这是一篇来自已证抗体库的有关人类 ATP1A1的综述,是根据141篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ATP1A1 抗体。
ATP1A1 同义词: CMT2DD; HOMGSMR2

艾博抗(上海)贸易有限公司
小鼠 单克隆(464.6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). Burns Trauma (2022) ncbi
domestic rabbit 单克隆(EP1845Y)
  • 免疫印迹; 人类; 图 1i
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab76020)被用于被用于免疫印迹在人类样本上 (图 1i). Cell Rep (2022) ncbi
domestic rabbit 单克隆(EP1845Y)
  • 免疫细胞化学; 人类; 图 s12a
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab76020)被用于被用于免疫细胞化学在人类样本上 (图 s12a). Nat Commun (2022) ncbi
domestic rabbit 单克隆(EP1845Y)
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab76020)被用于被用于免疫印迹在人类样本上 (图 1b). Nat Commun (2021) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 小鼠; 1:2000; 图 2d
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2d). Commun Biol (2021) ncbi
domestic rabbit 单克隆(EP1845Y)
  • 免疫组化; 小鼠; 1:200; 图 2c
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab76020)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2c). Commun Biol (2021) ncbi
小鼠 单克隆(464.6)
  • 免疫细胞化学; 人类; 1:200; 图 4n
  • 免疫组化; 人类; 1:50; 图 7i
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4n) 和 被用于免疫组化在人类样本上浓度为1:50 (图 7i). Cells (2021) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在人类样本上. Cancer Sci (2021) ncbi
domestic rabbit 单克隆(EP1845Y)
  • 免疫印迹; 小鼠; 图 4b
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab76020)被用于被用于免疫印迹在小鼠样本上 (图 4b). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(EP1845Y)
  • 免疫组化; 人类; 图 1f
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab76020)被用于被用于免疫组化在人类样本上 (图 1f). Cell (2019) ncbi
domestic rabbit 单克隆(EP1845Y)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab76020)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(EP1845Y)
  • 免疫印迹; 人类; 1:500; 图 4c
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab76020)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4c). Nat Commun (2019) ncbi
小鼠 单克隆(464.6)
  • 免疫组化; 人类; 图 6a
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫组化在人类样本上 (图 6a). Nat Commun (2019) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 小鼠; 1:5000; 图 1a
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1a). Cancers (Basel) (2019) ncbi
domestic rabbit 单克隆(EP1845Y)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1b
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, EP1845Y)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1b). J Clin Invest (2019) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 小鼠; 1:2500; 图 3c
艾博抗(上海)贸易有限公司 ATP1A1抗体(abcam, ab7671)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 3c). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6c
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab58475)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2018) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Bone Res (2018) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 小鼠; 图 1d
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在小鼠样本上 (图 1d). Mol Brain (2018) ncbi
domestic rabbit 单克隆(EP1845Y)
  • 免疫印迹基因敲除验证; 人类; 图 s6
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, EP1845Y)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s6). EMBO J (2018) ncbi
小鼠 单克隆(464.6)
  • 免疫细胞化学; 人类; 图 6a
艾博抗(上海)贸易有限公司 ATP1A1抗体(abcam, ab197496)被用于被用于免疫细胞化学在人类样本上 (图 6a). MAbs (2018) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 ATP1A1抗体(AbCam, 464.6)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). J Immunol (2018) ncbi
domestic rabbit 单克隆(EP1845Y)
  • 免疫印迹; 小鼠; 图 3l
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, EP1845Y)被用于被用于免疫印迹在小鼠样本上 (图 3l). J Biol Chem (2017) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 小鼠; 1:400; 图 s4g
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 s4g). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 人类; 图 3e
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在人类样本上 (图 3e). Oncotarget (2017) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 小鼠; 图 2ci
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在小鼠样本上 (图 2ci). Sci Rep (2017) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 人类; 1:1000; 图 7b
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, Ab7671)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7b). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 单克隆(EP1845Y)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab 76020)被用于被用于免疫印迹在人类样本上 (图 1c). elife (2016) ncbi
小鼠 单克隆(464.6)
  • 免疫组化; 人类; 图 4
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫组化在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在人类样本上 (图 6). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(464.6)
  • 免疫细胞化学; 人类; 1:100; 图 6
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EP1845Y)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab76020)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在人类样本上 (图 1c). FASEB J (2016) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; cabbage looper; 图 9c
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, 464.6)被用于被用于免疫印迹在cabbage looper样本上 (图 9c). J Biol Chem (2016) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 小鼠; 1:10,000; 图 s4
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, Ab7671)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 s4). Nat Commun (2015) ncbi
小鼠 单克隆(464.6)
  • 免疫细胞化学; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671 clone 464.6)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 人类; 1:20,000; 图 2
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 2). Mol Cell Proteomics (2015) ncbi
domestic rabbit 单克隆(EP1845Y)
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, Ab76020)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(EP1845Y)
  • 免疫组化; 鸡; 1:750
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab76020)被用于被用于免疫组化在鸡样本上浓度为1:750. J Cell Sci (2015) ncbi
小鼠 单克隆(464.6)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neuropsychopharmacology (2015) ncbi
domestic rabbit 单克隆(EP1845Y)
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab76020)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(464.6)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Signal (2014) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 人类; 图 1,2,3,4,5,6
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在人类样本上 (图 1,2,3,4,5,6). J Cell Biol (2014) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 小鼠; 1:5000; 图 2
