这是一篇来自已证抗体库的有关人类 ATP5F1B的综述,是根据78篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ATP5F1B 抗体。
ATP5F1B 同义词: ATP5B; ATPMB; ATPSB; HEL-S-271

赛默飞世尔
domestic rabbit 重组(JM10-90)
  • 免疫沉淀; 人类; 1:100; 图 5b
  • 免疫细胞化学; 人类; 1:200; 图 4c
  • 免疫印迹; 人类; 1:1000; 图 5a
赛默飞世尔 ATP5F1B抗体(Invitrogen, MA5-32589)被用于被用于免疫沉淀在人类样本上浓度为1:100 (图 5b), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 4c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Sci Rep (2022) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫细胞化学; 人类; 图 1b
赛默飞世尔 ATP5F1B抗体(分子探针, A21351)被用于被用于免疫细胞化学在人类样本上 (图 1b). J Cell Biol (2022) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 小鼠; 1:2000; 图 4e
赛默飞世尔 ATP5F1B抗体(Invitrogen, A-21351)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4e). JCI Insight (2021) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫细胞化学; 人类; 图 3a
赛默飞世尔 ATP5F1B抗体(Abcam, A-21351)被用于被用于免疫细胞化学在人类样本上 (图 3a). Cell Rep (2019) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 人类; 1:2000; 图 1b
赛默飞世尔 ATP5F1B抗体(生活技术, A21351)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Stem Cells (2017) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 大鼠; 图 2a
赛默飞世尔 ATP5F1B抗体(生活技术, A-21351)被用于被用于免疫印迹在大鼠样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫细胞化学; 大鼠; 1:500
赛默飞世尔 ATP5F1B抗体(ThermoFisher, A21351)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. J Neurochem (2017) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 人类
赛默飞世尔 ATP5F1B抗体(Thermo Fisher, A21351)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2016) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 人类
赛默飞世尔 ATP5F1B抗体(分子探针, A21351)被用于被用于免疫印迹在人类样本上. FEBS Lett (2015) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 ATP5F1B抗体(分子探针/生活技术, A21351)被用于被用于免疫印迹在人类样本上浓度为1:1000. Data Brief (2015) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 ATP5F1B抗体(分子探针/生活技术欧洲BV, A21351)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Proteomics (2015) ncbi
小鼠 单克隆(4.3E8.D10)
  • 免疫组化; 小鼠
赛默飞世尔 ATP5F1B抗体(Thermo, MA1-930)被用于被用于免疫组化在小鼠样本上. J Clin Invest (2015) ncbi
小鼠 单克隆(3D5AB1)
  • 流式细胞仪; 人类
  • 免疫细胞化学; 人类
赛默飞世尔 ATP5F1B抗体(Invitrogen, A21351)被用于被用于流式细胞仪在人类样本上 和 被用于免疫细胞化学在人类样本上. Microvasc Res (2015) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; fruit fly ; 图 3
赛默飞世尔 ATP5F1B抗体(分子探针, A21351)被用于被用于免疫印迹在fruit fly 样本上 (图 3). Arch Virol (2014) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 小鼠
赛默飞世尔 ATP5F1B抗体(生活技术, A21351)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Endocrinol Metab (2014) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; fruit fly ; 1:1500; 图 5s
赛默飞世尔 ATP5F1B抗体(Invitrogen, A21351)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1500 (图 5s). Dis Model Mech (2014) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; fruit fly ; 1:2000
赛默飞世尔 ATP5F1B抗体(分子探针, A21351)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000. PLoS Genet (2014) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫细胞化学; 人类; 图 1, 5
赛默飞世尔 ATP5F1B抗体(分子探针, A21351)被用于被用于免疫细胞化学在人类样本上 (图 1, 5). Genes Cells (2014) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 ATP5F1B抗体(分子探针, A21351)被用于被用于免疫印迹在小鼠样本上 (图 3). Biosci Rep (2013) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 人类; 1:10,000
赛默飞世尔 ATP5F1B抗体(Invitrogen, 3D5)被用于被用于免疫印迹在人类样本上浓度为1:10,000. Mitochondrion (2013) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔 ATP5F1B抗体(Invitrogen, A21351)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2012) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 人类; 1:4000; 图 2
