这是一篇来自已证抗体库的有关人类 Akt的综述,是根据911篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Akt 抗体。
Akt 同义词: AKT; CWS6; PKB; PKB-ALPHA; PRKBA; RAC; RAC-ALPHA; RAC-alpha serine/threonine-protein kinase; AKT1m; PKB alpha; RAC-PK-alpha; protein kinase B alpha; proto-oncogene c-Akt; rac protein kinase alpha; serine-threonine protein kinase; v-akt murine thymoma viral oncogene homolog 1; v-akt murine thymoma viral oncogene-like protein 1

基因敲除验证
圣克鲁斯生物技术小鼠 单克隆(G-5)
  • 免疫印迹 (基因敲除); 人类; 图5
圣克鲁斯生物技术Akt抗体(Santa Cruz, sc55523)被用于免疫印迹 (基因敲除)在人类样品上 (图5). PLoS ONE (2014) ncbi
圣克鲁斯生物技术小鼠 单克隆(G-5)
  • 免疫印迹 (基因敲除); 人类; 图1
圣克鲁斯生物技术Akt抗体(Santa Cruz Biotechnology, sc55523)被用于免疫印迹 (基因敲除)在人类样品上 (图1). Tumour Biol (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 1:500; 图4
圣克鲁斯生物技术Akt抗体(santa Cruz, Sc5298)被用于免疫印迹在小鼠样品上浓度为1:500 (图4). Sci Rep (2016) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 人类; 1:1000; 图2
圣克鲁斯生物技术Akt抗体(Santa Cruz, sc-55523)被用于免疫印迹在人类样品上浓度为1:1000 (图2). Mol Med Rep (2016) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 人类; 1:1000; 图2
圣克鲁斯生物技术Akt抗体(Santa Cruz, sc-81433)被用于免疫印迹在人类样品上浓度为1:1000 (图2). Mol Med Rep (2016) ncbi
小鼠 单克隆(5C10)
  • 免疫印迹; 小鼠; 1:1000; 图2
圣克鲁斯生物技术Akt抗体(Santa Cruz, sc-81434)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). Cell Death Dis (2016) ncbi
小鼠 单克隆(5.Ser 473)
  • 免疫印迹; 人类; 1:2500; 图6
圣克鲁斯生物技术Akt抗体(Santa Cruz Biotechnology, sc-293125)被用于免疫印迹在人类样品上浓度为1:2500 (图6). Oncol Lett (2016) ncbi
小鼠 单克隆(5.Ser 473)
  • 免疫印迹; 人类; 图3
圣克鲁斯生物技术Akt抗体(Santa Cruz, sc-293125)被用于免疫印迹在人类样品上 (图3). Oncol Lett (2016) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 小鼠; 1:1000; 图4
圣克鲁斯生物技术Akt抗体(Santa Cruz, sc-55523)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4). Mol Med Rep (2016) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 小鼠; 1:1000; 图4
圣克鲁斯生物技术Akt抗体(Santa Cruz, sc-81433)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4). Mol Med Rep (2016) ncbi
小鼠 单克隆(104A282)
  • 免疫印迹; 人类; 图6
圣克鲁斯生物技术Akt抗体(Santa Cruz Biotechnology, sc-52940)被用于免疫印迹在人类样品上 (图6). Cancer Cell Int (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:500; 图3
圣克鲁斯生物技术Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在人类样品上浓度为1:500 (图3). Oncoimmunology (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图S3
圣克鲁斯生物技术Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在人类样品上 (图S3). Oncotarget (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图6
圣克鲁斯生物技术Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在人类样品上 (图6). Oncotarget (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术Akt抗体(Santa Cruz Biotechnology, sc-5298)被用于免疫印迹在大鼠样品上. Redox Biol (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 图8
圣克鲁斯生物技术Akt抗体(Santa Cruz Biotechnology, sc-5298)被用于免疫印迹在小鼠样品上 (图8). Mol Biol Cell (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 大鼠; 图5
圣克鲁斯生物技术Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在大鼠样品上 (图5). Mar Drugs (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术Akt抗体(Santa Cruz Biotechnology, sc5298)被用于免疫印迹在大鼠样品上浓度为1:500. An Acad Bras Cienc (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术Akt抗体(Santa Cruz Biotechnology, sc-5298)被用于免疫印迹在小鼠样品上浓度为1:1000. Cell Death Differ (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 1:1000; 图5
圣克鲁斯生物技术Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). Cell Death Dis (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 1:500; 图4
圣克鲁斯生物技术Akt抗体(santa Cruz, Sc5298)被用于免疫印迹在小鼠样品上浓度为1:500 (图4). Int J Biol Sci (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术Akt抗体(Santa Cruz Biotechnology, sc-5298)被用于免疫印迹在人类样品上. Colloids Surf B Biointerfaces (2015) ncbi
小鼠 单克隆(5C10)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术Akt抗体(Santa Cruz Biotechnology, sc-81434)被用于免疫印迹在大鼠样品上浓度为1:500. World J Gastroenterol (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术Akt抗体(Santa Cruz, SC5298)被用于免疫印迹在人类样品上浓度为1:1000. Cell Death Dis (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图1
  • 免疫印迹; 小鼠; 图1
圣克鲁斯生物技术Akt抗体(Santa Cruz Biotechnologies, sc-5298)被用于免疫印迹在人类样品上 (图1) 和 在小鼠样品上 (图1). Blood (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术Akt抗体(Santa Cruz Biotechnology, sc-5298)被用于免疫印迹在人类样品上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类
  • 免疫沉淀; 人类
圣克鲁斯生物技术Akt抗体(Santa Cruz Biotechnology, B1)被用于免疫印迹在人类样品上 和 免疫沉淀在人类样品上. FEBS J (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在人类样品上浓度为1:1000. Cell Signal (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹 (基因敲除); 人类; 图5
圣克鲁斯生物技术Akt抗体(Santa Cruz, sc55523)被用于免疫印迹 (基因敲除)在人类样品上 (图5). PLoS ONE (2014) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术Akt抗体(Santa Cruz Biotechnology, sc-55523)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在人类样品上. Anat Rec (Hoboken) (2014) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹 (基因敲除); 人类; 图1
圣克鲁斯生物技术Akt抗体(Santa Cruz Biotechnology, sc55523)被用于免疫印迹 (基因敲除)在人类样品上 (图1). Tumour Biol (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在人类样品上浓度为1:1000. FEBS J (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术Akt抗体(Santa Cruz Biotechnology, sc-5298)被用于免疫印迹在人类样品上浓度为1:500. Tumour Biol (2014) ncbi
未注明
  • FC; 人类
为了研究在气喘患者中由TGFbeta和IL-10抑制造成的对T细胞的抗性的信号传导机制,采用了Santa Cruze Biotechnology的抗AKT抗体进行了流式细胞检测。J Immunol (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究STAT3/p63/Notch信号通路在调节小鼠和人的细胞分化中的功能,采用了Santa Cruz Biotechnology公司的TAKT抗体,进行了蛋白质印迹实验。J Oncol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究mTOR通路对Notch信号通路和细胞分化的调节作用,使用了Santa Cruz Biotechnology公司的抗AKT抗体来进行免疫印迹分析。J Clin Invest (2010) ncbi
未注明
  • 免疫组化; 人类
为了研究MMP-10和CTSF在糖尿病患者角膜伤口治愈不良中的作用,采用了Santa Cruz Biotechnology的抗磷酸化-Akt(Ser473)抗体进行免疫组化试验。 Brain Res Bull (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究Ischaemic预处理在调节缺血再灌注过程中蛋白酶体的活性和pkcdelta降解中的作用,采用了Santa Cruz Biotechnology公司的多克隆抗Akt抗体产品,进行了免疫印迹实验。Cardiovasc Res (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究神经胶原发生和H-IL-6激活的神经发生途径,使用了Santa Cruz公司的AKT抗体来进行蛋白印迹实验。Mol Biol Cell (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究神经胶原发生和H-IL-6激活的神经发生途径,使用了Santa Cruz公司的phospho-AKT抗体来进行蛋白印迹实验。Mol Biol Cell (2009) ncbi
未注明
  • 细胞化学; 人类
为了证明p130Cas的磷酸化促使了Rac的激活和膜起皱,采用了Santa Cruz Biotechnology的抗Rac抗体,进行免疫细胞化学实验BMC Cell Biol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究miR-126对血管完整性和血管生成的调控作用,采用了Santa Cruz的抗AKT1抗体进行免疫印迹实验。Dev Cell (2008) ncbi
未注明
  • 免疫组化; 人类
兔源性抗磷酸化Akt(Ser473)多克隆抗体(Santa Cruz)可用于免疫组化实验,来研究胰岛素样生长因子-1过表达在乳腺癌组织中的作用(标本均取自BK5.IGF-1转基因小鼠体内人工致癌乳腺组织,并经福尔马林固定)。Am J Pathol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究VHL肿瘤抑制基因通过成纤维细胞生长因子受体信号通路对内皮功能的影响,采用了Santa Cruz的兔多抗ETS1抗体进行免疫印迹实验。Cancer Res (2008) ncbi
未注明
  • 免疫印迹; 人类
兔源性抗丝氨酸Akt 1/2 和磷酸化丝氨酸p-Akt 1/2/3 (Thr 308)多克隆抗体(Santa Cruz)可用于免疫印迹实验,来研究肿瘤抑制基因TSC1和TSC2及其它因子在鳞状细胞癌致癌过程中的作用。BMC Cancer (2008) ncbi
未注明
  • 免疫印迹; 人类
为了检测蛋白酶体抑制剂和组蛋白酰基转移酶抑制剂在GBM细胞株中产生的效应,采用了Santa Cruz Biotechnology的兔抗磷酸化Akt多抗,进行蛋白质印迹实验Neuro Oncol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究人类疱疹病毒8趋化因子内皮生存和病毒复制中的作用,采用了Santa Cruz生物技术公司的抗AKT抗体进行了蛋白印迹实验。J Virol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究生长激素释放激素MZ-J-7-138和JV-1-92对抗物生长对H460人体非小细胞肺癌常位异种嫁接入裸鼠的影响,使用了Santa Cruz Biotechnology公司的多克隆Akt1抗体,进行了免疫印迹实验。Proc Natl Acad Sci U S A (2006) ncbi
赛默飞世尔
兔 单克隆(14-6)
  • 免疫印迹; 大鼠; 1:2500; 图6
赛默飞世尔Akt抗体(Invitrogen, 44-621G)被用于免疫印迹在大鼠样品上浓度为1:2500 (图6). Cell Signal (2016) ncbi
兔 单克隆(98H9L8)
  • FC; 人类; 图4
赛默飞世尔Akt抗体(生活技术, 98H9L8)被用于流式细胞仪在人类样品上 (图4). PLoS ONE (2016) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 人类; 1:1000; 图3
赛默飞世尔Akt抗体(生活技术, 44-621G)被用于免疫印迹在人类样品上浓度为1:1000 (图3). PLoS ONE (2016) ncbi
兔 单克隆(98H9L8)
  • 免疫组化-P; 人类; 1:500; 图2
赛默飞世尔Akt抗体(生活技术, 700392)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图2). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图s7
赛默飞世尔Akt抗体(Invitrogen, 44-609G)被用于免疫印迹在人类样品上浓度为1:1000 (图s7). Nat Chem Biol (2016) ncbi
小鼠 单克隆(9Q7)
  • 免疫印迹; 人类; 1:1000; 图s7
赛默飞世尔Akt抗体(Invitrogen, AHO1112)被用于免疫印迹在人类样品上浓度为1:1000 (图s7). Nat Chem Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛默飞世尔Akt抗体(Invitrogen, 44-602G)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Int J Mol Sci (2015) ncbi
兔 单克隆(98H9L8)
  • 免疫印迹; 人类; 图4b
赛默飞世尔Akt抗体(Invitrogen, 700392)被用于免疫印迹在人类样品上 (图4b). Cancer Discov (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔Akt抗体(Invitrogen, 44-C609G)被用于免疫印迹在小鼠样品上浓度为1:500. Mol Nutr Food Res (2016) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔Akt抗体(Biosource, 44-C621G)被用于免疫印迹在小鼠样品上浓度为1:500. Mol Nutr Food Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图6
赛默飞世尔Akt抗体(Invitrogen, 44-609G)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Oncotarget (2015) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 小鼠; 1:1000; 图6
赛默飞世尔Akt抗体(Invitrogen, 44-621G)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Oncotarget (2015) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 人类; 1:1000; 图3
赛默飞世尔Akt抗体(Pierce Biotechnology, OMA1-03061)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Mol Med Rep (2015) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 小鼠
赛默飞世尔Akt抗体(Invitrogen, 44-621G)被用于免疫印迹在小鼠样品上. J Nutr Biochem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛默飞世尔Akt抗体(Invitrogen, 44-609G)被用于免疫印迹在小鼠样品上. J Nutr Biochem (2015) ncbi
兔 单克隆(98H9L8)
  • 免疫印迹; 人类
赛默飞世尔Akt抗体(Invitrogen, 700392)被用于免疫印迹在人类样品上. J Cell Biol (2015) ncbi
兔 单克隆(98H9L8)
  • 免疫组化-P; 人类; 1:100
赛默飞世尔Akt抗体(Invitrogen, 98H9L8)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Anal Cell Pathol (Amst) (2014) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 人类; 图5a
赛默飞世尔Akt抗体(生活技术, 44-621G)被用于免疫印迹在人类样品上 (图5a). Int J Cancer (2015) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 人类
赛默飞世尔Akt抗体(Biosource, 44-621G)被用于免疫印迹在人类样品上. Clin Cancer Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛默飞世尔Akt抗体(生活技术, 44609G)被用于免疫印迹在大鼠样品上. Brain Res (2014) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 人类; 图3
赛默飞世尔Akt抗体(Invitrogen, 44-621G)被用于免疫印迹在人类样品上 (图3). Sci Signal (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图4
赛默飞世尔Akt抗体(Invitrogen, 44-609G)被用于免疫组化在小鼠样品上 (图4). Calcif Tissue Int (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图s2
赛默飞世尔Akt抗体(Invitrogen, 44-602G)被用于免疫印迹在人类样品上 (图s2). J Biol Chem (2013) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 人类; 图4
赛默飞世尔Akt抗体(Invitrogen, 44621G)被用于免疫印迹在人类样品上 (图4). Cancer Discov (2013) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 小鼠; 图7
赛默飞世尔Akt抗体(Invitrogen, 44-621G)被用于免疫印迹在小鼠样品上 (图7). J Immunol (2012) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 人类; 图2
赛默飞世尔Akt抗体(Invitrogen, 44-621G)被用于免疫印迹在人类样品上 (图2). Nature (2012) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 小鼠; 图 7
赛默飞世尔Akt抗体(Invitrogen, S473, catalog 44-621G)被用于免疫印迹在小鼠样品上 (图 7). J Immunol (2012) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 大鼠; 图4
赛默飞世尔Akt抗体(Biosource, 44-621G)被用于免疫印迹在大鼠样品上 (图4). PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
赛默飞世尔Akt抗体(Invitrogen, 44-623G)被用于免疫印迹在小鼠样品上 (图2). Clin Immunol (2012) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 人类; 图2
赛默飞世尔Akt抗体(Invitrogen, 44-621G)被用于免疫印迹在人类样品上 (图2). Cancer Cell (2011) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 小鼠; 图6
赛默飞世尔Akt抗体(Biosource, 44-621G)被用于免疫印迹在小鼠样品上 (图6). Mol Cell Biol (2009) ncbi
艾博抗(上海)贸易有限公司
兔 单克隆(EP2109Y)
  • 免疫印迹; 小鼠; 图1
艾博抗(上海)贸易有限公司Akt抗体(Abcam, EP2109Y)被用于免疫印迹在小鼠样品上 (图1). Iran J Basic Med Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab8805)被用于免疫印迹在小鼠样品上 (图1). Iran J Basic Med Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab8932)被用于免疫印迹在人类样品上 (图6). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 兔; 1:1000; 图4