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). PLoS ONE (2014) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; African green monkey; 1:20,000
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫印迹在African green monkey样本上浓度为1:20,000. Biol Reprod (2014) ncbi
小鼠 单克隆(464.6)
  • 免疫细胞化学; 仓鼠
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫细胞化学在仓鼠样本上 和 被用于免疫细胞化学在小鼠样本上. Exp Dermatol (2014) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 人类; 1:2000
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, AB7671)被用于被用于免疫印迹在人类样本上浓度为1:2000. Exp Eye Res (2013) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, 464.6)被用于被用于免疫印迹在人类样本上. Front Cell Neurosci (2013) ncbi
小鼠 单克隆(464.6)
  • 免疫细胞化学; 大鼠; 1:100
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, Ab 7671)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100. Am J Physiol Cell Physiol (2013) ncbi
小鼠 单克隆(464.6)
  • 免疫组化-冰冻切片; 人类; 1:100
艾博抗(上海)贸易有限公司 ATP1A1抗体(Abcam, ab7671)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. J Comp Neurol (2011) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C464.6)
  • 免疫细胞化学; 人类; 1:250; 图 1e
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz, C464.6)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1e). Stem Cell Reports (2021) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz, sc48345)被用于被用于免疫印迹在人类样本上. Nat Commun (2020) ncbi
小鼠 单克隆(H-3)
  • 免疫组化; 大鼠; 1:1000; 图 2d
  • 免疫印迹; 大鼠; 1:1000; 图 7f
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz Biotechnology, sc48345)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 2d) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7f). Mol Pain (2020) ncbi
小鼠 单克隆(H-3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2b
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz, SC-48345)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2b). Fluids Barriers CNS (2020) ncbi
小鼠 单克隆(C464.6)
  • 免疫印迹; 人类; 1:1000; 图 5b
圣克鲁斯生物技术 ATP1A1抗体(Santacruz Biotechnology, sc-21712)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). J Biol Chem (2019) ncbi
小鼠 单克隆(C464.6)
  • 免疫组化; 小鼠; 1:100; 图 s1e
圣克鲁斯生物技术 ATP1A1抗体(Santa, sc-21712)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1e). Science (2019) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 小鼠; 图 3g
圣克鲁斯生物技术 ATP1A1抗体(SantaCruz, sc-48345)被用于被用于免疫印迹在小鼠样本上 (图 3g). Cell (2018) ncbi
小鼠 单克隆(C464.6)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
圣克鲁斯生物技术 ATP1A1抗体(Santa cruz, C464.6)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). Life Sci (2018) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:300; 图 4
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz, SC-514614)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 4). Exp Cell Res (2017) ncbi
小鼠 单克隆(C464.6)
  • 免疫细胞化学; 犬; 图 8a
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz, sc-21712)被用于被用于免疫细胞化学在犬样本上 (图 8a). J Biol Chem (2016) ncbi
  • 免疫印迹; 小鼠; 图 1b
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz Biotechnology, H-300)被用于被用于免疫印迹在小鼠样本上 (图 1b). Sci Rep (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:200; 图 5b
圣克鲁斯生物技术 ATP1A1抗体(Santa, sc-514614)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5b). PLoS ONE (2016) ncbi
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz, SC-28800)被用于被用于免疫印迹在人类样本上 (图 2b). Drug Metab Dispos (2016) ncbi
小鼠 单克隆(C464.6)
  • 免疫印迹; 大鼠; 1:200; 图 2
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz, sc-21712)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2). Mol Med Rep (2016) ncbi
  • 免疫印迹; 人类; 图 7c
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz, sc28800)被用于被用于免疫印迹在人类样本上 (图 7c). Nat Commun (2016) ncbi
小鼠 单克隆(H-3)
  • 免疫组化; 大鼠; 1:100; 图 3
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz Biotechnology, sc-48345)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3). Nutr Diabetes (2015) ncbi
小鼠 单克隆(C464.6)
  • 免疫印迹; 人类; 图 s2
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz, sc-21712)被用于被用于免疫印迹在人类样本上 (图 s2). PLoS ONE (2015) ncbi
小鼠 单克隆(M7-PB-E9)
  • 免疫组化; 非洲爪蛙; 1:1000; 图 4
  • 免疫沉淀; 牛; 图 1a
  • 免疫组化; 牛
  • 免疫印迹; 牛; 1:1000; 图 1b
  • 免疫组化; 小鼠; 1:1000; 图 2b
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz, M7-PB-E9)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:1000 (图 4), 被用于免疫沉淀在牛样本上 (图 1a), 被用于免疫组化在牛样本上, 被用于免疫印迹在牛样本上浓度为1:1000 (图 1b) 和 被用于免疫组化在小鼠样本上浓度为1:1000 (图 2b). Traffic (2015) ncbi
小鼠 单克隆(C464.6)
  • 免疫沉淀; 人类; 图 3
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz Biotech, SC-21712)被用于被用于免疫沉淀在人类样本上 (图 3). Physiol Rep (2015) ncbi
小鼠 单克隆(0.T.1)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 ATP1A1抗体(santa Cruz, sc-71638)被用于被用于免疫印迹在小鼠样本上 (图 1). Mol Cancer (2015) ncbi
小鼠 单克隆(C464.6)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz, sc-21712)被用于被用于免疫印迹在小鼠样本上 (图 6). FEBS J (2015) ncbi
小鼠 单克隆(C464.6)
  • 免疫印迹; 豚鼠; 1:500; 图 3d
圣克鲁斯生物技术 ATP1A1抗体(Santa cruz, sc-21712)被用于被用于免疫印迹在豚鼠样本上浓度为1:500 (图 3d). Brain Res (2015) ncbi
小鼠 单克隆(0.T.1)
  • 免疫细胞化学; 人类; 5 ug/ml; 图 1
圣克鲁斯生物技术 ATP1A1抗体(santa Cruz, sc-71638)被用于被用于免疫细胞化学在人类样本上浓度为5 ug/ml (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(C464.6)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz Biotechnology, C464.6)被用于被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2015) ncbi
小鼠 单克隆(M7-PB-E9)
  • 免疫组化; 人类; 图 3
圣克鲁斯生物技术 ATP1A1抗体(santa cruz, sc-58628)被用于被用于免疫组化在人类样本上 (图 3). Exp Cell Res (2015) ncbi
小鼠 单克隆(C464.6)
  • 其他; 小鼠; 1:500; 图 2
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz Biotechnology, sc-21712)被用于被用于其他在小鼠样本上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(C464.6)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz, sc-21712)被用于被用于免疫印迹在人类样本上 (图 6). Cell Cycle (2014) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz Biotechnology, sc-48345)被用于被用于免疫印迹在人类样本上. J Proteome Res (2014) ncbi
小鼠 单克隆(C464.6)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 ATP1A1抗体(Santa Cruz, sc-21,712)被用于被用于免疫印迹在大鼠样本上. J Assoc Res Otolaryngol (2014) ncbi
小鼠 单克隆(C464.6)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 ATP1A1抗体(Santa, C464.6)被用于被用于免疫印迹在小鼠样本上 (图 2a). Mol Endocrinol (2014) ncbi
赛默飞世尔
小鼠 单克隆(M7-PB-E9)
  • 免疫印迹; 小鼠; 1:5000; 图 s2g
赛默飞世尔 ATP1A1抗体(Thermo Fisher, MA3-928)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s2g). Nat Commun (2020) ncbi
小鼠 单克隆(M7-PB-E9)
  • 免疫印迹; 人类; 图 3c
赛默飞世尔 ATP1A1抗体(Thermo Fisher, MA3-928)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogene (2017) ncbi
小鼠 单克隆(M8-P1-A3)
  • 免疫细胞化学; 人类; 图 2d
赛默飞世尔 ATP1A1抗体(Bio Reagents, MA3-93)被用于被用于免疫细胞化学在人类样本上 (图 2d). Front Physiol (2016) ncbi