赛默飞世尔 ATP5F1B抗体(Invitrogen, A21351)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 2). Int J Oncol (2012) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 ATP5F1B抗体(分子探针, A21351)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2012) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; fruit fly ; 图 7
赛默飞世尔 ATP5F1B抗体(Invitrogen, A21351)被用于被用于免疫印迹在fruit fly 样本上 (图 7). PLoS ONE (2011) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; roundworm ; 图 2
赛默飞世尔 ATP5F1B抗体(Invitrogen, A21351)被用于被用于免疫印迹在roundworm 样本上 (图 2). Genes Cells (2011) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 人类; 1:2500; 图 6
赛默飞世尔 ATP5F1B抗体(分子探针, A21351)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 6). J Biol Chem (2011) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 ATP5F1B抗体(分子探针, A21351)被用于被用于免疫印迹在小鼠样本上 (图 3). Am J Physiol Regul Integr Comp Physiol (2011) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 小鼠; 图 s1
赛默飞世尔 ATP5F1B抗体(Invitrogen, A-21351)被用于被用于免疫印迹在小鼠样本上 (图 s1). Cell Metab (2011) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 人类
赛默飞世尔 ATP5F1B抗体(分子探针, A21351)被用于被用于免疫印迹在人类样本上. J Biol Chem (2011) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 人类; 图 8
赛默飞世尔 ATP5F1B抗体(分子探针, A21351)被用于被用于免疫印迹在人类样本上 (图 8). Biochim Biophys Acta (2011) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 人类; 1:3000; 图 3
赛默飞世尔 ATP5F1B抗体(Invitrogen, A21351)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3). J Neuropathol Exp Neurol (2010) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 ATP5F1B抗体(分子探针, A21351)被用于被用于免疫印迹在人类样本上 (图 4). Biochem Biophys Res Commun (2010) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 ATP5F1B抗体(分子探针, A21351)被用于被用于免疫印迹在小鼠样本上 (图 1). Am J Physiol Cell Physiol (2010) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 ATP5F1B抗体(Invitrogen, A21351)被用于被用于免疫印迹在小鼠样本上 (图 3). Cell Signal (2010) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫组化-冰冻切片; 人类; 2 ug/ml; 图 19.2.1
  • 免疫组化-石蜡切片; 人类; 2 ug/ml; 图 19.2.2
  • 免疫细胞化学; 人类; 2 ug/ml; 图 19.2.3
赛默飞世尔 ATP5F1B抗体(Invitrogen, A21351)被用于被用于免疫组化-冰冻切片在人类样本上浓度为2 ug/ml (图 19.2.1), 被用于免疫组化-石蜡切片在人类样本上浓度为2 ug/ml (图 19.2.2) 和 被用于免疫细胞化学在人类样本上浓度为2 ug/ml (图 19.2.3). Curr Protoc Hum Genet (2009) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫组化-石蜡切片; 大鼠; 1:200
赛默飞世尔 ATP5F1B抗体(分子探针, A-21351)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Acta Histochem (2011) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 ATP5F1B抗体(Invitrogen, A21351)被用于被用于免疫印迹在人类样本上 (图 3). Biochem Pharmacol (2009) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫细胞化学; African green monkey; 图 2
赛默飞世尔 ATP5F1B抗体(Invitrogen, A21351)被用于被用于免疫细胞化学在African green monkey样本上 (图 2). J Struct Biol (2008) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 小鼠
赛默飞世尔 ATP5F1B抗体(Invitrogen, A21351)被用于被用于免疫印迹在小鼠样本上. Free Radic Biol Med (2008) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 人类; 1:5000; 图 5
赛默飞世尔 ATP5F1B抗体(分子探针, A21351)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Invest Ophthalmol Vis Sci (2008) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫细胞化学; 大鼠; 图 10
赛默飞世尔 ATP5F1B抗体(MolecularProbes, noca)被用于被用于免疫细胞化学在大鼠样本上 (图 10). Microsc Res Tech (2007) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 人类
赛默飞世尔 ATP5F1B抗体(分子探针, A-21351)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2006) ncbi
小鼠 单克隆(3D5AB1)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 ATP5F1B抗体(分子探针, A-21351)被用于被用于免疫印迹在人类样本上 (图 2). Am J Physiol Gastrointest Liver Physiol (2006) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(3D5)
