这是一篇来自已证抗体库的有关人类 淀粉样蛋白前体 (APP) 的综述,是根据382篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合淀粉样蛋白前体 抗体。
淀粉样蛋白前体 同义词: AAA; ABETA; ABPP; AD1; APPI; CTFgamma; CVAP; PN-II; PN2; preA4

BioLegend
小鼠 单克隆(6E10)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 8a
  • 免疫组化; 小鼠; 1:200; 图 3e, 6b
BioLegend淀粉样蛋白前体抗体(Biolegend, 803001)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 8a) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 3e, 6b). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-冰冻切片; 人类; 1:250; 图 1b
BioLegend淀粉样蛋白前体抗体(BioLegend, 803002)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:250 (图 1b). Acta Neuropathol (2020) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5c
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5c). elife (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:5000; 表 1
BioLegend淀粉样蛋白前体抗体(BioLegend, 4G8)被用于被用于免疫组化在人类样本上浓度为1:5000 (表 1). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2a
BioLegend淀粉样蛋白前体抗体(Biolegend, 4G8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2a). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
  • 免疫组化-石蜡切片; 人类; 图 7a
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39220)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a) 和 被用于免疫组化-石蜡切片在人类样本上 (图 7a). Int J Mol Sci (2020) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4h
BioLegend淀粉样蛋白前体抗体(BioLegend, SIG-39320)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4h). Aging Cell (2020) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 3a
BioLegend淀粉样蛋白前体抗体(BioLegend, 6E10)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 3a). Mol Ther Nucleic Acids (2020) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 4a
BioLegend淀粉样蛋白前体抗体(Biolegend, 803002)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 4a). J Neuroinflammation (2020) ncbi
小鼠 单克隆(11A50-B10)
  • 免疫组化; 人类; 1:200; 图 1b
BioLegend淀粉样蛋白前体抗体(Biolegend, 805401)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1b). Acta Neuropathol (2020) ncbi
小鼠 单克隆(M3.2)
  • 免疫印迹; 大鼠; 1:1000; 图 2b
BioLegend淀粉样蛋白前体抗体(BioLegend, 805701)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). elife (2020) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 大鼠; 1:1000; 图 2c
BioLegend淀粉样蛋白前体抗体(BioLegend, 803001)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2c). elife (2020) ncbi
小鼠 单克隆(C1/6.1)
  • proximity ligation assay; 大鼠; 1:1000; 图 2a
BioLegend淀粉样蛋白前体抗体(BioLegend, 802801)被用于被用于proximity ligation assay在大鼠样本上浓度为1:1000 (图 2a). BMC Neurosci (2020) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2a
  • 免疫印迹; 小鼠; 1:2000; 图 ev4a
BioLegend淀粉样蛋白前体抗体(BioLegend, 803002)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 ev4a). EMBO Rep (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 1:1000; 图 1a
BioLegend淀粉样蛋白前体抗体(BioLegend, 4G8)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1a). Int J Mol Sci (2020) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
BioLegend淀粉样蛋白前体抗体(Biolegend, 6E10)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Int J Mol Sci (2020) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1
BioLegend淀粉样蛋白前体抗体(Biolegend, 803001)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1). Int J Mol Sci (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 s6e
BioLegend淀粉样蛋白前体抗体(BioLegend, SIG-39220)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 s6e). Nat Commun (2020) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2c, 2d
  • 免疫印迹; 小鼠; 图 2h
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2a, 2b
  • 免疫印迹; 人类; 图 2g
BioLegend淀粉样蛋白前体抗体(BioLegend, 803001)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2c, 2d), 被用于免疫印迹在小鼠样本上 (图 2h), 被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2a, 2b) 和 被用于免疫印迹在人类样本上 (图 2g). Nat Commun (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39220)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Mol Neurodegener (2020) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 小鼠; 1:300; 图 5a
BioLegend淀粉样蛋白前体抗体(Biolegend, 803001)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5a). Nat Commun (2020) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 小鼠; 1:1000; 图 3s1
  • 免疫印迹; 小鼠; 1:1000; 图 6e
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3s1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Mol Neurodegener (2020) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2a
BioLegend淀粉样蛋白前体抗体(BioLegend, 803003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2a). Mol Neurodegener (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-自由浮动切片; 人类; 1:5000
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:5000. J Neuropathol Exp Neurol (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 s8g
BioLegend淀粉样蛋白前体抗体(Biolegend (previously Covance), SIG-39220)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 s8g). PLoS Biol (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1b
BioLegend淀粉样蛋白前体抗体(Biolegend, 4G8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1b). Acta Neuropathol (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-冰冻切片; fruit fly ; 1:500; 图 3c
BioLegend淀粉样蛋白前体抗体(BioLegend, SIG-39220)被用于被用于免疫组化-冰冻切片在fruit fly 样本上浓度为1:500 (图 3c). FEBS Open Bio (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 2b
BioLegend淀粉样蛋白前体抗体(BioLegend, 800702)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 2b). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 2b
BioLegend淀粉样蛋白前体抗体(BioLegend, 803001)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 2b). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-冰冻切片; 人类; 1:2000; 图 7b
BioLegend淀粉样蛋白前体抗体(Biolegend, 803001)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:2000 (图 7b). elife (2019) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:9000; 表 2
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于免疫组化在人类样本上浓度为1:9000 (表 2). Neurology (2020) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 小鼠; 1:500; 图 s1
BioLegend淀粉样蛋白前体抗体(BioLegend, 6E10)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1). Alzheimers Res Ther (2019) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 图 5g
BioLegend淀粉样蛋白前体抗体(BioLegend, 800712)被用于被用于免疫组化在小鼠样本上 (图 5g). Cell Rep (2019) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-石蜡切片; 人类; 1:2500; 图 4a
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2500 (图 4a). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 1a
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 1a). Nat Neurosci (2019) ncbi
小鼠 单克隆(12F4)
  • 免疫组化-自由浮动切片; 小鼠; 图 3g
BioLegend淀粉样蛋白前体抗体(Biolegend, 805501)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 3g). Cell (2019) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 图 3c
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫印迹在小鼠样本上 (图 3c). Sci Adv (2019) ncbi
小鼠 单克隆(6E10)
  • 免疫沉淀; 人类; 图 1b
BioLegend淀粉样蛋白前体抗体(Signet Laboratories, 6E10)被用于被用于免疫沉淀在人类样本上 (图 1b). J Biol Chem (2019) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 1:11,000; 图 3b
BioLegend淀粉样蛋白前体抗体(BioLegend, SIG-39320)被用于被用于免疫印迹在小鼠样本上浓度为1:11,000 (图 3b). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4f
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4f). Crit Care (2019) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:500; 图 2e
BioLegend淀粉样蛋白前体抗体(BioLegend, SIG-39200)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2e). Sci Adv (2019) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 小鼠; 1:500; 图 1b
BioLegend淀粉样蛋白前体抗体(Millipore, SIG-39320)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). J Comp Neurol (2019) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-冰冻切片; 小鼠; 图 2f
BioLegend淀粉样蛋白前体抗体(Biolegend, 6E10)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2f). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 小鼠; 1:300; 图 2d
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2d). Nat Commun (2019) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3c
BioLegend淀粉样蛋白前体抗体(BioLegend, SIG-39320)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3c). J Clin Invest (2019) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 1:10,000; 图 3h
BioLegend淀粉样蛋白前体抗体(BioLegend, SIG-39320-1000)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3h). EMBO Mol Med (2019) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫印迹; 小鼠; 1:1000; 图 3h
BioLegend淀粉样蛋白前体抗体(BioLegend, 802801)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). EMBO Mol Med (2019) ncbi
小鼠 单克隆(M3.2)
  • 免疫印迹; 小鼠; 图 s2c
BioLegend淀粉样蛋白前体抗体(BioLegend, 805701)被用于被用于免疫印迹在小鼠样本上 (图 s2c). Nat Commun (2019) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类; 图 s3g
BioLegend淀粉样蛋白前体抗体(BioLegend, 803001)被用于被用于免疫印迹在人类样本上 (图 s3g). Nat Commun (2019) ncbi
小鼠 单克隆(6E10)
  • 流式细胞仪; 小鼠; 图 3b
  • 免疫组化; 小鼠; 图 3b
BioLegend淀粉样蛋白前体抗体(Covance, 6e10)被用于被用于流式细胞仪在小鼠样本上 (图 3b) 和 被用于免疫组化在小鼠样本上 (图 3b). Front Cell Neurosci (2018) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫印迹; 人类; 1:1000; 图 s1b
BioLegend淀粉样蛋白前体抗体(Biolegend, 802801)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1b). Science (2018) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-冰冻切片; 小鼠; 图 2e
BioLegend淀粉样蛋白前体抗体(Covance Research Products Inc, 6E10)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2e). Neurobiol Aging (2018) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类; 图 3a
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Psychiatry (2018) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-自由浮动切片; 小鼠; 图 1a
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 1a). Aging Cell (2018) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6c
  • 免疫印迹; 小鼠; 1:1000; 图 8b
BioLegend淀粉样蛋白前体抗体(BioLegend, 803001)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8b). Autophagy (2018) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 图 3b
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在小鼠样本上 (图 3b). Acta Neuropathol Commun (2018) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; ; 图 6t
BioLegend淀粉样蛋白前体抗体(BioLegend, SIG-39320-1000)被用于被用于免疫印迹在小鼠样本上浓度为 (图 6t). J Exp Med (2018) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫印迹; 小鼠; 1:1000; 图 6t
BioLegend淀粉样蛋白前体抗体(BioLegend, 802801)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6t). J Exp Med (2018) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 1:1000; 图 s1
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). Nature (2018) ncbi
domestic rabbit 多克隆(Poly8134)
  • 免疫印迹; 人类; 图 1r
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39138)被用于被用于免疫印迹在人类样本上 (图 1r). Nat Med (2018) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 1:5000; 图 1b
BioLegend淀粉样蛋白前体抗体(BioLegend, 803001)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1b). J Exp Med (2018) ncbi
小鼠 单克隆(12F4)
  • 酶联免疫吸附测定; 小鼠; 图 3d
BioLegend淀粉样蛋白前体抗体(BioLegend, 805507)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3d). J Neuroinflammation (2018) ncbi
小鼠 单克隆(6E10)
  • 免疫细胞化学; 小鼠; 图 3a
BioLegend淀粉样蛋白前体抗体(BioLegend, 803001)被用于被用于免疫细胞化学在小鼠样本上 (图 3a). J Neuroinflammation (2018) ncbi
小鼠 单克隆(11A50-B10)
  • 酶联免疫吸附测定; 小鼠; 图 3d
BioLegend淀粉样蛋白前体抗体(BioLegend, 805407)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3d). J Neuroinflammation (2018) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a
  • 免疫印迹; 小鼠; 1:2000; 图 4a
BioLegend淀粉样蛋白前体抗体(Signet, SIG-39330-200)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4a). J Exp Med (2018) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 小鼠; 图 s6b
BioLegend淀粉样蛋白前体抗体(BioLegend, 803002)被用于被用于免疫组化在小鼠样本上 (图 s6b). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类; 图 1a
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Mol Life Sci (2018) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-冰冻切片; African green monkey; 1:12,000; 图 4a
BioLegend淀粉样蛋白前体抗体(BioLegend, SIG-39320)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:12,000 (图 4a). Neurobiol Aging (2018) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 1:2500; 图 5a
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 5a). Am J Pathol (2018) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 1a
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 1a). EMBO J (2018) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类; 图 2a
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2017) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-自由浮动切片; 人类; 图 4d
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39347)被用于被用于免疫组化-自由浮动切片在人类样本上 (图 4d). Exp Neurol (2018) ncbi
domestic rabbit 多克隆(Poly8134)
  • 免疫印迹; 人类; 图 8a
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39138)被用于被用于免疫印迹在人类样本上 (图 8a). Exp Neurol (2018) ncbi
小鼠 单克隆(6E10)
  • 免疫细胞化学; 大鼠; 1:1000; 图 7a
BioLegend淀粉样蛋白前体抗体(BioLegend, 803001)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 7a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-冰冻切片; African green monkey; 1:7500; 图 1a
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:7500 (图 1a). Neurobiol Aging (2017) ncbi
小鼠 单克隆(6E10)
  • 免疫细胞化学; 人类; 1:1000; 图 6a
  • 免疫印迹; 人类; 图 s1a
BioLegend淀粉样蛋白前体抗体(BioLegend, SIG-39320)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6a) 和 被用于免疫印迹在人类样本上 (图 s1a). Cell Rep (2017) ncbi
小鼠 单克隆(6E10)
  • 免疫细胞化学; 小鼠; 图 s5b
BioLegend淀粉样蛋白前体抗体(BioLegend, 803001)被用于被用于免疫细胞化学在小鼠样本上 (图 s5b). PLoS Genet (2017) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 图 4d
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在小鼠样本上 (图 4d). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-石蜡切片; 人类; 图 2a
BioLegend淀粉样蛋白前体抗体(BioLegend, SIG-39320-200)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). J Alzheimers Dis (2017) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 图 3c
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39220)被用于被用于免疫组化在小鼠样本上 (图 3c). Sci Rep (2017) ncbi
小鼠 单克隆(4G8)
  • 免疫细胞化学; 大鼠; 图 s4b
BioLegend淀粉样蛋白前体抗体(Covance, SIG39220)被用于被用于免疫细胞化学在大鼠样本上 (图 s4b). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类; 1:2000; 图 4a
BioLegend淀粉样蛋白前体抗体(BioLegend, 6E10)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). PLoS ONE (2017) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 图 2a
BioLegend淀粉样蛋白前体抗体(Covance Research Products, SIG-39300-200)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cell Death Dis (2017) ncbi
小鼠 单克隆(12F4)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 5a
  • 免疫印迹; 小鼠; 1:1000
BioLegend淀粉样蛋白前体抗体(BioLegend, SIG-39142)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Commun (2017) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-自由浮动切片; 小鼠; 图 4j
BioLegend淀粉样蛋白前体抗体(Signet Laboratories, SIG-39320)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 4j). Front Neurosci (2017) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 人类; 1:1000; 图 5a
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 5a). Front Aging Neurosci (2017) ncbi
小鼠 单克隆(C1/6.1)
  • proximity ligation assay; 大鼠; 图 5D
BioLegend淀粉样蛋白前体抗体(Biolegend, 802801)被用于被用于proximity ligation assay在大鼠样本上 (图 5D). Front Mol Neurosci (2017) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 1:1000; 图 1e
BioLegend淀粉样蛋白前体抗体(BioLegend, SIG-39320)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1e). PLoS ONE (2017) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s2a
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s2a). Stem Cell Reports (2017) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1a
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39220)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1a). J Vis Exp (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫细胞化学; 人类; 1:100; 图 5b
BioLegend淀粉样蛋白前体抗体(Biolegends, SIG-39320)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5b). Acta Neuropathol (2017) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 人类; 1:2000; 表 1
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39300)被用于被用于免疫组化在人类样本上浓度为1:2000 (表 1). Ann Neurol (2017) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 1:1000
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1d
  • 免疫印迹; 小鼠; 1:1000; 图 1f
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). EMBO Mol Med (2017) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 6
BioLegend淀粉样蛋白前体抗体(BioLegend, SIG39220-500)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 6). J Neuropathol Exp Neurol (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类; 图 3b
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在人类样本上 (图 3b). J Neurochem (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 3
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39220)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 3). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 3
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 3). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 图 4
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:100; 图 4d
BioLegend淀粉样蛋白前体抗体(BioLegend, 800701)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4d). Neuropathol Appl Neurobiol (2017) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3b
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3b). J Neurosci (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类; 图 1b
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在人类样本上 (图 1b). J Neurosci (2016) ncbi
小鼠 单克隆(6E10)
BioLegend淀粉样蛋白前体抗体(BioLegend, 803002)被用于. EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆(Poly8134)
BioLegend淀粉样蛋白前体抗体(Covance BioLegend, 813401)被用于. EMBO Mol Med (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-自由浮动切片; 人类; 1:1000; 图 7c
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 7c
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 3b
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3b
  • 免疫印迹; 小鼠; 1:2000; 图 st7
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39220-200)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:1000 (图 7c), 被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 7c), 被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 3b), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 st7). Autophagy (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; fruit fly ; 1:10,000; 图 1
BioLegend淀粉样蛋白前体抗体(Covance, Sig-39340-200)被用于被用于免疫印迹在fruit fly 样本上浓度为1:10,000 (图 1). Biol Open (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类; 1:2000; 图 2
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39220)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2). Lancet Neurol (2016) ncbi
小鼠 单克隆(4G8)
  • 抑制或激活实验; 人类; 图 3
  • 免疫组化; 人类; 图 2
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于抑制或激活实验在人类样本上 (图 3) 和 被用于免疫组化在人类样本上 (图 2). Sci Transl Med (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类; 图 1
BioLegend淀粉样蛋白前体抗体(covance, SIG39320)被用于被用于免疫印迹在人类样本上 (图 1). Protein Cell (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 图 s1
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39300)被用于被用于免疫印迹在小鼠样本上 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(12F4)
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39144)被用于. Biosens Bioelectron (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 小鼠; 1:100; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 3
BioLegend淀粉样蛋白前体抗体(covance, SIG-39320-200)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). J Neuroinflammation (2016) ncbi
小鼠 单克隆(6E10)
BioLegend淀粉样蛋白前体抗体(BioLegend, 803015)被用于. PLoS ONE (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类; 图 2
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39300)被用于被用于免疫印迹在人类样本上 (图 2). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; fruit fly ; 图 1
