这是一篇来自已证抗体库的有关人类 ATP2A1的综述,是根据29篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ATP2A1 抗体。
ATP2A1 同义词: ATP2A; SERCA1

赛默飞世尔
小鼠 单克隆(IIH11)
  • 免疫印迹; 小鼠; 图 s2a
赛默飞世尔 ATP2A1抗体(ThermoFisher Scientific, MA3-911)被用于被用于免疫印迹在小鼠样本上 (图 s2a). Cells (2021) ncbi
小鼠 单克隆(VE121G9)
  • 免疫细胞化学; 小鼠; 图 3d
赛默飞世尔 ATP2A1抗体(Thermo Fisher Scientific, MA3-912)被用于被用于免疫细胞化学在小鼠样本上 (图 3d). Sci Adv (2021) ncbi
小鼠 单克隆(IIH11)
  • 免疫组化; 小鼠; 1:1000
赛默飞世尔 ATP2A1抗体(ThermoFisher, MA3-911)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(IIH11)
  • 免疫印迹; 小鼠; 图 5a
赛默飞世尔 ATP2A1抗体(Thermo Scientific, MA3-911)被用于被用于免疫印迹在小鼠样本上 (图 5a). Physiol Rep (2017) ncbi
小鼠 单克隆(IIH11)
  • 免疫印迹; 小鼠; 1:1000; 图 s2f
赛默飞世尔 ATP2A1抗体(Thermo Scientific, MA3-911)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2f). Nat Commun (2017) ncbi
小鼠 单克隆(IIH11)
  • 免疫印迹; 大鼠; 图 2e
赛默飞世尔 ATP2A1抗体(Thermo, MA3-911)被用于被用于免疫印迹在大鼠样本上 (图 2e). PLoS ONE (2017) ncbi
小鼠 单克隆(IIH11)
  • 免疫印迹; 大鼠; 1:5000; 图 4a
赛默飞世尔 ATP2A1抗体(ThermoFisher Scientific, MA-911)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4a). J Appl Physiol (1985) (2017) ncbi
小鼠 单克隆(VE121G9)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛默飞世尔 ATP2A1抗体(Thermo Scientific, MA3-912)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Exp Mol Med (2016) ncbi
小鼠 单克隆(VE121G9)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 ATP2A1抗体(Thermo Scientific, MA3-912)被用于被用于免疫印迹在人类样本上 (图 4). J Appl Physiol (1985) (2017) ncbi
小鼠 单克隆(VE121G9)
  • 免疫印迹; 小鼠; 图 1
  • proximity ligation assay; 人类; 1:500; 图 5
  • 免疫组化-冰冻切片; 人类; 1:500; 图 3
  • 免疫沉淀; 人类; 图 5
  • 免疫印迹; 人类; 图 2
赛默飞世尔 ATP2A1抗体(Affinity BioReagents, MA3-912)被用于被用于免疫印迹在小鼠样本上 (图 1), 被用于proximity ligation assay在人类样本上浓度为1:500 (图 5), 被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 3), 被用于免疫沉淀在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 2). Expert Rev Mol Med (2016) ncbi
小鼠 单克隆(VE121G9)
  • 免疫印迹; 斑马鱼; 图 2
赛默飞世尔 ATP2A1抗体(Thermo Scientific, MA3-912)被用于被用于免疫印迹在斑马鱼样本上 (图 2). J Muscle Res Cell Motil (2016) ncbi
小鼠 单克隆(VE121G9)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 ATP2A1抗体(Thermo Scientific, MA3-912)被用于被用于免疫印迹在人类样本上 (图 1). Eur J Appl Physiol (2016) ncbi
小鼠 单克隆(IIH11)
  • 免疫印迹; 大鼠; 1:2000; 图 3
赛默飞世尔 ATP2A1抗体(Thermo Fisher Scientific, MA3-911)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3). Front Physiol (2015) ncbi
小鼠 单克隆(IIH11)
  • 免疫印迹; domestic rabbit
赛默飞世尔 ATP2A1抗体(Thermo Scientific, IIH11)被用于被用于免疫印迹在domestic rabbit样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(VE121G9)
  • 免疫组化-冰冻切片; 人类; 1:2500; 图 2
  • 免疫印迹; 人类; 1:2500; 图 1b
赛默飞世尔 ATP2A1抗体(Thermo Scientific, MA3-912)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:2500 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:2500 (图 1b). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(IIH11)
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔 ATP2A1抗体(Thermo Fisher Scientific, MA3-911)被用于被用于免疫印迹在大鼠样本上 (图 1). Skelet Muscle (2015) ncbi
小鼠 单克隆(VE121G9)
  • 免疫印迹; 人类; 图 3g
赛默飞世尔 ATP2A1抗体(Thermo Fisher Scientific,, MA3-912)被用于被用于免疫印迹在人类样本上 (图 3g). J Appl Physiol (1985) (2015) ncbi
小鼠 单克隆(VE121G9)
  • 免疫印迹; 人类; 1:10,000; 图 3
赛默飞世尔 ATP2A1抗体(Thermo Scientific, MA3-912)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Sci Signal (2015) ncbi
小鼠 单克隆(VE121G9)
  • 免疫印迹; 人类; 1:10,000; 图 3
赛默飞世尔 ATP2A1抗体(Thermo Scientific, MA3-912)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Physiol Rep (2015) ncbi
小鼠 单克隆(IIH11)
  • 免疫印迹; 大鼠
赛默飞世尔 ATP2A1抗体(Affinity Bioreagents, MA3-911)被用于被用于免疫印迹在大鼠样本上. Physiol Rep (2015) ncbi
小鼠 单克隆(VE121G9)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛默飞世尔 ATP2A1抗体(Thermo Scientific, MA3-912)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). PLoS ONE (2015) ncbi