  • 免疫组化; fruit fly ; 1:500; 图 2e
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫组化在fruit fly 样本上浓度为1:500 (图 2e). PLoS Genet (2021) ncbi
小鼠 单克隆(3D5)
  • 免疫细胞化学; 人类; 1:250; 图 4b
  • 免疫印迹; 人类; 1:5000; 图 2f
  • 免疫细胞化学; 小鼠; 1:250; 图 s3a
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 4b), 被用于免疫印迹在人类样本上浓度为1:5000 (图 2f) 和 被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 s3a). Mol Psychiatry (2021) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Int J Mol Sci (2021) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫印迹在小鼠样本上 (图 4a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 小鼠; 图 5s1a
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, 14730)被用于被用于免疫印迹在小鼠样本上 (图 5s1a). elife (2020) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). J Neuroinflammation (2020) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 人类; 1:500-1:2000; 图 5c
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫印迹在人类样本上浓度为1:500-1:2000 (图 5c). Cell Rep (2019) ncbi
小鼠 单克隆(7E3F2)
  • 免疫细胞化学; roundworm ; 图 5h
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab110280)被用于被用于免疫细胞化学在roundworm 样本上 (图 5h). Adv Sci (Weinh) (2019) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 小鼠; 1:1000; 图 e3b
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 e3b). Nature (2019) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 小鼠; 图 s3k
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫印迹在小鼠样本上 (图 s3k). Cell Rep (2018) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫印迹在人类样本上 (图 2a). J Clin Invest (2018) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 小鼠; 图 6g
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫印迹在小鼠样本上 (图 6g). Cell Death Dis (2017) ncbi
小鼠 单克隆(7E3F2)
  • 免疫印迹; 沙门氏菌; 1:5000; 图 2a
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab110280)被用于被用于免疫印迹在沙门氏菌样本上浓度为1:5000 (图 2a). Mol Cell (2017) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 小鼠; 1:1000; 图 st3
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 st3). Sci Rep (2017) ncbi
小鼠 单克隆(4.3E8.D10)
  • 免疫印迹; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Mitosciences, ab5432)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). J Cell Sci (2016) ncbi
小鼠 单克隆(3D5)
  • 免疫组化-冰冻切片; 鸡; 1:500; 表 1
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:500 (表 1). PLoS ONE (2015) ncbi
小鼠 单克隆(3D5)
  • 免疫细胞化学; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). Oncogene (2016) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 大鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Am J Physiol Renal Physiol (2015) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; fruit fly
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫印迹在fruit fly 样本上. Nat Cell Biol (2015) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 大鼠; 图 3
艾博抗(上海)贸易有限公司 ATP5F1B抗体(AbCam, ab14730)被用于被用于免疫印迹在大鼠样本上 (图 3). J Neurochem (2015) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 人类; 10 ug/ml
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫印迹在人类样本上浓度为10 ug/ml. J Histochem Cytochem (2015) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫印迹在人类样本上. Eur J Hum Genet (2015) ncbi
小鼠 单克隆(3D5)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫细胞化学在人类样本上. Theranostics (2014) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 小鼠; 1:10,000; 表 4
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (表 4). PLoS ONE (2014) ncbi
小鼠 单克隆(4.3E8.D10)
  • 免疫细胞化学; 人类; 图 2