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab23509)被用于免疫印迹在兔样品上浓度为1:1000 (图4). Int J Clin Exp Pathol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
艾博抗(上海)贸易有限公司Akt抗体(Abcam, 8805)被用于免疫印迹在人类样品上 (图2). Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图4
艾博抗(上海)贸易有限公司Akt抗体(abcam, Ab66138)被用于免疫印迹在人类样品上浓度为1:1000 (图4). BMC Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 鸡; 1:750; 图5a
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab66138)被用于免疫印迹在鸡样品上浓度为1:750 (图5a). Gen Comp Endocrinol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
艾博抗(上海)贸易有限公司Akt抗体(Abcam, Ab66138)被用于免疫印迹在小鼠样品上浓度为1:500. Endocrinology (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
艾博抗(上海)贸易有限公司Akt抗体(Abcam, Ab8805)被用于免疫印迹在小鼠样品上浓度为1:500. Endocrinology (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab8805)被用于免疫印迹在人类样品上 (图3). Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 图1f-j
  • 免疫印迹; 人类; 图4b
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab8932)被用于免疫组化-石蜡切片在人类样品上 (图1f-j) 和 免疫印迹在人类样品上 (图4b). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 图1
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab8932)被用于免疫组化-石蜡切片在人类样品上 (图1). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:100
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab64148)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100. Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab66138)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:2000
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab8805)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 和 免疫印迹在大鼠样品上浓度为1:2000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:2000
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab66138)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 和 免疫印迹在大鼠样品上浓度为1:2000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab106693)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab23509)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab8805)被用于免疫印迹在人类样品上浓度为1:500. Autophagy (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab66138)被用于免疫印迹在人类样品上浓度为1:1000 和 在大鼠样品上浓度为1:1000. Neurochem Int (2013) ncbi
兔 多克隆
  • 免疫组化-F; 人类; 1:75
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab8805)被用于免疫组化-冰冻切片在人类样品上浓度为1:75. Cell Tissue Res (2013) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:100
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab8805)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100. Behav Brain Res (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司Akt抗体(Abcam, ab66134)被用于免疫印迹在大鼠样品上. Am J Physiol Regul Integr Comp Physiol (2012) ncbi
未注明
  • 免疫印迹; 人类
为了说明整合素连接的激酶可以调控气道平滑肌细胞分化,使用了Abcam公司的抗Akt抗体进行蛋白印迹实验。Am J Physiol Lung Cell Mol Physiol (2008) ncbi
武汉三鹰
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图5
武汉三鹰Akt抗体(Proteintech, 10176-2-AP)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Sci Rep (2016) ncbi
宜康生物技术有限公司
小鼠 单克隆
  • 免疫印迹; 人类; 图5
宜康生物技术有限公司Akt抗体(Epitomics, 2957)被用于免疫印迹在人类样品上 (图5). Oncotarget (2015) ncbi
Rockland Immunochemicals
小鼠 单克隆(17F6.B11)
  • 免疫组化; 小鼠; 1:500; 图6
Rockland ImmunochemicalsAkt抗体(Rockland Immunochemicals, 200-301-268)被用于免疫组化在小鼠样品上浓度为1:500 (图6). Fibrogenesis Tissue Repair (2012) ncbi
BioLegend
未注明
  • 免疫印迹; 人类
结合计算机模拟实验,模拟实验结果的检验,以及蛋白相互作用网络的反向工程实验来确认新的曲妥单抗抗乳腺癌的潜在治疗策略,将Covance提供的兔抗磷酸化AKT1抗体(目录号:PRB-542p)用于蛋白免疫印迹。BMC Syst Biol (2009) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在小鼠样品上 (图2). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 9271)被用于免疫组化-石蜡切片在人类样品上. Respir Res (2016) ncbi
兔 单克隆( D25E6 )
  • 免疫印迹; 人类; 图7
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 13038)被用于免疫印迹在人类样品上 (图7) 和 在小鼠样品上 (图1). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图7) 和 在小鼠样品上 (图1). elife (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图7
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上 (图7) 和 在小鼠样品上 (图1). elife (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:100; 图st1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在人类样品上浓度为1:100 (图st1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 表1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (表1). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9275)被用于免疫印迹在人类样品上 (图2). Lipids Health Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图2). Lipids Health Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Nat Commun (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图s7
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, C31E5E)被用于免疫印迹在人类样品上浓度为1:1000 (图s7). Nat Commun (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 4058)被用于免疫印迹在大鼠样品上 (图5). Carcinogenesis (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 4691)被用于免疫印迹在大鼠样品上 (图5). Carcinogenesis (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:25; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:25 (图3). Mol Vis (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 1:2000; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上浓度为1:2000 (图5). Acta Neuropathol Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在大鼠样品上 (图2). Physiol Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在大鼠样品上 (图2). Physiol Rep (2016) ncbi
兔 单克隆(244F9)
  • FC; 小鼠; 1:100; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4056)被用于流式细胞仪在小鼠样品上浓度为1:100 (图6). Nat Commun (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上 (图2). Cell Death Dis (2016) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 2938S)被用于免疫印迹在人类样品上 (图2). Oncoimmunology (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 4060S)被用于免疫印迹在人类样品上 (图2). Oncoimmunology (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4056)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). Nat Commun (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:2000; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4691)被用于免疫印迹在小鼠样品上浓度为1:2000 (图5). Nat Commun (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 大鼠; 1:800; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 4056)被用于免疫印迹在大鼠样品上浓度为1:800 (图6). Sci Rep (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 4691)被用于免疫印迹在大鼠样品上浓度为1:1000 (图6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 9271S)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Oncol Lett (2016) ncbi
兔 单克隆( D25E6 )
  • 免疫印迹; 大鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 13038)被用于免疫印迹在大鼠样品上浓度为1:1000 (图1). Sci Rep (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:2000; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4691)被用于免疫印迹在大鼠样品上浓度为1:2000 (图1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图6). Sci Rep (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, C67E7)被用于免疫印迹在人类样品上 (图6). Sci Rep (2016) ncbi
兔 单克隆( D25E6 )
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, D25E6)被用于免疫印迹在人类样品上 (图6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). Nat Commun (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上 (图4). Stem Cell Reports (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图s2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图s2). Nat Commun (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 4056)被用于免疫印迹在人类样品上 (图3). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图6). Sci Rep (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2965)被用于免疫印迹在人类样品上 (图6). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:500; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060 s)被用于免疫印迹在大鼠样品上浓度为1:500 (图3). Braz J Med Biol Res (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:500; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691s)被用于免疫印迹在大鼠样品上浓度为1:500 (图3). Braz J Med Biol Res (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图7
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4691)被用于免疫印迹在小鼠样品上 (图7). PLoS ONE (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 小鼠; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4056)被用于免疫印迹在小鼠样品上 (图6). Cell Signal (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Alzheimers Dement (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Nat Commun (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图6A
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上浓度为1:1000 (图6A). Front Pharmacol (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图s4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 2965)被用于免疫印迹在小鼠样品上 (图s4). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上 (图2). Cancer Cell Int (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 大鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signal, 4056s)被用于免疫印迹在大鼠样品上浓度为1:1000 (图5). Sci Rep (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上 (图1). J Immunol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图s4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在人类样品上浓度为1:1000 (图s4). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在人类样品上 (图5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图5). Nat Cell Biol (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2965)被用于免疫印迹在小鼠样品上 (图5). Nat Cell Biol (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 大鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4056)被用于免疫印迹在大鼠样品上浓度为1:1000 (图6). Cell Signal (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上 (图4). FASEB J (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在小鼠样品上 (图4). FASEB J (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图7
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 9271S)被用于免疫印迹在小鼠样品上 (图7). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 9271)被用于免疫印迹在人类样品上浓度为1:500 (图6). Front Cell Infect Microbiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图st2
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图st2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图s2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图s2). Nat Commun (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上 (图3). Sci Rep (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图7
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上 (图7). Sci Rep (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 图8
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在大鼠样品上 (图8). PLoS Pathog (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 1:500; 图3a
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上浓度为1:500 (图3a). Mol Med Rep (2016) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 人类; 1:500; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, C73H10)被用于免疫印迹在人类样品上浓度为1:500 (图4). Future Oncol (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4691)被用于免疫印迹在小鼠样品上 (图2). Autophagy (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4058)被用于免疫印迹在小鼠样品上 (图2). Autophagy (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 4691)被用于免疫印迹在小鼠样品上 (图5). Stem Cell Reports (2016) ncbi
兔 单克隆( D25E6 )
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 13038)被用于免疫印迹在小鼠样品上 (图5). Stem Cell Reports (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上 (图5). Cell Signal (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图6). Neuroscience (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图6e
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在人类样品上 (图6e). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图6e
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691S)被用于免疫印迹在人类样品上 (图6e). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
兔 单克隆( D25E6 )
  • 免疫印迹; 人类; 图6e
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 13038S)被用于免疫印迹在人类样品上 (图6e). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图s3
