这是一篇来自已证抗体库的有关人类 ARG1的综述,是根据39篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ARG1 抗体。
赛默飞世尔
大鼠 单克隆(A1exF5)
  • 流式细胞仪; 小鼠; 1:100; 图 2k, s21a, s21c
赛默飞世尔 ARG1抗体(Thermo Fisher, 17-3697-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2k, s21a, s21c). Nat Nanotechnol (2022) ncbi
大鼠 单克隆(A1exF5)
  • 流式细胞仪; 小鼠; 1:50; 图 s3b
赛默飞世尔 ARG1抗体(ThermoFisher, A1exF5)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s3b). Nat Commun (2021) ncbi
大鼠 单克隆(A1exF5)
  • 流式细胞仪; 小鼠; 1:100; 图 3a
赛默飞世尔 ARG1抗体(eBioscience, A1exF5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6d
赛默飞世尔 ARG1抗体(Thermo Fisher, PA5-85267)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6d). Immunol Cell Biol (2021) ncbi
小鼠 单克隆(sl6arg)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 ARG1抗体(eBioscience, 14-9779-82)被用于被用于免疫细胞化学在人类样本上 (图 2). Front Pharmacol (2017) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-2)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 6d
圣克鲁斯生物技术 ARG1抗体(Santa Cruz Biotechnology, sc-166920)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 6d). Front Immunol (2021) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术 ARG1抗体(Santa Cruz, sc-166920)被用于被用于免疫印迹在小鼠样本上 (图 4b). PLoS Biol (2020) ncbi
小鼠 单克隆(C-2)
  • 免疫组化-冰冻切片; 小鼠; 图 s7a, s7b
圣克鲁斯生物技术 ARG1抗体(Santa Cruz, C-2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s7a, s7b). BMC Immunol (2020) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 ARG1抗体(Santa Cruz, sc-166920)被用于被用于免疫印迹在人类样本上 (图 5b). Oncoimmunology (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术 ARG1抗体(Santa Cruz Biotechnology, sc-166920)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Physiol Rep (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1000; 图 3e
圣克鲁斯生物技术 ARG1抗体(Santa Cruz, sc-166920)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3e). Pharmacol Biochem Behav (2017) ncbi
小鼠 单克隆(A-2)
  • 免疫印迹; 人类; 图 6d
圣克鲁斯生物技术 ARG1抗体(Santa Cruz, sc-365547)被用于被用于免疫印迹在人类样本上 (图 6d). J Immunol (2016) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR6672(B))
  • 免疫印迹; 人类; 图 7d
艾博抗(上海)贸易有限公司 ARG1抗体(Abcam, ab133543)被用于被用于免疫印迹在人类样本上 (图 7d). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EPR6671(B))
  • 免疫印迹; 小鼠; 图 4d
艾博抗(上海)贸易有限公司 ARG1抗体(Abcam, ab124917)被用于被用于免疫印迹在小鼠样本上 (图 4d). Front Immunol (2020) ncbi
小鼠 单克隆(ARG1/1125)
  • 免疫组化-石蜡切片; 小鼠; 图 7
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3g, 3h
艾博抗(上海)贸易有限公司 ARG1抗体(Abcam, ab212522)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3g, 3h). BMC Infect Dis (2019) ncbi
domestic rabbit 单克隆(EPR6672(B))
  • 免疫印迹; 人类; 1:500; 图 2a
艾博抗(上海)贸易有限公司 ARG1抗体(Abcam, ab133543)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(EPR6671(B))
  • 免疫印迹; 小鼠; 图 4b
艾博抗(上海)贸易有限公司 ARG1抗体(Abcam, EPR6671(B))被用于被用于免疫印迹在小鼠样本上 (图 4b). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR6671(B))
  • 免疫印迹; 小鼠; 1:2000; 图 5c
艾博抗(上海)贸易有限公司 ARG1抗体(Abcam, ab124917)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5c). Arterioscler Thromb Vasc Biol (2016) ncbi
安迪生物R&D
小鼠 单克隆(658922)
  • 流式细胞仪; 小鼠; 图 2c, 2d
安迪生物R&D ARG1抗体(R&D Systems, 658922)被用于被用于流式细胞仪在小鼠样本上 (图 2c, 2d). Proc Natl Acad Sci U S A (2022) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 4f
Novus Biologicals ARG1抗体(Novus Biologicals, NBP1-32731)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Nat Commun (2021) ncbi
小鼠 单克隆(OTI4E6)
  • 流式细胞仪; 小鼠; 1:100; 图 s21
Novus Biologicals ARG1抗体(Novus Biologicals, NBP2-03618)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s21). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 5b
Novus Biologicals ARG1抗体(Novus, NBP1-32731)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). J Mol Cell Cardiol (2018) ncbi