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab5432)被用于被用于免疫细胞化学在人类样本上 (图 2). Cell Tissue Res (2014) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫印迹在小鼠样本上. Biochem J (2013) ncbi
小鼠 单克隆(3D5)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, 3D5)被用于被用于免疫细胞化学在人类样本上. Biochem Biophys Res Commun (2013) ncbi
小鼠 单克隆(3D5)
  • 免疫印迹; 小鼠; 1:10,000
艾博抗(上海)贸易有限公司 ATP5F1B抗体(Abcam, ab14730)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Cell Death Differ (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s5c
圣克鲁斯生物技术 ATP5F1B抗体(Santa Cruz, sc-166462)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s5c). EMBO Rep (2017) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 小鼠; 图 4B
圣克鲁斯生物技术 ATP5F1B抗体(Santa Cruz Biotechnology, sc-55597)被用于被用于免疫印迹在小鼠样本上 (图 4B). Sci Rep (2015) ncbi
小鼠 单克隆(10)
  • 免疫细胞化学; 人类; 1:50
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 ATP5F1B抗体(Santa Cruz Biotechnology, sc-135903)被用于被用于免疫细胞化学在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:500. Int J Mol Med (2015) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 人类; 1:150; 图 2
圣克鲁斯生物技术 ATP5F1B抗体(Santa Cruz Biotechnology, sc-55597)被用于被用于免疫印迹在人类样本上浓度为1:150 (图 2). Nat Methods (2015) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; pigs
圣克鲁斯生物技术 ATP5F1B抗体(Santa Cruz, SC166443)被用于被用于免疫印迹在pigs 样本上. J Mol Cell Cardiol (2013) ncbi
碧迪BD
小鼠 单克隆(51/ATP Synthase)
  • 免疫印迹; 人类; 图 1,2,3,4,5,6
碧迪BD ATP5F1B抗体(BD, 612516)被用于被用于免疫印迹在人类样本上 (图 1,2,3,4,5,6). J Cell Biol (2014) ncbi
文章列表
  1. Gallinat A, Badimon L. DJ-1 interacts with the ectopic ATP-synthase in endothelial cells during acute ischemia and reperfusion. Sci Rep. 2022;12:12753 pubmed 出版商
  2. Cardamone M, Gao Y, Kwan J, Hayashi V, Sheeran M, Xu J, et al. Neuralized-like protein 4 (NEURL4) mediates ADP-ribosylation of mitochondrial proteins. J Cell Biol. 2022;221: pubmed 出版商
  3. Insolera R, Lorincz P, Wishnie A, Juhasz G, Collins C. Mitochondrial fission, integrity and completion of mitophagy require separable functions of Vps13D in Drosophila neurons. PLoS Genet. 2021;17:e1009731 pubmed 出版商
  4. Xu L, Humphries F, Delagic N, Wang B, Holland A, Edgar K, et al. ECSIT is a critical limiting factor for cardiac function. JCI Insight. 2021;6: pubmed 出版商
  5. Frison M, Faccenda D, Abeti R, Rigon M, Strobbe D, England Rendon B, et al. The translocator protein (TSPO) is prodromal to mitophagy loss in neurotoxicity. Mol Psychiatry. 2021;: pubmed 出版商
  6. Seale L, Ogawa Wong A, Watanabe L, Khadka V, Menor M, Torres D, et al. Adaptive Thermogenesis in a Mouse Model Lacking Selenoprotein Biosynthesis in Brown Adipocytes. Int J Mol Sci. 2021;22: pubmed 出版商
  7. Ha B, Heo J, Jang Y, Park T, Choi J, Jang W, et al. Depletion of Mitochondrial Components from Extracellular Vesicles Secreted from Astrocytes in a Mouse Model of Fragile X Syndrome. Int J Mol Sci. 2021;22: pubmed 出版商
  8. Marmol P, Krapacher F, Ibanez C. Control of brown adipose tissue adaptation to nutrient stress by the activin receptor ALK7. elife. 2020;9: pubmed 出版商
  9. Bartolomé F, Antequera D, de la Cueva M, Rubio Fernández M, Castro N, Pascual C, et al. Endothelial-specific deficiency of megalin in the brain protects mice against high-fat diet challenge. J Neuroinflammation. 2020;17:22 pubmed 出版商
  10. Wall C, Rose C, Adrian M, Zeng Y, Kirkpatrick D, Bingol B. PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Rep. 2019;29:3280-3292.e7 pubmed 出版商
