyelocytic leukemia NB4 cell proliferation and differentiation via the PI3K/AKT pathway. Mol Med Rep. 2016;14:5495-5500 pubmed 出版商
  106. Cardoso R, Burns A, Moeller J, Skinner D, Padmanabhan V. Developmental Programming: Insulin Sensitizer Prevents the GnRH-Stimulated LH Hypersecretion in a Sheep Model of PCOS. Endocrinology. 2016;157:4641-4653 pubmed
  107. Graus Nunes F, Marinho T, Barbosa da Silva S, Aguila M, Mandarim de Lacerda C, Souza Mello V. Differential effects of angiotensin receptor blockers on pancreatic islet remodelling and glucose homeostasis in diet-induced obese mice. Mol Cell Endocrinol. 2017;439:54-64 pubmed 出版商
  108. Kunzler A, Zeidán Chuliá F, Gasparotto J, Girardi C, Klafke K, Petiz L, et al. Changes in Cell Cycle and Up-Regulation of Neuronal Markers During SH-SY5Y Neurodifferentiation by Retinoic Acid are Mediated by Reactive Species Production and Oxidative Stress. Mol Neurobiol. 2017;54:6903-6916 pubmed 出版商
  109. Wu C, Luo J. Long Non-Coding RNA (lncRNA) Urothelial Carcinoma-Associated 1 (UCA1) Enhances Tamoxifen Resistance in Breast Cancer Cells via Inhibiting mTOR Signaling Pathway. Med Sci Monit. 2016;22:3860-3867 pubmed
  110. Cizmecioglu O, Ni J, Xie S, Zhao J, Roberts T. Rac1-mediated membrane raft localization of PI3K/p110? is required for its activation by GPCRs or PTEN loss. elife. 2016;5: pubmed 出版商
  111. Nonomiya Y, Noguchi K, Tanaka N, Kasagaki T, Katayama K, Sugimoto Y. Effect of AKT3 expression on MYC- and caspase-8-dependent apoptosis caused by polo-like kinase inhibitors in HCT 116 cells. Cancer Sci. 2016;107:1877-1887 pubmed 出版商
  112. Kong X, Liu F, Gao J. MiR-155 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells through the activation of PI3K/SGK3/β-catenin signaling pathways. Oncotarget. 2016;7:66051-66060 pubmed 出版商
  113. Cunningham C, Li S, Vizeacoumar F, Bhanumathy K, Lee J, Parameswaran S, et al. Therapeutic relevance of the protein phosphatase 2A in cancer. Oncotarget. 2016;7:61544-61561 pubmed 出版商
  114. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed 出版商
  115. Khanom R, Nguyen C, Kayamori K, Zhao X, Morita K, Miki Y, et al. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLoS ONE. 2016;11:e0161163 pubmed 出版商
  116. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed 出版商
  117. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed 出版商
  118. Pan B, Huang X, Deng C. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats. Sci Rep. 2016;6:30040 pubmed 出版商
  119. Ma T, Fan B, Zhang C, Zhao H, Han C, Gao C, et al. Metabonomics applied in exploring the antitumour mechanism of physapubenolide on hepatocellular carcinoma cells by targeting glycolysis through the Akt-p53 pathway. Sci Rep. 2016;6:29926 pubmed 出版商
  120. Monica V, Lo Iacono M, Bracco E, Busso S, di Blasio L, Primo L, et al. Dasatinib modulates sensitivity to pemetrexed in malignant pleural mesothelioma cell lines. Oncotarget. 2016;7:76577-76589 pubmed 出版商
  121. Chan W, Ismail H, Mayaki D, Sanchez V, Tiedemann K, Davis E, et al. Fibulin-5 Regulates Angiopoietin-1/Tie-2 Receptor Signaling in Endothelial Cells. PLoS ONE. 2016;11:e0156994 pubmed 出版商
  122. Yang Z, Jiang Q, Chen S, Hu C, Shen H, Huang P, et al. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep. 2016;14:790-6 pubmed 出版商