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4051)被用于免疫印迹在人类样品上 (图s3) 和 在小鼠样品上 (图3). Nat Commun (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 4691)被用于免疫印迹在人类样品上 (图6). Sci Rep (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:600; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4051)被用于免疫印迹在人类样品上浓度为1:600 (图6). Autophagy (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000; 图s5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 587 F11)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s5). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图4). BMC Complement Altern Med (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Mol Med Rep (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图s1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s1). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上 (图3). Mol Metab (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). Int J Obes (Lond) (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图5). J Cancer (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在人类样品上 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2967S)被用于免疫印迹在人类样品上 (图1). Sci Rep (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2965S)被用于免疫印迹在人类样品上 (图1). Sci Rep (2016) ncbi
兔 单克隆( D25E6 )
  • 免疫印迹; 人类; 1:1000; 图6
  • 免疫印迹; 大鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 13038P)被用于免疫印迹在人类样品上浓度为1:1000 (图6) 和 在大鼠样品上浓度为1:1000 (图6). Oncol Lett (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在大鼠样品上浓度为1:1000 (图5). Exp Ther Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图4). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060s)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). Front Cell Neurosci (2016) ncbi
兔 单克隆( D25E6 )
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, D25E6)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Oncoimmunology (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2965)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Hum Mol Genet (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Hum Mol Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5c
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上 (图5c). Cell Rep (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 4691)被用于免疫印迹在人类样品上 (图4). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Nat Commun (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 4691)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Nat Commun (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司Akt抗体(CST, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Nat Commun (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在大鼠样品上浓度为1:1000 (图6). Mol Med Rep (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2965)被用于免疫印迹在人类样品上 (图1). J Virol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图7
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060P)被用于免疫印迹在人类样品上 (图7). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在大鼠样品上浓度为1:1000 (图3). Aging (Albany NY) (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠; 1:1000; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在大鼠样品上浓度为1:1000 (图2). Aging (Albany NY) (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在小鼠样品上 (图2). J Clin Invest (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Genes Cancer (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在人类样品上 (图5). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
  • 免疫印迹; 小鼠; 图7
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上 (图1) 和 在小鼠样品上 (图7). Cell Signal (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上 (图3). J Clin Endocrinol Metab (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图1). Oncogene (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4691)被用于免疫印迹在人类样品上 (图1). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4060S)被用于免疫印迹在人类样品上 (图4). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图s4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060P)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s4). Sci Rep (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2965)被用于免疫印迹在人类样品上 (图3). Mol Biol Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上 (图5). Sci Rep (2016) ncbi
兔 单克隆(C31E5E)
  • FC; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, C31E5E)被用于流式细胞仪在小鼠样品上 (图5). Nat Immunol (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上 (图5). J Clin Invest (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, D9E)被用于免疫印迹在小鼠样品上 (图3). Sci Rep (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:1000; 图7
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4051)被用于免疫印迹在人类样品上浓度为1:1000 (图7). J Gastroenterol Hepatol (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 人类; 1:50; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 4060S)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图4). EMBO Mol Med (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:1000; 图3
  • 免疫印迹; 小鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 4051S)被用于免疫印迹在人类样品上浓度为1:1000 (图3) 和 在小鼠样品上浓度为1:1000 (图1). EMBO Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图4). Nat Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:500 (图6). Cell Death Differ (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图2
  • 免疫印迹; 小鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4691)被用于免疫印迹在人类样品上浓度为1:1000 (图2) 和 在小鼠样品上浓度为1:1000 (图6). Oncotarget (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司Akt抗体(CST, 4691)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图6). Mol Cancer Ther (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Int J Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Mol Med Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图8
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4060S)被用于免疫印迹在小鼠样品上浓度为1:1000 (图8). Acta Neuropathol (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图3
  • 免疫沉淀; 人类; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 4691)被用于免疫印迹在人类样品上 (图3) 和 免疫沉淀在人类样品上 (图3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271S)被用于免疫印迹在人类样品上 (图4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图3). Hepatology (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 表1
赛信通(上海)生物试剂有限公司Akt抗体(CST, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (表1). J Alzheimers Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图3). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9275)被用于免疫印迹在人类样品上 (图4). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上. Science (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691L)被用于免疫印迹在小鼠样品上. Science (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图7a
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, C67E7)被用于免疫印迹在人类样品上 (图7a). Nucleic Acids Res (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上 (图6). BMC Cancer (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司Akt抗体(CST, 4060s)被用于免疫印迹在小鼠样品上 (图4). Stem Cell Reports (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 4051S)被用于免疫印迹在人类样品上 (图3). Sci Signal (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Nat Commun (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图3
  • 免疫印迹; 小鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, cst-4691)被用于免疫印迹在人类样品上浓度为1:1000 (图3) 和 在小鼠样品上浓度为1:1000 (图1). Nat Cell Biol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, D9E)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Sci Rep (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Oncotarget (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 大鼠; 图8
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4051)被用于免疫印迹在大鼠样品上 (图8). J Am Heart Assoc (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 9271)被用于免疫印迹在人类样品上 (图3). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2016) ncbi
兔 单克隆(736E11)
  • FC; 小鼠; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 736E11)被用于流式细胞仪在小鼠样品上 (图2). Nature (2016) ncbi
兔 单克隆( D25E6 )
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 13038)被用于免疫印迹在小鼠样品上 (图5). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell signalling, #9271)被用于免疫印迹在人类样品上浓度为1:1000 (图2). Cell Mol Gastroenterol Hepatol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275S)被用于免疫印迹在人类样品上 (图3). J Mol Cell Biol (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4051S)被用于免疫印迹在人类样品上 (图3). J Mol Cell Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7
赛信通(上海)生物试剂有限公司Akt抗体(Cell signalling, 9271)被用于免疫印迹在人类样品上 (图7). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4060S)被用于免疫印迹在小鼠样品上 (图1). PLoS ONE (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类; 1:1000; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4056)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Cancer Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Nat Commun (2016) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 小鼠; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2938)被用于免疫印迹在小鼠样品上 (图6). Cell Res (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类; 图5d
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4056)被用于免疫印迹在人类样品上 (图5d). Oncotarget (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000; 图4a
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4a). Sci Rep (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上 (图1). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:2000; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, CST4060P)被用于免疫印迹在大鼠样品上浓度为1:2000 (图4). Mol Med Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在大鼠样品上 (图5). Mol Biol Cell (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2965)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Sci Rep (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 4058s)被用于免疫印迹在小鼠样品上 (图3). Drug Des Devel Ther (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在小鼠样品上 (图5). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图5). J Cell Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图5
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, D9E)被用于免疫印迹在人类样品上 (图5) 和 在小鼠样品上 (图5). J Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4b
赛信通(上海)生物试剂有限公司Akt抗体(CST, 9271)被用于免疫印迹在小鼠样品上 (图4b). Nat Commun (2015) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 大鼠; 图s3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2938)被用于免疫印迹在大鼠样品上 (图s3). Autophagy (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 2965)被用于免疫印迹在人类样品上 (图6). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271S)被用于免疫印迹在小鼠样品上 (图3). Stem Cell Reports (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 表1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2965)被用于免疫印迹在人类样品上浓度为1:1000 (表1). Oncotarget (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 4056)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图1). Oncogene (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上 (图1). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3E
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上 (图3E). Sci Rep (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell signalling, 2965)被用于免疫印迹在人类样品上 (图2). J Cell Biol (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell signalling, 4058)被用于免疫印迹在人类样品上 (图2). J Cell Biol (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上 (图2). Sci Rep (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图9