  11. Park H, Choi D, Park J, Sim C, Park S, Kang S, et al. Scalable and Isotropic Expansion of Tissues with Simply Tunable Expansion Ratio. Adv Sci (Weinh). 2019;6:1901673 pubmed 出版商
  12. Hoshino A, Wang W, Wada S, McDermott Roe C, Evans C, Gosis B, et al. The ADP/ATP translocase drives mitophagy independent of nucleotide exchange. Nature. 2019;575:375-379 pubmed 出版商
  13. Murakawa T, Okamoto K, Omiya S, Taneike M, Yamaguchi O, Otsu K. A Mammalian Mitophagy Receptor, Bcl2-L-13, Recruits the ULK1 Complex to Induce Mitophagy. Cell Rep. 2019;26:338-345.e6 pubmed 出版商
  14. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep. 2018;25:3059-3073.e10 pubmed 出版商
  15. Song K, Kim J, Lee Y, Bae H, Lee H, Woo S, et al. Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance. J Clin Invest. 2018;128:4098-4114 pubmed 出版商
  16. Wanet A, Caruso M, Domelevo Entfellner J, Najar M, Fattaccioli A, Demazy C, et al. The Transcription Factor 7-Like 2-Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha Axis Connects Mitochondrial Biogenesis and Metabolic Shift with Stem Cell Commitment to Hepatic Differentiation. Stem Cells. 2017;35:2184-2197 pubmed 出版商
  17. Gatliff J, East D, Singh A, Alvarez M, Frison M, Matic I, et al. A role for TSPO in mitochondrial Ca2+ homeostasis and redox stress signaling. Cell Death Dis. 2017;8:e2896 pubmed 出版商
  18. Yeom J, Wayne K, Groisman E. Sequestration from Protease Adaptor Confers Differential Stability to Protease Substrate. Mol Cell. 2017;66:234-246.e5 pubmed 出版商
  19. Hardonnière K, Fernier M, Gallais I, Mograbi B, Podechard N, Le Ferrec E, et al. Role for the ATPase inhibitory factor 1 in the environmental carcinogen-induced Warburg phenotype. Sci Rep. 2017;7:195 pubmed 出版商
  20. Dadson K, Hauck L, Hao Z, Grothe D, Rao V, Mak T, et al. The E3 ligase Mule protects the heart against oxidative stress and mitochondrial dysfunction through Myc-dependent inactivation of Pgc-1α and Pink1. Sci Rep. 2017;7:41490 pubmed 出版商
  21. Moulis M, Millet A, Daloyau M, Miquel M, Ronsin B, Wissinger B, et al. OPA1 haploinsufficiency induces a BNIP3-dependent decrease in mitophagy in neurons: relevance to Dominant Optic Atrophy. J Neurochem. 2017;140:485-494 pubmed 出版商
  22. Lee M, Sumpter R, Zou Z, Sirasanagandla S, Wei Y, Mishra P, et al. Peroxisomal protein PEX13 functions in selective autophagy. EMBO Rep. 2017;18:48-60 pubmed 出版商
  23. Cenini G, Rüb C, Bruderek M, Voos W. Amyloid ?-peptides interfere with mitochondrial preprotein import competence by a coaggregation process. Mol Biol Cell. 2016;27:3257-3272 pubmed
  24. Diokmetzidou A, Soumaka E, Kloukina I, Tsikitis M, Makridakis M, Varela A, et al. Desmin and ?B-crystallin interplay in the maintenance of mitochondrial homeostasis and cardiomyocyte survival. J Cell Sci. 2016;129:3705-3720 pubmed
  25. Pirson M, Debrulle S, Clippe A, Clotman F, Knoops B. Thioredoxin-2 Modulates Neuronal Programmed Cell Death in the Embryonic Chick Spinal Cord in Basal and Target-Deprived Conditions. PLoS ONE. 2015;10:e0142280 pubmed 出版商
  26. Guan S, Sheu M, Wu C, Chiang C, Liu S. ATP synthase subunit-β down-regulation aggravates diabetic nephropathy. Sci Rep. 2015;5:14561 pubmed 出版商
  27. Fujikawa M, Sugawara K, Tanabe T, Yoshida M. Assembly of human mitochondrial ATP synthase through two separate intermediates, F1-c-ring and b-e-g complex. FEBS Lett. 2015;589:2707-12 pubmed 出版商
  28. Zeng Z, Jing D, Zhang X, Duan Y, Xue F. Cyclic mechanical stretch promotes energy metabolism in osteoblast-like cells through an mTOR signaling-associated mechanism. Int J Mol Med. 2015;36:947-56 pubmed 出版商