  123. Wang N, Dong B, Quan Y, Chen Q, Chu M, Xu J, et al. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status. Stem Cell Reports. 2016;6:668-678 pubmed 出版商
  124. Vorvis C, Hatziapostolou M, Mahurkar Joshi S, Koutsioumpa M, Williams J, Donahue T, et al. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1124-37 pubmed 出版商
  125. Yu Z, Zhao G, Li P, Li Y, Zhou G, Chen Y, et al. Temozolomide in combination with metformin act synergistically to inhibit proliferation and expansion of glioma stem-like cells. Oncol Lett. 2016;11:2792-2800 pubmed
  126. Maselli A, Capoccia S, Pugliese P, Raggi C, Cirulli F, Fabi A, et al. Autoantibodies specific to estrogen receptor alpha act as estrogen agonists and their levels correlate with breast cancer cell proliferation. Oncoimmunology. 2016;5:e1074375 pubmed
  127. Pan B, Huang X, Deng C. Aripiprazole and Haloperidol Activate GSK3?-Dependent Signalling Pathway Differentially in Various Brain Regions of Rats. Int J Mol Sci. 2016;17:459 pubmed 出版商
  128. An X, Zhao Z, Luo Y, Zhang R, Tang X, Hao D, et al. Netrin-1 suppresses the MEK/ERK pathway and ITGB4 in pancreatic cancer. Oncotarget. 2016;7:24719-33 pubmed 出版商
  129. Mishra V, DiAngelo S, Silveyra P. Sex-specific IL-6-associated signaling activation in ozone-induced lung inflammation. Biol Sex Differ. 2016;7:16 pubmed 出版商
  130. Nim S, Jeon J, Corbi Verge C, Seo M, Ivarsson Y, Moffat J, et al. Pooled screening for antiproliferative inhibitors of protein-protein interactions. Nat Chem Biol. 2016;12:275-81 pubmed 出版商
  131. Lakshmipathi J, Alvarez Perez J, Rosselot C, Casinelli G, Stamateris R, Rausell Palamos F, et al. PKCζ Is Essential for Pancreatic β-Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2. Diabetes. 2016;65:1283-96 pubmed 出版商
  132. Mo X, Cao Q, Liang H, Liu J, Li H, Liu F. MicroRNA-610 suppresses the proliferation of human glioblastoma cells by repressing CCND2 and AKT3. Mol Med Rep. 2016;13:1961-6 pubmed 出版商
  133. Lv P, Tong X, Peng Q, Liu Y, Jin H, Liu R, et al. Treatment with the herbal medicine, naoxintong improves the protective effect of high-density lipoproteins on endothelial function in patients with type 2 diabetes. Mol Med Rep. 2016;13:2007-16 pubmed 出版商
  134. Cherepkova M, Sineva G, Pospelov V. Leukemia inhibitory factor (LIF) withdrawal activates mTOR signaling pathway in mouse embryonic stem cells through the MEK/ERK/TSC2 pathway. Cell Death Dis. 2016;7:e2050 pubmed 出版商
  135. Wang C, Che L, Hu J, Zhang S, Jiang L, Latte G, et al. Activated mutant forms of PIK3CA cooperate with RasV12 or c-Met to induce liver tumour formation in mice via AKT2/mTORC1 cascade. Liver Int. 2016;36:1176-86 pubmed 出版商
  136. Han X, Liu Z, Jo M, Zhang K, Li Y, Zeng Z, et al. CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Sci Adv. 2015;1:e1500454 pubmed 出版商
  137. Vajravelu B, Hong K, Al Maqtari T, Cao P, Keith M, Wysoczynski M, et al. C-Kit Promotes Growth and Migration of Human Cardiac Progenitor Cells via the PI3K-AKT and MEK-ERK Pathways. PLoS ONE. 2015;10:e0140798 pubmed 出版商
  138. Borges C, Salles A, Bringhenti I, Souza Mello V, Mandarim de Lacerda C, Aguila M. Adverse effects of vitamin D deficiency on the Pi3k/Akt pathway and pancreatic islet morphology in diet-induced obese mice. Mol Nutr Food Res. 2016;60:346-57 pubmed 出版商