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 5373)被用于免疫印迹在人类样品上浓度为1:1000 (图9). Biochem Pharmacol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 9271)被用于免疫印迹在小鼠样品上 (图3). Oncogene (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 4691)被用于免疫印迹在小鼠样品上 (图3). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图1). Biochem Biophys Res Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图S3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图S3). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在大鼠样品上浓度为1:1000 (图6). Mol Med Rep (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在小鼠样品上 (图3). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图4). BMC Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图1) 和 在小鼠样品上 (图1). J Exp Med (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4058)被用于免疫印迹在小鼠样品上 (图4). Nat Immunol (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 小鼠; 图8
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4056)被用于免疫印迹在小鼠样品上 (图8). Nat Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在大鼠样品上 (图5). Physiol Rep (2015) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 人类; 1:1000; 图2
  • 免疫印迹; 小鼠; 1:1000; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 3787)被用于免疫印迹在人类样品上浓度为1:1000 (图2) 和 在小鼠样品上浓度为1:1000 (图2). elife (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271S)被用于免疫印迹在大鼠样品上浓度为1:1000 (图1). Neuroscience (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在大鼠样品上. Redox Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 4060)被用于免疫印迹在人类样品上浓度为1:1000. Oncoscience (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691S)被用于免疫印迹在人类样品上浓度为1:1000 (图4). BMC Cancer (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 2965)被用于免疫印迹在人类样品上浓度为1:1000 (图6). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图6). Oncotarget (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, C31E5E)被用于免疫印迹在大鼠样品上 (图5). Int J Nanomedicine (2015) ncbi
兔 单克隆(193H12)
  • FC; 人类; 图3
  • 免疫印迹; 人类; 1:750; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于流式细胞仪在人类样品上 (图3) 和 免疫印迹在人类样品上浓度为1:750 (图1). Oncotarget (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(CST, 4060)被用于免疫印迹在小鼠样品上. Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上 (图1). Biochim Biophys Acta (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在小鼠样品上 (图1). Biochim Biophys Acta (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠; 1:100; 图8e-h
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 4060 s)被用于免疫组化在小鼠样品上浓度为1:100 (图8e-h). Oncogene (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上 (图3). Aging Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6c
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图6c). Oncogene (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, CELL4058S)被用于免疫印迹在小鼠样品上 (图3). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上. Development (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图S2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图S2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图3) 和 在小鼠样品上 (图2). Redox Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图6). Autophagy (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫组化-P; 小鼠; 1:100; 图s15d
  • 免疫印迹; 小鼠; 1:1000; 图6a
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2965)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图s15d) 和 免疫印迹在小鼠样品上浓度为1:1000 (图6a). Nat Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7a
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图7a). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 猪; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在猪样品上浓度为1:1000. Am J Physiol Endocrinol Metab (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(CST, 4060)被用于免疫印迹在人类样品上浓度为1:1000. Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图5). Eur Neuropsychopharmacol (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图4). Oncogene (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 2965)被用于免疫印迹在人类样品上 (图4). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图4a
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4060S)被用于免疫印迹在人类样品上 (图4a). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4b
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图4b). Int J Hematol (2015) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2938)被用于免疫印迹在大鼠样品上浓度为1:1000. Exp Neurol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060S)被用于免疫印迹在大鼠样品上浓度为1:1000. Exp Neurol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1a
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在人类样品上 (图1a). Leukemia (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图2). J Cell Biol (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691S)被用于免疫印迹在人类样品上 (图1). Drug Des Devel Ther (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图1). Drug Des Devel Ther (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图6g
赛信通(上海)生物试剂有限公司Akt抗体(CellSignalingTechnology, 9271)被用于免疫印迹在小鼠样品上 (图6g). Int J Obes (Lond) (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图6g
赛信通(上海)生物试剂有限公司Akt抗体(CellSignalingTechnology, 4691)被用于免疫印迹在小鼠样品上 (图6g). Int J Obes (Lond) (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:300
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:300. FASEB J (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司Akt抗体(CST, 4060)被用于免疫印迹在人类样品上浓度为1:2000. Mol Brain (2015) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, C73H10)被用于免疫印迹在人类样品上 (图4). PLoS ONE (2015) ncbi
兔 单克隆(193H12)
  • 免疫组化-P; 人类; 图5
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signal, 193H12)被用于免疫组化-石蜡切片在人类样品上 (图5) 和 免疫印迹在人类样品上 (图4). PLoS ONE (2015) ncbi
兔 多克隆
  • 其他; 小鼠; 1:1000; 图s1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于其他在小鼠样品上浓度为1:1000 (图s1). Front Microbiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Eur Neuropsychopharmacol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上. Cardiovasc Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Breast Cancer Res (2015) ncbi
兔 单克隆(C31E5E)
  • 细胞化学; 人类; 1:400
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2965)被用于免疫细胞化学在人类样品上浓度为1:400 和 免疫印迹在人类样品上浓度为1:1000. Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图S3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在大鼠样品上 (图S3). PLoS ONE (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058-S)被用于免疫印迹在大鼠样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
兔 单克隆(D9E)
  • 细胞化学; 人类; 图s6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060S)被用于免疫细胞化学在人类样品上 (图s6). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. J Cell Sci (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058s)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). Cell Biosci (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 图1c
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在小鼠样品上 (图1c). J Clin Invest (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000. J Neurochem (2015) ncbi
小鼠 单克隆(5G3)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2966S)被用于免疫印迹在小鼠样品上浓度为1:2000. Neuroscience (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:2000. Mol Oncol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图1c
  • 免疫印迹; 小鼠; 图1b
赛信通(上海)生物试剂有限公司Akt抗体(Cell SignalinG, 9271)被用于免疫印迹在人类样品上浓度为1:2000 (图1c) 和 在小鼠样品上 (图1b). Nat Commun (2015) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类; 1:2000; 图1c
  • 免疫印迹; 小鼠; 图1b
赛信通(上海)生物试剂有限公司Akt抗体(Cell SignalinG, 4056)被用于免疫印迹在人类样品上浓度为1:2000 (图1c) 和 在小鼠样品上 (图1b). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060P)被用于免疫印迹在人类样品上. Clin Transl Gastroenterol (2015) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 3787)被用于免疫印迹在人类样品上 (图6). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. J Biomed Sci (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠; 1:2000; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 4058)被用于免疫印迹在大鼠样品上浓度为1:2000 (图5). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:2000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, #4060)被用于免疫印迹在大鼠样品上浓度为1:2000. Int J Neuropsychopharmacol (2015) ncbi
兔 多克隆
  • IHC-Free; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于immunohistochemistry - free floating section在大鼠样品上. Free Radic Biol Med (2015) ncbi
兔 单克隆( D25E6 )
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 13038)被用于免疫印迹在人类样品上 (图4). Oncotarget (2015) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2967)被用于免疫印迹在人类样品上. Neoplasia (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图2.e
赛信通(上海)生物试剂有限公司Akt抗体(CellSignaling, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图2.e). Nat Cell Biol (2015) ncbi
兔 单克隆( D25E6 )
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 13038)被用于免疫印迹在人类样品上 (图3). EMBO J (2015) ncbi
兔 单克隆(D9E)
  • FC; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 5315)被用于流式细胞仪在小鼠样品上. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫组化; 人类; 1:800
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4051)被用于免疫组化在人类样品上浓度为1:800. Mol Clin Oncol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling Technologies, 4060)被用于免疫印迹在小鼠样品上. Cardiovasc Res (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图1e
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图1e). J Cell Sci (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2965)被用于免疫印迹在小鼠样品上 (图3). Exp Neurobiol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图7
赛信通(上海)生物试剂有限公司Akt抗体(Cell-Signaling Technologies, 4060)被用于免疫印迹在人类样品上浓度为1:2000 (图7). PLoS Pathog (2015) ncbi
兔 多克隆
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫组化在小鼠样品上 和 免疫印迹在小鼠样品上. Mol Neurodegener (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图s4
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4691L)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s4). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图s4
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4060L)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s4). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司Akt抗体(cell signaling, 9275)被用于免疫印迹在人类样品上 (图5). Mol Cell Biol (2015) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 3787)被用于免疫印迹在小鼠样品上 (图5). Oncogene (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000. J Cell Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 9271)被用于免疫印迹在人类样品上 (图5). Oncotarget (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图1). EBioMedicine (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271s)被用于免疫印迹在人类样品上浓度为1:1000. Am J Physiol Endocrinol Metab (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图2a
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上 (图2a). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 细胞化学; 人类; 1:50; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫细胞化学在人类样品上浓度为1:50 (图4). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图6). Am J Physiol Regul Integr Comp Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上 (图6). Am J Physiol Regul Integr Comp Physiol (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4051)被用于免疫印迹在大鼠样品上. Eur J Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4b
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上 (图4b). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Oncotarget (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:500. Biochim Biophys Acta (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691s)被用于免疫印迹在人类样品上浓度为1:500. Biochim Biophys Acta (2015) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 736E11)被用于免疫印迹在人类样品上. Cancer Med (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图1b
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060S)被用于免疫印迹在小鼠样品上 (图1b). Mol Cell Biol (2015) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 244F9)被用于免疫印迹在人类样品上. Mol Ther Methods Clin Dev (2015) ncbi
兔 多克隆
  • FC; 人类; 1:250
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于流式细胞仪在人类样品上浓度为1:250. Mol Biol Cell (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:250