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在fruit fly 样本上 (图 1). PLoS Genet (2016) ncbi
domestic rabbit 多克隆(Poly8134)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39138-050)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫沉淀; 人类; 1:500-1:2500; 图 1H
BioLegend淀粉样蛋白前体抗体(Covance, SIG?\39220)被用于被用于免疫沉淀在人类样本上浓度为1:500-1:2500 (图 1H). EMBO Mol Med (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 1:5000; 图 7a
BioLegend淀粉样蛋白前体抗体(803016, 803016)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 7a). Autophagy (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫沉淀; 人类; 图 4
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫沉淀在人类样本上 (图 4). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫沉淀; 人类; 图 4
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于免疫沉淀在人类样本上 (图 4). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-自由浮动切片; 人类; 1:1000; 表 2
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:1000 (表 2). Neurobiol Aging (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 小鼠; 1:100; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 4
BioLegend淀粉样蛋白前体抗体(Signet, 6E10)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Brain (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 1:1000; 表 1
  • 免疫印迹; 人类; 1:1000; 表 1
BioLegend淀粉样蛋白前体抗体(Signet, 6E10)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(4G8)
BioLegend淀粉样蛋白前体抗体(BioLegend, 800702)被用于. J Neurosci (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 仓鼠; 图 7
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在仓鼠样本上 (图 7). J Cell Biol (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; fruit fly ; 1:2000; 图 2O
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000 (图 2O). Dis Model Mech (2016) ncbi
小鼠 单克隆(4G8)
  • 酶联免疫吸附测定; 小鼠; 1:2500; 图 2
  • 免疫印迹; 小鼠; 图 1
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:2500 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 1). Brain (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 图 2i
  • 免疫印迹; 小鼠; 图 2f
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于免疫组化在小鼠样本上 (图 2i) 和 被用于免疫印迹在小鼠样本上 (图 2f). Mol Neurodegener (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 小鼠; 图 5
BioLegend淀粉样蛋白前体抗体(Signet, SIG-39300)被用于被用于免疫组化在小鼠样本上 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 图 s5
BioLegend淀粉样蛋白前体抗体(covance, SIG 39320-200)被用于被用于免疫印迹在小鼠样本上 (图 s5). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:250; 图 5
  • 免疫组化; 小鼠; 1:250; 图 5
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于免疫组化在人类样本上浓度为1:250 (图 5) 和 被用于免疫组化在小鼠样本上浓度为1:250 (图 5). Acta Neuropathol Commun (2015) ncbi
domestic rabbit 单克隆(1-11-3)
  • 酶联免疫吸附测定; 人类; 图 s8
  • 酶联免疫吸附测定; 小鼠; 图 s8
BioLegend淀粉样蛋白前体抗体(Covance, 1-11-3)被用于被用于酶联免疫吸附测定在人类样本上 (图 s8) 和 被用于酶联免疫吸附测定在小鼠样本上 (图 s8). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类; 1:1500; 图 3
  • 免疫印迹; 小鼠; 1:1500; 图 3
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1500 (图 3). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 1:2000; 图 5e
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5e). J Neurosci (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 小鼠; 1:500; 图 4
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4). Neuropharmacology (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1). J Neuroinflammation (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类; 1:1000
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫印迹在人类样本上浓度为1:1000. Brain (2016) ncbi
小鼠 单克隆(12F4)
  • 酶联免疫吸附测定; 人类; 1 ug/ml; 图 6
BioLegend淀粉样蛋白前体抗体(Covance, 12F4)被用于被用于酶联免疫吸附测定在人类样本上浓度为1 ug/ml (图 6). Brain Pathol (2016) ncbi
小鼠 单克隆(6E10)
  • 酶联免疫吸附测定; 人类; 2 ug/ml; 图 6
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于酶联免疫吸附测定在人类样本上浓度为2 ug/ml (图 6). Brain Pathol (2016) ncbi
小鼠 单克隆(11A50-B10)
  • 酶联免疫吸附测定; 人类; 1 ug/ml; 图 6
BioLegend淀粉样蛋白前体抗体(Covance, 11A50-B10)被用于被用于酶联免疫吸附测定在人类样本上浓度为1 ug/ml (图 6). Brain Pathol (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 小鼠; 图 9a
BioLegend淀粉样蛋白前体抗体(Covance, Ab1-16)被用于被用于免疫组化在小鼠样本上 (图 9a). PLoS ONE (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 图 6a
BioLegend淀粉样蛋白前体抗体(Signet Labs, 6E10)被用于被用于免疫印迹在小鼠样本上 (图 6a). J Neurotrauma (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫沉淀; 小鼠
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于免疫沉淀在小鼠样本上. Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 3
BioLegend淀粉样蛋白前体抗体(Covance, SIG39220)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 3). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 表 1
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于免疫组化在人类样本上 (表 1). Alzheimers Dement (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 人类; 表 1
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫组化在人类样本上 (表 1). Alzheimers Dement (2016) ncbi
小鼠 单克隆(M3.2)
  • 免疫印迹; 大鼠; 1:1000
BioLegend淀粉样蛋白前体抗体(BioLegend, SIG-39155)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurochem (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 图 4
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39300)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(12F4)
  • 免疫印迹; 小鼠; 1:500; 图 4
BioLegend淀粉样蛋白前体抗体(BioLegend Co, SIG-39142;)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Ann Thorac Surg (2015) ncbi
小鼠 单克隆(12F4)
  • 免疫印迹; 小鼠; 1:500; 图 4
BioLegend淀粉样蛋白前体抗体(BioLegend Co, SIG-39142;)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). J Neuropathol Exp Neurol (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 1:100
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39220)被用于被用于免疫组化在小鼠样本上浓度为1:100. Mol Neurodegener (2015) ncbi
小鼠 单克隆(M3.2)
  • 免疫沉淀; 小鼠; 1:300
  • 免疫印迹; 小鼠; 1:800
BioLegend淀粉样蛋白前体抗体(BioLegend, 805701)被用于被用于免疫沉淀在小鼠样本上浓度为1:300 和 被用于免疫印迹在小鼠样本上浓度为1:800. Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 多克隆(Poly8134)
BioLegend淀粉样蛋白前体抗体(BioLegend, 813401)被用于. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫印迹; 小鼠; 1:1000
BioLegend淀粉样蛋白前体抗体(BioLegend, 802802)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:500
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39220)被用于被用于免疫组化在人类样本上浓度为1:500. Tremor Other Hyperkinet Mov (N Y) (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; fruit fly
BioLegend淀粉样蛋白前体抗体(Signet Laboratories, 6E-10)被用于被用于免疫印迹在fruit fly 样本上. Amyloid (2015) ncbi
小鼠 单克隆(6E10)
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于. Cell Rep (2015) ncbi
小鼠 单克隆(4G8)
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39220)被用于. Cell Rep (2015) ncbi
domestic rabbit 单克隆(1-11-3)
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39169)被用于. Cell Rep (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 图 1f
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39200)被用于被用于免疫组化在小鼠样本上 (图 1f). PLoS ONE (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200. Brain (2015) ncbi
小鼠 单克隆(6E10)
  • 其他; 人类; 1:100; 图 2a
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于其他在人类样本上浓度为1:100 (图 2a). J Neurochem (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-冰冻切片; 人类
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于免疫组化-冰冻切片在人类样本上. Nucl Med Biol (2015) ncbi
domestic rabbit 单克隆(1-11-3)
  • 免疫印迹; 小鼠
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39169)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(LN27)
  • 免疫印迹; 小鼠
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39188)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在人类样本上. Biochemistry (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39340)被用于被用于免疫印迹在人类样本上. J Neurosci (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫沉淀; 人类
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于免疫沉淀在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫沉淀; 人类
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫沉淀在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 小鼠; 1:500
BioLegend淀粉样蛋白前体抗体(Signet, SIG-39300)被用于被用于免疫组化在小鼠样本上浓度为1:500. Brain Struct Funct (2016) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 大鼠
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在大鼠样本上. Biomed Res Int (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 1:2000
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Sci Transl Med (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-自由浮动切片; 小鼠
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于免疫组化-自由浮动切片在小鼠样本上. Sci Transl Med (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫印迹; 人类; 1:500
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于免疫印迹在人类样本上浓度为1:500. J Neuropathol Exp Neurol (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 大鼠; 1:500
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在大鼠样本上浓度为1:500. J Exp Med (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 图 6e
BioLegend淀粉样蛋白前体抗体(biolegend, 803001)被用于被用于免疫印迹在小鼠样本上 (图 6e). Cell Death Differ (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:400
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于免疫组化在人类样本上浓度为1:400. Neurobiol Aging (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:1000
BioLegend淀粉样蛋白前体抗体(Covance, SIG39220)被用于被用于免疫组化在人类样本上浓度为1:1000. F1000Res (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 小鼠; 1:500
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫组化在小鼠样本上浓度为1:500. Neuropharmacology (2015) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫印迹; 小鼠; 1:1000; 图 8
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39152)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Age (Dordr) (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-石蜡切片; 小鼠; 1:600
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:600. Alzheimer Dis Assoc Disord (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 图 s2
BioLegend淀粉样蛋白前体抗体(BioLegend, SIG-39200)被用于被用于免疫组化在小鼠样本上 (图 s2). Nat Commun (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 大鼠
  • 免疫印迹; 大鼠; 1:1000
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫组化在大鼠样本上 和 被用于免疫印迹在大鼠样本上浓度为1:1000. J Exerc Nutrition Biochem (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-石蜡切片; 人类; 1:300
  • 酶联免疫吸附测定; 人类; 1:1000
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 和 被用于酶联免疫吸附测定在人类样本上浓度为1:1000. Neuropathol Appl Neurobiol (2015) ncbi
小鼠 单克隆(12F4)
  • 酶联免疫吸附测定; 人类; 1:500
BioLegend淀粉样蛋白前体抗体(Covance, 12F4)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:500. Neuropathol Appl Neurobiol (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 小鼠; 1:1000
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39300)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Mol Cell Neurosci (2014) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 1:150
BioLegend淀粉样蛋白前体抗体(Covance, Sig-39220)被用于被用于免疫组化在小鼠样本上浓度为1:150. Neurosci Lett (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类; 1:1000
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-冰冻切片; 大鼠; 1:4000
BioLegend淀粉样蛋白前体抗体(Signet, #39240)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:4000. Adv Alzheimer Dis (2014) ncbi
小鼠 单克隆(4G8)
  • 免疫印迹; 人类; 1:1000
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39220)被用于被用于免疫印迹在人类样本上浓度为1:1000. Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类; 1:2000
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫印迹在人类样本上浓度为1:2000. Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫细胞化学; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:1000
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Neurobiol Aging (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫细胞化学; 小鼠; 1:1000
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Neurobiol Aging (2015) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫印迹; 小鼠; 1:1000
BioLegend淀粉样蛋白前体抗体(Covance, C1/6.1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neurobiol Aging (2015) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 猕猴; 1:1000
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39300-200)被用于被用于免疫印迹在猕猴样本上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-自由浮动切片; 大鼠; 1:200
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39220-200)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:200. J Neurosci (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫细胞化学; 人类
  • 酶联免疫吸附测定; 人类
  • 免疫印迹; 人类
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫细胞化学在人类样本上, 被用于酶联免疫吸附测定在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-自由浮动切片; 小鼠; 1:250
BioLegend淀粉样蛋白前体抗体(Signet Laboratories, SIG-39200-1000)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250. J Neurosci (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-自由浮动切片; 人类; 1:2500
  • 免疫印迹; 人类; 1:2500
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:2500 和 被用于免疫印迹在人类样本上浓度为1:2500. Brain Pathol (2015) ncbi
小鼠 单克隆(1G6)
  • 免疫印迹; 人类; 图 1
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39180)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫印迹; 人类; 图 1
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39152)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫细胞化学; 小鼠
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫细胞化学在小鼠样本上. J Alzheimers Dis (2015) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 小鼠; 1 ng/ ul
  • 酶联免疫吸附测定; 小鼠
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于免疫组化在小鼠样本上浓度为1 ng/ ul 和 被用于酶联免疫吸附测定在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(6E10)
  • 酶联免疫吸附测定; 小鼠
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于酶联免疫吸附测定在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-石蜡切片; 人类; 1:1000
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39220-200)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(4G8)
  • 免疫沉淀; 人类
  • 酶联免疫吸附测定; 人类
  • 免疫印迹; 人类
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于免疫沉淀在人类样本上, 被用于酶联免疫吸附测定在人类样本上 和 被用于免疫印迹在人类样本上. Int J Alzheimers Dis (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫细胞化学; 人类; 1:50
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Neurobiol Dis (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 1:2000
  • 免疫印迹; 大鼠; 1:2000
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39300)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 和 被用于免疫印迹在大鼠样本上浓度为1:2000. J Biol Chem (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类; 1:5000
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在人类样本上浓度为1:5000. PLoS ONE (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 1:2500
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39340)被用于被用于免疫印迹在小鼠样本上浓度为1:2500. J Neurosci (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 1:500
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Neurosci (2014) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-冰冻切片; 小鼠; 1:500
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39220)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 人类; 1 ug/ml
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫组化在人类样本上浓度为1 ug/ml. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类; 1:1000
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nanomedicine (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-自由浮动切片; 小鼠
  • 免疫印迹; 小鼠
BioLegend淀粉样蛋白前体抗体(Covance Research Products, 6E10)被用于被用于免疫组化-自由浮动切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Am J Pathol (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫印迹在人类样本上. Aging Cell (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-冰冻切片; 小鼠; 1:1500
BioLegend淀粉样蛋白前体抗体(Covance Inc., 6E10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1500. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫沉淀; 小鼠
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39300)被用于被用于免疫沉淀在小鼠样本上. Neurobiol Dis (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 小鼠; 1:1000
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurotrauma (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类; 1:1000
BioLegend淀粉样蛋白前体抗体(Signet, sig-39320)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Neurodegener (2013) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-石蜡切片; 小鼠; 1:300
  • 免疫印迹; 小鼠; 1:1000
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Apoptosis (2013) ncbi
小鼠 单克隆(C1/6.1)
  • 免疫印迹; 小鼠; 1:1000
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39152)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Apoptosis (2013) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 小鼠; 1:200
BioLegend淀粉样蛋白前体抗体(Signet, 6E10)被用于被用于免疫组化在小鼠样本上浓度为1:200. Transl Psychiatry (2013) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 人类
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫组化在人类样本上. Ann Neurol (2013) ncbi
小鼠 单克隆(6E10)
  • 免疫组化-冰冻切片; 人类; 2 ug/ml
BioLegend淀粉样蛋白前体抗体(Covance, SIG-39320)被用于被用于免疫组化-冰冻切片在人类样本上浓度为2 ug/ml. Neuropathol Appl Neurobiol (2014) ncbi
小鼠 单克隆(4G8)
  • 免疫组化; 人类; 1:200
BioLegend淀粉样蛋白前体抗体(Covance, 4G8)被用于被用于免疫组化在人类样本上浓度为1:200. Exp Neurol (2014) ncbi
小鼠 单克隆(6E10)
  • 免疫组化; 小鼠; 1:200
BioLegend淀粉样蛋白前体抗体(Convance, SIG-39320)被用于被用于免疫组化在小鼠样本上浓度为1:200. J Alzheimers Dis (2013) ncbi
小鼠 单克隆(4G8)
BioLegend淀粉样蛋白前体抗体(Signet, 4G8)被用于. J Alzheimers Dis (2012) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类
BioLegend淀粉样蛋白前体抗体(Signet, 6E10)被用于被用于免疫印迹在人类样本上. Hum Mol Genet (2011) ncbi
小鼠 单克隆(4G8)
  • 免疫沉淀; 小鼠
BioLegend淀粉样蛋白前体抗体(Signet, 4G8)被用于被用于免疫沉淀在小鼠样本上. Hum Mol Genet (2011) ncbi
小鼠 单克隆(6E10)
  • 免疫印迹; 人类
BioLegend淀粉样蛋白前体抗体(Covance, 6E10)被用于被用于免疫印迹在人类样本上. Neurobiol Aging (2012) ncbi
赛默飞世尔
小鼠 单克隆(22C11)
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 6a
赛默飞世尔淀粉样蛋白前体抗体(Thermo Fisher, 22C11)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 6a). Histochem Cell Biol (2019) ncbi
小鼠 单克隆(NAB228)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 1b
赛默飞世尔淀粉样蛋白前体抗体(ThermoFisher Scientific, NAB228)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 1b). J Biol Chem (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s1a
赛默飞世尔淀粉样蛋白前体抗体(Zymed/Thermo Fisher Scientific, 71-5800)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s1a). Am J Pathol (2018) ncbi
domestic rabbit 重组(H31L21)
  • 免疫组化-冰冻切片; African green monkey; 1:2500; 图 1d
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 700254)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:2500 (图 1d). Neurobiol Aging (2017) ncbi
domestic rabbit 重组(H31L21)
  • 免疫印迹; 人类; 图 6b
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 700254)被用于被用于免疫印迹在人类样本上 (图 6b). PLoS Genet (2017) ncbi
domestic rabbit 重组(H31L21)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 st1
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 700254)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 st1). Nat Commun (2017) ncbi
小鼠 单克隆(mAbP2-1)
  • 免疫印迹; 小鼠; 1:1000; 图 st1
赛默飞世尔淀粉样蛋白前体抗体(ThermoFisher, OMA1-03132)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 st1). Nat Commun (2017) ncbi
domestic rabbit 多克隆(CT695)
  • 免疫组化-冰冻切片; pigs ; 1:250; 图 1a
赛默飞世尔淀粉样蛋白前体抗体(生活技术, 51-2700)被用于被用于免疫组化-冰冻切片在pigs 样本上浓度为1:250 (图 1a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2500; 图 4a
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 44-344)被用于被用于免疫组化在小鼠样本上浓度为1:2500 (图 4a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; African green monkey; 1:200; 图 1h
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 44136)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:200 (图 1h). Front Aging Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; African green monkey; 1:200; 图 1f
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 44344)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:200 (图 1f). Front Aging Neurosci (2016) ncbi
小鼠 单克隆(mAbP2-1)
  • 酶联免疫吸附测定; 人类
赛默飞世尔淀粉样蛋白前体抗体(Affinity BioReagents, OMA1-03132)被用于被用于酶联免疫吸附测定在人类样本上. J Med Chem (2017) ncbi
domestic rabbit 多克隆(CT695)
  • 免疫组化-自由浮动切片; 小鼠; 图 2e