  139. Gu Y, Li H, Zhao L, Zhao S, He W, Rui L, et al. GRP78 confers the resistance to 5-FU by activating the c-Src/LSF/TS axis in hepatocellular carcinoma. Oncotarget. 2015;6:33658-74 pubmed 出版商
  140. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  141. Krishnan N, Krishnan K, Connors C, Choy M, Page R, Peti W, et al. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome. J Clin Invest. 2015;125:3163-77 pubmed 出版商
  142. Patergnani S, Giorgi C, Maniero S, Missiroli S, Maniscalco P, Bononi I, et al. The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition. Oncotarget. 2015;6:23427-44 pubmed
  143. Reis C, Chen P, Srinivasan S, Aguet F, Mettlen M, Schmid S. Crosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis. EMBO J. 2015;34:2132-46 pubmed 出版商
  144. Braccini L, Ciraolo E, Campa C, Perino A, Longo D, Tibolla G, et al. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat Commun. 2015;6:7400 pubmed 出版商
  145. Rueda Rincon N, Bloch K, Derua R, Vyas R, Harms A, Hankemeier T, et al. p53 attenuates AKT signaling by modulating membrane phospholipid composition. Oncotarget. 2015;6:21240-54 pubmed
  146. Unni A, Lockwood W, Zejnullahu K, Lee Lin S, Varmus H. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. elife. 2015;4:e06907 pubmed 出版商
  147. Bargut T, Mandarim de Lacerda C, Aguila M. A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice. J Nutr Biochem. 2015;26:960-9 pubmed 出版商
  148. Li X, Tao J, Cigliano A, Sini M, Calderaro J, Azoulay D, et al. Co-activation of PIK3CA and Yap promotes development of hepatocellular and cholangiocellular tumors in mouse and human liver. Oncotarget. 2015;6:10102-15 pubmed
  149. Desantis A, Bruno T, Catena V, De Nicola F, Goeman F, Iezzi S, et al. Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy. EMBO J. 2015;34:1214-30 pubmed 出版商
  150. Bitler B, Aird K, Garipov A, Li H, Amatangelo M, Kossenkov A, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 2015;21:231-8 pubmed 出版商
  151. Loeuillard E, Bertrand J, Herranen A, Melchior C, Guérin C, Coëffier M, et al. 2,4,6-trinitrobenzene sulfonic acid-induced chronic colitis with fibrosis and modulation of TGF-β1 signaling. World J Gastroenterol. 2014;20:18207-15 pubmed 出版商
  152. Huang C, Sheng S, Li R, Sun X, Liu J, Huang G. Lactate promotes resistance to glucose starvation via upregulation of Bcl-2 mediated by mTOR activation. Oncol Rep. 2015;33:875-84 pubmed 出版商
  153. Banks A, McAllister F, Camporez J, Zushin P, Jurczak M, Laznik Bogoslavski D, et al. An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ. Nature. 2015;517:391-5 pubmed 出版商
  154. Backer R, Helbig C, Gentek R, Kent A, Laidlaw B, Dominguez C, et al. A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol. 2014;15:1143-51 pubmed 出版商
  155. Badolia R, Manne B, Dangelmaier C, Chernoff J, Kunapuli S. Gq-mediated Akt translocation to the membrane: a novel PIP3-independent mechanism in platelets. Blood. 2015;125:175-84 pubmed 出版商
  156. Peng M, Yin N, Li M. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell. 2014;159:122-133 pubmed 出版商
  157. Jung Y, Wang J, Lee E, McGee S, Berry J, Yumoto K, et al. Annexin 2-CXCL12 interactions regulate metastatic cell targeting and growth in the bone marrow. Mol Cancer Res. 2015;13:197-207 pubmed 出版商