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:250. Biochim Biophys Acta (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 4060s)被用于免疫印迹在人类样品上 (图1). Int J Mol Med (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(CST, 2965)被用于免疫印迹在人类样品上. Cell Signal (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4060P)被用于免疫印迹在小鼠样品上 (图4). Biochim Biophys Acta (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图1b
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 4060)被用于免疫印迹在人类样品上浓度为1:2000 (图1b). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. Carcinogenesis (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图s6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上 (图s6). Sci Rep (2015) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2938)被用于免疫印迹在小鼠样品上. J Mol Cell Cardiol (2015) ncbi
兔 单克隆(736E11)
  • 免疫组化-P; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 3787)被用于免疫组化-石蜡切片在小鼠样品上 (图5). Oncogene (2016) ncbi
兔 单克隆(193H12)
  • 免疫组化; 人类; 1:50
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫组化在人类样品上浓度为1:50. Hum Pathol (2015) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 大鼠; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2938)被用于免疫印迹在大鼠样品上 (图3). Kidney Int (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 4060)被用于免疫印迹在小鼠样品上浓度为1:2000 (图 4). J Mol Cell Cardiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图5). Nat Commun (2015) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 3787)被用于免疫印迹在人类样品上 (图5). Nat Commun (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:2000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在大鼠样品上浓度为1:2000. Exp Neurol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上. Mol Cancer Ther (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图4b
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图4b). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Mol Cancer Ther (2015) ncbi
兔 单克隆(D7F10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9018)被用于免疫印迹在小鼠样品上浓度为1:1000. J Mol Cell Cardiol (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫细胞化学在人类样品上 和 免疫印迹在大鼠样品上. Toxicol Lett (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4691)被用于免疫印迹在小鼠样品上 (图1). FASEB J (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图2). Biochem Biophys Res Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上. Muscle Nerve (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, D9E)被用于免疫印迹在人类样品上. Cell Mol Life Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. J Cell Sci (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000. Int J Mol Sci (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 2965)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Oncotarget (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在人类样品上. Cell Signal (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Cell Signal (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图7
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上 (图7). Gastroenterology (2015) ncbi
兔 单克隆(736E11)
  • 免疫组化-P; 小鼠; 1 ug/ml; 表1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 3787)被用于免疫组化-石蜡切片在小鼠样品上浓度为1 ug/ml (表1). Endocrinology (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, C67E7)被用于免疫印迹在小鼠样品上. Breast Cancer Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Breast Cancer Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Mol Cell Endocrinol (2015) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 3787)被用于免疫印迹在人类样品上. Sci Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(CST, D9E)被用于免疫印迹在人类样品上. Acta Neuropathol (2015) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 小鼠; 1:1000; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 3787)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). Nat Commun (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图s8
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4691)被用于免疫印迹在人类样品上 (图s8). PLoS Pathog (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图3a
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling TECHNOLOGY, 2965)被用于免疫印迹在人类样品上浓度为1:1000 (图3a). Sci Signal (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上浓度为1:1000. Mol Psychiatry (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上浓度为1:1000. Mol Psychiatry (2016) ncbi
兔 多克隆
  • 免疫印迹; 果蝇
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4054)被用于免疫印迹在果蝇样品上. Cell Mol Life Sci (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图8
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 9271)被用于免疫印迹在人类样品上 (图8). Oncotarget (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上 (图2). Aging Cell (2015) ncbi
兔 单克隆( D25E6 )
  • 免疫组化-P; 小鼠; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 13038)被用于免疫组化-石蜡切片在小鼠样品上 (图2). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9275)被用于免疫印迹在小鼠样品上 (图5). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在小鼠样品上 (图5). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271S)被用于免疫印迹在大鼠样品上 (图4). Cell Physiol Biochem (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, C31E5E)被用于免疫印迹在人类样品上 (图2). Oncotarget (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000. Cell Death Differ (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 小鼠; 1:150
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:150. Endocrinology (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Oncotarget (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 2965)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Oncotarget (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上. Endocrinology (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图8
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000 (图8). Development (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫组化; 小鼠; 1:1000; 图2
  • 免疫印迹; 小鼠; 1:1000; 图s2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2965)被用于免疫组化在小鼠样品上浓度为1:1000 (图2) 和 免疫印迹在小鼠样品上浓度为1:1000 (图s2). J Clin Invest (2015) ncbi
兔 单克隆(736E11)
  • IHC-Free; 小鼠; 1:300
  • 免疫印迹; 小鼠; 1:300
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 3787S)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:300 和 免疫印迹在小鼠样品上浓度为1:300. FASEB J (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:2000. Biochem Pharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司Akt抗体(CST, 4691)被用于免疫印迹在小鼠样品上浓度为1:2000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图s21
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图s21). PLoS ONE (2015) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 3787s)被用于免疫印迹在人类样品上浓度为1:1000. Exp Ther Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在大鼠样品上浓度为1:1000. Neurobiol Dis (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 果蝇; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4054)被用于免疫印迹在果蝇样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图4a
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上 (图4a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Leukemia (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图6a
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在小鼠样品上 (图6a). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Mol Med Rep (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, C67E7)被用于免疫印迹在人类样品上. J Cell Mol Med (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上. J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 0.5 ug/ml; 图4b
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为0.5 ug/ml (图4b). Sci Rep (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图6f
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上 (图6f). J Exp Med (2015) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 小鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2938)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). Nat Cell Biol (2015) ncbi
兔 单克隆(C31E5E)
  • FC; 小鼠; 1:100; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9088)被用于流式细胞仪在小鼠样品上浓度为1:100 (图4). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图2). Pigment Cell Melanoma Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图1). Exp Mol Med (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, C67E7)被用于免疫印迹在人类样品上. Cancer Lett (2015) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4056)被用于免疫印迹在人类样品上. J Interferon Cytokine Res (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4051)被用于免疫印迹在小鼠样品上. J Mol Neurosci (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:500; 图5b
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2965)被用于免疫印迹在小鼠样品上浓度为1:500 (图5b). Nat Cell Biol (2015) ncbi
未注明
  • 免疫印迹; 人类
pAKT抗体被用于免疫沉淀,来研究抑制EGFR突变的肺癌细胞对SOX2-FOXO6依赖的存活途径的影响。elife (2015) ncbi
未注明
  • 免疫印迹; 人类
AKT抗体被用于免疫沉淀,来研究抑制EGFR突变的肺癌细胞对SOX2-FOXO6依赖的存活途径的影响。elife (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在小鼠样品上浓度为1:1000. Mol Cell Endocrinol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图7
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上 (图7). Tissue Eng Part A (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, D9E)被用于免疫印迹在人类样品上 (图2). Oncotarget (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, #4060)被用于免疫印迹在大鼠样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, #9271)被用于免疫印迹在人类样品上浓度为1:500. Br J Pharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271S)被用于免疫印迹在人类样品上. Int J Mol Med (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, #4691)被用于免疫印迹在人类样品上 和 在小鼠样品上. Aging Cell (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, C31E5E)被用于免疫印迹在大鼠样品上. PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 斑马鱼; 1:200
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫组化-石蜡切片在斑马鱼样品上浓度为1:200. Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 9271S)被用于免疫印迹在人类样品上. Mol Carcinog (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060P)被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图7
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:5000 (图7). Rejuvenation Res (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 小鼠; 1:50
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50 和 免疫印迹在小鼠样品上浓度为1:1000. Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫组化-石蜡切片在大鼠样品上. Prostate (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 9271)被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:2000. Arthritis Rheumatol (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000; 图7
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000 (图7). Mol Cell Biol (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在人类样品上. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上 (图4). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell signalling, 9271)被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell signalling, C73H10)被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上. J Diabetes (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:5000. Endocrinology (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling Technology, 2938)被用于免疫印迹在人类样品上浓度为1:1000. Oncoscience (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cst, 9271)被用于免疫印迹在小鼠样品上. J Proteome Res (2015) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类; 图9
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4056)被用于免疫印迹在人类样品上 (图9) 和 在小鼠样品上 (图2). Mol Cell Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图9
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图9) 和 在小鼠样品上 (图2). Mol Cell Biol (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4051)被用于免疫印迹在大鼠样品上浓度为1:1000. J Exerc Nutrition Biochem (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图s6
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s6). Development (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. J Clin Invest (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图7