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 51-2700)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2e). Neuroimage (2017) ncbi
domestic rabbit 重组(H31L21)
  • 酶联免疫吸附测定; 人类; 图 1a
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, H31L21)被用于被用于酶联免疫吸附测定在人类样本上 (图 1a). Brain Inj (2016) ncbi
小鼠 单克隆(BAM01 (6F/3D))
  • 免疫组化; 人类; 1:100; 表 1
赛默飞世尔淀粉样蛋白前体抗体(Biosource international, 6F/3D)被用于被用于免疫组化在人类样本上浓度为1:100 (表 1). Brain (2016) ncbi
domestic rabbit 重组(H31L21)
  • dot blot; 小鼠; 1:1000; 图 6a
  • 免疫组化; 小鼠; 1:500; 图 6b
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 700254)被用于被用于dot blot在小鼠样本上浓度为1:1000 (图 6a) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 6b). Autophagy (2017) ncbi
domestic rabbit 多克隆(CT695)
  • 免疫印迹; 人类; 图 3b
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 51-2700)被用于被用于免疫印迹在人类样本上 (图 3b). J Neurochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 4d
赛默飞世尔淀粉样蛋白前体抗体(ThermoFisher Scientific, 44136)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 4d). Mol Psychiatry (2017) ncbi
小鼠 单克隆(mAbP2-1)
  • 酶联免疫吸附测定; 人类
赛默飞世尔淀粉样蛋白前体抗体(Affinity BioReagents, OMA1-03132)被用于被用于酶联免疫吸附测定在人类样本上. Nat Commun (2016) ncbi
domestic rabbit 多克隆(CT695)
  • 免疫印迹; 小鼠; 图 3a
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 51-2700)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Biol Chem (2016) ncbi
domestic rabbit 重组(H31L21)
  • 免疫组化; 小鼠; 图 2a
  • 酶联免疫吸附测定; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 图 1f
赛默飞世尔淀粉样蛋白前体抗体(ThermoFisher, H31L21)被用于被用于免疫组化在小鼠样本上 (图 2a), 被用于酶联免疫吸附测定在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 1f). J Neurosci (2016) ncbi
domestic rabbit 重组(H31L21)
  • 免疫组化; 小鼠; 图 7e
赛默飞世尔淀粉样蛋白前体抗体(生活技术, H31L21)被用于被用于免疫组化在小鼠样本上 (图 7e). Neuroimage (2016) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 1:300; 图 2
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 44-344)被用于被用于其他在人类样本上浓度为1:300 (图 2). Biosens Bioelectron (2016) ncbi
domestic rabbit 重组(H31L21)
  • 免疫细胞化学; 小鼠; 1:600; 图 1b
赛默飞世尔淀粉样蛋白前体抗体(ThermoFisher, 700254)被用于被用于免疫细胞化学在小鼠样本上浓度为1:600 (图 1b). Acta Neuropathol (2016) ncbi
domestic rabbit 重组(H31L21)
  • 免疫组化-自由浮动切片; 人类; 1:100; 表 2
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 700254)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:100 (表 2). Neurobiol Aging (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 36-6900)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4). Am J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 715800)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆(CT695)
  • 免疫细胞化学; longfin inshore squid; 图 1
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 51-C2700)被用于被用于免疫细胞化学在longfin inshore squid样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(LN27)
  • 免疫印迹; 人类; 1:500; 图 3
赛默飞世尔淀粉样蛋白前体抗体(Zymed, 13-0200)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Neuropathol Appl Neurobiol (2017) ncbi
小鼠 单克隆(LN27)
  • 免疫组化; 人类; 图 7
赛默飞世尔淀粉样蛋白前体抗体(Thermo Fisher, LN27)被用于被用于免疫组化在人类样本上 (图 7). J Neurosci (2016) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 51-2700)被用于. J Neuroinflammation (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 表 1
赛默飞世尔淀粉样蛋白前体抗体(Thermo Scientific, PA3-16760)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (表 1). J Neurochem (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 44344)被用于. J Neurosci (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔淀粉样蛋白前体抗体(Novex by Life Technologies, 512700)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔淀粉样蛋白前体抗体(生活技术, 51-2700)被用于. J Neuroinflammation (2015) ncbi
小鼠 单克隆(LN27)
  • 免疫印迹; 人类; 1:400
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫印迹在人类样本上浓度为1:400. J Neurodegener Dis (2013) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 512700)被用于. J Neurosci (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 51-2700)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(LN27)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛默飞世尔淀粉样蛋白前体抗体(Zymed, 130200)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Neurodegener (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 71-5800)被用于. Behav Brain Res (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 715800)被用于. J Neurochem (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 36-6900)被用于. Cell Rep (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 51-2700)被用于. Exp Neurol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 71-5800)被用于. Neuroscience (2015) ncbi
domestic rabbit 重组(H31L21)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, H31L21)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Neurosci (2015) ncbi
小鼠 单克隆(mAbP2-1)
  • 酶联免疫吸附测定; 人类; 图 1
赛默飞世尔淀粉样蛋白前体抗体(Affinity BioReagents, OMA1-03132)被用于被用于酶联免疫吸附测定在人类样本上 (图 1). J Med Chem (2015) ncbi
小鼠 单克隆(LN27)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛默飞世尔淀粉样蛋白前体抗体(生活技术, 13-0200)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Neuropathol Appl Neurobiol (2015) ncbi
小鼠 单克隆(mAbP2-1)
  • 酶联免疫吸附测定; 人类; 表 1
赛默飞世尔淀粉样蛋白前体抗体(Affinity BioReagents, OMA1-03132)被用于被用于酶联免疫吸附测定在人类样本上 (表 1). J Med Chem (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 51-2700)被用于. J Neurosci Methods (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 51-2700)被用于. Acta Neuropathol (2015) ncbi
domestic rabbit 重组(H31L21)
  • 免疫组化-石蜡切片; 人类; 图 4
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 700254)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). J Neuropathol Exp Neurol (2015) ncbi
domestic rabbit 重组(H31L21)
  • 酶联免疫吸附测定; 小鼠; 图 3
  • 免疫印迹; 小鼠; 1:2500; 图 2
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 700254)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:2500 (图 2). Mol Neurodegener (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 51-2700)被用于. Acta Neuropathol (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔淀粉样蛋白前体抗体(生活技术, 51-2700)被用于. J Neurotrauma (2015) ncbi
domestic rabbit 多克隆(CT695)
赛默飞世尔淀粉样蛋白前体抗体(生活技术, 51-2700)被用于. Cereb Cortex (2015) ncbi
domestic rabbit 重组(H31L21)
  • 免疫细胞化学; 人类; 1:2000
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 700254)被用于被用于免疫细胞化学在人类样本上浓度为1:2000. Nat Commun (2014) ncbi
小鼠 单克隆(BAM01 (6F/3D))
  • 免疫组化; 人类; 1:100
赛默飞世尔淀粉样蛋白前体抗体(Pierce Biotechnology, Clone 6F/3D)被用于被用于免疫组化在人类样本上浓度为1:100. J Anat (2014) ncbi
小鼠 单克隆(LN27)
  • 免疫组化; 猕猴; 图 4
赛默飞世尔淀粉样蛋白前体抗体(Zymed, Clone LN27)被用于被用于免疫组化在猕猴样本上 (图 4). AIDS (2013) ncbi
domestic rabbit 重组(H31L21)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 700254)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Neurotrauma (2014) ncbi
domestic rabbit 重组(H31L21)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 700254)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Mol Neurodegener (2013) ncbi
domestic rabbit 重组(H31L21)
  • 免疫印迹; 人类; 1:2500
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 700254)被用于被用于免疫印迹在人类样本上浓度为1:2500. Curr Alzheimer Res (2013) ncbi
小鼠 单克隆(LN27)
  • 免疫印迹; 人类; 图 1
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, LN27)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2013) ncbi
小鼠 单克隆(LN27)
  • 免疫细胞化学; 人类
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫细胞化学在人类样本上. Transl Neurodegener (2012) ncbi
小鼠 单克隆(LN27)
  • 免疫印迹; 人类; 图 6b
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫印迹在人类样本上 (图 6b). Mol Neurodegener (2012) ncbi
domestic rabbit 多克隆
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, 44338100)被用于. J Neurosci (2012) ncbi
小鼠 单克隆(LN27)
  • 免疫印迹; 人类; 1:1000; 图 3, 4
赛默飞世尔淀粉样蛋白前体抗体(ZYMED, 13-0200)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3, 4). PLoS ONE (2012) ncbi
小鼠 单克隆(LN27)
  • 免疫印迹; 人类; 1:250; 图 3
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, LN27)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 3). PLoS ONE (2012) ncbi
domestic rabbit 重组(H31L21)
  • 酶联免疫吸附测定; 人类; 0.1 ug/ml
赛默飞世尔淀粉样蛋白前体抗体(Invitrogen, H31L21)被用于被用于酶联免疫吸附测定在人类样本上浓度为0.1 ug/ml. PLoS ONE (2011) ncbi
小鼠 单克隆(LN27)
  • 免疫组化; 人类; 表 2
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫组化在人类样本上 (表 2). Glia (2012) ncbi
小鼠 单克隆(LN27)
  • 免疫细胞化学; 人类; 1:100; 图 1
赛默飞世尔淀粉样蛋白前体抗体(Zymed Laboratories, 13-0200)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Autophagy (2011) ncbi
小鼠 单克隆(LN27)
  • 免疫印迹; 人类; 图 1
赛默飞世尔淀粉样蛋白前体抗体(Zymed Laboratories, LN27)被用于被用于免疫印迹在人类样本上 (图 1). J Alzheimers Dis (2012) ncbi
小鼠 单克隆(LN27)
  • 免疫细胞化学; 小鼠; 图 7
赛默飞世尔淀粉样蛋白前体抗体(Zymed, clone LN27)被用于被用于免疫细胞化学在小鼠样本上 (图 7). J Neurosci (2011) ncbi
小鼠 单克隆(LN27)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛默飞世尔淀粉样蛋白前体抗体(Zymed Laboratories, LN27)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Hum Mol Genet (2011) ncbi
小鼠 单克隆(LN27)
  • 免疫印迹; 人类
赛默飞世尔淀粉样蛋白前体抗体(Zymed, clone LN27)被用于被用于免疫印迹在人类样本上. J Neuropathol Exp Neurol (2010) ncbi
小鼠 单克隆(LN27)
  • 免疫细胞化学; 小鼠
赛默飞世尔淀粉样蛋白前体抗体(Zymed Laboratories, LN27)被用于被用于免疫细胞化学在小鼠样本上. J Biol Chem (2010) ncbi
小鼠 单克隆(LN27)
  • 免疫印迹; 人类
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫印迹在人类样本上. Exp Neurol (2010) ncbi
小鼠 单克隆(mAbP2-1)
  • 免疫沉淀; 人类
赛默飞世尔淀粉样蛋白前体抗体(BioSource, P2-1)被用于被用于免疫沉淀在人类样本上. Exp Neurol (2010) ncbi
小鼠 单克隆(LN27)
  • 免疫组化-石蜡切片; 猕猴; 图 1
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫组化-石蜡切片在猕猴样本上 (图 1). PLoS ONE (2008) ncbi
小鼠 单克隆(LN27)
  • 免疫组化; 人类; 图 1
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫组化在人类样本上 (图 1). Acta Neuropathol (2008) ncbi
小鼠 单克隆(LN27)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔淀粉样蛋白前体抗体(Zymed Laboratories, 13-0200)被用于被用于免疫细胞化学在人类样本上 (图 2). J Neurochem (2008) ncbi
小鼠 单克隆(LN27)
  • 免疫组化-石蜡切片; 大鼠; 1:200
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. J Neurotrauma (2007) ncbi
小鼠 单克隆(LN27)
  • 酶联免疫吸附测定; 人类; 0.5 ug/ml
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于酶联免疫吸附测定在人类样本上浓度为0.5 ug/ml. Brain Res (2007) ncbi
小鼠 单克隆(LN27)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔淀粉样蛋白前体抗体(Zymed, 13-0200)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Biol Chem (2007) ncbi
小鼠 单克隆(LN27)
  • 免疫组化-石蜡切片; 人类; 1:1500
  • 免疫组化-石蜡切片; 小鼠; 1:1500; 图 8
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1500 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1500 (图 8). Trans R Soc Trop Med Hyg (2006) ncbi
小鼠 单克隆(LN27)
  • 免疫印迹; 大鼠; 图 2
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫印迹在大鼠样本上 (图 2). Acta Biol Hung (2005) ncbi
小鼠 单克隆(LN27)
  • 免疫组化; 猕猴; 1:10000
赛默飞世尔淀粉样蛋白前体抗体(Zymed, Clone LN27)被用于被用于免疫组化在猕猴样本上浓度为1:10000. J Neuropathol Exp Neurol (2005) ncbi
小鼠 单克隆(LN27)
  • 免疫组化-石蜡切片; 人类; 图 5
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5). Neuropathol Appl Neurobiol (2005) ncbi
小鼠 单克隆(AMY-33)
  • 酶联免疫吸附测定; 人类
赛默飞世尔淀粉样蛋白前体抗体(ZyMed, AMY-33)被用于被用于酶联免疫吸附测定在人类样本上. Expert Rev Vaccines (2004) ncbi
小鼠 单克隆(LN27)
  • 免疫组化-石蜡切片; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔淀粉样蛋白前体抗体(Zymed, 13-0200)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 2). J Neurosci Res (2004) ncbi
小鼠 单克隆(LN27)
  • 酶联免疫吸附测定; 人类
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于酶联免疫吸附测定在人类样本上. Arthritis Res Ther (2004) ncbi
小鼠 单克隆(LN27)
  • 免疫印迹; 人类; 图 1
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫印迹在人类样本上 (图 1). Neuroscience (2003) ncbi
小鼠 单克隆(LN27)
  • 免疫组化-石蜡切片; 家羊; 图 3
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫组化-石蜡切片在家羊样本上 (图 3). J Neurotrauma (2003) ncbi
小鼠 单克隆(LN27)
  • 免疫印迹; 人类; 图 3
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2003) ncbi
小鼠 单克隆(LN27)
  • 免疫组化; 人类; 表 2
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫组化在人类样本上 (表 2). J Neurovirol (2003) ncbi
小鼠 单克隆(mAbP2-1)
  • 酶联免疫吸附测定; 人类; 0.25 ug/ml
赛默飞世尔淀粉样蛋白前体抗体(Biosource, mAbP2-1)被用于被用于酶联免疫吸附测定在人类样本上浓度为0.25 ug/ml. Neuroscience (2003) ncbi
小鼠 单克隆(AMY-33)
  • 免疫组化; 大鼠; 图 4
赛默飞世尔淀粉样蛋白前体抗体(Zymed, AMY-33)被用于被用于免疫组化在大鼠样本上 (图 4). J Neurotrauma (2002) ncbi
小鼠 单克隆(LN27)
  • 免疫组化; 猪尾猕猴; 图 1
赛默飞世尔淀粉样蛋白前体抗体(Zymed Laboratories, Clone LN27)被用于被用于免疫组化在猪尾猕猴样本上 (图 1). J Neuropathol Exp Neurol (2002) ncbi
小鼠 单克隆(LN27)
  • 免疫印迹; 人类; 图 6
赛默飞世尔淀粉样蛋白前体抗体(Zymed, clone LN27)被用于被用于免疫印迹在人类样本上 (图 6). Traffic (2001) ncbi
小鼠 单克隆(LN27)
  • 酶联免疫吸附测定; 人类
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于酶联免疫吸附测定在人类样本上. J Biol Chem (2001) ncbi
小鼠 单克隆(LN27)
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 8
赛默飞世尔淀粉样蛋白前体抗体(Zymed Laboratories, clone LN27)被用于被用于免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 8). FASEB J (2000) ncbi
小鼠 单克隆(LN27)
  • 免疫细胞化学; 人类; 图 8
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫细胞化学在人类样本上 (图 8). J Biol Chem (1999) ncbi
小鼠 单克隆(LN27)
  • 免疫组化-石蜡切片; domestic rabbit; 1:200; 图 1
  • 免疫印迹; domestic rabbit; 1:1000; 图 2
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:200 (图 1) 和 被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 2). Brain Res (1997) ncbi
小鼠 单克隆(AMY-33)
  • 免疫沉淀; 人类; 图 3
赛默飞世尔淀粉样蛋白前体抗体(Zymed, AMY-33)被用于被用于免疫沉淀在人类样本上 (图 3). Proc Natl Acad Sci U S A (1996) ncbi
小鼠 单克隆(LN27)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Acta Neuropathol (1994) ncbi
小鼠 单克隆(LN27)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔淀粉样蛋白前体抗体(Zymed, LN27)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Biochem J (1995) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab2072)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 3b
  • 免疫印迹; 小鼠; 1:2000; 图 3f
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3f). Front Aging Neurosci (2020) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5a, 5d
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5a, 5d). Sci Adv (2020) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化-石蜡切片; 小鼠; 1:15,000; 图 4
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:15,000 (图 4). J Neurotrauma (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 7a
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab183460)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 7a). Front Pharmacol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:800; 图 2g
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab12265)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 2g). CNS Neurosci Ther (2020) ncbi
小鼠 单克隆(MOAB-2)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 1b
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab126649)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 1b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫细胞化学; 人类; 1:200; 图 2b
  • 免疫印迹; 人类; 图 2c
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4c
  • 免疫细胞化学; 小鼠; 1:200; 图 1b
  • 免疫印迹; 小鼠; 图 1c
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2b), 被用于免疫印迹在人类样本上 (图 2c), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4c), 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1b) 和 被用于免疫印迹在小鼠样本上 (图 1c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫印迹在人类样本上 (图 1b). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化; 小鼠; 图 5
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, Y188)被用于被用于免疫组化在小鼠样本上 (图 5). Front Cell Neurosci (2018) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 小鼠; 图 1a
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫印迹在小鼠样本上 (图 1a). Sci Transl Med (2018) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 小鼠; 1:2000; 图 4b
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, Y188)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4b). Mol Neurodegener (2018) ncbi
domestic rabbit 单克隆(mOC64)
  • 免疫印迹; 小鼠; 图 3f
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab201060)被用于被用于免疫印迹在小鼠样本上 (图 3f). Neurotherapeutics (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 s1
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab12267)被用于被用于免疫印迹在大鼠样本上 (图 s1). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫细胞化学; pigs ; 图 5d
  • 免疫细胞化学; 人类; 图 7a
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫细胞化学在pigs 样本上 (图 5d) 和 被用于免疫细胞化学在人类样本上 (图 7a). Front Mol Neurosci (2017) ncbi
小鼠 单克隆(DE2B4)
  • 免疫细胞化学; pigs
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab11132)被用于被用于免疫细胞化学在pigs 样本上. Front Mol Neurosci (2017) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 小鼠; 图 5b
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫印迹在小鼠样本上 (图 5b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab15272)被用于被用于免疫印迹在人类样本上 (图 4a). elife (2017) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化基因敲除验证; 小鼠; 图 1e
  • 免疫印迹基因敲除验证; 小鼠; 图 2
  • 免疫组化-自由浮动切片; 小鼠; 图 1d
  • 免疫印迹; 小鼠; 图 2
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Epitomics, ab32136)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 1e), 被用于免疫印迹基因敲除验证在小鼠样本上 (图 2), 被用于免疫组化-自由浮动切片在小鼠样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 2). Front Mol Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab2539)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Glia (2017) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫细胞化学; 人类; 1:200; 图 1a
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1a). Cell Rep (2016) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 4
  • 免疫印迹; 大鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Neural Regen Res (2016) ncbi
小鼠 单克隆(DE2B4)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab11132)被用于被用于免疫印迹在人类样本上 (图 1). Aging Cell (2016) ncbi
domestic rabbit 单克隆(Y188)
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于. PLoS ONE (2016) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 人类; 1:4000; 图 1
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab2072)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Neuropharmacology (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab10148)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫细胞化学; 小鼠; 图 3a
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫细胞化学在小鼠样本上 (图 3a). Nat Neurosci (2016) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 大鼠; 1:5000
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. J Neurochem (2015) ncbi
小鼠 单克隆(BDI350)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab20068)被用于被用于免疫印迹在小鼠样本上. J Inorg Biochem (2015) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Neuroimmunol (2015) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, Ab32136)被用于被用于免疫组化在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 小鼠; 表 3
  • 酶联免疫吸附测定; 人类; 表 4
  • 免疫印迹; 人类; 表 4
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫印迹在小鼠样本上 (表 3), 被用于酶联免疫吸附测定在人类样本上 (表 4) 和 被用于免疫印迹在人类样本上 (表 4). Biogerontology (2015) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, Y188)被用于被用于免疫组化-石蜡切片在小鼠样本上, 被用于免疫沉淀在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Front Cell Neurosci (2015) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab32136)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab10148)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, ab15272)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2016) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, Y188)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(Y188)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, Y188)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(DE2B4)
  • 免疫组化-自由浮动切片; 小鼠
艾博抗(上海)贸易有限公司淀粉样蛋白前体抗体(Abcam, AB11132)被用于被用于免疫组化-自由浮动切片在小鼠样本上. Brain Behav (2013) ncbi
西格玛奥德里奇
小鼠 单克隆(BAM-10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4a
西格玛奥德里奇淀粉样蛋白前体抗体(Sigma-Aldrich, A5213)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4a). J Neuroinflammation (2020) ncbi
小鼠 单克隆(4G8)
  • 免疫印迹; 小鼠; 1:300; 图 1a
西格玛奥德里奇淀粉样蛋白前体抗体(Sigma, A1349)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 1a). Front Neurosci (2019) ncbi
小鼠 单克隆(W0-2)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4a
西格玛奥德里奇淀粉样蛋白前体抗体(Sigma, MABN10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4a). Front Aging Neurosci (2019) ncbi