小鼠 单克隆(M8-P1-A3)
  • 免疫印迹; 人类; 1:100; 图 7i
赛默飞世尔 ATP1A1抗体(Thermo Scientific, MA3-929)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 7i). Biochem J (2016) ncbi
小鼠 单克隆(M8-P1-A3)
  • 免疫组化; 犬; 图 3b
赛默飞世尔 ATP1A1抗体(Thermo Fisher, MA-3-929)被用于被用于免疫组化在犬样本上 (图 3b). Cell Physiol Biochem (2016) ncbi
小鼠 单克隆(M8-P1-A3)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 ATP1A1抗体(Thermo Fisher, MA3-929)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(M8-P1-A3)
  • 免疫组化; 人类
赛默飞世尔 ATP1A1抗体(Thermo Scientific, M8-P1-A3)被用于被用于免疫组化在人类样本上. Mol Pharmacol (2015) ncbi
小鼠 单克隆(M8-P1-A3)
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 ATP1A1抗体(ABR, MA3-929)被用于被用于免疫沉淀在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:2000. Cell Res (2015) ncbi
小鼠 单克隆(M7-PB-E9)
  • 免疫印迹; 人类; 1:500; 图 1, 2
赛默飞世尔 ATP1A1抗体(Affinity Bio reagents, MA3-928)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1, 2). Neurochem Res (2015) ncbi
小鼠 单克隆(464.6)
  • 免疫细胞化学; 小鼠; 1:200
赛默飞世尔 ATP1A1抗体(Thermo Fisher Scientific, MA1-16731)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(M8-P1-A3)
  • 免疫细胞化学; African green monkey
赛默飞世尔 ATP1A1抗体(Thermo, MA3-929)被用于被用于免疫细胞化学在African green monkey样本上. J Cell Physiol (2015) ncbi
小鼠 单克隆(M7-PB-E9)
  • 免疫细胞化学; 人类; 1:50; 表 2
赛默飞世尔 ATP1A1抗体(ABR Affinity BioReagents, MA3-928)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (表 2). Int J Med Sci (2013) ncbi
小鼠 单克隆(M8-P1-A3)
  • 免疫细胞化学; 犬; 图 3k
赛默飞世尔 ATP1A1抗体(Thermo Scientific, MA3-929)被用于被用于免疫细胞化学在犬样本上 (图 3k). Proc Natl Acad Sci U S A (2011) ncbi
Novus Biologicals
小鼠 单克隆(464.6)
  • 免疫组化; 小鼠; 1:200; 图 6d
Novus Biologicals ATP1A1抗体(Novus, NB300-146)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6d). Mol Brain (2021) ncbi
小鼠 单克隆(464.6)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4b
Novus Biologicals ATP1A1抗体(Novus, NB300-146)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4b). Front Cell Neurosci (2021) ncbi
小鼠 单克隆(464.6)
  • 免疫组化; 人类; 1:100; 图 5A
Novus Biologicals ATP1A1抗体(Novus, NB300-146)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5A). PLoS ONE (2017) ncbi
小鼠 单克隆(464.6)
  • 免疫细胞化学; 人类; 图 2c
Novus Biologicals ATP1A1抗体(Novus, NB300-146)被用于被用于免疫细胞化学在人类样本上 (图 2c). Front Physiol (2016) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 牛; 1:5000; 表 2
Novus Biologicals ATP1A1抗体(Novus Biologicals, NB300-146)被用于被用于免疫印迹在牛样本上浓度为1:5000 (表 2). Mol Cell Endocrinol (2017) ncbi
小鼠 单克隆(464.6)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1
Novus Biologicals ATP1A1抗体(Novus Biologicals, NB300-146)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(464.6)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 9
Novus Biologicals ATP1A1抗体(Novus, NB300-146)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 9). Cell Tissue Res (2016) ncbi
小鼠 单克隆(464.6)
  • 免疫印迹; 人类
Novus Biologicals ATP1A1抗体(Novus, NB300-146)被用于被用于免疫印迹在人类样本上. J Clin Invest (2013) ncbi
Alomone Labs
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 2h
Alomone Labs ATP1A1抗体(Alomone Labs, ANP-001)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2h). Cell Death Dis (2021) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2c
赛信通(上海)生物试剂有限公司 ATP1A1抗体(cst, 3010)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2c). J Neurochem (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 ATP1A1抗体(CST, 3010)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8b). PLoS Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 ATP1A1抗体(Cell Signaling, 3010)被用于被用于免疫印迹在小鼠样本上 (图 3d). Front Synaptic Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 ATP1A1抗体(CST, 3010)被用于被用于免疫印迹在小鼠样本上 (图 1e). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 ATP1A1抗体(Cell Signaling, 3010)被用于被用于免疫印迹在人类样本上 (图 5c). J Mol Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 ATP1A1抗体(Cell Signaling, 3010)被用于被用于免疫印迹在小鼠样本上 (图 1b). J Exp Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 ATP1A1抗体(Cell Signaling, 3010)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Biochim Biophys Acta Mol Cell Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 ATP1A1抗体(Cell signaling, 3010S)被用于被用于免疫印迹在小鼠样本上 (图 1d). Cell Mol Life Sci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2f
赛信通(上海)生物试剂有限公司 ATP1A1抗体(Cell Signaling, 3010S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2f). J Exp Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
  • 免疫印迹; 人类; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 ATP1A1抗体(Cell Signaling, 3010)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). Sci Transl Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 ATP1A1抗体(Cell Signaling Technology, 3010)被用于被用于免疫印迹在人类样本上. elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 ATP1A1抗体(Cell Signaling, 3010)被用于被用于免疫印迹在人类样本上 (图 3e). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 ATP1A1抗体(Cell Signaling, 3010)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 ATP1A1抗体(Cell Signaling, cs-3010)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2s2h
赛信通(上海)生物试剂有限公司 ATP1A1抗体(Cell Signaling Technologies, 3010)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2s2h). elife (2016) ncbi
Fitzgerald Industries
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 小鼠; 图 2d, 3d
Fitzgerald Industries ATP1A1抗体(Fitzgerald, 10R-P104A)被用于被用于免疫印迹在人类样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 2d, 3d). Leukemia (2022) ncbi
  • 免疫印迹基因敲除验证; 人类; 1:500; 图 2e
  • 免疫印迹; 人类; 1:500; 图 4g
  • 免疫印迹; 小鼠; 1:500; 图 6c
Fitzgerald Industries ATP1A1抗体(Fitzgerald, 10R-P104A)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:500 (图 2e), 被用于免疫印迹在人类样本上浓度为1:500 (图 4g) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 6c). Mol Neurodegener (2022) ncbi
  • 免疫组化; 小鼠; 图 1d
  • 免疫印迹; 小鼠; 图 1c
Fitzgerald Industries ATP1A1抗体(Fitzgerald, 10R-P104A)被用于被用于免疫组化在小鼠样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 1c). Cell Rep (2021) ncbi
  • 免疫印迹; 人类; 1:1000; 图 1
Fitzgerald Industries ATP1A1抗体(Fitzgerald, 10R-2367)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Biol Cell (2015) ncbi
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 1d
Fitzgerald Industries ATP1A1抗体(Fitzgerald, 10R-P104A)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1d). BMC Biol (2014) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(A5)
  • 免疫印迹; 人类; 1:100; 图 7a
Developmental Studies Hybridoma Bank ATP1A1抗体(Developmental Studies Hybridoma Bank, a5)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 7a). elife (2021) ncbi