小鼠 单克隆(IIH11)
  • 免疫印迹; 小鼠
赛默飞世尔 ATP2A1抗体(Thermo Scientific, MA3-911)被用于被用于免疫印迹在小鼠样本上. FEBS Lett (2015) ncbi
小鼠 单克隆(IIH11)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛默飞世尔 ATP2A1抗体(Thermoscientific, MA3-911)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Physiol Rep (2014) ncbi
小鼠 单克隆(VE121G9)
  • 免疫组化-冰冻切片; 人类; 图 3
赛默飞世尔 ATP2A1抗体(Thermo Scientific, VE121G9)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3). Muscle Nerve (2015) ncbi
小鼠 单克隆(VE121G9)
  • 免疫印迹; 人类
赛默飞世尔 ATP2A1抗体(Thermo Fischer Scientific, MA3-912)被用于被用于免疫印迹在人类样本上. J Appl Physiol (1985) (2014) ncbi
小鼠 单克隆(IIH11)
  • 免疫印迹; 大鼠; 1:2500
赛默飞世尔 ATP2A1抗体(Affinity Bioreagents, IIH11)被用于被用于免疫印迹在大鼠样本上浓度为1:2500. Biochim Biophys Acta (2007) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:500; 图 ev4c
圣克鲁斯生物技术 ATP2A1抗体(Santa Cruz, sc-515162)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 ev4c). EMBO Mol Med (2020) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D54G12)
  • 免疫印迹; 小鼠; 图 4m
赛信通(上海)生物试剂有限公司 ATP2A1抗体(CST, 12293)被用于被用于免疫印迹在小鼠样本上 (图 4m). Mol Metab (2021) ncbi
domestic rabbit 单克隆(D54G12)
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 ATP2A1抗体(Cell Signaling, 12293s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Acta Neuropathol Commun (2017) ncbi
文章列表
  1. Silva Rojas R, Charles A, Djeddi S, Geny B, Laporte J, Böhm J. Pathophysiological Effects of Overactive STIM1 on Murine Muscle Function and Structure. Cells. 2021;10: pubmed 出版商
  2. Basse A, Agerholm M, Farup J, Dalbram E, Nielsen J, Ørtenblad N, et al. Nampt controls skeletal muscle development by maintaining Ca2+ homeostasis and mitochondrial integrity. Mol Metab. 2021;53:101271 pubmed 出版商
  3. Pan S, Zhao N, Feng X, Jie Y, Jin Z. Conversion of mouse embryonic fibroblasts into neural crest cells and functional corneal endothelia by defined small molecules. Sci Adv. 2021;7: pubmed 出版商
  4. Laitila J, McNamara E, Wingate C, Goullee H, Ross J, Taylor R, et al. Nebulin nemaline myopathy recapitulated in a compound heterozygous mouse model with both a missense and a nonsense mutation in Neb. Acta Neuropathol Commun. 2020;8:18 pubmed 出版商
  5. Bella P, Farini A, Banfi S, Parolini D, Tonna N, Meregalli M, et al. Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy. EMBO Mol Med. 2020;12:e11019 pubmed 出版商
  6. Eshima H, Tamura Y, Kakehi S, Kurebayashi N, Murayama T, Nakamura K, et al. Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiol Rep. 2017;5: pubmed 出版商
  7. Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed 出版商
  8. Amici D, Pinal Fernández I, Mázala D, Lloyd T, Corse A, Christopher Stine L, et al. Calcium dysregulation, functional calpainopathy, and endoplasmic reticulum stress in sporadic inclusion body myositis. Acta Neuropathol Commun. 2017;5:24 pubmed 出版商
  9. Himori K, Abe M, Tatebayashi D, Lee J, Westerblad H, Lanner J, et al. Superoxide dismutase/catalase mimetic EUK-134 prevents diaphragm muscle weakness in monocrotalin-induced pulmonary hypertension. PLoS ONE. 2017;12:e0169146 pubmed 出版商
  10. Kanzaki K, Watanabe D, Kuratani M, Yamada T, Matsunaga S, Wada M. Role of calpain in eccentric contraction-induced proteolysis of Ca2+-regulatory proteins and force depression in rat fast-twitch skeletal muscle. J Appl Physiol (1985). 2017;122:396-405 pubmed 出版商
  11. Huang M, Lee K, Kim K, Ahn M, Cho C, Kim D, et al. The maintenance ability and Ca2+ availability of skeletal muscle are enhanced by sildenafil. Exp Mol Med. 2016;48:e278 pubmed 出版商
  12. Skovgaard C, Almquist N, Bangsbo J. Effect of increased and maintained frequency of speed endurance training on performance and muscle adaptations in runners. J Appl Physiol (1985). 2017;122:48-59 pubmed 出版商