小鼠 单克隆(BAM-10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2d
西格玛奥德里奇淀粉样蛋白前体抗体(Sigma, A5213)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2d). Int J Mol Sci (2017) ncbi
小鼠 单克隆(BAM-10)
  • 免疫组化; 小鼠; 图 4
西格玛奥德里奇淀粉样蛋白前体抗体(Sigma, A5213)被用于被用于免疫组化在小鼠样本上 (图 4). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 酶联免疫吸附测定; 大鼠
西格玛奥德里奇淀粉样蛋白前体抗体(Sigma Chemical, A1976)被用于被用于酶联免疫吸附测定在大鼠样本上. Mol Neurobiol (2016) ncbi
小鼠 单克隆(BAM90.1)
  • 免疫组化; 小鼠; 1:250
西格玛奥德里奇淀粉样蛋白前体抗体(Sigma, A8978)被用于被用于免疫组化在小鼠样本上浓度为1:250. Mol Cell Neurosci (2014) ncbi
小鼠 单克隆(NAB 228)
  • 酶联免疫吸附测定; 人类; 图 2,4
西格玛奥德里奇淀粉样蛋白前体抗体(Sigma, A8354)被用于被用于酶联免疫吸附测定在人类样本上 (图 2,4). Biosens Bioelectron (2015) ncbi
小鼠 单克隆(BAM-10)
  • 酶联免疫吸附测定; 小鼠; 图 s1
西格玛奥德里奇淀粉样蛋白前体抗体(Sigma-Aldrich, A3981)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 s1). PLoS ONE (2014) ncbi
小鼠 单克隆(NAB 228)
  • 酶联免疫吸附测定; 小鼠; 图 s1
西格玛奥德里奇淀粉样蛋白前体抗体(Sigma-Aldrich, A8354)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 s1). PLoS ONE (2014) ncbi
小鼠 单克隆(NAB 228)
  • 免疫印迹; 人类; 图 7c
西格玛奥德里奇淀粉样蛋白前体抗体(Sigma-Aldrich, A8354)被用于被用于免疫印迹在人类样本上 (图 7c). Mol Cell Neurosci (2014) ncbi
小鼠 单克隆(4G8)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇淀粉样蛋白前体抗体(Sigma, A1349)被用于被用于免疫组化-冰冻切片在小鼠样本上. Age (Dordr) (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(NAB228)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 9a
圣克鲁斯生物技术淀粉样蛋白前体抗体(Santa Cruz, sc-32277)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 9a). elife (2020) ncbi
小鼠 单克隆(B-4)
  • 免疫印迹; 大鼠; 1:200; 图 5a
圣克鲁斯生物技术淀粉样蛋白前体抗体(Santa Cruz Biotechnology, sc-28365)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 5a). Neuropharmacology (2019) ncbi
小鼠 单克隆(DE2B4)
  • 免疫组化; 小鼠; 1:250; 图 6a
圣克鲁斯生物技术淀粉样蛋白前体抗体(Santa Cruz, sc-58508)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 6a). Cell Death Differ (2017) ncbi
小鼠 单克隆(B-4)
  • 免疫印迹; 大鼠; 图 5
圣克鲁斯生物技术淀粉样蛋白前体抗体(Santa Cruz, SC-28365)被用于被用于免疫印迹在大鼠样本上 (图 5). Neural Plast (2016) ncbi
小鼠 单克隆(DE2B4)
  • 免疫组化; fruit fly ; 1:200; 图 2P
圣克鲁斯生物技术淀粉样蛋白前体抗体(Santa Cruz, sc-58508)被用于被用于免疫组化在fruit fly 样本上浓度为1:200 (图 2P). Dis Model Mech (2016) ncbi
小鼠 单克隆(B-4)
  • proximity ligation assay; 小鼠; 2000 ng/ml; 图 5
  • 免疫印迹; 小鼠; 1000 ng/ml; 图 8
圣克鲁斯生物技术淀粉样蛋白前体抗体(Santa Cruz, sc-28365)被用于被用于proximity ligation assay在小鼠样本上浓度为2000 ng/ml (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1000 ng/ml (图 8). Nat Commun (2015) ncbi
小鼠 单克隆(20.1)
  • 免疫印迹; 人类
圣克鲁斯生物技术淀粉样蛋白前体抗体(Santa Cruz Biotechnology, sc-53822)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(DE2B4)
  • 免疫印迹; 人类; 1:1000; 图 7
圣克鲁斯生物技术淀粉样蛋白前体抗体(Santa Cruz, DE2B4)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). J Pineal Res (2015) ncbi
小鼠 单克隆(DE2B4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术淀粉样蛋白前体抗体(Santa Cruz Biotechnology, DE2B4)被用于被用于免疫印迹在人类样本上浓度为1:500. J Pineal Res (2015) ncbi
小鼠 单克隆(NAB228)
  • 免疫组化-石蜡切片; 人类; 1:500
圣克鲁斯生物技术淀粉样蛋白前体抗体(Santa Cruz, 3227)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Acta Neuropathol (2014) ncbi
Agrisera
小鼠 单克隆(IgM)
  • dot blot; 小鼠; 1:800; 图 5a
Agrisera淀粉样蛋白前体抗体(Agrisera, OMAB)被用于被用于dot blot在小鼠样本上浓度为1:800 (图 5a). Int J Mol Sci (2020) ncbi
小鼠 单克隆(IgM)
  • 免疫印迹; 猕猴; 1:1000; 图 1d
Agrisera淀粉样蛋白前体抗体(Agrisera, AS10 932)被用于被用于免疫印迹在猕猴样本上浓度为1:1000 (图 1d). Aging Cell (2019) ncbi
Synaptic Systems
小鼠 单克隆(88B12)
  • 免疫印迹; 小鼠; 1:500; 图 4a
Synaptic Systems淀粉样蛋白前体抗体(Synaptic Systems, 218711)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). Neurobiol Learn Mem (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2
Synaptic Systems淀粉样蛋白前体抗体(Synaptic Systems, 218703)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(326F12)
  • 免疫组化-石蜡切片; 人类; 图 1
Synaptic Systems淀粉样蛋白前体抗体(Synaptic Systems, 218421)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Acta Neuropathol Commun (2016) ncbi
MABTECH
小鼠 单克隆(bmAbetaN)
  • 免疫组化-冰冻切片; fruit fly ; 1:500; 图 3h
MABTECH淀粉样蛋白前体抗体(Mabtech, 3740-5-250)被用于被用于免疫组化-冰冻切片在fruit fly 样本上浓度为1:500 (图 3h). FEBS Open Bio (2020) ncbi
小鼠 单克隆(bmAbetaN)
  • 酶联免疫吸附测定; 人类; 图 2,4
MABTECH淀粉样蛋白前体抗体(Mabtech, 3740-6-1000)被用于被用于酶联免疫吸附测定在人类样本上 (图 2,4). Biosens Bioelectron (2015) ncbi
武汉三鹰
小鼠 单克隆(5C2A1)
  • 免疫组化-冰冻切片; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 3b
武汉三鹰淀粉样蛋白前体抗体(Proteintech, 60342-1-Ig)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 3b). Aging (Albany NY) (2019) ncbi
Novus Biologicals
小鼠 单克隆(MOAB-2)
  • 免疫组化; 小鼠; 图 2a
Novus Biologicals淀粉样蛋白前体抗体(Novus Biologicals, NBP2-13075)被用于被用于免疫组化在小鼠样本上 (图 2a). J Comp Neurol (2017) ncbi
小鼠 单克隆(MOAB-2)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000
Novus Biologicals淀粉样蛋白前体抗体(Novus Biologicals, NBP2-13075)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000. Exp Neurol (2015) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(DE2B4)
  • 免疫印迹; 人类; 图 3b
伯乐(Bio-Rad)公司淀粉样蛋白前体抗体(AbD Serotec, MCA2172)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D54D2)
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell Signaling, 8243)被用于被用于免疫印迹在小鼠样本上 (图 3e). Front Cell Neurosci (2020) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 s7b
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell Signaling, D54D2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 s7b). Nature (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:300; 图 1a
  • 免疫印迹; 人类; 图 1dd-1
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell Signaling Technology, 2452S)被用于被用于免疫组化在人类样本上浓度为1:300 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1dd-1). Int J Mol Med (2019) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(细胞SIGNALING, 8243s)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a). Front Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 1c
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell Signaling, 2454)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 1c). Nat Neurosci (2019) ncbi
单克隆(D54D2)
  • 免疫组化; 小鼠; 图 7g
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(CST, 51374)被用于被用于免疫组化在小鼠样本上 (图 7g). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell Signaling Technology, 2452)被用于被用于免疫印迹在小鼠样本上 (图 3e). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell Signaling Technology, 2452S)被用于被用于免疫印迹在小鼠样本上 (图 6b). Neurotherapeutics (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 3e
  • 免疫印迹; 大鼠; 图 3a
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell Signaling, 2454)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 3e) 和 被用于免疫印迹在大鼠样本上 (图 3a). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:250; 图 2a
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell Signaling, 2454)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:250 (图 2a). J Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2a
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell Signaling, 2454)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). Acta Neuropathol (2017) ncbi
domestic rabbit 单克隆(D90B8)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(cell signalling, 6986)被用于被用于免疫印迹在小鼠样本上 (图 5). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell Signaling, 2452)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Dis Model Mech (2016) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫细胞化学; 小鼠; 1:250
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell Signaling, 8243)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250. Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell signaling, 2452)被用于被用于免疫印迹在小鼠样本上 (图 1). Metab Brain Dis (2016) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4
  • 免疫印迹; 小鼠; 1:4000; 图 4
  • 免疫印迹; 人类; 1:4000; 图 4
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell signaling, 8243)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4), 被用于免疫印迹在小鼠样本上浓度为1:4000 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:4000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D2A6H)
  • 免疫组化-石蜡切片; 人类; 图 1
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell signaling, 12467)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 单克隆(D5Y9L)
  • 免疫组化-石蜡切片; 人类; 图 1
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell signaling, 12077)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(CST, 2452)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). J Alzheimers Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell Signaling, 2454)被用于被用于免疫组化在小鼠样本上 (图 1). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 s9
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell Signalling, 2454)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s9). Brain (2016) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell Signaling, 8243)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫印迹; 人类; 1:200; 图 7
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell Signaling Technology, 8243)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 7). Nat Neurosci (2015) ncbi
domestic rabbit 单克隆(D54D2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell Signaling, #8243)被用于被用于免疫印迹在人类样本上浓度为1:1000. Neurosci Res (2015) ncbi
domestic rabbit 单克隆(D2A6H)
  • 酶联免疫吸附测定; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司淀粉样蛋白前体抗体(Cell Signaling, 12356BF)被用于被用于酶联免疫吸附测定在人类样本上 和 被用于免疫印迹在人类样本上. Int J Alzheimers Dis (2014) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(6F/3D)
  • 免疫组化; 人类; 1:1000; 图 1f
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(DAKO, 6F/3D)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1f). J Clin Med (2020) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 2a
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako, M0872)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 2a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化; 人类; 1:50; 表 2
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako, 6F/3D)被用于被用于免疫组化在人类样本上浓度为1:50 (表 2). Neurology (2020) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1a
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako-Agilent, M0872)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1a). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化-石蜡切片; 小鼠; 1:200
  • 免疫组化; 小鼠; 图 16
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako, M0872)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 和 被用于免疫组化在小鼠样本上 (图 16). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(DAKO, 6F/3D)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Hum Mutat (2017) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako, M0872)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1a). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako, 6F/3D)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Hum Genet (2016) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako, M0872)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 3). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 2
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(DakoCytomation, 6F/3D)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (表 2). Alzheimers Res Ther (2016) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(DAKO, 6F/3D)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Acta Neuropathol (2016) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 7
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako, M0872)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 7). J Neuropathol Exp Neurol (2016) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化; 小鼠; 1:100; 图 4
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(DAKO, 6F/3D)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). Alzheimers Dement (2016) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化; 小鼠; 1:100; 图 2
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako, M0872)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Brain (2016) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako, M087201-2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako, 6F/3D)被用于被用于免疫组化在人类样本上 (表 1). Alzheimers Dement (2016) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化; 人类; 1:50; 图 2
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako, 6F/3D)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2). Neuropathology (2016) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako, M0872)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). Neurobiol Aging (2015) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化; 人类; 1:400; 图 s1
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako, M0872)被用于被用于免疫组化在人类样本上浓度为1:400 (图 s1). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako, 6 F/3D)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. J Neuropathol Exp Neurol (2015) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化-石蜡切片; 人类; 1:500
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako, M0872)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Neurobiol Aging (2015) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化-自由浮动切片; 小鼠; 1:100
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(DakoCytomation, 6F/3D)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako, M0872)被用于被用于免疫组化在人类样本上浓度为1:100. Neurobiol Aging (2014) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(DAKO, 6F/3D)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Glia (2013) ncbi
小鼠 单克隆(6F/3D)
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(DAKO, M0872)被用于. Exp Neurol (2009) ncbi
小鼠 单克隆(6F/3D)
  • 免疫组化-自由浮动切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司淀粉样蛋白前体抗体(Dako, 6F/3D)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:50. Brain Res (2001) ncbi
Alpha Diagnostics
domestic rabbit
  • 免疫组化-石蜡切片; 大鼠; 1:100
Alpha Diagnostics淀粉样蛋白前体抗体(Alpha Diagnostic International, BAM401-A)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. Fluids Barriers CNS (2015) ncbi
domestic rabbit
  • 免疫组化-石蜡切片; 大鼠; 1:200
Alpha Diagnostics淀粉样蛋白前体抗体(Alpha Diagnostic International, BAM421-A)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Fluids Barriers CNS (2015) ncbi
徕卡显微系统(上海)贸易有限公司
(6F/3D)
  • 免疫组化; 人类; 1:50; 表 1
徕卡显微系统(上海)贸易有限公司淀粉样蛋白前体抗体(Novocastra Vector Labs, 6F/3D)被用于被用于免疫组化在人类样本上浓度为1:50 (表 1). Acta Neuropathol (2017) ncbi
(6F/3D)
  • 免疫印迹; 人类; 图 5
徕卡显微系统(上海)贸易有限公司淀粉样蛋白前体抗体(Leica Biosystems, 6F/3D)被用于被用于免疫印迹在人类样本上 (图 5). Acta Neuropathol (2017) ncbi
Biosensis
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
Biosensis淀粉样蛋白前体抗体(Biosensis, M-1586-100)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3). Front Neurosci (2016) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 图 s2
Biosensis淀粉样蛋白前体抗体(Biosensis, M-1586-100)被用于被用于免疫组化在小鼠样本上 (图 s2). Nat Commun (2015) ncbi
文章列表
  1. Lackie R, Marques Lopes J, Ostapchenko V, Good S, Choy W, van Oosten Hawle P, et al. Increased levels of Stress-inducible phosphoprotein-1 accelerates amyloid-β deposition in a mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2020;8:143 pubmed 出版商
  2. Ikonomovic M, Buckley C, Abrahamson E, Kofler J, Mathis C, Klunk W, et al. Post-mortem analyses of PiB and flutemetamol in diffuse and cored amyloid-β plaques in Alzheimer's disease. Acta Neuropathol. 2020;140:463-476 pubmed 出版商
  3. Kazuki Y, Gao F, Li Y, Moyer A, Devenney B, Hiramatsu K, et al. A non-mosaic transchromosomic mouse model of down syndrome carrying the long arm of human chromosome 21. elife. 2020;9: pubmed 出版商
  4. Sebastian Monasor L, Müller S, Colombo A, Tanrioever G, König J, Roth S, et al. Fibrillar Aβ triggers microglial proteome alterations and dysfunction in Alzheimer mouse models. elife. 2020;9: pubmed 出版商
  5. Yilmazer Hanke D, Mayer T, Müller H, Neugebauer H, Abaei A, Scheuerle A, et al. Histological correlates of postmortem ultra-high-resolution single-section MRI in cortical cerebral microinfarcts. Acta Neuropathol Commun. 2020;8:33 pubmed 出版商
  6. Lloyd G, Trejo Lopez J, Xia Y, McFarland K, Lincoln S, Ertekin Taner N, et al. Prominent amyloid plaque pathology and cerebral amyloid angiopathy in APP V717I (London) carrier - phenotypic variability in autosomal dominant Alzheimer's disease. Acta Neuropathol Commun. 2020;8:31 pubmed 出版商
  7. Huang Z, Zhao J, Wang W, Zhou J, Zhang J. Depletion of LncRNA NEAT1 Rescues Mitochondrial Dysfunction Through NEDD4L-Dependent PINK1 Degradation in Animal Models of Alzheimer's Disease. Front Cell Neurosci. 2020;14:28 pubmed 出版商
  8. Honarpisheh P, Reynolds C, Blasco Conesa M, Moruno Manchon J, Putluri N, Bhattacharjee M, et al. Dysregulated Gut Homeostasis Observed Prior to the Accumulation of the Brain Amyloid-β in Tg2576 Mice. Int J Mol Sci. 2020;21: pubmed 出版商
  9. Tang Y, Xu A, Shao S, Zhou Y, Xiong B, Li Z. Electroacupuncture Ameliorates Cognitive Impairment by Inhibiting the JNK Signaling Pathway in a Mouse Model of Alzheimer's Disease. Front Aging Neurosci. 2020;12:23 pubmed 出版商
  10. Rodriguez Ortiz C, Prieto G, Martini A, Forner S, Trujillo Estrada L, LaFerla F, et al. miR-181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer's disease. Aging Cell. 2020;19:e13118 pubmed 出版商
  11. Yang Y, He Z, Xing Z, Zuo Z, Yuan L, Wu Y, et al. Influenza vaccination in early Alzheimer's disease rescues amyloidosis and ameliorates cognitive deficits in APP/PS1 mice by inhibiting regulatory T cells. J Neuroinflammation. 2020;17:65 pubmed 出版商
  12. Barros Viegas A, Carmona V, Ferreiro E, Guedes J, Cardoso A, Cunha P, et al. miRNA-31 Improves Cognition and Abolishes Amyloid-β Pathology by Targeting APP and BACE1 in an Animal Model of Alzheimer's Disease. Mol Ther Nucleic Acids. 2020;19:1219-1236 pubmed 出版商
  13. Moreno Rodríguez M, Perez S, Nadeem M, Malek Ahmadi M, Mufson E. Frontal cortex chitinase and pentraxin neuroinflammatory alterations during the progression of Alzheimer's disease. J Neuroinflammation. 2020;17:58 pubmed 出版商
  14. Shi H, Koronyo Y, Rentsendorj A, Regis G, Sheyn J, Fuchs D, et al. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina. Acta Neuropathol. 2020;139:813-836 pubmed 出版商
  15. Tambini M, Norris K, D ADAMIO L. Opposite changes in APP processing and human Aβ levels in rats carrying either a protective or a pathogenic APP mutation. elife. 2020;9: pubmed 出版商
  16. Lundgren J, Vandermeulen L, Sandebring Matton A, Ahmed S, Winblad B, Di Luca M, et al. Proximity ligation assay reveals both pre- and postsynaptic localization of the APP-processing enzymes ADAM10 and BACE1 in rat and human adult brain. BMC Neurosci. 2020;21:6 pubmed 出版商
  17. McGeer P, Lee M, Kennedy K, McGeer E. Saliva Diagnosis as a Disease Predictor. J Clin Med. 2020;9: pubmed 出版商
  18. Yeung J, Palpagama T, Tate W, Peppercorn K, Waldvogel H, Faull R, et al. The Acute Effects of Amyloid-Beta1-42 on Glutamatergic Receptor and Transporter Expression in the Mouse Hippocampus. Front Neurosci. 2019;13:1427 pubmed 出版商
  19. Eede P, Obst J, Benke E, Yvon Durocher G, Richard B, Gimber N, et al. Interleukin-12/23 deficiency differentially affects pathology in male and female Alzheimer's disease-like mice. EMBO Rep. 2020;21:e48530 pubmed 出版商
  20. Oh S, Kim J, Park S, Lee J. Associative Interactions among Zinc, Apolipoprotein E, and Amyloid-β in the Amyloid Pathology. Int J Mol Sci. 2020;21: pubmed 出版商
  21. Walker D, Tang T, Mendsaikhan A, Tooyama I, Serrano G, Sue L, et al. Patterns of Expression of Purinergic Receptor P2RY12, a Putative Marker for Non-Activated Microglia, in Aged and Alzheimer's Disease Brains. Int J Mol Sci. 2020;21: pubmed 出版商
  22. Yan T, Liang J, Gao J, Wang L, Fujioka H, Zhu X, et al. FAM222A encodes a protein which accumulates in plaques in Alzheimer's disease. Nat Commun. 2020;11:411 pubmed 出版商