domestic goat 多克隆(4H5)
  • 免疫组化; 人类; 图 s2d
Novus Biologicals ARG1抗体(Novus, NB100-59740)被用于被用于免疫组化在人类样本上 (图 s2d). Proc Natl Acad Sci U S A (2017) ncbi
BioLegend
小鼠 单克隆(O94E6/ARG1)
  • mass cytometry; 小鼠
BioLegend ARG1抗体(BioLegend, 678802)被用于被用于mass cytometry在小鼠样本上. Br J Cancer (2021) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D4E3M™)
  • 免疫印迹; 小鼠; 1:1000; 图 1c, 1f
赛信通(上海)生物试剂有限公司 ARG1抗体(CST, 93668)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c, 1f). Front Immunol (2022) ncbi
domestic rabbit 单克隆(D4E3M™)
  • 免疫组化; 小鼠; 1:100; 图 s5a
赛信通(上海)生物试剂有限公司 ARG1抗体(Cell Signaling, 93668s)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s5a). Sci Transl Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4k
赛信通(上海)生物试剂有限公司 ARG1抗体(Cell Signaling, 9819)被用于被用于免疫印迹在小鼠样本上 (图 4k). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(D4E3M™)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4a
赛信通(上海)生物试剂有限公司 ARG1抗体(Cell Signaling, 93,668)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4a). Biomedicines (2022) ncbi
domestic rabbit 单克隆(D4E3M™)
  • 免疫细胞化学; 人类; 1:300; 图 3c
赛信通(上海)生物试剂有限公司 ARG1抗体(Cell Signaling, 93668)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 3c). Bioengineered (2022) ncbi
domestic rabbit 单克隆(D4E3M™)
  • 免疫组化-石蜡切片; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 ARG1抗体(Cell Signaling, D4E3M)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D4E3M™)
  • 免疫组化; 人类; 1:800
赛信通(上海)生物试剂有限公司 ARG1抗体(Cell Signaling, D4E3M)被用于被用于免疫组化在人类样本上浓度为1:800. Cancer Res (2021) ncbi
domestic rabbit 单克隆(D4E3M™)
  • 免疫组化; 小鼠; 图 s4c
赛信通(上海)生物试剂有限公司 ARG1抗体(Cell Signaling, 93668S)被用于被用于免疫组化在小鼠样本上 (图 s4c). Cells (2021) ncbi
domestic rabbit 单克隆(D4E3M™)
  • 免疫印迹; 小鼠; 1:1000; 图 4i
赛信通(上海)生物试剂有限公司 ARG1抗体(CST, 93668)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4i). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D4E3M™)
  • 免疫组化; 小鼠; 1:400; 图 1h
赛信通(上海)生物试剂有限公司 ARG1抗体(Cell Signaling, 93668S)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1h). Neoplasia (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1a
赛信通(上海)生物试剂有限公司 ARG1抗体(Cell Signaling, 9819)被用于被用于免疫印迹在小鼠样本上 (图 s1a). EMBO J (2019) ncbi
domestic rabbit 单克隆(D4E3M™)
  • 流式细胞仪; 人类; 1:100
赛信通(上海)生物试剂有限公司 ARG1抗体(cell Signaling, 93668)被用于被用于流式细胞仪在人类样本上浓度为1:100. Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 ARG1抗体(cell Signaling, 9819S)被用于被用于免疫印迹在人类样本上浓度为1:1000 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 ARG1抗体(Cell Signaling Technology, 9819)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 ARG1抗体(Cell signaling, 9819)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 ARG1抗体(Cell signaling, 9819)被用于被用于免疫印迹在小鼠样本上 (图 2). Nucleic Acids Res (2016) ncbi
Cell Marque
domestic rabbit 单克隆(SP156)
  • 免疫组化-石蜡切片; 人类; 表 3
Cell Marque ARG1抗体(Cell Marque, SP156)被用于被用于免疫组化-石蜡切片在人类样本上 (表 3). Mod Pathol (2016) ncbi
文章列表
  1. Yu L, Wang L, Hu G, Ren L, Qiu C, Li S, et al. Reprogramming alternative macrophage polarization by GATM-mediated endogenous creatine synthesis: A potential target for HDM-induced asthma treatment. Front Immunol. 2022;13:937331 pubmed 出版商
  2. Dinnon K, Leist S, Okuda K, Dang H, Fritch E, Gully K, et al. SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Sci Transl Med. 2022;14:eabo5070 pubmed 出版商
  3. Jin Y, Liu Y, Xu L, Xu J, Xiong Y, Peng Y, et al. Novel role for caspase 1 inhibitor VX765 in suppressing NLRP3 inflammasome assembly and atherosclerosis via promoting mitophagy and efferocytosis. Cell Death Dis. 2022;13:512 pubmed 出版商
  4. Andre A, Zhang L, Nix J, Elmadbouly N, Lucas A, Wilson Rawls J, et al. Myxomavirus Serp-1 Protein Ameliorates Inflammation in a Mouse Model of Duchenne Muscular Dystrophy. Biomedicines. 2022;10: pubmed 出版商