小鼠 单克隆(a6F)
  • 免疫印迹; 人类; 1:750; 图 2d
Developmental Studies Hybridoma Bank ATP1A1抗体(DSHB, a6F)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 2d). Physiol Rep (2017) ncbi
小鼠 单克隆(A5)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 图 4a
Developmental Studies Hybridoma Bank ATP1A1抗体(DSHB, a5)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上 (图 4a). Acta Neuropathol (2017) ncbi
小鼠 单克隆(a6F)
  • 免疫印迹; 人类; 1:750; 图 5a
Developmental Studies Hybridoma Bank ATP1A1抗体(DSHB, a6F)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 5a). J Appl Physiol (1985) (2016) ncbi
小鼠 单克隆(a6F)
  • 免疫组化; 斑马鱼; 1:200; 图 9a
Developmental Studies Hybridoma Bank ATP1A1抗体(DSHB, a6F)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 9a). J Neurosci Res (2016) ncbi
小鼠 单克隆(a6F)
  • 免疫印迹; 人类; 1:2000; 图 1
Developmental Studies Hybridoma Bank ATP1A1抗体(Hybridoma Bank, a6F)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1). J Biol Chem (2016) ncbi
小鼠 单克隆(a6F)
  • 免疫组化; 小鼠; 1:200; 图 s1a
Developmental Studies Hybridoma Bank ATP1A1抗体(Developmenal Studies Hybridoma Bank, a6f-c)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1a). Sci Rep (2016) ncbi
小鼠 单克隆(a6F)
  • 免疫印迹; 人类; 1:750; 图 1
Developmental Studies Hybridoma Bank ATP1A1抗体(DSHB, a6F)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 1). Exp Gerontol (2016) ncbi
小鼠 单克隆(A5)
  • 免疫印迹; 大鼠; 图 s2
Developmental Studies Hybridoma Bank ATP1A1抗体(DSHB, a5)被用于被用于免疫印迹在大鼠样本上 (图 s2). Mol Biol Cell (2016) ncbi
小鼠 单克隆(A5)
  • 免疫印迹; 小鼠; 图 3
Developmental Studies Hybridoma Bank ATP1A1抗体(Developmental Studies Hybridoma Bank, A5)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(a6F)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 1
Developmental Studies Hybridoma Bank ATP1A1抗体(Developmental Studies Hybridoma Bank, a6F)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(a6F)
  • 免疫印迹; 小鼠; 1:1000; 图 5
Developmental Studies Hybridoma Bank ATP1A1抗体(DSHB, a6F)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Neurosci (2015) ncbi
小鼠 单克隆(A5)
  • 免疫组化; fruit fly ; 1:100
Developmental Studies Hybridoma Bank ATP1A1抗体(Developmental Studies Hybridoma Bank, a5)被用于被用于免疫组化在fruit fly 样本上浓度为1:100. BMC Dev Biol (2015) ncbi
小鼠 单克隆(a6F)
  • 免疫印迹; 小鼠; 1:100
Developmental Studies Hybridoma Bank ATP1A1抗体(The Developmental Studies Hybridoma Databank, a6F)被用于被用于免疫印迹在小鼠样本上浓度为1:100. Neurobiol Dis (2015) ncbi
小鼠 单克隆(a6F)
  • 免疫组化; 大鼠
Developmental Studies Hybridoma Bank ATP1A1抗体(Developmental Studies Hybridoma Bank, a6F)被用于被用于免疫组化在大鼠样本上. J Assoc Res Otolaryngol (2014) ncbi
小鼠 单克隆(A5)
  • 免疫组化; Mongolian jird; 1:1000
Developmental Studies Hybridoma Bank ATP1A1抗体(DSHB, a5)被用于被用于免疫组化在Mongolian jird样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(a6F)
  • 免疫印迹; 小鼠; 1:100
Developmental Studies Hybridoma Bank ATP1A1抗体(Developmental Studies Hybridoma Bank, a6F)被用于被用于免疫印迹在小鼠样本上浓度为1:100. J Biol Chem (2013) ncbi
西格玛奥德里奇
小鼠 单克隆(M7-PB-E9)
  • 免疫印迹; 人类; 1:2000; 图 3a
西格玛奥德里奇 ATP1A1抗体(Sigma, M7-PB-E9)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3a). Nat Commun (2017) ncbi
小鼠 单克隆(M7-PB-E9)
  • 免疫细胞化学; 人类; 图 s1c
西格玛奥德里奇 ATP1A1抗体(Sigma Aldrich, A276)被用于被用于免疫细胞化学在人类样本上 (图 s1c). PLoS ONE (2016) ncbi
文章列表
  1. Lee A, Pingali S, Pinilla Ibarz J, Atchison M, Koumenis C, Argon Y, et al. Loss of AID exacerbates the malignant progression of CLL. Leukemia. 2022;36:2430-2442 pubmed 出版商
  2. Yuan X, Duan X, Li Z, Yao B, Enhejirigala -, Song W, et al. Collagen triple helix repeat containing-1 promotes functional recovery of sweat glands by inducing adjacent microvascular network reconstruction in vivo. Burns Trauma. 2022;10:tkac035 pubmed 出版商
  3. Pillai S, Mahmud I, Mahar R, Griffith C, Langsen M, Nguyen J, et al. Lipogenesis mediated by OGR1 regulates metabolic adaptation to acid stress in cancer cells via autophagy. Cell Rep. 2022;39:110796 pubmed 出版商
  4. Zhu J, Pittman S, Dhavale D, French R, Patterson J, Kaleelurrrahuman M, et al. VCP suppresses proteopathic seeding in neurons. Mol Neurodegener. 2022;17:30 pubmed 出版商
  5. Zhang M, Cui J, Lee D, Yuen V, Chiu D, Goh C, et al. Hypoxia-induced macropinocytosis represents a metabolic route for liver cancer. Nat Commun. 2022;13:954 pubmed 出版商
  6. Zhang Z, Li X, Yang F, Chen C, Liu P, Ren Y, et al. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat Commun. 2021;12:5872 pubmed 出版商
  7. Wani A, Zhu J, ULRICH J, Eteleeb A, Sauerbeck A, Reitz S, et al. Neuronal VCP loss of function recapitulates FTLD-TDP pathology. Cell Rep. 2021;36:109399 pubmed 出版商
  8. Shang P, Stepicheva N, Teel K, McCauley A, Fitting C, Hose S, et al. βA3/A1-crystallin regulates apical polarity and EGFR endocytosis in retinal pigmented epithelial cells. Commun Biol. 2021;4:850 pubmed 出版商
  9. Aguilar J, Cheng M, Font J, Schwartz A, Ledwitch K, Duran A, et al. Psychomotor impairments and therapeutic implications revealed by a mutation associated with infantile Parkinsonism-Dystonia. elife. 2021;10: pubmed 出版商
  10. Miwa T, Wei F, Tomizawa K. Cdk5 regulatory subunit-associated protein 1 knockout mice show hearing loss phenotypically similar to age-related hearing loss. Mol Brain. 2021;14:82 pubmed 出版商
  11. Vecchio L, Sullivan P, Dunn A, Bermejo M, Fu R, Masoud S, et al. Enhanced tyrosine hydroxylase activity induces oxidative stress, causes accumulation of autotoxic catecholamine metabolites, and augments amphetamine effects in vivo. J Neurochem. 2021;158:960-979 pubmed 出版商
  12. Miwa T. Protective Effects of N1-Methylnicotinamide Against High-Fat Diet- and Age-Induced Hearing Loss via Moderate Overexpression of Sirtuin 1 Protein. Front Cell Neurosci. 2021;15:634868 pubmed 出版商
  13. Sripada A, Sirohi K, Michalec L, Guo L, McKay J, Yadav S, et al. Sprouty2 positively regulates T cell function and airway inflammation through regulation of CSK and LCK kinases. PLoS Biol. 2021;19:e3001063 pubmed 出版商
  14. Safari M, Obexer D, Baier Bitterlich G, zur Nedden S. PKN1 Is a Novel Regulator of Hippocampal GluA1 Levels. Front Synaptic Neurosci. 2021;13:640495 pubmed 出版商
  15. Grönroos P, Ilmarinen T, Skottman H. Directed Differentiation of Human Pluripotent Stem Cells towards Corneal Endothelial-Like Cells under Defined Conditions. Cells. 2021;10: pubmed 出版商
  16. Hayashi H, Osaka S, Sakabe K, Fukami A, Kishimoto E, Aihara E, et al. Modeling Human Bile Acid Transport and Synthesis in Stem Cell-Derived Hepatocytes with a Patient-Specific Mutation. Stem Cell Reports. 2021;16:309-323 pubmed 出版商