  13. Toral Ojeda I, Aldanondo G, Lasa Elgarresta J, Lasa Fernández H, Fernandez Torron R, Lopez de Munain A, et al. Calpain 3 deficiency affects SERCA expression and function in the skeletal muscle. Expert Rev Mol Med. 2016;18:e7 pubmed 出版商
  14. Furlan S, Mosole S, Murgia M, Nagaraj N, Argenton F, Volpe P, et al. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio. J Muscle Res Cell Motil. 2016;37:27-39 pubmed 出版商
  15. Mohr M, Thomassen M, Girard O, Racinais S, Nybo L. Muscle variables of importance for physiological performance in competitive football. Eur J Appl Physiol. 2016;116:251-62 pubmed 出版商
  16. de Andrade P, Neff L, Strosova M, Arsenijevic D, Patthey Vuadens O, Scapozza L, et al. Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding. Front Physiol. 2015;6:254 pubmed 出版商
  17. Desmond P, Muriel J, Markwardt M, Rizzo M, Bloch R. Identification of Small Ankyrin 1 as a Novel Sarco(endo)plasmic Reticulum Ca2+-ATPase 1 (SERCA1) Regulatory Protein in Skeletal Muscle. J Biol Chem. 2015;290:27854-67 pubmed 出版商
  18. Zhao Y, Ogawa H, Yonekura S, Mitsuhashi H, Mitsuhashi S, Nishino I, et al. Functional analysis of SERCA1b, a highly expressed SERCA1 variant in myotonic dystrophy type 1 muscle. Biochim Biophys Acta. 2015;1852:2042-7 pubmed 出版商
  19. Yamada T, Abe M, Lee J, Tatebayashi D, Himori K, Kanzaki K, et al. Muscle dysfunction associated with adjuvant-induced arthritis is prevented by antioxidant treatment. Skelet Muscle. 2015;5:20 pubmed 出版商
  20. Hostrup M, Kalsen A, Onslev J, Jessen S, Haase C, Habib S, et al. Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β2-adrenergic stimulation in men. J Appl Physiol (1985). 2015;119:475-86 pubmed 出版商
  21. Lane Donovan C, Philips G, Wasser C, Durakoglugil M, Masiulis I, Upadhaya A, et al. Reelin protects against amyloid β toxicity in vivo. Sci Signal. 2015;8:ra67 pubmed 出版商
  22. Christensen P, Gunnarsson T, Thomassen M, Wilkerson D, Nielsen J, Bangsbo J. Unchanged content of oxidative enzymes in fast-twitch muscle fibers and VË™O2 kinetics after intensified training in trained cyclists. Physiol Rep. 2015;3: pubmed 出版商
  23. Ferretti R, Marques M, Khurana T, Santo Neto H. Expression of calcium-buffering proteins in rat intrinsic laryngeal muscles. Physiol Rep. 2015;3: pubmed 出版商
  24. Tóth A, Fodor J, Vincze J, Oláh T, Juhász T, Zákány R, et al. The Effect of SERCA1b Silencing on the Differentiation and Calcium Homeostasis of C2C12 Skeletal Muscle Cells. PLoS ONE. 2015;10:e0123583 pubmed 出版商
  25. Van B, Nishi M, Komazaki S, Ichimura A, Kakizawa S, Nakanaga K, et al. Mitsugumin 56 (hedgehog acyltransferase-like) is a sarcoplasmic reticulum-resident protein essential for postnatal muscle maturation. FEBS Lett. 2015;589:1095-104 pubmed 出版商
  26. Ramos S, Macpherson R, Turnbull P, Bott K, LeBlanc P, Ward W, et al. Higher PLIN5 but not PLIN3 content in isolated skeletal muscle mitochondria following acute in vivo contraction in rat hindlimb. Physiol Rep. 2014;2: pubmed 出版商
  27. Zimmermann C, Kalepu R, Ponfick M, Reichel H, Cakir B, Zierz S, et al. Histological characterization and biochemical analysis of paraspinal muscles in neuromuscularly healthy subjects. Muscle Nerve. 2015;52:45-54 pubmed 出版商
  28. Skovgaard C, Christensen P, Larsen S, Andersen T, Thomassen M, Bangsbo J. Concurrent speed endurance and resistance training improves performance, running economy, and muscle NHE1 in moderately trained runners. J Appl Physiol (1985). 2014;117:1097-109 pubmed 出版商
  29. Talmadge R, Paalani M. Sarco(endo)plasmic reticulum calcium pump isoforms in paralyzed rat slow muscle. Biochim Biophys Acta. 2007;1770:1187-93 pubmed