  23. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  24. Evonuk K, Doyle R, Moseley C, Thornell I, Adler K, Bingaman A, et al. Reduction of AMPA receptor activity on mature oligodendrocytes attenuates loss of myelinated axons in autoimmune neuroinflammation. Sci Adv. 2020;6:eaax5936 pubmed 出版商
  25. Pi G, Gao D, Wu D, Wang Y, Lei H, Zeng W, et al. Posterior basolateral amygdala to ventral hippocampal CA1 drives approach behaviour to exert an anxiolytic effect. Nat Commun. 2020;11:183 pubmed 出版商
  26. El Gaamouch F, Audrain M, Lin W, Beckmann N, Jiang C, Hariharan S, et al. VGF-derived peptide TLQP-21 modulates microglial function through C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice. Mol Neurodegener. 2020;15:4 pubmed 出版商
  27. Gate D, Saligrama N, Leventhal O, Yang A, Unger M, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature. 2020;577:399-404 pubmed 出版商
  28. Rice H, Marcassa G, Chrysidou I, Horré K, Young Pearse T, Müller U, et al. Contribution of GABAergic interneurons to amyloid-β plaque pathology in an APP knock-in mouse model. Mol Neurodegener. 2020;15:3 pubmed 出版商
  29. Braak H, Del Tredici K. From the Entorhinal Region via the Prosubiculum to the Dentate Fascia: Alzheimer Disease-Related Neurofibrillary Changes in the Temporal Allocortex. J Neuropathol Exp Neurol. 2020;79:163-175 pubmed 出版商
  30. Bhattarai P, Cosacak M, Mashkaryan V, Demir S, Popova S, Govindarajan N, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol. 2020;18:e3000585 pubmed 出版商
  31. Smith R, Pawlik D, Nilsson C, Englund E, Hansson O. [18F]Flortaucipir distinguishes Alzheimer's disease from progressive supranuclear palsy pathology in a mixed-pathology case. Acta Neuropathol. 2020;139:411-413 pubmed 出版商
  32. Arenas F, Castro F, Núñez S, Gay G, Garcia Ruiz C, Fernandez Checa J. STARD1 and NPC1 expression as pathological markers associated with astrogliosis in post-mortem brains from patients with Alzheimer's disease and Down syndrome. Aging (Albany NY). 2020;12:571-592 pubmed 出版商
  33. Bergkvist L, Du Z, Elovsson G, Appelqvist H, Itzhaki L, Kumita J, et al. Mapping pathogenic processes contributing to neurodegeneration in Drosophila models of Alzheimer's disease. FEBS Open Bio. 2020;10:338-350 pubmed 出版商
  34. Pires G, McElligott S, Drusinsky S, Halliday G, Potier M, Wisniewski T, et al. Secernin-1 is a novel phosphorylated tau binding protein that accumulates in Alzheimer's disease and not in other tauopathies. Acta Neuropathol Commun. 2019;7:195 pubmed 出版商
  35. Ghatak S, Dolatabadi N, Trudler D, Zhang X, Wu Y, Mohata M, et al. Mechanisms of hyperexcitability in Alzheimer's disease hiPSC-derived neurons and cerebral organoids vs isogenic controls. elife. 2019;8: pubmed 出版商
  36. Yu L, Boyle P, Dawe R, Bennett D, Arfanakis K, Schneider J. Contribution of TDP and hippocampal sclerosis to hippocampal volume loss in older-old persons. Neurology. 2020;94:e142-e152 pubmed 出版商
  37. Wu X, Chen S, Lu C. Amyloid precursor protein promotes the migration and invasion of breast cancer cells by regulating the MAPK signaling pathway. Int J Mol Med. 2019;: pubmed 出版商
  38. Hansson O, Svensson M, Gustavsson A, Andersson E, Yang Y, Nagga K, et al. Midlife physical activity is associated with lower incidence of vascular dementia but not Alzheimer's disease. Alzheimers Res Ther. 2019;11:87 pubmed 出版商
  39. Newell E, Todd B, Luo Z, Evans L, Ferguson P, Bassuk A. A Mouse Model for Juvenile, Lateral Fluid Percussion Brain Injury Reveals Sex-Dependent Differences in Neuroinflammation and Functional Recovery. J Neurotrauma. 2020;37:635-646 pubmed 出版商
  40. Grimaldi A, Pediconi N, Oieni F, Pizzarelli R, Rosito M, Giubettini M, et al. Neuroinflammatory Processes, A1 Astrocyte Activation and Protein Aggregation in the Retina of Alzheimer's Disease Patients, Possible Biomarkers for Early Diagnosis. Front Neurosci. 2019;13:925 pubmed 出版商
  41. Zhou C, Sun X, Hu Y, Song J, Dong S, Kong D, et al. Genomic deletion of TLR2 induces aggravated white matter damage and deteriorated neurobehavioral functions in mouse models of Alzheimer's disease. Aging (Albany NY). 2019;11:7257-7273 pubmed 出版商
  42. Lin J, Jiao A, Lv W, Zhang C, Shi Y, Yang Z, et al. Pentapeptide Protects INS-1 Cells From hIAPP-Mediated Apoptosis by Enhancing Autophagy Through mTOR Pathway. Front Pharmacol. 2019;10:896 pubmed 出版商
  43. Zhang R, Liu Y, Chen Y, Li Q, Marshall C, Wu T, et al. Aquaporin 4 deletion exacerbates brain impairments in a mouse model of chronic sleep disruption. CNS Neurosci Ther. 2020;26:228-239 pubmed 出版商
  44. Wang Z, Xiang J, Liu X, Yu S, Manfredsson F, Sandoval I, et al. Deficiency in BDNF/TrkB Neurotrophic Activity Stimulates δ-Secretase by Upregulating C/EBPβ in Alzheimer's Disease. Cell Rep. 2019;28:655-669.e5 pubmed 出版商
  45. Latimer C, Burke B, Liachko N, Currey H, Kilgore M, Gibbons L, et al. Resistance and resilience to Alzheimer's disease pathology are associated with reduced cortical pTau and absence of limbic-predominant age-related TDP-43 encephalopathy in a community-based cohort. Acta Neuropathol Commun. 2019;7:9 pubmed 出版商
  46. Zhang J, Chen B, Lu J, Wu Y, Wang S, Yao Z, et al. Brains of rhesus monkeys display Aβ deposits and glial pathology while lacking Aβ dimers and other Alzheimer's pathologies. Aging Cell. 2019;18:e12978 pubmed 出版商
  47. Libard S, Alafuzoff I. Alzheimer's disease neuropathological change and loss of matrix/neuropil in patients with idiopathic Normal Pressure Hydrocephalus, a model of Alzheimer's disease. Acta Neuropathol Commun. 2019;7:3 pubmed 出版商
  48. Zhang X, He Q, Huang T, Zhao N, Liang F, Xu B, et al. Treadmill Exercise Decreases Aβ Deposition and Counteracts Cognitive Decline in APP/PS1 Mice, Possibly via Hippocampal Microglia Modifications. Front Aging Neurosci. 2019;11:78 pubmed 出版商
  49. Adeosun S, Hou X, Shi L, Stockmeier C, Zheng B, Raffai R, et al. Female mice with apolipoprotein E4 domain interaction demonstrated impairments in spatial learning and memory performance and disruption of hippocampal cyto-architecture. Neurobiol Learn Mem. 2019;161:106-114 pubmed 出版商
  50. Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler R, Zhang S, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nat Neurosci. 2019;22:719-728 pubmed 出版商
  51. Zhong L, Xu Y, Zhuo R, Wang T, Wang K, Huang R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer's disease model. Nat Commun. 2019;10:1365 pubmed 出版商
  52. Martorell A, Paulson A, Suk H, Abdurrob F, Drummond G, Guan W, et al. Multi-sensory Gamma Stimulation Ameliorates Alzheimer's-Associated Pathology and Improves Cognition. Cell. 2019;177:256-271.e22 pubmed 出版商
  53. Mammone T, Chidlow G, Casson R, Wood J. Improved immunohistochemical detection of phosphorylated mitogen-activated protein kinases in the injured rat optic nerve head. Histochem Cell Biol. 2019;151:435-456 pubmed 出版商
  54. Pan R, Ma J, Kong X, Wang X, Li S, Qi X, et al. Sodium rutin ameliorates Alzheimer's disease-like pathology by enhancing microglial amyloid-β clearance. Sci Adv. 2019;5:eaau6328 pubmed 出版商
  55. Michno W, Nyström S, Wehrli P, Lashley T, Brinkmalm G, Guerard L, et al. Pyroglutamation of amyloid-βx-42 (Aβx-42) followed by Aβ1-40 deposition underlies plaque polymorphism in progressing Alzheimer's disease pathology. J Biol Chem. 2019;294:6719-6732 pubmed 出版商
  56. Sri S, Pegasiou C, Cave C, Hough K, Wood N, Gomez Nicola D, et al. Emergence of synaptic and cognitive impairment in a mature-onset APP mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2019;7:25 pubmed 出版商
  57. Lahiri S, Regis G, Koronyo Y, Fuchs D, Sheyn J, Kim E, et al. Acute neuropathological consequences of short-term mechanical ventilation in wild-type and Alzheimer's disease mice. Crit Care. 2019;23:63 pubmed 出版商
  58. Dominy S, LYNCH C, Ermini F, Benedyk M, Marczyk A, Konradi A, et al. Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5:eaau3333 pubmed 出版商
  59. Gutierrez Mecinas M, Bell A, Shepherd F, Polgár E, Watanabe M, Furuta T, et al. Expression of cholecystokinin by neurons in mouse spinal dorsal horn. J Comp Neurol. 2019;527:1857-1871 pubmed 出版商
  60. Pierzynowska K, Podlacha M, Gaffke L, Majkutewicz I, Mantej J, Wegrzyn A, et al. Autophagy-dependent mechanism of genistein-mediated elimination of behavioral and biochemical defects in the rat model of sporadic Alzheimer's disease. Neuropharmacology. 2019;148:332-346 pubmed 出版商
  61. Gerber H, Mosser S, Boury Jamot B, Stumpe M, Piersigilli A, Goepfert C, et al. The APMAP interactome reveals new modulators of APP processing and beta-amyloid production that are altered in Alzheimer's disease. Acta Neuropathol Commun. 2019;7:13 pubmed 出版商
  62. Rosenzweig N, Dvir Szternfeld R, Tsitsou Kampeli A, Keren Shaul H, Ben Yehuda H, Weill Raynal P, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun. 2019;10:465 pubmed 出版商
  63. Beckelman B, Yang W, Kasica N, Zimmermann H, Zhou X, Keene C, et al. Genetic reduction of eEF2 kinase alleviates pathophysiology in Alzheimer's disease model mice. J Clin Invest. 2019;129:820-833 pubmed 出版商
  64. Reichenbach N, Delekate A, Plescher M, Schmitt F, Krauss S, Blank N, et al. Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer's disease model. EMBO Mol Med. 2019;11: pubmed 出版商
  65. Sun J, Carlson Stevermer J, Das U, Shen M, Delenclos M, Snead A, et al. CRISPR/Cas9 editing of APP C-terminus attenuates β-cleavage and promotes α-cleavage. Nat Commun. 2019;10:53 pubmed 出版商
  66. Tan J, Gleeson P. The trans-Golgi network is a major site for α-secretase processing of amyloid precursor protein in primary neurons. J Biol Chem. 2019;294:1618-1631 pubmed 出版商
  67. Thygesen C, Ilkjær L, Kempf S, Hemdrup A, von Linstow C, Babcock A, et al. Diverse Protein Profiles in CNS Myeloid Cells and CNS Tissue From Lipopolysaccharide- and Vehicle-Injected APPSWE/PS1ΔE9 Transgenic Mice Implicate Cathepsin Z in Alzheimer's Disease. Front Cell Neurosci. 2018;12:397 pubmed 出版商
  68. Real R, Peter M, Trabalza A, Khan S, Smith M, Dopp J, et al. In vivo modeling of human neuron dynamics and Down syndrome. Science. 2018;362: pubmed 出版商
  69. Ou Yang M, Kurz J, Nomura T, Popovic J, Rajapaksha T, Dong H, et al. Axonal organization defects in the hippocampus of adult conditional BACE1 knockout mice. Sci Transl Med. 2018;10: pubmed 出版商
  70. Götzl J, Colombo A, Fellerer K, Reifschneider A, Werner G, Tahirovic S, et al. Early lysosomal maturation deficits in microglia triggers enhanced lysosomal activity in other brain cells of progranulin knockout mice. Mol Neurodegener. 2018;13:48 pubmed 出版商
  71. Liu D, Lu H, Stein E, Zhou Z, Yang Y, Mattson M. Brain regional synchronous activity predicts tauopathy in 3×TgAD mice. Neurobiol Aging. 2018;70:160-169 pubmed 出版商
  72. Hartl D, May P, Gu W, Mayhaus M, Pichler S, Spaniol C, et al. A rare loss-of-function variant of ADAM17 is associated with late-onset familial Alzheimer disease. Mol Psychiatry. 2018;: pubmed 出版商
  73. Baglietto Vargas D, Prieto G, Limon A, Forner S, Rodriguez Ortiz C, Ikemura K, et al. Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer's disease. Aging Cell. 2018;17:e12791 pubmed 出版商
  74. Barbero Camps E, Roca Agujetas V, Bartolessis I, de Dios C, Fernandez Checa J, Mari M, et al. Cholesterol impairs autophagy-mediated clearance of amyloid beta while promoting its secretion. Autophagy. 2018;14:1129-1154 pubmed 出版商
  75. Ziegler Waldkirch S, Marksteiner K, Stoll J, d Errico P, Friesen M, Eiler D, et al. Environmental enrichment reverses Aβ pathology during pregnancy in a mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2018;6:44 pubmed 出版商
  76. Huang M, Qi W, Fang S, Jiang P, Yang C, Mo Y, et al. Pigment Epithelium-Derived Factor Plays a Role in Alzheimer's Disease by Negatively Regulating Aβ42. Neurotherapeutics. 2018;15:728-741 pubmed 出版商
  77. Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T, et al. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer's disease model. J Exp Med. 2018;215:1649-1663 pubmed 出版商
  78. Wendeln A, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature. 2018;556:332-338 pubmed 出版商
  79. Wang C, Najm R, Xu Q, Jeong D, Walker D, Balestra M, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med. 2018;24:647-657 pubmed 出版商
  80. Chiang A, Fowler S, Savjani R, Hilsenbeck S, Wallace C, Cirrito J, et al. Combination anti-Aβ treatment maximizes cognitive recovery and rebalances mTOR signaling in APP mice. J Exp Med. 2018;215:1349-1364 pubmed 出版商
  81. Casali B, Reed Geaghan E, Landreth G. Nuclear receptor agonist-driven modification of inflammation and amyloid pathology enhances and sustains cognitive improvements in a mouse model of Alzheimer's disease. J Neuroinflammation. 2018;15:43 pubmed 出版商
  82. Hu X, Das B, Hou H, He W, Yan R. BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions. J Exp Med. 2018;215:927-940 pubmed 出版商
  83. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau D, Zavala E, et al. NAD+ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018;115:E1876-E1885 pubmed 出版商
  84. Mukadam A, Breusegem S, Seaman M. Analysis of novel endosome-to-Golgi retrieval genes reveals a role for PLD3 in regulating endosomal protein sorting and amyloid precursor protein processing. Cell Mol Life Sci. 2018;75:2613-2625 pubmed 出版商
  85. Cramer P, Gentzel R, Tanis K, Vardigan J, Wang Y, Connolly B, et al. Aging African green monkeys manifest transcriptional, pathological, and cognitive hallmarks of human Alzheimer's disease. Neurobiol Aging. 2018;64:92-106 pubmed 出版商
  86. Chiang A, Fowler S, Reddy R, Pletnikova O, Troncoso J, Sherman M, et al. Discrete Pools of Oligomeric Amyloid-β Track with Spatial Learning Deficits in a Mouse Model of Alzheimer Amyloidosis. Am J Pathol. 2018;188:739-756 pubmed 出版商
  87. Ziegler Waldkirch S, d Errico P, Sauer J, Erny D, Savanthrapadian S, Loreth D, et al. Seed-induced Aβ deposition is modulated by microglia under environmental enrichment in a mouse model of Alzheimer's disease. EMBO J. 2018;37:167-182 pubmed 出版商
  88. Welty S, Teng Y, Liang Z, Zhao W, Sanders L, Greenamyre J, et al. RAD52 is required for RNA-templated recombination repair in post-mitotic neurons. J Biol Chem. 2018;293:1353-1362 pubmed 出版商
  89. Benvegnù S, Wahle T, Dotti C. E3 ligase mahogunin (MGRN1) influences amyloid precursor protein maturation and secretion. Oncotarget. 2017;8:89439-89450 pubmed 出版商
  90. Gasparotto J, Girardi C, Somensi N, Ribeiro C, Moreira J, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226-244 pubmed 出版商
  91. Ruan C, Liu J, Yang M, Saadipour K, Zeng Y, Liao H, et al. Sortilin inhibits amyloid pathology by regulating non-specific degradation of APP. Exp Neurol. 2018;299:75-85 pubmed 出版商
  92. Íñigo Marco I, Valencia M, Larrea L, Bugallo R, Martínez Goikoetxea M, Zuriguel I, et al. E46K ?-synuclein pathological mutation causes cell-autonomous toxicity without altering protein turnover or aggregation. Proc Natl Acad Sci U S A. 2017;114:E8274-E8283 pubmed 出版商
  93. Edler M, Sherwood C, Meindl R, Hopkins W, Ely J, Erwin J, et al. Aged chimpanzees exhibit pathologic hallmarks of Alzheimer's disease. Neurobiol Aging. 2017;59:107-120 pubmed 出版商
  94. Tseng J, Xie L, Song S, Xie Y, Allen L, Ajit D, et al. The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology. Cell Rep. 2017;20:2169-2183 pubmed 出版商
  95. Salazar S, Gallardo C, Kaufman A, Herber C, Haas L, Robinson S, et al. Conditional Deletion of Prnp Rescues Behavioral and Synaptic Deficits after Disease Onset in Transgenic Alzheimer's Disease. J Neurosci. 2017;37:9207-9221 pubmed 出版商
  96. Rocchi A, Yamamoto S, Ting T, Fan Y, SADLEIR K, Wang Y, et al. A Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer's disease. PLoS Genet. 2017;13:e1006962 pubmed 出版商
  97. Bustos V, Pulina M, Kelahmetoglu Y, Sinha S, Gorelick F, Flajolet M, et al. Bidirectional regulation of Aβ levels by Presenilin 1. Proc Natl Acad Sci U S A. 2017;114:7142-7147 pubmed 出版商
  98. Siedlak S, Jiang Y, Huntley M, Wang L, Gao J, Xie F, et al. TMEM230 Accumulation in Granulovacuolar Degeneration Bodies and Dystrophic Neurites of Alzheimer's Disease. J Alzheimers Dis. 2017;58:1027-1033 pubmed 出版商
  99. Li J, Barrero C, Merali S, Pratico D. Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer's phenotype. Sci Rep. 2017;7:46002 pubmed 出版商
  100. Latina V, Caioli S, Zona C, Ciotti M, Amadoro G, Calissano P. Impaired NGF/TrkA Signaling Causes Early AD-Linked Presynaptic Dysfunction in Cholinergic Primary Neurons. Front Cell Neurosci. 2017;11:68 pubmed 出版商
  101. Poulsen E, Iannuzzi F, Rasmussen H, Maier T, Enghild J, Jørgensen A, et al. An Aberrant Phosphorylation of Amyloid Precursor Protein Tyrosine Regulates Its Trafficking and the Binding to the Clathrin Endocytic Complex in Neural Stem Cells of Alzheimer's Disease Patients. Front Mol Neurosci. 2017;10:59 pubmed 出版商
  102. Koistinen N, Edlund A, Menon P, Ivanova E, Bacanu S, Iverfeldt K. Nuclear localization of amyloid-? precursor protein-binding protein Fe65 is dependent on regulated intramembrane proteolysis. PLoS ONE. 2017;12:e0173888 pubmed 出版商
  103. Croft C, Wade M, Kurbatskaya K, Mastrandreas P, Hughes M, Phillips E, et al. Membrane association and release of wild-type and pathological tau from organotypic brain slice cultures. Cell Death Dis. 2017;8:e2671 pubmed 出版商
  104. Klementieva O, Willén K, Martinsson I, Israelsson B, Engdahl A, Cladera J, et al. Pre-plaque conformational changes in Alzheimer's disease-linked Aβ and APP. Nat Commun. 2017;8:14726 pubmed 出版商
  105. Vienken H, Mabrouki N, Grabau K, Claas R, Rudowski A, Schömel N, et al. Characterization of cholesterol homeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts reveals a Niemann-Pick disease type C-like phenotype with enhanced lysosomal Ca2+ storage. Sci Rep. 2017;7:43575 pubmed 出版商
  106. Gardenal E, Chiarini A, Armato U, Dal Pra I, Verkhratsky A, Rodriguez J. Increased Calcium-Sensing Receptor Immunoreactivity in the Hippocampus of a Triple Transgenic Mouse Model of Alzheimer's Disease. Front Neurosci. 2017;11:81 pubmed 出版商
  107. Stachowicz A, Olszanecki R, Suski M, Głombik K, Basta Kaim A, Adamek D, et al. Proteomic Analysis of Mitochondria-Enriched Fraction Isolated from the Frontal Cortex and Hippocampus of Apolipoprotein E Knockout Mice Treated with Alda-1, an Activator of Mitochondrial Aldehyde Dehydrogenase (ALDH2). Int J Mol Sci. 2017;18: pubmed 出版商
  108. Zheng T, Pu J, Chen Y, Mao Y, Guo Z, Pan H, et al. Plasma Exosomes Spread and Cluster Around ?-Amyloid Plaques in an Animal Model of Alzheimer's Disease. Front Aging Neurosci. 2017;9:12 pubmed 出版商
  109. Canu N, Pagano I, La Rosa L, Pellegrino M, Ciotti M, Mercanti D, et al. Association of TrkA and APP Is Promoted by NGF and Reduced by Cell Death-Promoting Agents. Front Mol Neurosci. 2017;10:15 pubmed 出版商
  110. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  111. Tao C, Hsu W, Ma Y, Cheng S, Lee E. Epigenetic regulation of HDAC1 SUMOylation as an endogenous neuroprotection against Aβ toxicity in a mouse model of Alzheimer's disease. Cell Death Differ. 2017;24:597-614 pubmed 出版商
  112. Kallakuri S, Desai A, Feng K, Tummala S, Saif T, Chen C, et al. Neuronal Injury and Glial Changes Are Hallmarks of Open Field Blast Exposure in Swine Frontal Lobe. PLoS ONE. 2017;12:e0169239 pubmed 出版商