  5. Li M, Jiang H, Chen S, Ma Y. GATA binding protein 1 recruits histone deacetylase 2 to the promoter region of nuclear receptor binding protein 2 to affect the tumor microenvironment and malignancy of thyroid carcinoma. Bioengineered. 2022;13:11320-11341 pubmed 出版商
  6. Larue M, Parker S, Puccini J, Cammer M, Kimmelman A, Bar Sagi D. Metabolic reprogramming of tumor-associated macrophages by collagen turnover promotes fibrosis in pancreatic cancer. Proc Natl Acad Sci U S A. 2022;119:e2119168119 pubmed 出版商
  7. Liu Y, Wang L, Song Q, Ali M, Crowe W, Kucera G, et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat Nanotechnol. 2022;17:206-216 pubmed 出版商
  8. Choe D, Lee E, Beeghly Fadiel A, Wilson A, Whalen M, Adunyah S, et al. High-Fat Diet-Induced Obese Effects of Adipocyte-Specific CXCR2 Conditional Knockout in the Peritoneal Tumor Microenvironment of Ovarian Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  9. Yang C, Lei L, Collins J, Briones M, Ma L, Sturdevant G, et al. Chlamydia evasion of neutrophil host defense results in NLRP3 dependent myeloid-mediated sterile inflammation through the purinergic P2X7 receptor. Nat Commun. 2021;12:5454 pubmed 出版商
  10. Guo E, Mao X, Wang X, Guo L, An C, Zhang C, et al. Alternatively spliced ANLN isoforms synergistically contribute to the progression of head and neck squamous cell carcinoma. Cell Death Dis. 2021;12:764 pubmed 出版商
  11. Guo D, Yamamoto M, Hernandez C, Khodadadi H, Baban B, Stranahan A. Beige adipocytes mediate the neuroprotective and anti-inflammatory effects of subcutaneous fat in obese mice. Nat Commun. 2021;12:4623 pubmed 出版商
  12. Van De Velde L, Allen E, Crawford J, Wilson T, Guy C, Russier M, et al. Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1-Dependent Myeloid Cells. Cancer Res. 2021;81:5047-5059 pubmed 出版商
  13. Maier J, Rogg M, Helmstädter M, Sammarco A, Walz G, Werner M, et al. A Novel Model for Nephrotic Syndrome Reveals Associated Dysbiosis of the Gut Microbiome and Extramedullary Hematopoiesis. Cells. 2021;10: pubmed 出版商
  14. Borges P, Waclawiak I, Georgii J, Fraga Junior V, Barros J, Lemos F, et al. Adenosine Diphosphate Improves Wound Healing in Diabetic Mice Through P2Y12 Receptor Activation. Front Immunol. 2021;12:651740 pubmed 出版商
  15. Joseph R, Soundararajan R, Vasaikar S, Yang F, Allton K, Tian L, et al. CD8+ T cells inhibit metastasis and CXCL4 regulates its function. Br J Cancer. 2021;125:176-189 pubmed 出版商
  16. Yin H, Zhang X, Yang P, Zhang X, Peng Y, Li D, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021;12:1394 pubmed 出版商
  17. Ma C, Hunt J, Selenica M, Sanneh A, Sandusky Beltran L, Watler M, et al. Arginase 1 Insufficiency Precipitates Amyloid-β Deposition and Hastens Behavioral Impairment in a Mouse Model of Amyloidosis. Front Immunol. 2020;11:582998 pubmed 出版商
  18. He L, Bhat K, Duhacheck Muggy S, Ioannidis A, Zhang L, Nguyen N, et al. Tumor necrosis factor receptor signaling modulates carcinogenesis in a mouse model of breast cancer. Neoplasia. 2021;23:197-209 pubmed 出版商
  19. Mia M, Cibi D, Abdul Ghani S, Song W, Tee N, Ghosh S, et al. YAP/TAZ deficiency reprograms macrophage phenotype and improves infarct healing and cardiac function after myocardial infarction. PLoS Biol. 2020;18:e3000941 pubmed 出版商
  20. Weng X, Zhao H, Guan Q, Shi G, Feng S, Gleave M, et al. Clusterin regulates macrophage expansion, polarization and phagocytic activity in response to inflammation in the kidneys. Immunol Cell Biol. 2021;99:274-287 pubmed 出版商
  21. Luker A, Graham L, Smith T, Camarena C, Zellner M, Gilmer J, et al. The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer. BMC Immunol. 2020;21:8 pubmed 出版商