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, D9E)被用于免疫印迹在小鼠样品上 (图7). Nat Immunol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上 (图2). Cell (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图7c
赛信通(上海)生物试剂有限公司Akt抗体(cell signaling, 9271)被用于免疫印迹在大鼠样品上 (图7c). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Neurobiol Learn Mem (2015) ncbi
兔 单克隆(D9E)
  • 细胞化学; 人类; 1:100
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫细胞化学在人类样品上浓度为1:100. Stem Cells (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:1000. Oncotarget (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-F; 小鼠; 1:200
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Biotechnology, 4060)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 和 免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:2000; 图12
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在大鼠样品上浓度为1:2000 (图12). J Appl Toxicol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060P)被用于免疫印迹在人类样品上. Biochim Biophys Acta (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上. Int J Mol Sci (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上. Int J Mol Sci (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上 和 在大鼠样品上. J Lipid Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Diabetes (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 2965)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Med (2015) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4056)被用于免疫印迹在人类样品上. Cancer Sci (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上. Cancer Sci (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4691)被用于免疫印迹在小鼠样品上. Dev Biol (2015) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 2938)被用于免疫印迹在小鼠样品上. Dev Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫组化-石蜡切片在小鼠样品上 和 免疫印迹在小鼠样品上. Dev Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:750
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在大鼠样品上浓度为1:750. Ann Anat (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上. BMC Cancer (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上. BMC Cancer (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图s4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图s4). J Cell Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上. J Proteomics (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在大鼠样品上浓度为1:500. Neuroscience (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691S)被用于免疫印迹在大鼠样品上浓度为1:500. Neuroscience (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(细胞, 4058)被用于免疫印迹在小鼠样品上. Redox Biol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 9275)被用于免疫印迹在人类样品上 (图1). Mol Cell (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在大鼠样品上. Peptides (2015) ncbi
兔 多克隆
  • 免疫组化-F; 人类; 1:50
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling technology, 9271)被用于免疫组化-冰冻切片在人类样品上浓度为1:50. Exp Eye Res (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2965)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 多克隆
  • 免疫印迹; 仓鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在仓鼠样品上. Front Cell Infect Microbiol (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图s7
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691s)被用于免疫印迹在小鼠样品上 (图s7). Cell Death Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图s7
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271s)被用于免疫印迹在小鼠样品上 (图s7). Cell Death Dis (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 193H12)被用于免疫印迹在人类样品上 (图3). J Cell Biol (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 鸡
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4051)被用于免疫印迹在鸡样品上. Proc Natl Acad Sci U S A (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在大鼠样品上. FEBS Open Bio (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在大鼠样品上浓度为1:500. Mol Neurobiol (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2965)被用于免疫印迹在大鼠样品上浓度为1:1000. Mol Neurobiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. FASEB J (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4051)被用于. Cell Death Dis (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 4060)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在人类样品上 (图4). Proc Natl Acad Sci U S A (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:3000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, D9E)被用于免疫印迹在大鼠样品上浓度为1:3000. Neurochem Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在大鼠样品上浓度为1:500. Physiol Rep (2014) ncbi
兔 多克隆赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling Technology, 9275L)被用于. BMC Neurosci (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. J Mol Endocrinol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上. J Cancer Res Clin Oncol (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化; 人类; 1:50
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, D9E)被用于免疫组化在人类样品上浓度为1:50. Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. J Korean Med Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图s4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在人类样品上 (图s4). Mol Cancer Res (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 193H12)被用于免疫印迹在人类样品上 (图3). PLoS ONE (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, C67E7)被用于免疫印迹在人类样品上 (图3). PLoS ONE (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 193H12)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4051)被用于免疫印迹在人类样品上. Infect Immun (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图3, 4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上 (图3, 4). Mol Cancer Res (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 587F11)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在小鼠样品上 (图2). Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4051)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:2000. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在大鼠样品上浓度为1:1000. Mol Psychiatry (2015) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2938)被用于免疫印迹在大鼠样品上浓度为1:1000. Mol Psychiatry (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 12000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在大鼠样品上浓度为12000. Behav Brain Res (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上. Genesis (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上. Genesis (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4058S)被用于免疫印迹在人类样品上 (图2). Oncotarget (2014) ncbi
兔 单克隆( D25E6 )
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 13038)被用于免疫印迹在小鼠样品上 (图1). Cell (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上 (图1). Cell (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在大鼠样品上. Biochem Biophys Res Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Cell Signal (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060s)被用于免疫印迹在人类样品上. Neurobiol Aging (2015) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4056s)被用于免疫印迹在人类样品上. Neurobiol Aging (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上. Physiol Rep (2014) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4056)被用于免疫印迹在小鼠样品上. Physiol Rep (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Am J Pathol (2014) ncbi
兔 多克隆
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271S)被用于免疫细胞化学在人类样品上. Cancer Res (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling Technology, 4058S)被用于免疫印迹在人类样品上. Cell Prolif (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4051)被用于免疫印迹在人类样品上. J Nutr Biochem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 9271)被用于免疫印迹在人类样品上. BMC Cancer (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271S)被用于免疫印迹在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在小鼠样品上 (图3). Mol Metab (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图4). J Thorac Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Proteomics (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在大鼠样品上. BMC Nephrol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Evid Based Complement Alternat Med (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9275)被用于免疫印迹在小鼠样品上 (图6). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Stem Cells Dev (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫组化-P; 人类; 1:300
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4051)被用于免疫组化-石蜡切片在人类样品上浓度为1:300. Acta Neuropathol (2014) ncbi
兔 单克隆(C67E7)
  • 免疫组化-F; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 5373)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Bioenerg Biomembr (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-F; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Bioenerg Biomembr (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上. Molecules (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. J Leukoc Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Mol Cell Biol (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 猪; 1:500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在猪样品上浓度为1:500. Amino Acids (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 猪; 1:500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在猪样品上浓度为1:500. Amino Acids (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Biochem Biophys Res Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在小鼠样品上. Arthritis Rheumatol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 和 在大鼠样品上. J Biol Chem (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上 和 在大鼠样品上. J Biol Chem (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在人类样品上. Cancer Res (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:300; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:300 (图2). Skelet Muscle (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(cell Signaling, 4060)被用于免疫印迹在人类样品上. Mol Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Oncotarget (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图s3b
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图s3b). Proc Natl Acad Sci U S A (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000. Neurobiol Aging (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 5373)被用于免疫印迹在小鼠样品上浓度为1:1000. Neurobiol Aging (2014) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4056)被用于免疫印迹在人类样品上. Eur J Cancer (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 2965)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 4060)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3a
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图3a). Genes Dev (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:200
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4051S)被用于免疫印迹在人类样品上浓度为1:200. Biomed Res Int (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4051S)被用于免疫印迹在小鼠样品上浓度为1:1000. Cancer Sci (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling technology, 4060)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling technology, 2965)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling technology, 4691)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:4000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271S)被用于免疫印迹在人类样品上浓度为1:4000. J Biol Chem (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:600
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在人类样品上浓度为1:600. Urol Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图5). J Biol Chem (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上. EMBO J (2014) ncbi
兔 单克隆(D9E)
  • FC; 人类; 1:100