  113. Mellott T, Huleatt O, Shade B, Pender S, Liu Y, Slack B, et al. Perinatal Choline Supplementation Reduces Amyloidosis and Increases Choline Acetyltransferase Expression in the Hippocampus of the APPswePS1dE9 Alzheimer's Disease Model Mice. PLoS ONE. 2017;12:e0170450 pubmed 出版商
  114. Huang S, Mao J, Ding K, Zhou Y, Zeng X, Yang W, et al. Polysaccharides from Ganoderma lucidum Promote Cognitive Function and Neural Progenitor Proliferation in Mouse Model of Alzheimer's Disease. Stem Cell Reports. 2017;8:84-94 pubmed 出版商
  115. Takahashi H, Klein Z, Bhagat S, Kaufman A, Kostylev M, Ikezu T, et al. Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol. 2017;133:785-807 pubmed 出版商
  116. Rodriguez Callejas J, Fuchs E, Perez Cruz C. Evidence of Tau Hyperphosphorylation and Dystrophic Microglia in the Common Marmoset. Front Aging Neurosci. 2016;8:315 pubmed 出版商
  117. Yoshida K, Hata Y, Kinoshita K, Takashima S, Tanaka K, Nishida N. Incipient progressive supranuclear palsy is more common than expected and may comprise clinicopathological subtypes: a forensic autopsy series. Acta Neuropathol. 2017;133:809-823 pubmed 出版商
  118. Guillot Sestier M, Weitz T, Town T. Quantitative 3D In Silico Modeling (q3DISM) of Cerebral Amyloid-beta Phagocytosis in Rodent Models of Alzheimer's Disease. J Vis Exp. 2016;: pubmed 出版商
  119. Chen M, Wang J, Jiang J, Zheng X, Justice N, Wang K, et al. APP modulates KCC2 expression and function in hippocampal GABAergic inhibition. elife. 2017;6: pubmed 出版商
  120. van der Zee J, Gijselinck I, Van Mossevelde S, Perrone F, Dillen L, Heeman B, et al. TBK1 Mutation Spectrum in an Extended European Patient Cohort with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Hum Mutat. 2017;38:297-309 pubmed 出版商
  121. Park T, Ryu Y, Park H, Kim J, Go J, Noh J, et al. Humulus japonicus inhibits the progression of Alzheimer's disease in a APP/PS1 transgenic mouse model. Int J Mol Med. 2017;39:21-30 pubmed 出版商
  122. Butler C, Ogilvie K, Martinez Alsina L, Barreiro G, Beck E, Nolan C, et al. Aminomethyl-Derived Beta Secretase (BACE1) Inhibitors: Engaging Gly230 without an Anilide Functionality. J Med Chem. 2017;60:386-402 pubmed 出版商
  123. Stuart K, King A, Fernandez Martos C, Dittmann J, Summers M, Vickers J. Mid-life environmental enrichment increases synaptic density in CA1 in a mouse model of A?-associated pathology and positively influences synaptic and cognitive health in healthy ageing. J Comp Neurol. 2017;525:1797-1810 pubmed 出版商
  124. Del Turco D, Paul M, Schlaudraff J, Hick M, Endres K, Müller U, et al. Region-Specific Differences in Amyloid Precursor Protein Expression in the Mouse Hippocampus. Front Mol Neurosci. 2016;9:134 pubmed
  125. Chapuis J, Flaig A, Grenier Boley B, Eysert F, Pottiez V, Deloison G, et al. Genome-wide, high-content siRNA screening identifies the Alzheimer's genetic risk factor FERMT2 as a major modulator of APP metabolism. Acta Neuropathol. 2017;133:955-966 pubmed 出版商
  126. Kordower J, Goetz C, Chu Y, Halliday G, Nicholson D, Musial T, et al. Robust graft survival and normalized dopaminergic innervation do not obligate recovery in a Parkinson disease patient. Ann Neurol. 2017;81:46-57 pubmed 出版商
  127. Shively S, Edgerton S, Iacono D, Purohit D, Qu B, Haroutunian V, et al. Localized cortical chronic traumatic encephalopathy pathology after single, severe axonal injury in human brain. Acta Neuropathol. 2017;133:353-366 pubmed 出版商
  128. Zhang H, Sun S, Wu L, Pchitskaya E, Zakharova O, Fon Tacer K, et al. Store-Operated Calcium Channel Complex in Postsynaptic Spines: A New Therapeutic Target for Alzheimer's Disease Treatment. J Neurosci. 2016;36:11837-11850 pubmed
  129. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65:375-387 pubmed 出版商
  130. Yang S, Lee D, Shin J, Lee S, Baek S, Kim J, et al. Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice. EMBO Mol Med. 2017;9:61-77 pubmed 出版商
  131. Hu Y, Zou Y, Huang Y, Zhang Y, Lourenco G, Chen S, et al. ROCK1 Is Associated with Alzheimer's Disease-Specific Plaques, as well as Enhances Autophagosome Formation But not Autophagic A? Clearance. Front Cell Neurosci. 2016;10:253 pubmed
  132. Hübner N, Mechling A, Lee H, Reisert M, Bienert T, Hennig J, et al. The connectomics of brain demyelination: Functional and structural patterns in the cuprizone mouse model. Neuroimage. 2017;146:1-18 pubmed 出版商
  133. Lejbman N, OLIVERA A, Heinzelmann M, Feng R, Yun S, Kim H, et al. Active duty service members who sustain a traumatic brain injury have chronically elevated peripheral concentrations of A?40 and lower ratios of A?42/40. Brain Inj. 2016;30:1436-1441 pubmed
  134. Noy S, Krawitz S, Del Bigio M. Chronic Traumatic Encephalopathy-Like Abnormalities in a Routine Neuropathology Service. J Neuropathol Exp Neurol. 2016;75:1145-1154 pubmed 出版商
  135. Ling H, Kovacs G, Vonsattel J, DAVEY K, Mok K, Hardy J, et al. Astrogliopathy predominates the earliest stage of corticobasal degeneration pathology. Brain. 2016;139:3237-3252 pubmed
  136. Fan Y, Wang N, Rocchi A, Zhang W, Vassar R, Zhou Y, et al. Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy. 2017;13:41-56 pubmed 出版商
  137. Tapia Rojas C, Burgos P, Inestrosa N. Inhibition of Wnt signaling induces amyloidogenic processing of amyloid precursor protein and the production and aggregation of Amyloid-? (A?)42 peptides. J Neurochem. 2016;139:1175-1191 pubmed 出版商
  138. Bangasser D, Dong H, Carroll J, Plona Z, Ding H, Rodriguez L, et al. Corticotropin-releasing factor overexpression gives rise to sex differences in Alzheimer's disease-related signaling. Mol Psychiatry. 2017;22:1126-1133 pubmed 出版商
  139. Woodruff G, Reyna S, Dunlap M, van der Kant R, Callender J, Young J, et al. Defective Transcytosis of APP and Lipoproteins in Human iPSC-Derived Neurons with Familial Alzheimer's Disease Mutations. Cell Rep. 2016;17:759-773 pubmed 出版商
  140. Zuhl A, Nolan C, Brodney M, Niessen S, Atchison K, Houle C, et al. Chemoproteomic profiling reveals that cathepsin D off-target activity drives ocular toxicity of ?-secretase inhibitors. Nat Commun. 2016;7:13042 pubmed 出版商
  141. Auer Grumbach M, Toegel S, Schabhüttl M, Weinmann D, Chiari C, Bennett D, et al. Rare Variants in MME, Encoding Metalloprotease Neprilysin, Are Linked to Late-Onset Autosomal-Dominant Axonal Polyneuropathies. Am J Hum Genet. 2016;99:607-623 pubmed 出版商
  142. Qin X, Wang Y, Paudel H. Early Growth Response 1 (Egr-1) Is a Transcriptional Activator of ?-Secretase 1 (BACE-1) in the Brain. J Biol Chem. 2016;291:22276-22287 pubmed
  143. Steffen J, Krohn M, Paarmann K, Schwitlick C, Brüning T, Marreiros R, et al. Revisiting rodent models: Octodon degus as Alzheimer's disease model?. Acta Neuropathol Commun. 2016;4:91 pubmed 出版商
  144. Xu J, De Winter F, Farrokhi C, Rockenstein E, Mante M, Adame A, et al. Neuregulin 1 improves cognitive deficits and neuropathology in an Alzheimer's disease model. Sci Rep. 2016;6:31692 pubmed 出版商
  145. Manousopoulou A, Gatherer M, Smith C, Nicoll J, Woelk C, Johnson M, et al. Systems proteomic analysis reveals that clusterin and tissue inhibitor of metalloproteinases 3 increase in leptomeningeal arteries affected by cerebral amyloid angiopathy. Neuropathol Appl Neurobiol. 2017;43:492-504 pubmed 出版商
  146. Dinkins M, Enasko J, Hernandez C, Wang G, Kong J, Helwa I, et al. Neutral Sphingomyelinase-2 Deficiency Ameliorates Alzheimer's Disease Pathology and Improves Cognition in the 5XFAD Mouse. J Neurosci. 2016;36:8653-67 pubmed 出版商
  147. Badea A, Kane L, Anderson R, Qi Y, Foster M, Cofer G, et al. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage. 2016;142:498-511 pubmed 出版商
  148. Manocha G, Floden A, Rausch K, Kulas J, McGregor B, Rojanathammanee L, et al. APP Regulates Microglial Phenotype in a Mouse Model of Alzheimer's Disease. J Neurosci. 2016;36:8471-86 pubmed 出版商
  149. Galambos C, Minic A, Bush D, Nguyen D, Dodson B, Seedorf G, et al. Increased Lung Expression of Anti-Angiogenic Factors in Down Syndrome: Potential Role in Abnormal Lung Vascular Growth and the Risk for Pulmonary Hypertension. PLoS ONE. 2016;11:e0159005 pubmed 出版商
  150. Salta E, Sierksma A, Vanden Eynden E, De Strooper B. miR-132 loss de-represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer's brain. EMBO Mol Med. 2016;8:1005-18 pubmed 出版商
  151. Kim H, Lee K, Kim A, Choi M, Choi K, Kang M, et al. A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition. Dis Model Mech. 2016;9:839-48 pubmed 出版商
  152. Zhao Y, Song J, Ma X, Zhang B, Li D, Pang H. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression. Neural Regen Res. 2016;11:944-50 pubmed 出版商
  153. Ayyadevara S, Balasubramaniam M, Parcon P, Barger S, Griffin W, Alla R, et al. Proteins that mediate protein aggregation and cytotoxicity distinguish Alzheimer's hippocampus from normal controls. Aging Cell. 2016;15:924-39 pubmed 出版商
  154. Pajares M, Jiménez Moreno N, García Yagüe A, Escoll M, De Ceballos M, Van Leuven F, et al. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy. 2016;12:1902-1916 pubmed
  155. Eyjolfsdottir H, Eriksdotter M, Linderoth B, Lind G, Juliusson B, Kusk P, et al. Targeted delivery of nerve growth factor to the cholinergic basal forebrain of Alzheimer's disease patients: application of a second-generation encapsulated cell biodelivery device. Alzheimers Res Ther. 2016;8:30 pubmed 出版商
  156. Bergkvist L, Sandin L, Kågedal K, Brorsson A. A?PP processing results in greater toxicity per amount of A?1-42 than individually expressed and secreted A?1-42 in Drosophila melanogaster. Biol Open. 2016;5:1030-9 pubmed 出版商
  157. Li T, Braunstein K, Zhang J, Lau A, Sibener L, Deeble C, et al. The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model. Nat Commun. 2016;7:12082 pubmed 出版商
  158. Brai E, Alina Raio N, Alberi L. Notch1 hallmarks fibrillary depositions in sporadic Alzheimer's disease. Acta Neuropathol Commun. 2016;4:64 pubmed 出版商
  159. Gelpi E, Hoftberger R, Graus F, Ling H, Holton J, Dawson T, et al. Neuropathological criteria of anti-IgLON5-related tauopathy. Acta Neuropathol. 2016;132:531-43 pubmed 出版商
  160. Adams S, Tilton K, Kozubek J, Seshadri S, Delalle I. Subcellular Changes in Bridging Integrator 1 Protein Expression in the Cerebral Cortex During the Progression of Alzheimer Disease Pathology. J Neuropathol Exp Neurol. 2016;75:779-790 pubmed
  161. Herring A, Münster Y, Akkaya T, Moghaddam S, Deinsberger K, Meyer J, et al. Kallikrein-8 inhibition attenuates Alzheimer's disease pathology in mice. Alzheimers Dement. 2016;12:1273-1287 pubmed 出版商
  162. Löffler T, Flunkert S, Temmel M, Hutter Paier B. Decreased Plasma A? in Hyperlipidemic APPSL Transgenic Mice Is Associated with BBB Dysfunction. Front Neurosci. 2016;10:232 pubmed 出版商
  163. Marzesco A, Flötenmeyer M, Bühler A, Obermüller U, Staufenbiel M, Jucker M, et al. Highly potent intracellular membrane-associated A? seeds. Sci Rep. 2016;6:28125 pubmed 出版商
  164. Shively S, Horkayne Szakaly I, Jones R, Kelly J, Armstrong R, Perl D. Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series. Lancet Neurol. 2016;15:944-953 pubmed 出版商
  165. Kumar D, Choi S, Washicosky K, Eimer W, Tucker S, Ghofrani J, et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. Sci Transl Med. 2016;8:340ra72 pubmed 出版商
  166. Bao J, Zheng L, Zhang Q, Li X, Zhang X, Li Z, et al. Deacetylation of TFEB promotes fibrillar A? degradation by upregulating lysosomal biogenesis in microglia. Protein Cell. 2016;7:417-33 pubmed 出版商
  167. Chan E, Shetty M, Sajikumar S, Chen C, Soong T, Wong B. ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer's disease mouse model. Sci Rep. 2016;6:26119 pubmed 出版商
  168. Stroh M, Winter M, Swerdlow R, McCarson K, Zhu H. Loss of NCB5OR in the cerebellum disturbs iron pathways, potentiates behavioral abnormalities, and exacerbates harmaline-induced tremor in mice. Metab Brain Dis. 2016;31:951-64 pubmed 出版商
  169. Beck S, Guo L, Phensy A, Tian J, Wang L, Tandon N, et al. Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer's disease. Nat Commun. 2016;7:11483 pubmed 出版商
  170. Kim C, Lim E, Shin S, Krause H, Hong H. Magnetic immunoassay platform based on the planar frequency mixing magnetic technique. Biosens Bioelectron. 2016;83:293-9 pubmed 出版商
  171. Jang S, Royston S, Lee G, Wang S, Chung H. Seizure-Induced Regulations of Amyloid-?, STEP61, and STEP61 Substrates Involved in Hippocampal Synaptic Plasticity. Neural Plast. 2016;2016:2123748 pubmed 出版商
  172. Lee K, Lee H, Lin H, Tsay H, Tsai F, Shyue S, et al. Role of transient receptor potential ankyrin 1 channels in Alzheimer's disease. J Neuroinflammation. 2016;13:92 pubmed 出版商
  173. Yetman M, Fowler S, Jankowsky J. Humanized Tau Mice with Regionalized Amyloid Exhibit Behavioral Deficits but No Pathological Interaction. PLoS ONE. 2016;11:e0153724 pubmed 出版商
  174. Kurbatskaya K, Phillips E, Croft C, Dentoni G, Hughes M, Wade M, et al. Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer's disease brain. Acta Neuropathol Commun. 2016;4:34 pubmed 出版商
  175. Ando K, Maruko Otake A, Ohtake Y, Hayashishita M, Sekiya M, Iijima K. Stabilization of Microtubule-Unbound Tau via Tau Phosphorylation at Ser262/356 by Par-1/MARK Contributes to Augmentation of AD-Related Phosphorylation and Aβ42-Induced Tau Toxicity. PLoS Genet. 2016;12:e1005917 pubmed 出版商
  176. Griñan Ferré C, Sarroca S, Ivanova A, Puigoriol Illamola D, Aguado F, Camins A, et al. Epigenetic mechanisms underlying cognitive impairment and Alzheimer disease hallmarks in 5XFAD mice. Aging (Albany NY). 2016;8:664-84 pubmed 出版商
  177. Sadleir K, Kandalepas P, Buggia Prevot V, Nicholson D, Thinakaran G, Vassar R. Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer's disease. Acta Neuropathol. 2016;132:235-56 pubmed 出版商
  178. Kretner B, Trambauer J, Fukumori A, Mielke J, Kuhn P, Kremmer E, et al. Generation and deposition of Aβ43 by the virtually inactive presenilin-1 L435F mutant contradicts the presenilin loss-of-function hypothesis of Alzheimer's disease. EMBO Mol Med. 2016;8:458-65 pubmed 出版商
  179. Son S, Cha M, Choi H, Kang S, Choi H, Lee M, et al. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy. 2016;12:784-800 pubmed 出版商
  180. Reinert J, Richard B, Klafki H, Friedrich B, Bayer T, Wiltfang J, et al. Deposition of C-terminally truncated Aβ species Aβ37 and Aβ39 in Alzheimer's disease and transgenic mouse models. Acta Neuropathol Commun. 2016;4:24 pubmed 出版商
  181. Perez S, Sherwood C, Cranfield M, Erwin J, Mudakikwa A, Hof P, et al. Early Alzheimer's disease-type pathology in the frontal cortex of wild mountain gorillas (Gorilla beringei beringei). Neurobiol Aging. 2016;39:195-201 pubmed 出版商
  182. Guillot F, Kemppainen S, Lavasseur G, Miettinen P, Laroche S, Tanila H, et al. Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis. 2016;51:1157-73 pubmed 出版商
  183. Garcia Ratés S, Morrill P, Tu H, Pottiez G, Badin A, Tormo Garcia C, et al. (I) Pharmacological profiling of a novel modulator of the α7 nicotinic receptor: Blockade of a toxic acetylcholinesterase-derived peptide increased in Alzheimer brains. Neuropharmacology. 2016;105:487-499 pubmed 出版商
  184. Winston C, Noël A, Neustadtl A, Parsadanian M, Barton D, Chellappa D, et al. Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma. Am J Pathol. 2016;186:552-67 pubmed 出版商
  185. Wilhelmus M, de Jager M, Smit A, van der Loo R, Drukarch B. Catalytically active tissue transglutaminase colocalises with Aβ pathology in Alzheimer's disease mouse models. Sci Rep. 2016;6:20569 pubmed 出版商
  186. Stevenson J, Conaty E, Walsh R, Poidomani P, Samoriski C, Scollins B, et al. The Amyloid Precursor Protein of Alzheimer's Disease Clusters at the Organelle/Microtubule Interface on Organelles that Bind Microtubules in an ATP Dependent Manner. PLoS ONE. 2016;11:e0147808 pubmed 出版商
  187. Peng Y, Kim M, Hullinger R, O Riordan K, Burger C, Pehar M, et al. Improved proteostasis in the secretory pathway rescues Alzheimer's disease in the mouse. Brain. 2016;139:937-52 pubmed 出版商
  188. Hares K, Redondo J, Kemp K, Rice C, Scolding N, Wilkins A. Axonal motor protein KIF5A and associated cargo deficits in multiple sclerosis lesional and normal-appearing white matter. Neuropathol Appl Neurobiol. 2017;43:227-241 pubmed 出版商
  189. Piedrahita D, Castro Álvarez J, Boudreau R, Villegas Lanau A, Kosik K, Gallego Gómez J, et al. β-Secretase 1's Targeting Reduces Hyperphosphorilated Tau, Implying Autophagy Actors in 3xTg-AD Mice. Front Cell Neurosci. 2015;9:498 pubmed 出版商
  190. Yuan P, Grutzendler J. Attenuation of β-Amyloid Deposition and Neurotoxicity by Chemogenetic Modulation of Neural Activity. J Neurosci. 2016;36:632-41 pubmed 出版商
  191. Lian H, Litvinchuk A, Chiang A, Aithmitti N, Jankowsky J, Zheng H. Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease. J Neurosci. 2016;36:577-89 pubmed 出版商
  192. Lin R, Chen J, Li X, Mao J, Wu Y, Zhuo P, et al. Electroacupuncture at the Baihui acupoint alleviates cognitive impairment and exerts neuroprotective effects by modulating the expression and processing of brain-derived neurotrophic factor in APP/PS1 transgenic mice. Mol Med Rep. 2016;13:1611-7 pubmed 出版商
  193. Chen A, Kim S, Shepardson N, Patel S, Hong S, Selkoe D. Physical and functional interaction between the α- and γ-secretases: A new model of regulated intramembrane proteolysis. J Cell Biol. 2015;211:1157-76 pubmed 出版商
  194. Haas L, Salazar S, Kostylev M, Um J, Kaufman A, Strittmatter S. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain. 2016;139:526-46 pubmed 出版商
  195. Lee S, Bang S, Hong Y, Lee J, Jeong H, Park S, et al. The calcineurin inhibitor Sarah (Nebula) exacerbates Aβ42 phenotypes in a Drosophila model of Alzheimer's disease. Dis Model Mech. 2016;9:295-306 pubmed 出版商
  196. Müller Schiffmann A, Herring A, Abdel Hafiz L, Chepkova A, Schäble S, Wedel D, et al. Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain. 2016;139:509-25 pubmed 出版商
  197. Das U, Wang L, Ganguly A, Saikia J, Wagner S, Koo E, et al. Visualizing APP and BACE-1 approximation in neurons yields insight into the amyloidogenic pathway. Nat Neurosci. 2016;19:55-64 pubmed 出版商
  198. Gyoneva S, Kim D, Katsumoto A, Kokiko Cochran O, Lamb B, Ransohoff R. Ccr2 deletion dissociates cavity size and tau pathology after mild traumatic brain injury. J Neuroinflammation. 2015;12:228 pubmed 出版商
  199. Leshchyns ka I, Liew H, Shepherd C, Halliday G, Stevens C, Ke Y, et al. Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. Nat Commun. 2015;6:8836 pubmed 出版商
  200. Tapia Rojas C, Lindsay C, Montecinos Oliva C, Arrázola M, Retamales R, Bunout D, et al. Is L-methionine a trigger factor for Alzheimer's-like neurodegeneration?: Changes in Aβ oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice. Mol Neurodegener. 2015;10:62 pubmed 出版商
  201. Wang J, Lu R, Yang J, Li H, He Z, Jing N, et al. TRPC6 specifically interacts with APP to inhibit its cleavage by γ-secretase and reduce Aβ production. Nat Commun. 2015;6:8876 pubmed 出版商
  202. De Mario A, Castellani A, Peggion C, Massimino M, Lim D, Hill A, et al. The prion protein constitutively controls neuronal store-operated Ca(2+) entry through Fyn kinase. Front Cell Neurosci. 2015;9:416 pubmed 出版商
  203. Gao L, Tian M, Zhao H, Xu Q, Huang Y, Si Q, et al. TrkB activation by 7, 8-dihydroxyflavone increases synapse AMPA subunits and ameliorates spatial memory deficits in a mouse model of Alzheimer's disease. J Neurochem. 2016;136:620-36 pubmed 出版商