  17. Liu X, Ge J, Chen C, Shen Y, Xie J, Zhu X, et al. FAT10 protects against ischemia-induced ventricular arrhythmia by decreasing Nedd4-2/Nav1.5 complex formation. Cell Death Dis. 2021;12:25 pubmed 出版商
  18. Smith S, Chen X, Brier L, Bumstead J, Rensing N, Ringel A, et al. Astrocyte deletion of α2-Na/K ATPase triggers episodic motor paralysis in mice via a metabolic pathway. Nat Commun. 2020;11:6164 pubmed 出版商
  19. Wang C, Weng M, Xia S, Zhang M, Chen C, Tang J, et al. Distinct roles of programmed death ligand 1 alternative splicing isoforms in colorectal cancer. Cancer Sci. 2021;112:178-193 pubmed 出版商
  20. Li Y, Ivica N, Dong T, Papageorgiou D, He Y, Brown D, et al. MFSD7C switches mitochondrial ATP synthesis to thermogenesis in response to heme. Nat Commun. 2020;11:4837 pubmed 出版商
  21. Talwar D, Messens J, Dick T. A role for annexin A2 in scaffolding the peroxiredoxin 2-STAT3 redox relay complex. Nat Commun. 2020;11:4512 pubmed 出版商
  22. Shin S, Itson Zoske B, Cai Y, Qiu C, Pan B, Stucky C, et al. Satellite glial cells in sensory ganglia express functional transient receptor potential ankyrin 1 that is sensitized in neuropathic and inflammatory pain. Mol Pain. 2020;16:1744806920925425 pubmed 出版商
  23. Dolgodilina E, Camargo S, Roth E, Herzog B, Nunes V, Palacin M, et al. Choroid plexus LAT2 and SNAT3 as partners in CSF amino acid homeostasis maintenance. Fluids Barriers CNS. 2020;17:17 pubmed 出版商
  24. Yuan B, Zhou X, You Z, Xu W, Fan J, Chen S, et al. Inhibition of AIM2 inflammasome activation alleviates GSDMD-induced pyroptosis in early brain injury after subarachnoid haemorrhage. Cell Death Dis. 2020;11:76 pubmed 出版商
  25. James C, Müller M, Goldberg M, Lenz C, Urlaub H, Kehlenbach R. Proteomic mapping by rapamycin-dependent targeting of APEX2 identifies binding partners of VAPB at the inner nuclear membrane. J Biol Chem. 2019;294:16241-16254 pubmed 出版商
  26. Wang R, Yu R, Zhu C, Lin H, Lu X, Wang H. Tubulin detyrosination promotes human trophoblast syncytium formation. J Mol Cell Biol. 2019;: pubmed 出版商
  27. Dumortier J, Le Verge Serandour M, Tortorelli A, Mielke A, de Plater L, Turlier H, et al. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science. 2019;365:465-468 pubmed 出版商
  28. Dvela Levitt M, Kost Alimova M, Emani M, Kohnert E, Thompson R, Sidhom E, et al. Small Molecule Targets TMED9 and Promotes Lysosomal Degradation to Reverse Proteinopathy. Cell. 2019;178:521-535.e23 pubmed 出版商
  29. Jobin P, Solis N, Machado Y, Bell P, Kwon N, Kim S, et al. Matrix metalloproteinases inactivate the proinflammatory functions of secreted moonlighting tryptophanyl-tRNA synthetase. J Biol Chem. 2019;294:12866-12879 pubmed 出版商
  30. Soutto M, Chen Z, Bhat A, Wang L, Zhu S, Gomaa A, et al. Activation of STAT3 signaling is mediated by TFF1 silencing in gastric neoplasia. Nat Commun. 2019;10:3039 pubmed 出版商
  31. Sauer M, Juranek S, Marks J, De Magis A, Kazemier H, Hilbig D, et al. DHX36 prevents the accumulation of translationally inactive mRNAs with G4-structures in untranslated regions. Nat Commun. 2019;10:2421 pubmed 出版商
  32. Nakai A, Fujimoto J, Miyata H, Stumm R, Narazaki M, Schulz S, et al. The COMMD3/8 complex determines GRK6 specificity for chemoattractant receptors. J Exp Med. 2019;: pubmed 出版商
  33. Le Vasseur M, Chen V, Huang K, Vogl W, Naus C. Pannexin 2 Localizes at ER-Mitochondria Contact Sites. Cancers (Basel). 2019;11: pubmed 出版商
  34. Li Y, Hu Q, Li C, Liang K, Xiang Y, Hsiao H, et al. PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease. J Clin Invest. 2019;129:1129-1151 pubmed 出版商
  35. Erwig M, Patzig J, Steyer A, Dibaj P, Heilmann M, Heilmann I, et al. Anillin facilitates septin assembly to prevent pathological outfoldings of central nervous system myelin. elife. 2019;8: pubmed 出版商
  36. Gattkowski E, Johnsen A, Bauche A, Möckl F, Kulow F, Garcia Alai M, et al. Novel CaM-binding motif in its NudT9H domain contributes to temperature sensitivity of TRPM2. Biochim Biophys Acta Mol Cell Res. 2019;1866:1162-1170 pubmed 出版商
  37. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell. 2018;175:1336-1351.e17 pubmed 出版商
  38. Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;9:3630 pubmed 出版商
  39. Wang L, Chai Y, Li C, Liu H, Su W, Liu X, et al. Oxidized phospholipids are ligands for LRP6. Bone Res. 2018;6:22 pubmed 出版商
  40. Shang X, Shen C, Liu J, Tang L, Zhang H, Wang Y, et al. Serine protease PRSS55 is crucial for male mouse fertility via affecting sperm migration and sperm-egg binding. Cell Mol Life Sci. 2018;75:4371-4384 pubmed 出版商
  41. Bianchi B, Smith P, Abriel H. The ion channel TRPM4 in murine experimental autoimmune encephalomyelitis and in a model of glutamate-induced neuronal degeneration. Mol Brain. 2018;11:41 pubmed 出版商
  42. Takada N, Naito T, Inoue T, Nakayama K, Takatsu H, Shin H. Phospholipid-flipping activity of P4-ATPase drives membrane curvature. EMBO J. 2018;37: pubmed 出版商
  43. Roy G, Martin T, Barnes A, Wang J, Jimenez R, Rice M, et al. A novel bicistronic gene design couples stable cell line selection with a fucose switch in a designer CHO host to produce native and afucosylated glycoform antibodies. MAbs. 2018;10:416-430 pubmed 出版商
  44. Steinbuck M, Arakcheeva K, Winandy S. Novel TCR-Mediated Mechanisms of Notch Activation and Signaling. J Immunol. 2018;200:997-1007 pubmed 出版商
  45. Ma Q, Wang Y, Zhang T, Zuo W. Notch-mediated Sox9+ cell activation contributes to kidney repair after partial nephrectomy. Life Sci. 2018;193:104-109 pubmed 出版商
  46. Khrimian L, Obri A, Ramos Brossier M, Rousseaud A, Moriceau S, Nicot A, et al. Gpr158 mediates osteocalcin's regulation of cognition. J Exp Med. 2017;214:2859-2873 pubmed 出版商
  47. Reinhard J, Lin S, McKee K, Meinen S, Crosson S, Sury M, et al. Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice. Sci Transl Med. 2017;9: pubmed 出版商
  48. Castella B, Kopecka J, Sciancalepore P, Mandili G, Foglietta M, Mitro N, et al. The ATP-binding cassette transporter A1 regulates phosphoantigen release and Vγ9Vδ2 T cell activation by dendritic cells. Nat Commun. 2017;8:15663 pubmed 出版商
  49. Domingo Fernández R, Coll R, Kearney J, Breit S, O Neill L. The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1? transcription and activate the NLRP3 inflammasome. J Biol Chem. 2017;292:12077-12087 pubmed 出版商
  50. Nishimura S, Mishra Gorur K, Park J, Surovtseva Y, Sebti S, Levchenko A, et al. Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci U S A. 2017;114:5503-5508 pubmed 出版商