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于流式细胞仪在人类样品上浓度为1:100. Tissue Eng Part A (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Tissue Eng Part A (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Pharmacol Res (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:1000. Cell Signal (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. Development (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在人类样品上浓度为1:500. J Virol (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000. Hum Mol Genet (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9275)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Cancer Biol Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Cancer Biol Ther (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠; 图7
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalin g Technology, 4058S)被用于免疫印迹在大鼠样品上 (图7). J Tissue Eng Regen Med (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在小鼠样品上 (图5). Cancer Biol Ther (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图2c
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上 (图2c). Oncotarget (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Tech, 9271)被用于免疫印迹在人类样品上 (图2). Oncogene (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(cell signaling, 4060S)被用于免疫印迹在人类样品上. Oncogene (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 2965P)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4060P)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 9271)被用于免疫印迹在人类样品上浓度为1:1000. BMC Cancer (2014) ncbi
兔 多克隆
  • 免疫印迹; 乌颊鱼; 1:200
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在乌颊鱼样品上浓度为1:200. Gen Comp Endocrinol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上. Cell Signal (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上. J Clin Endocrinol Metab (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275S)被用于免疫印迹在人类样品上 (图5). J Cell Sci (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫组化-石蜡切片在小鼠样品上. PLoS Genet (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. Int J Biochem Cell Biol (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4691S)被用于免疫印迹在人类样品上 (图4). Nature (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4060S)被用于免疫印迹在人类样品上 (图4). Nature (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, D9E)被用于免疫印迹在小鼠样品上. J Immunol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 兔; 1:2,000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060S)被用于免疫印迹在兔样品上浓度为1:2,000. Stem Cells Dev (2014) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 兔; 1:2,000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2938S)被用于免疫印迹在兔样品上浓度为1:2,000. Stem Cells Dev (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271S)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271S)被用于免疫印迹在大鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 人类
  • 免疫组化; 人类; 1:100
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 736E11)被用于免疫印迹在人类样品上 和 免疫组化在人类样品上浓度为1:100. Ann Surg Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Int J Oncol (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上. Mol Cell Biol (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上. Mol Cell Biol (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 4691)被用于免疫印迹在人类样品上. Biochem Biophys Res Commun (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上. Cell Cycle (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Biochem J (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫组化-P; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:2000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2965)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 和 免疫印迹在大鼠样品上浓度为1:2000. PLoS ONE (2014) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 3787)被用于免疫印迹在人类样品上 和 在小鼠样品上. Eur J Neurosci (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上. Biochim Biophys Acta (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:2000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在大鼠样品上浓度为1:2000. Exp Gerontol (2014) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4056)被用于免疫印迹在人类样品上. Breast Cancer Res (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上. Eur J Immunol (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上. Eur J Immunol (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在小鼠样品上浓度为1:200. Glia (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在大鼠样品上浓度为1:1000. Nat Med (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:1000; 图s1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在人类样品上浓度为1:1000 (图s1). Melanoma Res (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在大鼠样品上. Toxicol Pathol (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在大鼠样品上. Brain Res (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 193H12)被用于免疫印迹在小鼠样品上. J Exp Med (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 人类; 1:50
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, D9E)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Clin Cancer Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271S)被用于免疫印迹在小鼠样品上. Am J Physiol Renal Physiol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(cst, D9E)被用于免疫印迹在人类样品上浓度为1:1000. Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 9271)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 2965)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 单克隆(193H12)
  • 免疫组化-P; 人类; 1:50
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 193H12)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 和 免疫印迹在人类样品上浓度为1:1000. Br J Dermatol (2014) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类; 1:500; 图1
赛信通(上海)生物试剂有限公司Akt抗体(CST, 4056)被用于免疫印迹在人类样品上浓度为1:500 (图1). Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图1
赛信通(上海)生物试剂有限公司Akt抗体(CST, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling Technology, 9275)被用于免疫印迹在人类样品上. Biochem Pharmacol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 4060)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Int J Cancer (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2965)被用于免疫印迹在人类样品上浓度为1:500. Int J Cancer (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上浓度为1:1000. Int J Radiat Oncol Biol Phys (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Biotechnology, 9271S)被用于免疫印迹在人类样品上. Biochem Pharmacol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1,000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275S)被用于免疫印迹在人类样品上浓度为1:1,000. Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Nanomedicine (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在大鼠样品上. Am J Physiol Heart Circ Physiol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上. Free Radic Biol Med (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 人类
赛信通(上海)生物试剂有限公司Akt抗体(CST, 4060)被用于免疫组化-石蜡切片在人类样品上. Neuro Oncol (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫组化在小鼠样品上 和 免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上. Neuro Oncol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 4060)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 4691)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(736E11)
  • 免疫组化; 小鼠; 1:50
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 3787)被用于免疫组化在小鼠样品上浓度为1:50. J Pathol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上. J Biol Chem (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上. FEBS Lett (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:400
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上浓度为1:400. FASEB J (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000. Lab Invest (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上. Int J Dev Neurosci (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在大鼠样品上浓度为1:1000. J Nutr Biochem (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Cell Death Dis (2014) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2H10)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上浓度为1:2000. Sci Signal (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:2000. Sci Signal (2014) ncbi
兔 多克隆
  • 免疫印迹; 狗
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 9271)被用于免疫印迹在狗样品上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图7
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图7). Nat Commun (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在大鼠样品上. Kidney Int (2014) ncbi
兔 多克隆
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫沉淀在人类样品上 和 免疫印迹在人类样品上. Carcinogenesis (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图3, 5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3, 5). Am J Physiol Endocrinol Metab (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图3, 5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3, 5). Am J Physiol Endocrinol Metab (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化; 人类; 1:2000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫组化在人类样品上浓度为1:2000. Scand J Med Sci Sports (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:500. Stem Cell Rev (2014) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 小鼠; 图5, 7
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4056)被用于免疫印迹在小鼠样品上 (图5, 7). J Cell Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5, 7
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图5, 7). J Cell Sci (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691S)被用于免疫印迹在大鼠样品上浓度为1:1000. Tissue Eng Part A (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058S)被用于免疫印迹在大鼠样品上浓度为1:1000. Tissue Eng Part A (2014) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2938S)被用于免疫印迹在大鼠样品上浓度为1:1000. Tissue Eng Part A (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在大鼠样品上浓度为1:1000. Tissue Eng Part A (2014) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4056S)被用于免疫印迹在小鼠样品上浓度为1:1000. J Biol Chem (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在小鼠样品上浓度为1:1000. J Biol Chem (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠; 1:50
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, D9E)被用于免疫组化在小鼠样品上浓度为1:50. Stem Cells (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上浓度为1:2500. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, D9E)被用于免疫印迹在小鼠样品上. PLoS ONE (2013) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 244F9)被用于免疫印迹在小鼠样品上. PLoS ONE (2013) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058s)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • FC; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, D9E)被用于流式细胞仪在小鼠样品上. Eur J Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Cancer Discov (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 193H12)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4056)被用于免疫印迹在大鼠样品上. J Inorg Biochem (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell signaling Technology, 4058)被用于免疫印迹在人类样品上. J Invest Dermatol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在小鼠样品上 (图3). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图3). Autophagy (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫组化; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2965)被用于免疫组化在小鼠样品上 (图5). Calcif Tissue Int (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, D9E)被用于免疫印迹在大鼠样品上浓度为1:1000. Neuroscience (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在大鼠样品上. J Neurosci (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 9271)被用于免疫印迹在人类样品上. Int J Biochem Cell Biol (2014) ncbi
兔 单克隆(D9E)
  • IHC-Free; 小鼠; 1:200
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Aging Cell (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上. Aging Cell (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Mol Cancer Ther (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫组化在人类样品上. Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling Technology, 9271)被用于免疫印迹在人类样品上. J Physiol (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在大鼠样品上浓度为1:1000. Exp Cell Res (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; African green monkey