  204. Xu G, Ran Y, Fromholt S, Fu C, Yachnis A, Golde T, et al. Murine Aβ over-production produces diffuse and compact Alzheimer-type amyloid deposits. Acta Neuropathol Commun. 2015;3:72 pubmed 出版商
  205. Ostapchenko V, Chen M, Guzman M, Xie Y, Lavine N, Fan J, et al. The Transient Receptor Potential Melastatin 2 (TRPM2) Channel Contributes to β-Amyloid Oligomer-Related Neurotoxicity and Memory Impairment. J Neurosci. 2015;35:15157-69 pubmed 出版商
  206. Sabogal Guáqueta A, Osorio E, Cardona Gómez G. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice. Neuropharmacology. 2016;102:111-20 pubmed 出版商
  207. Cherry J, Olschowka J, O Banion M. Arginase 1+ microglia reduce Aβ plaque deposition during IL-1β-dependent neuroinflammation. J Neuroinflammation. 2015;12:203 pubmed 出版商
  208. Kumar R, Nordberg A, Darreh Shori T. Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs. Brain. 2016;139:174-92 pubmed 出版商
  209. Quigley H, Pitha I, Welsbie D, Nguyen C, Steinhart M, Nguyen T, et al. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma. PLoS ONE. 2015;10:e0141137 pubmed 出版商
  210. Miners J, Palmer J, Love S. Pathophysiology of Hypoperfusion of the Precuneus in Early Alzheimer's Disease. Brain Pathol. 2016;26:533-41 pubmed 出版商
  211. Lafrenaye A, Todani M, Walker S, Povlishock J. Microglia processes associate with diffusely injured axons following mild traumatic brain injury in the micro pig. J Neuroinflammation. 2015;12:186 pubmed 出版商
  212. Gabbita S, Johnson M, Kobritz N, Eslami P, Poteshkina A, Varadarajan S, et al. Oral TNFα Modulation Alters Neutrophil Infiltration, Improves Cognition and Diminishes Tau and Amyloid Pathology in the 3xTgAD Mouse Model. PLoS ONE. 2015;10:e0137305 pubmed 出版商
  213. Kokiko Cochran O, Ransohoff L, Veenstra M, Lee S, Saber M, Sikora M, et al. Altered Neuroinflammation and Behavior after Traumatic Brain Injury in a Mouse Model of Alzheimer's Disease. J Neurotrauma. 2016;33:625-40 pubmed 出版商
  214. Howell M, Bailey L, Cozart M, Gannon B, Gottschall P. Hippocampal administration of chondroitinase ABC increases plaque-adjacent synaptic marker and diminishes amyloid burden in aged APPswe/PS1dE9 mice. Acta Neuropathol Commun. 2015;3:54 pubmed 出版商
  215. Henstridge C, Jackson R, Kim J, Herrmann A, Wright A, Harris S, et al. Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathol Commun. 2015;3:53 pubmed 出版商
  216. Keable A, Fenna K, Yuen H, Johnston D, Smyth N, Smith C, et al. Deposition of amyloid β in the walls of human leptomeningeal arteries in relation to perivascular drainage pathways in cerebral amyloid angiopathy. Biochim Biophys Acta. 2016;1862:1037-46 pubmed 出版商
  217. Montine T, Monsell S, Beach T, Bigio E, Bu Y, Cairns N, et al. Multisite assessment of NIA-AA guidelines for the neuropathologic evaluation of Alzheimer's disease. Alzheimers Dement. 2016;12:164-169 pubmed 出版商
  218. Chun Y, Oh H, Park M, Kim T, Chung S. Increasing Membrane Cholesterol Level Increases the Amyloidogenic Peptide by Enhancing the Expression of Phospholipase C. J Neurodegener Dis. 2013;2013:407903 pubmed 出版商
  219. Rolyan H, Tyurina Y, Hernandez M, Amoscato A, Sparvero L, Nmezi B, et al. Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused by Lamin B1 Overexpression. J Neurosci. 2015;35:12002-17 pubmed 出版商
  220. Cavieres V, González A, Muñoz V, Yefi C, Bustamante H, Barraza R, et al. Tetrahydrohyperforin Inhibits the Proteolytic Processing of Amyloid Precursor Protein and Enhances Its Degradation by Atg5-Dependent Autophagy. PLoS ONE. 2015;10:e0136313 pubmed 出版商
  221. Lundgren J, Ahmed S, Schedin Weiss S, Gouras G, Winblad B, Tjernberg L, et al. ADAM10 and BACE1 are localized to synaptic vesicles. J Neurochem. 2015;135:606-15 pubmed 出版商
  222. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  223. Kovacs G, van der Zee J, Hort J, Kristoferitsch W, Leitha T, Höftberger R, et al. Clinicopathological description of two cases with SQSTM1 gene mutation associated with frontotemporal dementia. Neuropathology. 2016;36:27-38 pubmed 出版商
  224. Lutzenberger M, Burwinkel M, Riemer C, Bode V, Baier M. Ablation of CCAAT/Enhancer-Binding Protein Delta (C/EBPD): Increased Plaque Burden in a Murine Alzheimer's Disease Model. PLoS ONE. 2015;10:e0134228 pubmed 出版商
  225. Owais K, Huang T, Mahmood F, Hubbard J, Saraf R, Bardia A, et al. Cardiopulmonary Bypass Decreases Activation of the Signal Transducer and Activator of Transcription 3 (STAT3) Pathway in Diabetic Human Myocardium. Ann Thorac Surg. 2015;100:1636-45; discussion 1645 pubmed 出版商
  226. Tousseyn T, Bajsarowicz K, Sánchez H, Gheyara A, Oehler A, Geschwind M, et al. Prion Disease Induces Alzheimer Disease-Like Neuropathologic Changes. J Neuropathol Exp Neurol. 2015;74:873-88 pubmed 出版商
  227. Currinn H, Guscott B, Balklava Z, Rothnie A, Wassmer T. APP controls the formation of PI(3,5)P(2) vesicles through its binding of the PIKfyve complex. Cell Mol Life Sci. 2016;73:393-408 pubmed 出版商
  228. Pogue A, Dua P, Hill J, Lukiw W. Progressive inflammatory pathology in the retina of aluminum-fed 5xFAD transgenic mice. J Inorg Biochem. 2015;152:206-9 pubmed 出版商
  229. McClean P, Jalewa J, Hölscher C. Prophylactic liraglutide treatment prevents amyloid plaque deposition, chronic inflammation and memory impairment in APP/PS1 mice. Behav Brain Res. 2015;293:96-106 pubmed 出版商
  230. Alme M, Nystad A, Bø L, Myhr K, Vedeler C, Wergeland S, et al. Fingolimod does not enhance cerebellar remyelination in the cuprizone model. J Neuroimmunol. 2015;285:180-6 pubmed 出版商
  231. Zeineh M, Chen Y, Kitzler H, Hammond R, Vogel H, Rutt B. Activated iron-containing microglia in the human hippocampus identified by magnetic resonance imaging in Alzheimer disease. Neurobiol Aging. 2015;36:2483-500 pubmed 出版商
  232. Ziskin J, Greicius M, Zhu W, Okumu A, Adams C, Plowey E. Neuropathologic analysis of Tyr69His TTR variant meningovascular amyloidosis with dementia. Acta Neuropathol Commun. 2015;3:43 pubmed 出版商
  233. Panmanee J, Nopparat C, Chavanich N, Shukla M, Mukda S, Song W, et al. Melatonin regulates the transcription of βAPP-cleaving secretases mediated through melatonin receptors in human neuroblastoma SH-SY5Y cells. J Pineal Res. 2015;59:308-20 pubmed 出版商
  234. Tan X, Xue Y, Ma T, Wang X, Li J, Lan L, et al. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol Neurodegener. 2015;10:24 pubmed 出版商
  235. de Jager M, Drukarch B, Hofstee M, Brevé J, Jongenelen C, Bol J, et al. Tissue transglutaminase-catalysed cross-linking induces Apolipoprotein E multimers inhibiting Apolipoprotein E's protective effects towards amyloid-beta-induced toxicity. J Neurochem. 2015;134:1116-28 pubmed 出版商
  236. Corbett G, Gonzalez F, Pahan K. Activation of peroxisome proliferator-activated receptor α stimulates ADAM10-mediated proteolysis of APP. Proc Natl Acad Sci U S A. 2015;112:8445-50 pubmed 出版商
  237. Iacono D, Geraci Erck M, Peng H, Rabin M, Kurlan R. Reduced Number of Pigmented Neurons in the Substantia Nigra of Dystonia Patients? Findings from Extensive Neuropathologic, Immunohistochemistry, and Quantitative Analyses. Tremor Other Hyperkinet Mov (N Y). 2015;5: pubmed 出版商
  238. Nevzglyadova O, Mikhailova E, Amen T, Zenin V, Artemov A, Kostyleva E, et al. Yeast red pigment modifies Amyloid beta growth in Alzheimer disease models in both Saccharomyces cerevisiae and Drosophila melanogaster. Amyloid. 2015;22:100-11 pubmed 出版商
  239. Liu P, Reed M, Kotilinek L, Grant M, Forster C, Qiang W, et al. Quaternary Structure Defines a Large Class of Amyloid-β Oligomers Neutralized by Sequestration. Cell Rep. 2015;11:1760-71 pubmed 出版商
  240. Zhao Z, Sagare A, Ma Q, Halliday M, Kong P, Kisler K, et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci. 2015;18:978-87 pubmed 出版商
  241. Bhatt D, Puig K, Gorr M, Wold L, Combs C. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain. PLoS ONE. 2015;10:e0127102 pubmed 出版商
  242. Wang D, Kinoshita Y, Kinoshita C, Uo T, Sopher B, Cudaback E, et al. Loss of endophilin-B1 exacerbates Alzheimer's disease pathology. Brain. 2015;138:2005-19 pubmed 出版商
  243. Cuddy L, Seah C, Pasternak S, Rylett R. Differential regulation of the high-affinity choline transporter by wild-type and Swedish mutant amyloid precursor protein. J Neurochem. 2015;134:769-82 pubmed 出版商
  244. Rotman M, Welling M, van den Boogaard M, Moursel L, van der Graaf L, van Buchem M, et al. Fusion of hIgG1-Fc to 111In-anti-amyloid single domain antibody fragment VHH-pa2H prolongs blood residential time in APP/PS1 mice but does not increase brain uptake. Nucl Med Biol. 2015;42:695-702 pubmed 出版商
  245. Del Mar N, von Buttlar X, Yu A, Guley N, Reiner A, Honig M. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments. Exp Neurol. 2015;271:53-71 pubmed 出版商
  246. Plagg B, Marksteiner J, Kniewallner K, Humpel C. Platelet dysfunction in hypercholesterolemia mice, two Alzheimer's disease mouse models and in human patients with Alzheimer's disease. Biogerontology. 2015;16:543-58 pubmed 出版商
  247. Liu P, Paulson J, Forster C, Shapiro S, Ashe K, Zahs K. Characterization of a Novel Mouse Model of Alzheimer's Disease--Amyloid Pathology and Unique β-Amyloid Oligomer Profile. PLoS ONE. 2015;10:e0126317 pubmed 出版商
  248. Reid G, Darvesh S. Butyrylcholinesterase-knockout reduces brain deposition of fibrillar β-amyloid in an Alzheimer mouse model. Neuroscience. 2015;298:424-35 pubmed 出版商
  249. Wang H, Sang N, Zhang C, Raghupathi R, Tanzi R, SAUNDERS A. Cathepsin L Mediates the Degradation of Novel APP C-Terminal Fragments. Biochemistry. 2015;54:2806-16 pubmed 出版商
  250. La Rosa L, Perrone L, Nielsen M, Calissano P, Andersen O, Matrone C. Y682G Mutation of Amyloid Precursor Protein Promotes Endo-Lysosomal Dysfunction by Disrupting APP-SorLA Interaction. Front Cell Neurosci. 2015;9:109 pubmed 出版商
  251. Webster S, Van Eldik L, Watterson D, Bachstetter A. Closed head injury in an age-related Alzheimer mouse model leads to an altered neuroinflammatory response and persistent cognitive impairment. J Neurosci. 2015;35:6554-69 pubmed 出版商
  252. Hernandez Guillamon M, Mawhirt S, Blais S, Montaner J, Neubert T, Rostagno A, et al. Sequential Amyloid-β Degradation by the Matrix Metalloproteases MMP-2 and MMP-9. J Biol Chem. 2015;290:15078-91 pubmed 出版商
  253. Kan M, Lee J, Wilson J, Everhart A, Brown C, Hoofnagle A, et al. Arginine deprivation and immune suppression in a mouse model of Alzheimer's disease. J Neurosci. 2015;35:5969-82 pubmed 出版商
  254. Yetman M, Lillehaug S, Bjaalie J, Leergaard T, Jankowsky J. Transgene expression in the Nop-tTA driver line is not inherently restricted to the entorhinal cortex. Brain Struct Funct. 2016;221:2231-49 pubmed 出版商
  255. Hohsfield L, Humpel C. Intravenous infusion of monocytes isolated from 2-week-old mice enhances clearance of Beta-amyloid plaques in an Alzheimer mouse model. PLoS ONE. 2015;10:e0121930 pubmed 出版商
  256. PajÄ…k B, Kania E, Orzechowski A. Nucleofection of rat pheochromocytoma PC-12 cells with human mutated beta-amyloid precursor protein gene (APP-sw) leads to reduced viability, autophagy-like process, and increased expression and secretion of beta amyloid. Biomed Res Int. 2015;2015:746092 pubmed 出版商
  257. Brodney M, Beck E, Butler C, Barreiro G, Johnson E, Riddell D, et al. Utilizing structures of CYP2D6 and BACE1 complexes to reduce risk of drug-drug interactions with a novel series of centrally efficacious BACE1 inhibitors. J Med Chem. 2015;58:3223-52 pubmed 出版商
  258. Leinenga G, Götz J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer's disease mouse model. Sci Transl Med. 2015;7:278ra33 pubmed 出版商
  259. López González I, Schlüter A, Aso E, Garcia Esparcia P, Ansoleaga B, Llorens F, et al. Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J Neuropathol Exp Neurol. 2015;74:319-44 pubmed 出版商
  260. Collins J, King A, Woodhouse A, Kirkcaldie M, Vickers J. The effect of focal brain injury on beta-amyloid plaque deposition, inflammation and synapses in the APP/PS1 mouse model of Alzheimer's disease. Exp Neurol. 2015;267:219-29 pubmed 出版商
  261. Jay T, Miller C, Cheng P, Graham L, Bemiller S, Broihier M, et al. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. J Exp Med. 2015;212:287-95 pubmed 出版商
  262. Reis R, Hennessy E, Murray C, Griffin Ã, Cunningham C. At the centre of neuronal, synaptic and axonal pathology in murine prion disease: degeneration of neuroanatomically linked thalamic and brainstem nuclei. Neuropathol Appl Neurobiol. 2015;41:780-97 pubmed 出版商
  263. Woo J, Zhao X, Khan H, Penn C, Wang X, Joly Amado A, et al. Slingshot-Cofilin activation mediates mitochondrial and synaptic dysfunction via Aβ ligation to β1-integrin conformers. Cell Death Differ. 2015;22:921-34 pubmed 出版商
  264. Butler C, Brodney M, Beck E, Barreiro G, Nolan C, Pan F, et al. Discovery of a series of efficient, centrally efficacious BACE1 inhibitors through structure-based drug design. J Med Chem. 2015;58:2678-702 pubmed 出版商
  265. Bennett R, Brody D. Array tomography for the detection of non-dilated, injured axons in traumatic brain injury. J Neurosci Methods. 2015;245:25-36 pubmed 出版商
  266. Silverberg G, Miller M, Pascale C, Caralopoulos I, Agca Y, Agca C, et al. Kaolin-induced chronic hydrocephalus accelerates amyloid deposition and vascular disease in transgenic rats expressing high levels of human APP. Fluids Barriers CNS. 2015;12:2 pubmed 出版商
  267. Jensen M, Arvaniti M, Mikkelsen J, Michalski D, Pinborg L, Härtig W, et al. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease. Neurobiol Aging. 2015;36:1629-1638 pubmed 出版商
  268. Vallortigara J, Rangarajan S, Whitfield D, Alghamdi A, Howlett D, Hortobágyi T, et al. Dynamin1 concentration in the prefrontal cortex is associated with cognitive impairment in Lewy body dementia. F1000Res. 2014;3:108 pubmed 出版商
  269. Sabogal Guáqueta A, Muñoz Manco J, Ramírez Pineda J, Lamprea Rodriguez M, Osorio E, Cardona Gómez G. The flavonoid quercetin ameliorates Alzheimer's disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer's disease model mice. Neuropharmacology. 2015;93:134-45 pubmed 出版商
  270. Porquet D, Andrés Benito P, Griñán Ferré C, Camins A, Ferrer I, Canudas A, et al. Amyloid and tau pathology of familial Alzheimer's disease APP/PS1 mouse model in a senescence phenotype background (SAMP8). Age (Dordr). 2015;37:9747 pubmed 出版商
  271. Wu Z, Yang B, Liu C, Liang G, Eckenhoff M, Liu W, et al. Long-term dantrolene treatment reduced intraneuronal amyloid in aged Alzheimer triple transgenic mice. Alzheimer Dis Assoc Disord. 2015;29:184-191 pubmed 出版商
  272. Chang J, Lee M, Lin S, Yang L, Sun H, Sze C, et al. Trafficking protein particle complex 6A delta (TRAPPC6AΔ) is an extracellular plaque-forming protein in the brain. Oncotarget. 2015;6:3578-89 pubmed
  273. Cantoni C, Bollman B, Licastro D, Xie M, Mikesell R, Schmidt R, et al. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol. 2015;129:429-47 pubmed 出版商
  274. Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun. 2015;6:6176 pubmed 出版商
  275. Yang Y, Shepherd C, Halliday G. Aneuploidy in Lewy body diseases. Neurobiol Aging. 2015;36:1253-60 pubmed 出版商
  276. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  277. Postupna N, Keene C, Crane P, Gonzalez Cuyar L, Sonnen J, Hewitt J, et al. Cerebral cortical Aβ42 and PHF-Ï„ in 325 consecutive brain autopsies stratified by diagnosis, location, and APOE. J Neuropathol Exp Neurol. 2015;74:100-9 pubmed 出版商
  278. Sadleir K, Eimer W, Cole S, Vassar R. Aβ reduction in BACE1 heterozygous null 5XFAD mice is associated with transgenic APP level. Mol Neurodegener. 2015;10:1 pubmed 出版商
  279. Kang E, Cho J. Effects of treadmill exercise on brain insulin signaling and β-amyloid in intracerebroventricular streptozotocin induced-memory impairment in rats. J Exerc Nutrition Biochem. 2014;18:89-96 pubmed 出版商
  280. Ashby E, Miners J, Kumar S, Walter J, Love S, Kehoe P. Investigation of Aβ phosphorylated at serine 8 (pAβ) in Alzheimer's disease, dementia with Lewy bodies and vascular dementia. Neuropathol Appl Neurobiol. 2015;41:428-44 pubmed 出版商
  281. HÃ¥nell A, Greer J, McGinn M, Povlishock J. Traumatic brain injury-induced axonal phenotypes react differently to treatment. Acta Neuropathol. 2015;129:317-32 pubmed 出版商
  282. Kawa L, Arborelius U, Yoshitake T, Kehr J, Hökfelt T, Risling M, et al. Neurotransmitter Systems in a Mild Blast Traumatic Brain Injury Model: Catecholamines and Serotonin. J Neurotrauma. 2015;32:1190-9 pubmed 出版商
  283. Meng P, Yoshida H, Tanji K, Matsumiya T, Xing F, Hayakari R, et al. Carnosic acid attenuates apoptosis induced by amyloid-β 1-42 or 1-43 in SH-SY5Y human neuroblastoma cells. Neurosci Res. 2015;94:1-9 pubmed 出版商
  284. Shukla M, Htoo H, Wintachai P, Hernandez J, Dubois C, Postina R, et al. Melatonin stimulates the nonamyloidogenic processing of βAPP through the positive transcriptional regulation of ADAM10 and ADAM17. J Pineal Res. 2015;58:151-65 pubmed 出版商
  285. Hohsfield L, Daschil N, Orädd G, Strömberg I, Humpel C. Vascular pathology of 20-month-old hypercholesterolemia mice in comparison to triple-transgenic and APPSwDI Alzheimer's disease mouse models. Mol Cell Neurosci. 2014;63:83-95 pubmed
  286. Fine J, Renner D, Forsberg A, Cameron R, Galick B, Le C, et al. Intranasal deferoxamine engages multiple pathways to decrease memory loss in the APP/PS1 model of amyloid accumulation. Neurosci Lett. 2015;584:362-7 pubmed 出版商
  287. Vingtdeux V, Tanis J, Chandakkar P, Zhao H, Dreses Werringloer U, Campagne F, et al. Effect of the CALHM1 G330D and R154H human variants on the control of cytosolic Ca2+ and Aβ levels. PLoS ONE. 2014;9:e112484 pubmed 出版商
  288. Deng X, Li M, Ai W, He L, Lu D, Patrylo P, et al. Lipolysaccharide-Induced Neuroinflammation Is Associated with Alzheimer-Like Amyloidogenic Axonal Pathology and Dendritic Degeneration in Rats. Adv Alzheimer Dis. 2014;3:78-93 pubmed
  289. Thomzig A, Wagenführ K, Daus M, Joncic M, Schulz Schaeffer W, Thanheiser M, et al. Decontamination of medical devices from pathological amyloid-?-, tau- and ?-synuclein aggregates. Acta Neuropathol Commun. 2014;2:151 pubmed 出版商
  290. Joshi G, Gan K, Johnson D, Johnson J. Increased Alzheimer's disease-like pathology in the APP/ PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging. 2015;36:664-79 pubmed 出版商
  291. Forny Germano L, Lyra e Silva N, Batista A, Brito Moreira J, Gralle M, Boehnke S, et al. Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J Neurosci. 2014;34:13629-43 pubmed 出版商
  292. Maloney J, Bainbridge T, Gustafson A, Zhang S, Kyauk R, Steiner P, et al. Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein. J Biol Chem. 2014;289:30990-1000 pubmed 出版商
  293. Lee S, Xu G, Jay T, Bhatta S, Kim K, Jung S, et al. Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway. J Neurosci. 2014;34:12538-46 pubmed 出版商
  294. Lue L, Schmitz C, Serrano G, Sue L, Beach T, Walker D. TREM2 Protein Expression Changes Correlate with Alzheimer's Disease Neurodegenerative Pathologies in Post-Mortem Temporal Cortices. Brain Pathol. 2015;25:469-80 pubmed 出版商
  295. Maarouf C, Kokjohn T, Walker D, Whiteside C, Kalback W, Whetzel A, et al. Biochemical assessment of precuneus and posterior cingulate gyrus in the context of brain aging and Alzheimer's disease. PLoS ONE. 2014;9:e105784 pubmed 出版商