  51. Kapil S, Sharma B, Patil M, Elattar S, Yuan J, Hou S, et al. The cell polarity protein Scrib functions as a tumor suppressor in liver cancer. Oncotarget. 2017;8:26515-26531 pubmed 出版商
  52. Yurugi H, Marini F, Weber C, David K, Zhao Q, Binder H, et al. Targeting prohibitins with chemical ligands inhibits KRAS-mediated lung tumours. Oncogene. 2017;36:4778-4789 pubmed 出版商
  53. Zhang X, Spiegelman N, Nelson O, Jing H, Lin H. SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. elife. 2017;6: pubmed 出版商
  54. Wyckelsma V, Levinger I, Murphy R, Petersen A, Perry B, Hedges C, et al. Intense interval training in healthy older adults increases skeletal muscle [3H]ouabain-binding site content and elevates Na+,K+-ATPase ?2 isoform abundance in Type II fibers. Physiol Rep. 2017;5: pubmed 出版商
  55. Geng Z, Walsh P, Truong V, Hill C, Ebeling M, Kapphahn R, et al. Generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. PLoS ONE. 2017;12:e0173575 pubmed 出版商
  56. Saito M, Asai Y, Imai K, Hiratoko S, Tanaka K. Connexin30.3 is expressed in mouse embryonic stem cells and is responsive to leukemia inhibitory factor. Sci Rep. 2017;7:42403 pubmed 出版商
  57. Rogers C, Fernandes Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri E. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 2017;8:14128 pubmed 出版商
  58. Chapuis J, Flaig A, Grenier Boley B, Eysert F, Pottiez V, Deloison G, et al. Genome-wide, high-content siRNA screening identifies the Alzheimer's genetic risk factor FERMT2 as a major modulator of APP metabolism. Acta Neuropathol. 2017;133:955-966 pubmed 出版商
  59. Torres Martínez A, Gallardo Vera J, Lara Holguin A, Montano L, Rendón Huerta E. Claudin-6 enhances cell invasiveness through claudin-1 in AGS human adenocarcinoma gastric cancer cells. Exp Cell Res. 2017;350:226-235 pubmed 出版商
  60. Lobato Álvarez J, Roldán M, López Murillo T, González Ramírez R, Bonilla Delgado J, Shoshani L. The Apical Localization of Na+, K+-ATPase in Cultured Human Retinal Pigment Epithelial Cells Depends on Expression of the ?2 Subunit. Front Physiol. 2016;7:450 pubmed
  61. Ontsouka C, Huang X, Aliyev E, Albrecht C. In vitro characterization and endocrine regulation of cholesterol and phospholipid transport in the mammary gland. Mol Cell Endocrinol. 2017;439:35-45 pubmed 出版商
  62. Fujii N, Matsuo Y, Matsunaga T, Endo S, Sakai H, Yamaguchi M, et al. Hypotonic Stress-induced Down-regulation of Claudin-1 and -2 Mediated by Dephosphorylation and Clathrin-dependent Endocytosis in Renal Tubular Epithelial Cells. J Biol Chem. 2016;291:24787-24799 pubmed
  63. Kicinska A, Augustynek B, Kulawiak B, Jarmuszkiewicz W, Szewczyk A, Bednarczyk P. A large-conductance calcium-regulated K+ channel in human dermal fibroblast mitochondria. Biochem J. 2016;473:4457-4471 pubmed
  64. Haney S, Upchurch G, Opavska J, Klinkebiel D, Appiah A, Smith L, et al. Loss of Dnmt3a induces CLL and PTCL with distinct methylomes and transcriptomes in mice. Sci Rep. 2016;6:34222 pubmed 出版商
  65. Perry B, Wyckelsma V, Murphy R, Steward C, Anderson M, Levinger I, et al. Dissociation between short-term unloading and resistance training effects on skeletal muscle Na+,K+-ATPase, muscle function, and fatigue in humans. J Appl Physiol (1985). 2016;121:1074-1086 pubmed 出版商
  66. Ponce A, Larre I, Castillo A, Flores Maldonado C, Verdejo Torres O, Contreras R, et al. Ouabain Modulates the Distribution of Connexin 43 in Epithelial Cells. Cell Physiol Biochem. 2016;39:1329-38 pubmed 出版商
  67. Clairfeuille T, Mas C, Chan A, Yang Z, Tello Lafoz M, Chandra M, et al. A molecular code for endosomal recycling of phosphorylated cargos by the SNX27-retromer complex. Nat Struct Mol Biol. 2016;23:921-932 pubmed 出版商
  68. Sun Y, Paşca S, Portmann T, Goold C, Worringer K, Guan W, et al. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients. elife. 2016;5: pubmed 出版商
  69. Yue Q, Zhen H, Huang M, Zheng X, Feng L, Jiang B, et al. Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells. PLoS ONE. 2016;11:e0159034 pubmed 出版商
  70. He Z, Forest F, Gain P, Rageade D, Bernard A, Acquart S, et al. 3D map of the human corneal endothelial cell. Sci Rep. 2016;6:29047 pubmed 出版商
  71. Kim D, Pauer S, Yong H, An S, Liggett S. ?2-Adrenergic Receptors Chaperone Trapped Bitter Taste Receptor 14 to the Cell Surface as a Heterodimer and Exert Unidirectional Desensitization of Taste Receptor Function. J Biol Chem. 2016;291:17616-28 pubmed 出版商
  72. Prabhudesai S, Bensabeur F, Abdullah R, Basak I, Baez S, Alves G, et al. LRRK2 knockdown in zebrafish causes developmental defects, neuronal loss, and synuclein aggregation. J Neurosci Res. 2016;94:717-35 pubmed 出版商
  73. Syam N, Chatel S, Ozhathil L, Sottas V, Rougier J, Baruteau A, et al. Variants of Transient Receptor Potential Melastatin Member 4 in Childhood Atrioventricular Block. J Am Heart Assoc. 2016;5: pubmed 出版商
  74. Csandl M, Conseil G, Cole S. Cysteinyl Leukotriene Receptor 1/2 Antagonists Nonselectively Modulate Organic Anion Transport by Multidrug Resistance Proteins (MRP1-4). Drug Metab Dispos. 2016;44:857-66 pubmed 出版商
  75. Li J, Huang S, Zhang J, Feng C, Gao D, Yao B, et al. Mesenchymal stem cells ameliorate inflammatory cytokine-induced impairment of AT-II cells through a keratinocyte growth factor-dependent PI3K/Akt/mTOR signaling pathway. Mol Med Rep. 2016;13:3755-62 pubmed 出版商
  76. Wu W, Zeng Y, Li Z, Li Q, Xu H, Yin Z. Features specific to retinal pigment epithelium cells derived from three-dimensional human embryonic stem cell cultures - a new donor for cell therapy. Oncotarget. 2016;7:22819-33 pubmed 出版商
  77. Sprowl J, Ong S, Gibson A, Hu S, Du G, Lin W, et al. A phosphotyrosine switch regulates organic cation transporters. Nat Commun. 2016;7:10880 pubmed 出版商
  78. Di X, Wang Y, Han D, Fu Y, Duerfeldt A, Blagg B, et al. Grp94 Protein Delivers γ-Aminobutyric Acid Type A (GABAA) Receptors to Hrd1 Protein-mediated Endoplasmic Reticulum-associated Degradation. J Biol Chem. 2016;291:9526-39 pubmed 出版商
  79. Strazielle N, Creidy R, Malcus C, Boucraut J, Ghersi Egea J. T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium. PLoS ONE. 2016;11:e0150945 pubmed 出版商
  80. Liu W, Edin F, Blom H, Magnusson P, Schrott Fischer A, Glueckert R, et al. Super-resolution structured illumination fluorescence microscopy of the lateral wall of the cochlea: the Connexin26/30 proteins are separately expressed in man. Cell Tissue Res. 2016;365:13-27 pubmed 出版商