  29. Scifo E, Szwajda A, Soliymani R, Pezzini F, Bianchi M, Dapkunas A, et al. Quantitative analysis of PPT1 interactome in human neuroblastoma cells. Data Brief. 2015;4:207-16 pubmed 出版商
  30. Srinivasan S, Guha M, Dong D, Whelan K, Ruthel G, Uchikado Y, et al. Disruption of cytochrome c oxidase function induces the Warburg effect and metabolic reprogramming. Oncogene. 2016;35:1585-95 pubmed 出版商
  31. Liu K, Chuang S, Long C, Lee Y, Wang C, Lu M, et al. Ketamine-induced ulcerative cystitis and bladder apoptosis involve oxidative stress mediated by mitochondria and the endoplasmic reticulum. Am J Physiol Renal Physiol. 2015;309:F318-31 pubmed 出版商
  32. Teixeira F, Sanchez C, Hurd T, Seifert J, Czech B, Preall J, et al. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation. Nat Cell Biol. 2015;17:689-96 pubmed 出版商
  33. Scifo E, Szwajda A, Soliymani R, Pezzini F, Bianchi M, Dapkunas A, et al. Proteomic analysis of the palmitoyl protein thioesterase 1 interactome in SH-SY5Y human neuroblastoma cells. J Proteomics. 2015;123:42-53 pubmed 出版商
  34. Tome M, Schaefer C, Jacobs L, Zhang Y, Herndon J, Matty F, et al. Identification of P-glycoprotein co-fractionating proteins and specific binding partners in rat brain microvessels. J Neurochem. 2015;134:200-10 pubmed 出版商
  35. Sanderson T, Raghunayakula S, Kumar R. Release of mitochondrial Opa1 following oxidative stress in HT22 cells. Mol Cell Neurosci. 2015;64:116-22 pubmed 出版商
  36. Koutakis P, Miserlis D, Myers S, Kim J, Zhu Z, Papoutsi E, et al. Abnormal accumulation of desmin in gastrocnemius myofibers of patients with peripheral artery disease: associations with altered myofiber morphology and density, mitochondrial dysfunction and impaired limb function. J Histochem Cytochem. 2015;63:256-69 pubmed 出版商
  37. Bueno M, Lai Y, Romero Y, Brands J, St Croix C, Kamga C, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest. 2015;125:521-38 pubmed 出版商
  38. González Pecchi V, Valdés S, Pons V, Honorato P, Martinez L, Lamperti L, et al. Apolipoprotein A-I enhances proliferation of human endothelial progenitor cells and promotes angiogenesis through the cell surface ATP synthase. Microvasc Res. 2015;98:9-15 pubmed 出版商
  39. Lam S, Martell J, Kamer K, Deerinck T, Ellisman M, Mootha V, et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods. 2015;12:51-4 pubmed 出版商
  40. Oláhová M, Haack T, Alston C, Houghton J, He L, Morris A, et al. A truncating PET100 variant causing fatal infantile lactic acidosis and isolated cytochrome c oxidase deficiency. Eur J Hum Genet. 2015;23:935-9 pubmed 出版商
  41. Chen X, Wei S, Ma Y, Lu J, Niu G, Xue Y, et al. Quantitative proteomics analysis identifies mitochondria as therapeutic targets of multidrug-resistance in ovarian cancer. Theranostics. 2014;4:1164-75 pubmed 出版商
  42. Fongsaran C, Jirakanwisal K, Kuadkitkan A, Wikan N, Wintachai P, Thepparit C, et al. Involvement of ATP synthase β subunit in chikungunya virus entry into insect cells. Arch Virol. 2014;159:3353-64 pubmed 出版商
  43. White A, Philp A, Fridolfsson H, Schilling J, Murphy A, Hamilton D, et al. High-fat diet-induced impairment of skeletal muscle insulin sensitivity is not prevented by SIRT1 overexpression. Am J Physiol Endocrinol Metab. 2014;307:E764-72 pubmed 出版商
  44. Cherepanova N, Shrimal S, Gilmore R. Oxidoreductase activity is necessary for N-glycosylation of cysteine-proximal acceptor sites in glycoproteins. J Cell Biol. 2014;206:525-39 pubmed 出版商