  22. Tan Z, Lei Z, Zhang Z, Zhang H, Shu K, Hu F, et al. Identification and characterization of microglia/macrophages in the granuloma microenvironment of encephalic schistosomiasis japonicum. BMC Infect Dis. 2019;19:1088 pubmed 出版商
  23. Guo M, Hartlova A, Gierlinski M, Prescott A, Castellvi J, Losa J, et al. Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J. 2019;38: pubmed 出版商
  24. Kang H, Yang B, Zhang K, Pan Q, Yuan W, Li G, et al. Immunoregulation of macrophages by dynamic ligand presentation via ligand-cation coordination. Nat Commun. 2019;10:1696 pubmed 出版商
  25. Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature. 2018;562:605-609 pubmed 出版商
  26. Cao Y, Xu Y, Auchoybur M, Chen W, He S, Qin W, et al. Regulatory role of IKKɑ in myocardial ischemia/reperfusion injury by the determination of M1 versus M2 polarization of macrophages. J Mol Cell Cardiol. 2018;123:1-12 pubmed 出版商
  27. Chen D, Xie J, Fiskesund R, Dong W, Liang X, Lv J, et al. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat Commun. 2018;9:873 pubmed 出版商
  28. Zaytouni T, Tsai P, Hitchcock D, DuBois C, Freinkman E, Lin L, et al. Critical role for arginase 2 in obesity-associated pancreatic cancer. Nat Commun. 2017;8:242 pubmed 出版商
  29. Lee R, Reese C, Carmen Lopez G, Perry B, Bonner M, Zemskova M, et al. Deficient Adipogenesis of Scleroderma Patient and Healthy African American Monocytes. Front Pharmacol. 2017;8:174 pubmed 出版商
  30. Zhang J, Xu X, Shi M, Chen Y, Yu D, Zhao C, et al. CD13hi Neutrophil-like myeloid-derived suppressor cells exert immune suppression through Arginase 1 expression in pancreatic ductal adenocarcinoma. Oncoimmunology. 2017;6:e1258504 pubmed 出版商
  31. Setty B, Pillay Smiley N, Pool C, Jin Y, Liu Y, Nelin L. Hypoxia-induced proliferation of HeLa cells depends on epidermal growth factor receptor-mediated arginase II induction. Physiol Rep. 2017;5: pubmed 出版商
  32. Carmona Fontaine C, Deforet M, Akkari L, Thompson C, Joyce J, Xavier J. Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci U S A. 2017;114:2934-2939 pubmed 出版商
  33. Knox L, Jing Y, Bawazier Edgecombe J, Collie N, Zhang H, Liu P. Effects of withdrawal from repeated phencyclidine administration on behavioural function and brain arginine metabolism in rats. Pharmacol Biochem Behav. 2017;153:45-59 pubmed 出版商
  34. Ando Y, Oku T, Tsuji T. Platelet Supernatant Suppresses LPS-Induced Nitric Oxide Production from Macrophages Accompanied by Inhibition of NF-?B Signaling and Increased Arginase-1 Expression. PLoS ONE. 2016;11:e0162208 pubmed 出版商
  35. Coppo M, Chinenov Y, Sacta M, Rogatsky I. The transcriptional coregulator GRIP1 controls macrophage polarization and metabolic homeostasis. Nat Commun. 2016;7:12254 pubmed 出版商
  36. Lee B, Wu C, Lin Y, Park S, Wei L. Synergistic activation of Arg1 gene by retinoic acid and IL-4 involves chromatin remodeling for transcription initiation and elongation coupling. Nucleic Acids Res. 2016;44:7568-79 pubmed 出版商
  37. Graham R, Terracciano L, Meves A, Vanderboom P, Dasari S, Yeh M, et al. Hepatic adenomas with synchronous or metachronous fibrolamellar carcinomas: both are characterized by LFABP loss. Mod Pathol. 2016;29:607-15 pubmed 出版商
  38. Younis R, Han K, Webb T. Human Head and Neck Squamous Cell Carcinoma-Associated Semaphorin 4D Induces Expansion of Myeloid-Derived Suppressor Cells. J Immunol. 2016;196:1419-29 pubmed 出版商
  39. Xia N, Horke S, Habermeier A, Closs E, Reifenberg G, Gericke A, et al. Uncoupling of Endothelial Nitric Oxide Synthase in Perivascular Adipose Tissue of Diet-Induced Obese Mice. Arterioscler Thromb Vasc Biol. 2016;36:78-85 pubmed 出版商