  81. Chen C, Meng S, Xue Y, Han Y, Sun C, Deng J, et al. Epigenetic modification of PKMζ rescues aging-related cognitive impairment. Sci Rep. 2016;6:22096 pubmed 出版商
  82. Stindt S, Cebula P, Albrecht U, Keitel V, Schulte Am Esch J, Knoefel W, et al. Hepatitis C Virus Activates a Neuregulin-Driven Circuit to Modify Surface Expression of Growth Factor Receptors of the ErbB Family. PLoS ONE. 2016;11:e0148711 pubmed 出版商
  83. Prior K, Wittig I, Leisegang M, Groenendyk J, Weissmann N, Michalak M, et al. The Endoplasmic Reticulum Chaperone Calnexin Is a NADPH Oxidase NOX4 Interacting Protein. J Biol Chem. 2016;291:7045-59 pubmed 出版商
  84. Hilbers F, Kopeć W, Isaksen T, Holm T, Lykke Hartmann K, Nissen P, et al. Tuning of the Na,K-ATPase by the beta subunit. Sci Rep. 2016;6:20442 pubmed 出版商
  85. Albert V, Svensson K, Shimobayashi M, Colombi M, Munoz S, Jimenez V, et al. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med. 2016;8:232-46 pubmed 出版商
  86. Wyckelsma V, McKenna M, Levinger I, Petersen A, Lamboley C, Murphy R. Cell specific differences in the protein abundances of GAPDH and Na(+),K(+)-ATPase in skeletal muscle from aged individuals. Exp Gerontol. 2016;75:8-15 pubmed 出版商
  87. Carroll B, Maetzel D, Maddocks O, Otten G, Ratcliff M, Smith G, et al. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. elife. 2016;5: pubmed 出版商
  88. Roundhill E, Turnbull D, Burchill S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. FASEB J. 2016;30:1712-23 pubmed 出版商
  89. Al Kafaji G, Sabry M, Bakhiet M. Increased expression of mitochondrial DNA-encoded genes in human renal mesangial cells in response to high glucose-induced reactive oxygen species. Mol Med Rep. 2016;13:1774-80 pubmed 出版商
  90. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed 出版商
  91. Patrone M, Coroadinha A, Teixeira A, Alves P. Palmitoylation Strengthens Cholesterol-dependent Multimerization and Fusion Activity of Human Cytomegalovirus Glycoprotein B (gB). J Biol Chem. 2016;291:4711-22 pubmed 出版商
  92. Olivares García V, Torre Villalvazo I, Velázquez Villegas L, Alemán G, Lara N, López Romero P, et al. Fasting and postprandial regulation of the intracellular localization of adiponectin and of adipokines secretion by dietary fat in rats. Nutr Diabetes. 2015;5:e184 pubmed 出版商
  93. Messaoudi S, He Y, Gutsol A, Wight A, Hébert R, Vilmundarson R, et al. Endothelial Gata5 transcription factor regulates blood pressure. Nat Commun. 2015;6:8835 pubmed 出版商
  94. Natarelli L, Ranaldi G, Leoni G, Roselli M, Guantario B, Comitato R, et al. Nanomolar Caffeic Acid Decreases Glucose Uptake and the Effects of High Glucose in Endothelial Cells. PLoS ONE. 2015;10:e0142421 pubmed 出版商
  95. Shadforth A, Suzuki S, Theodoropoulos C, Richardson N, Chirila T, Harkin D. A Bruch's membrane substitute fabricated from silk fibroin supports the function of retinal pigment epithelial cells in vitro. J Tissue Eng Regen Med. 2017;11:1915-1924 pubmed 出版商
  96. Zhang T, Xu Y, Liu Y, Ye Y. gp78 functions downstream of Hrd1 to promote degradation of misfolded proteins of the endoplasmic reticulum. Mol Biol Cell. 2015;26:4438-50 pubmed 出版商
  97. Zulliger R, Conley S, Mwoyosvi M, Stuck M, Azadi S, Naash M. SNAREs Interact with Retinal Degeneration Slow and Rod Outer Segment Membrane Protein-1 during Conventional and Unconventional Outer Segment Targeting. PLoS ONE. 2015;10:e0138508 pubmed 出版商
  98. Sharma P, Abbasi C, Lazic S, Teng A, Wang D, Dubois N, et al. Evolutionarily conserved intercalated disc protein Tmem65 regulates cardiac conduction and connexin 43 function. Nat Commun. 2015;6:8391 pubmed 出版商
  99. Laird J, Pan Y, Modestou M, Yamaguchi D, Song H, Sokolov M, et al. Identification of a VxP Targeting Signal in the Flagellar Na+ /K+ -ATPase. Traffic. 2015;16:1239-53 pubmed 出版商
  100. Lund R, Leth Larsen R, Caterino T, Terp M, Nissen J, Lænkholm A, et al. NADH-Cytochrome b5 Reductase 3 Promotes Colonization and Metastasis Formation and Is a Prognostic Marker of Disease-Free and Overall Survival in Estrogen Receptor-Negative Breast Cancer. Mol Cell Proteomics. 2015;14:2988-99 pubmed 出版商
  101. Juel C, Hostrup M, Bangsbo J. The effect of exercise and beta2-adrenergic stimulation on glutathionylation and function of the Na,K-ATPase in human skeletal muscle. Physiol Rep. 2015;3: pubmed 出版商
  102. Lee S, Litan A, Li Z, Graves B, Lindsey S, Barwe S, et al. Na,K-ATPase β1-subunit is a target of sonic hedgehog signaling and enhances medulloblastoma tumorigenicity. Mol Cancer. 2015;14:159 pubmed 出版商
  103. Limmer F, Schinner E, Castrop H, Vitzthum H, Hofmann F, Schlossmann J. Regulation of the Na(+)-K(+)-2Cl(-) cotransporter by cGMP/cGMP-dependent protein kinase I after furosemide administration. FEBS J. 2015;282:3786-98 pubmed 出版商
  104. Kang J, Shen W, Zhou C, Xu D, Macdonald R. The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration. Nat Neurosci. 2015;18:988-96 pubmed 出版商
  105. Gao W, Xu J, Wang F, Zhang L, Peng R, Shu Y, et al. Plasma membrane proteomic analysis of human Gastric Cancer tissues: revealing flotillin 1 as a marker for Gastric Cancer. BMC Cancer. 2015;15:367 pubmed 出版商
  106. Meade M, Hoffmann A, Makley M, Snider T, Schlager J, Gearhart J. Quantitative proteomic analysis of the brainstem following lethal sarin exposure. Brain Res. 2015;1611:101-13 pubmed 出版商
  107. Peh G, Adnan K, George B, Ang H, Seah X, Tan D, et al. The effects of Rho-associated kinase inhibitor Y-27632 on primary human corneal endothelial cells propagated using a dual media approach. Sci Rep. 2015;5:9167 pubmed 出版商
  108. Padmanabhan R, Taneyhill L. Cadherin-6B undergoes macropinocytosis and clathrin-mediated endocytosis during cranial neural crest cell EMT. J Cell Sci. 2015;128:1773-86 pubmed 出版商
  109. Salazar Peláez L, Abraham T, Herrera A, Correa M, Ortega J, Paré P, et al. Vitronectin expression in the airways of subjects with asthma and chronic obstructive pulmonary disease. PLoS ONE. 2015;10:e0119717 pubmed 出版商
  110. Ferru Clément R, Fresquet F, Norez C, Métayé T, Becq F, Kitzis A, et al. Involvement of the Cdc42 pathway in CFTR post-translational turnover and in its plasma membrane stability in airway epithelial cells. PLoS ONE. 2015;10:e0118943 pubmed 出版商