  45. Burman J, Itsara L, Kayser E, Suthammarak W, Wang A, Kaeberlein M, et al. A Drosophila model of mitochondrial disease caused by a complex I mutation that uncouples proton pumping from electron transfer. Dis Model Mech. 2014;7:1165-74 pubmed 出版商
  46. Menalled L, Kudwa A, Oakeshott S, Farrar A, Paterson N, Filippov I, et al. Genetic deletion of transglutaminase 2 does not rescue the phenotypic deficits observed in R6/2 and zQ175 mouse models of Huntington's disease. PLoS ONE. 2014;9:e99520 pubmed 出版商
  47. Thomas R, Andrews L, Burman J, Lin W, Pallanck L. PINK1-Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS Genet. 2014;10:e1004279 pubmed 出版商
  48. Fujikawa M, Ohsakaya S, Sugawara K, Yoshida M. Population of ATP synthase molecules in mitochondria is limited by available 6.8-kDa proteolipid protein (MLQ). Genes Cells. 2014;19:153-60 pubmed 出版商
  49. Aulakh G, Balachandran Y, Liu L, Singh B. Angiostatin inhibits activation and migration of neutrophils. Cell Tissue Res. 2014;355:375-96 pubmed 出版商
  50. Bartolomé A, López Herradón A, Portal Nuñez S, García Aguilar A, Esbrit P, Benito M, et al. Autophagy impairment aggravates the inhibitory effects of high glucose on osteoblast viability and function. Biochem J. 2013;455:329-37 pubmed 出版商
  51. Nakamura J, Fujikawa M, Yoshida M. IF1, a natural inhibitor of mitochondrial ATP synthase, is not essential for the normal growth and breeding of mice. Biosci Rep. 2013;33: pubmed 出版商
  52. Cabrera J, Butterick T, Long E, Ziemba E, Anderson L, Duffy C, et al. Reduced expression of mitochondrial electron transport chain proteins from hibernating hearts relative to ischemic preconditioned hearts in the second window of protection. J Mol Cell Cardiol. 2013;60:90-6 pubmed 出版商
  53. Matsuzaki H, Fujimoto T, Tanaka M, Shirasawa S. Tespa1 is a novel component of mitochondria-associated endoplasmic reticulum membranes and affects mitochondrial calcium flux. Biochem Biophys Res Commun. 2013;433:322-6 pubmed 出版商
  54. Faccenda D, Tan C, Seraphim A, Duchen M, Campanella M. IF1 limits the apoptotic-signalling cascade by preventing mitochondrial remodelling. Cell Death Differ. 2013;20:686-97 pubmed 出版商
  55. McNally M, Soane L, Roelofs B, Hartman A, Hardwick J. The N-terminal helix of Bcl-xL targets mitochondria. Mitochondrion. 2013;13:119-24 pubmed 出版商
  56. Guo W, Liu S, Peng J, Wei X, Sun Y, Qiu Y, et al. Examining the interactome of huperzine A by magnetic biopanning. PLoS ONE. 2012;7:e37098 pubmed 出版商
  57. Deshpande M, Notari L, Subramanian P, Notario V, Becerra S. Inhibition of tumor cell surface ATP synthesis by pigment epithelium-derived factor: implications for antitumor activity. Int J Oncol. 2012;41:219-27 pubmed 出版商
  58. Fujikawa M, Imamura H, Nakamura J, Yoshida M. Assessing actual contribution of IF1, inhibitor of mitochondrial FoF1, to ATP homeostasis, cell growth, mitochondrial morphology, and cell viability. J Biol Chem. 2012;287:18781-7 pubmed 出版商
  59. Celotto A, Chiu W, Van Voorhies W, Palladino M. Modes of metabolic compensation during mitochondrial disease using the Drosophila model of ATP6 dysfunction. PLoS ONE. 2011;6:e25823 pubmed 出版商
  60. Fujii M, Yasuda K, Hartman P, Ayusawa D, Ishii N. A mutation in a mitochondrial dehydrogenase/reductase gene causes an increased sensitivity to oxidative stress and mitochondrial defects in the nematode Caenorhabditis elegans. Genes Cells. 2011;16:1022-34 pubmed 出版商