  296. de la Escosura Muñiz A, Plichta Z, Horák D, Merkoçi A. Alzheimer's disease biomarkers detection in human samples by efficient capturing through porous magnetic microspheres and labelling with electrocatalytic gold nanoparticles. Biosens Bioelectron. 2015;67:162-9 pubmed 出版商
  297. Yan Y, Eipper B, Mains R. Kalirin-9 and Kalirin-12 Play Essential Roles in Dendritic Outgrowth and Branching. Cereb Cortex. 2015;25:3487-501 pubmed 出版商
  298. Dunn H, Ager R, Baglietto Vargas D, Cheng D, Kitazawa M, Cribbs D, et al. Restoration of lipoxin A4 signaling reduces Alzheimer's disease-like pathology in the 3xTg-AD mouse model. J Alzheimers Dis. 2015;43:893-903 pubmed 出版商
  299. Hanenberg M, McAfoose J, Kulic L, Welt T, Wirth F, Parizek P, et al. Amyloid-β peptide-specific DARPins as a novel class of potential therapeutics for Alzheimer disease. J Biol Chem. 2014;289:27080-9 pubmed 出版商
  300. Yarchoan M, Toledo J, Lee E, Arvanitakis Z, Kazi H, Han L, et al. Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies. Acta Neuropathol. 2014;128:679-89 pubmed 出版商
  301. Whitfield D, Vallortigara J, Alghamdi A, Howlett D, Hortobagyi T, Johnson M, et al. Assessment of ZnT3 and PSD95 protein levels in Lewy body dementias and Alzheimer's disease: association with cognitive impairment. Neurobiol Aging. 2014;35:2836-2844 pubmed 出版商
  302. Toyn J, Thompson L, Lentz K, Meredith J, Burton C, Sankaranararyanan S, et al. Identification and Preclinical Pharmacology of the ?-Secretase Modulator BMS-869780. Int J Alzheimers Dis. 2014;2014:431858 pubmed 出版商
  303. Kohler C, Dinekov M, Götz J. Granulovacuolar degeneration and unfolded protein response in mouse models of tauopathy and A? amyloidosis. Neurobiol Dis. 2014;71:169-79 pubmed 出版商
  304. Zhou Y, Hayashi I, Wong J, Tugusheva K, Renger J, Zerbinatti C. Intracellular clusterin interacts with brain isoforms of the bridging integrator 1 and with the microtubule-associated protein Tau in Alzheimer's disease. PLoS ONE. 2014;9:e103187 pubmed 出版商
  305. Zeldich E, Chen C, Colvin T, Bove Fenderson E, Liang J, Tucker Zhou T, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem. 2014;289:24700-15 pubmed 出版商
  306. Sadleir K, Eimer W, Kaufman R, Osten P, Vassar R. Genetic inhibition of phosphorylation of the translation initiation factor eIF2α does not block Aβ-dependent elevation of BACE1 and APP levels or reduce amyloid pathology in a mouse model of Alzheimer's disease. PLoS ONE. 2014;9:e101643 pubmed 出版商
  307. Mantile F, Trovato M, Santoni A, Barba P, Ottonello S, De Berardinis P, et al. Alum and squalene-oil-in-water emulsion enhance the titer and avidity of anti-A? antibodies induced by multimeric protein antigen (1-11)E2, preserving the Igg1-skewed isotype distribution. PLoS ONE. 2014;9:e101474 pubmed 出版商
  308. Wu Z, Guo Z, Gearing M, Chen G. Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer's [corrected] disease model. Nat Commun. 2014;5:4159 pubmed 出版商
  309. Fowler S, Chiang A, Savjani R, Larson M, Sherman M, Schuler D, et al. Genetic modulation of soluble A? rescues cognitive and synaptic impairment in a mouse model of Alzheimer's disease. J Neurosci. 2014;34:7871-85 pubmed 出版商
  310. Pedr s I, Petrov D, Allgaier M, Sureda F, Barroso E, Beas Zarate C, et al. Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer's disease. Biochim Biophys Acta. 2014;1842:1556-66 pubmed 出版商
  311. Cameron R, Quinn S, Cairns L, MacLeod R, Samuel I, Smith B, et al. The phosphorylation of Hsp20 enhances its association with amyloid-? to increase protection against neuronal cell death. Mol Cell Neurosci. 2014;61:46-55 pubmed 出版商
  312. Durk M, Han K, Chow E, Ahrens R, Henderson J, Fraser P, et al. 1?,25-Dihydroxyvitamin D3 reduces cerebral amyloid-? accumulation and improves cognition in mouse models of Alzheimer's disease. J Neurosci. 2014;34:7091-101 pubmed 出版商
  313. Shilling D, Müller M, Takano H, Mak D, Abel T, Coulter D, et al. Suppression of InsP3 receptor-mediated Ca2+ signaling alleviates mutant presenilin-linked familial Alzheimer's disease pathogenesis. J Neurosci. 2014;34:6910-23 pubmed 出版商
  314. Fu Y, Rusznák Z, Kwok J, Kim W, Paxinos G. Age-dependent alterations of the hippocampal cell composition and proliferative potential in the hA?PPSwInd-J20 mouse. J Alzheimers Dis. 2014;41:1177-92 pubmed 出版商
  315. Xiong Z, Thangavel R, Kempuraj D, Yang E, Zaheer S, Zaheer A. Alzheimer's disease: evidence for the expression of interleukin-33 and its receptor ST2 in the brain. J Alzheimers Dis. 2014;40:297-308 pubmed 出版商
  316. Coppieters N, Dieriks B, Lill C, Faull R, Curtis M, Dragunow M. Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain. Neurobiol Aging. 2014;35:1334-44 pubmed 出版商
  317. Ridwan S, Bauer H, Frauenknecht K, Hefti K, von Pein H, Sommer C. Distribution of the hematopoietic growth factor G-CSF and its receptor in the adult human brain with specific reference to Alzheimer's disease. J Anat. 2014;224:377-91 pubmed 出版商
  318. Moore S, Khalaj A, Yoon J, Patel R, Hannsun G, Yoo T, et al. Therapeutic laquinimod treatment decreases inflammation, initiates axon remyelination, and improves motor deficit in a mouse model of multiple sclerosis. Brain Behav. 2013;3:664-82 pubmed 出版商
  319. Bana L, Minniti S, Salvati E, Sesana S, Zambelli V, Cagnotto A, et al. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect A? aggregation features and cross the blood-brain-barrier: implications for therapy of Alzheimer disease. Nanomedicine. 2014;10:1583-90 pubmed 出版商
  320. Medeiros R, Castello N, Cheng D, Kitazawa M, Baglietto Vargas D, Green K, et al. ?7 Nicotinic receptor agonist enhances cognition in aged 3xTg-AD mice with robust plaques and tangles. Am J Pathol. 2014;184:520-9 pubmed 出版商
  321. El Ami T, Moll L, Carvalhal Marques F, Volovik Y, Reuveni H, Cohen E. A novel inhibitor of the insulin/IGF signaling pathway protects from age-onset, neurodegeneration-linked proteotoxicity. Aging Cell. 2014;13:165-74 pubmed 出版商
  322. ElAli A, Theriault P, Prefontaine P, Rivest S. Mild chronic cerebral hypoperfusion induces neurovascular dysfunction, triggering peripheral beta-amyloid brain entry and aggregation. Acta Neuropathol Commun. 2013;1:75 pubmed 出版商
  323. Marchese M, Cowan D, Head E, Ma D, Karimi K, Ashthorpe V, et al. Autoimmune manifestations in the 3xTg-AD model of Alzheimer's disease. J Alzheimers Dis. 2014;39:191-210 pubmed 出版商
  324. Bhaskar K, Maphis N, Xu G, Varvel N, Kokiko Cochran O, Weick J, et al. Microglial derived tumor necrosis factor-? drives Alzheimer's disease-related neuronal cell cycle events. Neurobiol Dis. 2014;62:273-85 pubmed 出版商
  325. Kelly K, Beck S, Metcalf Pate K, Queen S, Dorsey J, Adams R, et al. Neuroprotective maraviroc monotherapy in simian immunodeficiency virus-infected macaques: reduced replicating and latent SIV in the brain. AIDS. 2013;27:F21-8 pubmed 出版商
  326. Washington P, Morffy N, Parsadanian M, Zapple D, Burns M. Experimental traumatic brain injury induces rapid aggregation and oligomerization of amyloid-beta in an Alzheimer's disease mouse model. J Neurotrauma. 2014;31:125-34 pubmed 出版商
  327. Li W, Tang Y, Fan Z, Meng Y, Yang G, Luo J, et al. Autophagy is involved in oligodendroglial precursor-mediated clearance of amyloid peptide. Mol Neurodegener. 2013;8:27 pubmed 出版商
  328. Sadleir K, Bennett D, Schneider J, Vassar R. Elevated A?42 in aged, non-demented individuals with cerebral atherosclerosis. Curr Alzheimer Res. 2013;10:785-9 pubmed
  329. Kang E, Kwon I, Koo J, Kim E, Kim C, Lee J, et al. Treadmill exercise represses neuronal cell death and inflammation during A?-induced ER stress by regulating unfolded protein response in aged presenilin 2 mutant mice. Apoptosis. 2013;18:1332-1347 pubmed 出版商
  330. Devi L, Ohno M. Mechanisms that lessen benefits of ?-secretase reduction in a mouse model of Alzheimer's disease. Transl Psychiatry. 2013;3:e284 pubmed 出版商
  331. Manich G, del Valle J, Cabezón I, Camins A, Pallas M, Pelegri C, et al. Presence of a neo-epitope and absence of amyloid beta and tau protein in degenerative hippocampal granules of aged mice. Age (Dordr). 2014;36:151-65 pubmed 出版商
  332. Jackson K, Barisone G, Diaz E, Jin L, DeCarli C, Despa F. Amylin deposition in the brain: A second amyloid in Alzheimer disease?. Ann Neurol. 2013;74:517-26 pubmed 出版商
  333. Kang M, Baek S, Chun Y, Moore A, Landman N, Berman D, et al. Modulation of lipid kinase PI4KII? activity and lipid raft association of presenilin 1 underlies ?-secretase inhibition by ginsenoside (20S)-Rg3. J Biol Chem. 2013;288:20868-82 pubmed 出版商
  334. Lim D, Iyer A, Ronco V, Grolla A, Canonico P, Aronica E, et al. Amyloid beta deregulates astroglial mGluR5-mediated calcium signaling via calcineurin and Nf-kB. Glia. 2013;61:1134-45 pubmed 出版商
  335. Brana C, Frossard M, Pescini Gobert R, Martinier N, Boschert U, Seabrook T. Immunohistochemical detection of sphingosine-1-phosphate receptor 1 and 5 in human multiple sclerosis lesions. Neuropathol Appl Neurobiol. 2014;40:564-78 pubmed 出版商
  336. Hebron M, Algarzae N, Lonskaya I, Moussa C. Fractalkine signaling and Tau hyper-phosphorylation are associated with autophagic alterations in lentiviral Tau and A?1-42 gene transfer models. Exp Neurol. 2014;251:127-38 pubmed 出版商
  337. Choi J, Kaur G, Mazzella M, Morales Corraliza J, Levy E, Mathews P. Early endosomal abnormalities and cholinergic neuron degeneration in amyloid-? protein precursor transgenic mice. J Alzheimers Dis. 2013;34:691-700 pubmed 出版商
  338. Zheng L, Cedazo Minguez A, Hallbeck M, Jerhammar F, Marcusson J, Terman A. Intracellular distribution of amyloid beta peptide and its relationship to the lysosomal system. Transl Neurodegener. 2012;1:19 pubmed 出版商
  339. Saito Y, Inoue T, Zhu G, Kimura N, Okada M, Nishimura M, et al. Hyperpolarization-activated cyclic nucleotide gated channels: a potential molecular link between epileptic seizures and A? generation in Alzheimer's disease. Mol Neurodegener. 2012;7:50 pubmed 出版商
  340. Bachstetter A, Norris C, Sompol P, Wilcock D, Goulding D, Neltner J, et al. Early stage drug treatment that normalizes proinflammatory cytokine production attenuates synaptic dysfunction in a mouse model that exhibits age-dependent progression of Alzheimer's disease-related pathology. J Neurosci. 2012;32:10201-10 pubmed 出版商
  341. Zheng Y, Wang Q, Xiao B, Lu Q, Wang Y, Wang X. Involvement of receptor tyrosine kinase Tyro3 in amyloidogenic APP processing and ?-amyloid deposition in Alzheimer's disease models. PLoS ONE. 2012;7:e39035 pubmed 出版商
  342. Killian R, Flippin J, Herrera C, Almenar Queralt A, Goldstein L. Kinesin light chain 1 suppression impairs human embryonic stem cell neural differentiation and amyloid precursor protein metabolism. PLoS ONE. 2012;7:e29755 pubmed 出版商
  343. Zetterberg H, Mörtberg E, Song L, Chang L, Provuncher G, Patel P, et al. Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid ? levels in humans. PLoS ONE. 2011;6:e28263 pubmed 出版商
  344. Huizinga R, van der Star B, Kipp M, Jong R, Gerritsen W, Clarner T, et al. Phagocytosis of neuronal debris by microglia is associated with neuronal damage in multiple sclerosis. Glia. 2012;60:422-31 pubmed 出版商
  345. Zheng L, Terman A, Hallbeck M, Dehvari N, Cowburn R, Benedikz E, et al. Macroautophagy-generated increase of lysosomal amyloid β-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells. Autophagy. 2011;7:1528-45 pubmed
  346. Chapuis J, Vingtdeux V, Capiralla H, Davies P, Marambaud P. Gas1 interferes with A?PP trafficking by facilitating the accumulation of immature A?PP in endoplasmic reticulum-associated raft subdomains. J Alzheimers Dis. 2012;28:127-35 pubmed 出版商
  347. Ranganathan S, Noyes N, Migliorini M, Winkles J, Battey F, Hyman B, et al. LRAD3, a novel low-density lipoprotein receptor family member that modulates amyloid precursor protein trafficking. J Neurosci. 2011;31:10836-46 pubmed 出版商
  348. Chapuis J, Vingtdeux V, Campagne F, Davies P, Marambaud P. Growth arrest-specific 1 binds to and controls the maturation and processing of the amyloid-beta precursor protein. Hum Mol Genet. 2011;20:2026-36 pubmed 出版商
  349. Beyer A, von Einem B, Schwanzar D, Keller I, Hellrung A, Thal D, et al. Engulfment adapter PTB domain containing 1 interacts with and affects processing of the amyloid-? precursor protein. Neurobiol Aging. 2012;33:732-43 pubmed 出版商
  350. van Noort J, Bsibsi M, Gerritsen W, van der Valk P, Bajramovic J, Steinman L, et al. Alphab-crystallin is a target for adaptive immune responses and a trigger of innate responses in preactive multiple sclerosis lesions. J Neuropathol Exp Neurol. 2010;69:694-703 pubmed 出版商
  351. Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon J, et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem. 2010;285:9100-13 pubmed 出版商
  352. Portelius E, Brinkmalm G, Tran A, Andreasson U, Zetterberg H, Westman Brinkmalm A, et al. Identification of novel N-terminal fragments of amyloid precursor protein in cerebrospinal fluid. Exp Neurol. 2010;223:351-8 pubmed 出版商
  353. Herring A, Ambrée O, Tomm M, Habermann H, Sachser N, Paulus W, et al. Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology. Exp Neurol. 2009;216:184-92 pubmed 出版商
  354. Mankowski J, Queen S, Fernandez C, Tarwater P, Karper J, Adams R, et al. Natural host genetic resistance to lentiviral CNS disease: a neuroprotective MHC class I allele in SIV-infected macaques. PLoS ONE. 2008;3:e3603 pubmed 出版商
  355. Moeller J, Macaulay R, Valdmanis P, Weston L, Rouleau G, Dupre N. Autosomal dominant sensory ataxia: a neuroaxonal dystrophy. Acta Neuropathol. 2008;116:331-6 pubmed 出版商
  356. Ryoo S, Cho H, Lee H, Jeong H, Radnaabazar C, Kim Y, et al. Dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: evidence for a functional link between Down syndrome and Alzheimer's disease. J Neurochem. 2008;104:1333-44 pubmed
  357. Ai J, Liu E, Wang J, Chen Y, Yu J, Baker A. Calpain inhibitor MDL-28170 reduces the functional and structural deterioration of corpus callosum following fluid percussion injury. J Neurotrauma. 2007;24:960-78 pubmed
  358. Matsui T, Ingelsson M, Fukumoto H, Ramasamy K, Kowa H, Frosch M, et al. Expression of APP pathway mRNAs and proteins in Alzheimer's disease. Brain Res. 2007;1161:116-23 pubmed
  359. Nizzari M, Venezia V, Repetto E, Caorsi V, Magrassi R, Gagliani M, et al. Amyloid precursor protein and Presenilin1 interact with the adaptor GRB2 and modulate ERK 1,2 signaling. J Biol Chem. 2007;282:13833-44 pubmed
  360. German A, Myint K, Mai N, Pomeroy I, Phu N, Tzartos J, et al. A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model. Trans R Soc Trop Med Hyg. 2006;100:1135-45 pubmed
  361. Kirazov L, Kirazovi E, Schliebs R. L-glutamate and phorbol ester stimulate the release of secretory amyloid precursor protein from rat cortical synaptosomes. Acta Biol Hung. 2005;56:177-83 pubmed
  362. Helke K, Queen S, Tarwater P, Turchan Cholewo J, Nath A, Zink M, et al. 14-3-3 protein in CSF: an early predictor of SIV CNS disease. J Neuropathol Exp Neurol. 2005;64:202-8 pubmed
  363. Sasaki K, Doh ura K, Wakisaka Y, Tomoda H, Iwaki T. Fatal familial insomnia with an unusual prion protein deposition pattern: an autopsy report with an experimental transmission study. Neuropathol Appl Neurobiol. 2005;31:80-7 pubmed
  364. Chauhan N, Siegel G. Intracerebroventricular passive immunization in transgenic mouse models of Alzheimer's disease. Expert Rev Vaccines. 2004;3:717-25 pubmed
  365. Lee K, Lee S, Kim H, Song J, Yang S, Paik S, et al. Progressive cognitive impairment and anxiety induction in the absence of plaque deposition in C57BL/6 inbred mice expressing transgenic amyloid precursor protein. J Neurosci Res. 2004;76:572-80 pubmed
  366. Trysberg E, Höglund K, Svenungsson E, Blennow K, Tarkowski A. Decreased levels of soluble amyloid beta-protein precursor and beta-amyloid protein in cerebrospinal fluid of patients with systemic lupus erythematosus. Arthritis Res Ther. 2004;6:R129-36 pubmed
  367. Richardson J, Kendal C, Anderson R, Priest F, Gower E, Soden P, et al. Ultrastructural and behavioural changes precede amyloid deposition in a transgenic model of Alzheimer's disease. Neuroscience. 2003;122:213-28 pubmed
  368. Anderson R, Brown C, Blumbergs P, McLean A, Jones N. Impact mechanics and axonal injury in a sheep model. J Neurotrauma. 2003;20:961-74 pubmed
  369. Araki Y, Tomita S, Yamaguchi H, Miyagi N, Sumioka A, Kirino Y, et al. Novel cadherin-related membrane proteins, Alcadeins, enhance the X11-like protein-mediated stabilization of amyloid beta-protein precursor metabolism. J Biol Chem. 2003;278:49448-58 pubmed
  370. Weed M, Hienz R, Brady J, Adams R, Mankowski J, Clements J, et al. Central nervous system correlates of behavioral deficits following simian immunodeficiency virus infection. J Neurovirol. 2003;9:452-64 pubmed
  371. King G, Perez R, Steinhilb M, Gaut J, Turner R. X11alpha modulates secretory and endocytic trafficking and metabolism of amyloid precursor protein: mutational analysis of the YENPTY sequence. Neuroscience. 2003;120:143-54 pubmed
  372. Stone J, Okonkwo D, Singleton R, Mutlu L, Helm G, Povlishock J. Caspase-3-mediated cleavage of amyloid precursor protein and formation of amyloid Beta peptide in traumatic axonal injury. J Neurotrauma. 2002;19:601-14 pubmed
  373. Mankowski J, Queen S, Tarwater P, Fox K, Perry V. Accumulation of beta-amyloid precursor protein in axons correlates with CNS expression of SIV gp41. J Neuropathol Exp Neurol. 2002;61:85-90 pubmed
  374. Daugherty B, Green S. Endosomal sorting of amyloid precursor protein-P-selectin chimeras influences secretase processing. Traffic. 2001;2:908-16 pubmed
  375. Wong A, Lüth H, Deuther Conrad W, Dukic Stefanovic S, Gasic Milenkovic J, Arendt T, et al. Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer's disease. Brain Res. 2001;920:32-40 pubmed
  376. Steinhilb M, Turner R, Gaut J. The protease inhibitor, MG132, blocks maturation of the amyloid precursor protein Swedish mutant preventing cleavage by beta-Secretase. J Biol Chem. 2001;276:4476-84 pubmed
  377. Lefterov I, Koldamova R, Lazo J. Human bleomycin hydrolase regulates the secretion of amyloid precursor protein. FASEB J. 2000;14:1837-47 pubmed
  378. Tomita S, Ozaki T, Taru H, Oguchi S, Takeda S, Yagi Y, et al. Interaction of a neuron-specific protein containing PDZ domains with Alzheimer's amyloid precursor protein. J Biol Chem. 1999;274:2243-54 pubmed
  379. Huang Y, Herman M, Liu J, Katsetos C, Wills M, Savory J. Neurofibrillary lesions in experimental aluminum-induced encephalopathy and Alzheimer's disease share immunoreactivity for amyloid precursor protein, A beta, alpha 1-antichymotrypsin and ubiquitin-protein conjugates. Brain Res. 1997;771:213-20 pubmed
  380. Solomon B, Koppel R, Hanan E, Katzav T. Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer beta-amyloid peptide. Proc Natl Acad Sci U S A. 1996;93:452-5 pubmed
  381. Sherriff F, Bridges L, Gentleman S, Sivaloganathan S, Wilson S. Markers of axonal injury in post mortem human brain. Acta Neuropathol. 1994;88:433-9 pubmed
  382. Webster M, Groome N, Francis P, Pearce B, Sherriff F, Thinakaran G, et al. A novel protein, amyloid precursor-like protein 2, is present in human brain, cerebrospinal fluid and conditioned media. Biochem J. 1995;310 ( Pt 1):95-9 pubmed