  111. Xue Y, Zhu Z, Han H, Liu J, Meng S, Chen C, et al. Overexpression of Protein Kinase Mζ in the Prelimbic Cortex Enhances the Formation of Long-Term Fear Memory. Neuropsychopharmacology. 2015;40:2146-56 pubmed 出版商
  112. Lee J, Shahidullah M, Hotchkiss A, Coca Prados M, Delamere N, Pelis R. A renal-like organic anion transport system in the ciliary epithelium of the bovine and human eye. Mol Pharmacol. 2015;87:697-705 pubmed 出版商
  113. Li H, Chen L, Zeng S, Li X, Zhang X, Lin C, et al. Matrigel basement membrane matrix induces eccrine sweat gland cells to reconstitute sweat gland-like structures in nude mice. Exp Cell Res. 2015;332:67-77 pubmed 出版商
  114. Nie J, Mahato S, Zelhof A. Imaging the Drosophila retina: zwitterionic buffers PIPES and HEPES induce morphological artifacts in tissue fixation. BMC Dev Biol. 2015;15:10 pubmed 出版商
  115. Xue J, Chen Y, Wu Y, Wang Z, Zhou A, Zhang S, et al. Tumour suppressor TRIM33 targets nuclear β-catenin degradation. Nat Commun. 2015;6:6156 pubmed 出版商
  116. Wang F, Cai B, Li K, Hu X, Lu Y, Wang Q, et al. FXYD2, a γ subunit of Na⁺, K⁺-ATPase, maintains persistent mechanical allodynia induced by inflammation. Cell Res. 2015;25:318-34 pubmed 出版商
  117. HERRERA V, Pasion K, Moran A, Zaninello R, Ortu M, Fresu G, et al. A functional 12T-insertion polymorphism in the ATP1A1 promoter confers decreased susceptibility to hypertension in a male Sardinian population. PLoS ONE. 2015;10:e0116724 pubmed 出版商
  118. Zacherl S, La Venuta G, Muller H, Wegehingel S, Dimou E, Sehr P, et al. A direct role for ATP1A1 in unconventional secretion of fibroblast growth factor 2. J Biol Chem. 2015;290:3654-65 pubmed 出版商
  119. Madsen K, Hansen G, Danielsen E, Schousboe A. The subcellular localization of GABA transporters and its implication for seizure management. Neurochem Res. 2015;40:410-9 pubmed 出版商
  120. Bollu L, Ren J, Blessing A, Katreddy R, Gao G, Xu L, et al. Involvement of de novo synthesized palmitate and mitochondrial EGFR in EGF induced mitochondrial fusion of cancer cells. Cell Cycle. 2014;13:2415-30 pubmed 出版商
  121. Zhou C, Ding L, Deel M, Ferrick E, Emeson R, Gallagher M. Altered intrathalamic GABAA neurotransmission in a mouse model of a human genetic absence epilepsy syndrome. Neurobiol Dis. 2015;73:407-17 pubmed 出版商
  122. Fos C, Bécart S, Canonigo Balancio A, Boehning D, Altman A. Association of the EF-hand and PH domains of the guanine nucleotide exchange factor SLAT with IP₃ receptor 1 promotes Ca²⁺ signaling in T cells. Sci Signal. 2014;7:ra93 pubmed 出版商
  123. García Dorival I, Wu W, Dowall S, Armstrong S, Touzelet O, Wastling J, et al. Elucidation of the Ebola virus VP24 cellular interactome and disruption of virus biology through targeted inhibition of host-cell protein function. J Proteome Res. 2014;13:5120-35 pubmed 出版商
  124. Cherepanova N, Shrimal S, Gilmore R. Oxidoreductase activity is necessary for N-glycosylation of cysteine-proximal acceptor sites in glycoproteins. J Cell Biol. 2014;206:525-39 pubmed 出版商
  125. Schuth O, McLean W, Eatock R, Pyott S. Distribution of Na,K-ATPase α subunits in rat vestibular sensory epithelia. J Assoc Res Otolaryngol. 2014;15:739-54 pubmed 出版商
  126. Booth A, Tarafder A, Hume A, Recchi C, Seabra M. A role for Na+,K+-ATPase ?1 in regulating Rab27a localisation on melanosomes. PLoS ONE. 2014;9:e102851 pubmed 出版商
  127. García Hernández V, Flores Maldonado C, Rincon Heredia R, Verdejo Torres O, Bonilla Delgado J, Meneses Morales I, et al. EGF regulates claudin-2 and -4 expression through Src and STAT3 in MDCK cells. J Cell Physiol. 2015;230:105-15 pubmed 出版商
  128. Baron Y, Pedrioli P, Tyagi K, Johnson C, Wood N, Fountaine D, et al. VAPB/ALS8 interacts with FFAT-like proteins including the p97 cofactor FAF1 and the ASNA1 ATPase. BMC Biol. 2014;12:39 pubmed 出版商
  129. Erdozain A, Morentin B, Bedford L, King E, Tooth D, Brewer C, et al. Alcohol-related brain damage in humans. PLoS ONE. 2014;9:e93586 pubmed 出版商
  130. Kakiuchi K, Tsuda A, Goto Y, Shimada T, Taniguchi K, Takagishi K, et al. Cell-surface DEAD-box polypeptide 4-immunoreactive cells and gonocytes are two distinct populations in postnatal porcine testes. Biol Reprod. 2014;90:82 pubmed 出版商
  131. Baumann T, Bergmann S, Schmidt Rose T, Max H, Martin A, Enthaler B, et al. Glutathione-conjugated sulfanylalkanols are substrates for ABCC11 and ?-glutamyl transferase 1: a potential new pathway for the formation of odorant precursors in the apocrine sweat gland. Exp Dermatol. 2014;23:247-52 pubmed 出版商
  132. Cragle F, Baldini G. Mild lipid stress induces profound loss of MC4R protein abundance and function. Mol Endocrinol. 2014;28:357-67 pubmed 出版商
  133. Zhang X, Hughes B. KCNQ and KCNE potassium channel subunit expression in bovine retinal pigment epithelium. Exp Eye Res. 2013;116:424-32 pubmed
  134. Drivas T, Holzbaur E, Bennett J. Disruption of CEP290 microtubule/membrane-binding domains causes retinal degeneration. J Clin Invest. 2013;123:4525-39 pubmed 出版商
  135. Laedermann C, Syam N, Pertin M, Decosterd I, Abriel H. ?1- and ?3- voltage-gated sodium channel subunits modulate cell surface expression and glycosylation of Nav1.7 in HEK293 cells. Front Cell Neurosci. 2013;7:137 pubmed 出版商
  136. Gauss A, Buchholz I, Zahn A, Schmitz G, Stremmel W, Fuellekrug J, et al. Flotillin-2 expression in the human gut: from a cell model to human tissue in health and inflammatory bowel diseases. Int J Med Sci. 2013;10:1259-70 pubmed 出版商
  137. Trattner B, Gravot C, Grothe B, Kunz L. Metabolic Maturation of Auditory Neurones in the Superior Olivary Complex. PLoS ONE. 2013;8:e67351 pubmed 出版商
  138. Zhou C, Huang Z, Ding L, Deel M, Arain F, Murray C, et al. Altered cortical GABAA receptor composition, physiology, and endocytosis in a mouse model of a human genetic absence epilepsy syndrome. J Biol Chem. 2013;288:21458-72 pubmed 出版商
  139. Ho W, Davis A, Chadha P, Greenwood I. Effective contractile response to voltage-gated Na+ channels revealed by a channel activator. Am J Physiol Cell Physiol. 2013;304:C739-47 pubmed 出版商
  140. Larre I, Castillo A, Flores Maldonado C, Contreras R, Galván I, Muñoz Estrada J, et al. Ouabain modulates ciliogenesis in epithelial cells. Proc Natl Acad Sci U S A. 2011;108:20591-6 pubmed 出版商
  141. Kapeller J, Möller D, Lasitschka F, Autschbach F, Hovius R, Rappold G, et al. Serotonin receptor diversity in the human colon: Expression of serotonin type 3 receptor subunits 5-HT3C, 5-HT3D, and 5-HT3E. J Comp Neurol. 2011;519:420-32 pubmed 出版商