  61. Pircher H, Straganz G, Ehehalt D, Morrow G, Tanguay R, Jansen Durr P. Identification of human fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) as a novel mitochondrial acylpyruvase. J Biol Chem. 2011;286:36500-8 pubmed 出版商
  62. Philp A, Belew M, Evans A, Pham D, Sivia I, Chen A, et al. The PGC-1?-related coactivator promotes mitochondrial and myogenic adaptations in C2C12 myotubes. Am J Physiol Regul Integr Comp Physiol. 2011;301:R864-72 pubmed 出版商
  63. Donohoe D, Garge N, Zhang X, Sun W, O Connell T, Bunger M, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13:517-26 pubmed 出版商
  64. Ohsakaya S, Fujikawa M, Hisabori T, Yoshida M. Knockdown of DAPIT (diabetes-associated protein in insulin-sensitive tissue) results in loss of ATP synthase in mitochondria. J Biol Chem. 2011;286:20292-6 pubmed 出版商
  65. Hackenbeck T, Huber R, Schietke R, Knaup K, Monti J, Wu X, et al. The GTPase RAB20 is a HIF target with mitochondrial localization mediating apoptosis in hypoxia. Biochim Biophys Acta. 2011;1813:1-13 pubmed 出版商
  66. Cuadrado E, Rosell A, Colome N, Hernandez Guillamon M, García Berrocoso T, Ribo M, et al. The proteome of human brain after ischemic stroke. J Neuropathol Exp Neurol. 2010;69:1105-15 pubmed 出版商
  67. Fujikawa M, Yoshida M. A sensitive, simple assay of mitochondrial ATP synthesis of cultured mammalian cells suitable for high-throughput analysis. Biochem Biophys Res Commun. 2010;401:538-43 pubmed 出版商
  68. Philp A, Perez Schindler J, Green C, Hamilton D, Baar K. Pyruvate suppresses PGC1alpha expression and substrate utilization despite increased respiratory chain content in C2C12 myotubes. Am J Physiol Cell Physiol. 2010;299:C240-50 pubmed 出版商
  69. Venkatesan B, Prabhu S, Venkatachalam K, Mummidi S, Valente A, Clark R, et al. WNT1-inducible signaling pathway protein-1 activates diverse cell survival pathways and blocks doxorubicin-induced cardiomyocyte death. Cell Signal. 2010;22:809-20 pubmed 出版商
  70. De Paepe B, De Bleecker J, Van Coster R. Histochemical methods for the diagnosis of mitochondrial diseases. Curr Protoc Hum Genet. 2009;Chapter 19:Unit19.2 pubmed 出版商
  71. Ogawa K, Harada K, Endo Y, Sagawa S, Inoue M. Heterogeneous levels of oxidative phosphorylation enzymes in rat adrenal glands. Acta Histochem. 2011;113:24-31 pubmed 出版商
  72. Blatt N, Boitano A, Lyssiotis C, Opipari A, Glick G. Bz-423 superoxide signals B cell apoptosis via Mcl-1, Bak, and Bax. Biochem Pharmacol. 2009;78:966-73 pubmed 出版商
  73. van de Linde S, Sauer M, Heilemann M. Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores. J Struct Biol. 2008;164:250-4 pubmed 出版商
  74. Blatt N, Boitano A, Lyssiotis C, Opipari A, Glick G. Bz-423 superoxide signals apoptosis via selective activation of JNK, Bak, and Bax. Free Radic Biol Med. 2008;45:1232-42 pubmed 出版商
  75. Nordgaard C, Karunadharma P, Feng X, Olsen T, Ferrington D. Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2008;49:2848-55 pubmed 出版商
  76. Staudt T, Lang M, Medda R, Engelhardt J, Hell S. 2,2'-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microsc Res Tech. 2007;70:1-9 pubmed
  77. Mazzanti R, Giulivi C. Coordination of nuclear- and mitochondrial-DNA encoded proteins in cancer and normal colon tissues. Biochim Biophys Acta. 2006;1757:618-23 pubmed
  78. Mazzanti R, Solazzo M, Fantappiè O, Elfering S, Pantaleo P, Bechi P, et al. Differential expression proteomics of human colon cancer. Am J Physiol Gastrointest Liver Physiol. 2006;290:G1329-38 pubmed