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2965)被用于免疫印迹在African green monkey样品上. J Cell Sci (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; African green monkey
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在African green monkey样品上. J Cell Sci (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4051)被用于免疫印迹在人类样品上浓度为1:1000. Cell Death Dis (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:500. J Biol Chem (2013) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2H10)被用于免疫印迹在人类样品上. Br J Cancer (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:5000. Diabetes (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:10000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上浓度为1:10000. Diabetes (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:500. Nat Med (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在小鼠样品上浓度为1:500. Nat Med (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. Neurobiol Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Phytother Res (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 193H12)被用于免疫印迹在大鼠样品上. Neuropsychopharmacology (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上. Am J Pathol (2013) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058S)被用于免疫印迹在小鼠样品上. Biochem J (2013) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 3787)被用于免疫印迹在小鼠样品上. J Neurosci (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上浓度为1:1000. FASEB J (2014) ncbi
兔 单克隆(193H12)
  • 免疫组化-P; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫组化在人类样品上 和 免疫印迹在人类样品上. Cancer Res (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在人类样品上. Cancer Res (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上. Cancer Res (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 587F11)被用于免疫印迹在人类样品上. Lab Invest (2013) ncbi
兔 单克隆(C67E7)
  • 免疫组化-P; 人类; 1:250
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 4691)被用于免疫组化-石蜡切片在人类样品上浓度为1:250 和 免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:800
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 9275)被用于免疫组化-石蜡切片在人类样品上浓度为1:800 和 免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 人类; 1:50
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 4060)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 和 免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在小鼠样品上浓度为1:200. Nat Med (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上浓度为1:1000. Mol Cell Proteomics (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. Endocrinology (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271s)被用于免疫印迹在小鼠样品上浓度为1:1000. Food Chem (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 4060)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Diabetes (2013) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologies, 193H12)被用于免疫印迹在人类样品上浓度为1:1000. Cell Death Differ (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在小鼠样品上 (图5). Int J Obes (Lond) (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图5). Int J Obes (Lond) (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(细胞, 4058)被用于免疫印迹在大鼠样品上. Ann Transplant (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上. PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图4). Mol Carcinog (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上. Fertil Steril (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1,000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1,000. J Comp Neurol (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologie, 4060)被用于免疫印迹在人类样品上 和 在小鼠样品上. Oncogenesis (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technologie, 4691)被用于免疫印迹在人类样品上 和 在小鼠样品上. Oncogenesis (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在大鼠样品上浓度为1:1000. Diabetes Res Clin Pract (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上. Kidney Int (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, D9E)被用于免疫印迹在小鼠样品上. Mol Cancer Ther (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:200
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在大鼠样品上浓度为1:200. Biochem J (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 和 在小鼠样品上. Invest Ophthalmol Vis Sci (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(CST, 9271)被用于免疫印迹在大鼠样品上. Diabetes (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:2000. Oncogene (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在小鼠样品上浓度为1:1000. Oncogene (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000. Brain Res (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000. Brain Res (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:1000. Cell Death Dis (2013) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 大鼠; 1:1,000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4056S)被用于免疫印迹在大鼠样品上浓度为1:1,000. Am J Physiol Endocrinol Metab (2013) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4051)被用于免疫印迹在人类样品上 和 在小鼠样品上. Exp Cell Res (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell signal, 9271)被用于免疫印迹在人类样品上. J Cell Mol Med (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:2000. Cell Biochem Funct (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在小鼠样品上浓度为1:200. Nat Med (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上. Genes Dev (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. J Physiol (2013) ncbi
未注明
  • 免疫印迹; 人类
为了研究磷酸肌醇激酶3在调节细胞因子依赖性细胞存活中的作用,采用了Cell Signalling公司的抗磷酸化Ser473Akt抗体进行了免疫印迹试验。PLoS Biol (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060S)被用于免疫印迹在人类样品上. Biochem J (2013) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058S)被用于免疫印迹在人类样品上. Mol Cell Biol (2013) ncbi
未注明
  • 免疫印迹; 人类
为了研究ING1a诱导细胞衰老的机制,使用细胞信号公司的抗Akt(S473)磷酸化抗体,进行蛋白印迹试验。PLoS Biol (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. J Physiol (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(CST, 4691)被用于免疫印迹在大鼠样品上. Exp Gerontol (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上浓度为1:500. PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • 免疫组化-F; 小鼠; 1:50
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:50 和 免疫印迹在小鼠样品上浓度为1:500. PLoS ONE (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上. PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Cell Cycle (2013) ncbi
兔 单克隆(C31E5E)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 2965)被用于免疫组化在小鼠样品上 和 免疫印迹在小鼠样品上. FASEB J (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2,000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:2,000. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. FASEB J (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 和 免疫细胞化学在人类样品上. Cell Cycle (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275S)被用于免疫印迹在人类样品上. Leuk Res (2013) ncbi
兔 单克隆(D9E)
  • 细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上. J Biol Chem (2013) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4056)被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271s)被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:1000. FEBS Lett (2013) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4051)被用于免疫印迹在小鼠样品上. Exp Cell Res (2013) ncbi
兔 多克隆
  • 免疫印迹; 仓鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在仓鼠样品上. Mol Cell Biol (2013) ncbi
兔 多克隆
  • 免疫印迹; 狗
  • 细胞化学; 狗
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在狗样品上 和 免疫细胞化学在狗样品上. J Biol Chem (2012) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在大鼠样品上. Lab Anim Res (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上. Biochem J (2013) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4058S)被用于免疫印迹在小鼠样品上. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 9275)被用于免疫印迹在大鼠样品上. J Appl Physiol (1985) (2012) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signalling, 9271)被用于免疫印迹在大鼠样品上. J Appl Physiol (1985) (2012) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Oncogene (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9275)被用于免疫印迹在大鼠样品上. Biochim Biophys Acta (2012) ncbi
未注明
  • 免疫组化; 人类
  • 细胞化学; 人类
为了研究某些GBM病人有FGFR-TACC融合突变,采用了Cell Signaling的兔抗AKT抗体和抗473位磷酸化AKT抗体以1:1000浓度进行免疫组化和免疫细胞化学实验。Science (2012) ncbi
兔 单克隆(193H12)
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫细胞化学在人类样品上. Blood Cancer J (2011) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在小鼠样品上. Hepatol Res (2012) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2012) ncbi
兔 单克隆(193H12)
  • FC; 人类; 图3
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, #4058)被用于流式细胞仪在人类样品上 (图3). Eur J Haematol (2012) ncbi
未注明
  • 免疫印迹; 人类
为了研究泡状H+-ATPase参与到mTOR通路中mTORC1的转位和激活,采用Cell Signaling的抗Akt和抗S473磷酸化Akt抗体进行蛋白印迹实验。Science (2011) ncbi
未注明
  • 免疫印迹; 人类
为了研究人血糖过低可由激活状态的AKT2突变体引起,采用了Cell Signaling Technologies的抗AKT抗体进行蛋白印迹实验。Science (2011) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 2938)被用于免疫印迹在小鼠样品上. Eur J Immunol (2011) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9275S)被用于免疫印迹在小鼠样品上. Eur J Immunol (2011) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271S)被用于免疫印迹在小鼠样品上. Eur J Immunol (2011) ncbi
未注明
  • 免疫印迹; 人类
为了研究溶酶体形成能够被TFEB调控并导致细胞自噬,采用Cell Signaling的抗磷酸化AKT抗体进行蛋白印迹实验。Science (2011) ncbi
未注明
  • 免疫印迹; 人类
为了研究去氢表雄酮和神经生长因子受体之间的相互作用,采用了Cell Signaling公司的抗AKT (9272,1:500)和抗磷酸化AKT(Ser473) (9271,1:500)抗体进行了免疫印记实验。PLoS Biol (2011) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, D9E)被用于免疫印迹在小鼠样品上. Mol Cell Biol (2011) ncbi
未注明
  • 免疫印迹; 人类
为了研究肺部发炎部位slit2对嗜酸性粒细胞和嗜中性粒细胞的影响,采用了Cell Signaling Technology公司的抗Akt抗体进行免疫印迹实验。J Immunol (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究microRNA-7在舌鳞状细胞癌细胞中的作用, 采用了Cell Signaling Technology的抗Akt抗体以及两种抗磷酸化的Akt(分别是Thr308和Ser473磷酸化位点)抗体进行了免疫印迹实验。Biochem J (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究在肥胖过程中Sfrp5作为抗炎脂肪因子在调节代谢异常过程中的功能,使用了Cell Signaling Technology公司的抗磷酸化Akt和抗Akt抗体来进行免疫印迹分析。Science (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究LMP2A在鼻咽癌进展中的作用,采用了Cell Signaling的抗Akt抗体进行了免疫印迹实验。PLoS Pathog (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究4E-BPs对mTORC1信号通路的精确调控,使用了Cell Signaling Technology公司的抗Akt和抗磷酸化Akt抗体来进行免疫印迹分析。Science (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究多发性骨髓瘤中细胞周期蛋白K和细胞周期蛋白D1b的作用,采用了Cell Signaling的抗AKT和抗磷酸化AKT (Thr308)抗体进行免疫印迹实验。Mol Cancer (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究SPRR3在结直肠癌肿瘤形成中的作用,采用了Cell Signaling的抗AKT的抗体进行了免疫印记实验。Mol Med (2010) ncbi
未注明
  • 免疫印迹; 人类
为了为了说明多囊蛋白1可以激活结节性硬化症2和抑制mTOR,使用了Cell Signaling Technology公司的抗AKT和抗磷酸化AKT抗体来进行蛋白印迹实验。PLoS ONE (2010) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Cell Death Differ (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究PC-1蛋白的羧基端如何通过改变TSC2的亚细胞定位来抑制mTOR信号通路的机制,作者使用细胞信号通路技术公司的抗AKT,磷酸化AKT抗体进行免疫印迹实验。Proc Natl Acad Sci U S A (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究干扰素γ在人视网膜色素上皮细胞促血管作用的分子机制,以及磷酸肌醇3激酶/雷帕霉素靶(mammalian target of rapamycin,mTOR)蛋白转导途径在这个过程中的作用,采用了细胞信号技术公司的Akt抗体进行了蛋白印迹实验。Mol Vis (2010) ncbi
未注明
  • 免疫印迹; 人类
为了制备单克隆抗体来对胰腺肿瘤中作用于EphA2的治疗潜能进行评估,采用了Cell Signalling Technology公司的抗Akt抗体和抗磷酸化的Akt抗体,进行了蛋白质印迹实验。J Oncol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究STAT3/p63/Notch信号通路在调节小鼠和人的细胞分化中的功能,采用了Cell Signaling Technology公司的p-AKT抗体,进行了蛋白质印迹实验。J Oncol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究mTOR通路对Notch信号通路和细胞分化的调节作用,使用了Cell Signaling Technology公司的磷酸化AKT抗体来进行免疫印迹分析。J Clin Invest (2010) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. J Endocrinol (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究Tsc/mTORC1信号通路在调控原卵泡休眠和活化中的作用,采用了Cell Signaling Technologies 公司的兔多克隆抗Akt抗体产品,进行了免疫印迹实验Hum Mol Genet (2010) ncbi
未注明
  • 免疫组化; 人类
为了研究MMP-10和CTSF在糖尿病患者角膜伤口治愈不良中的作用,采用了Cell Signaling的抗磷酸化-Akt(Ser473)抗体进行免疫组化试验。 Brain Res Bull (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究药物洗脱支架诱导自噬从而对内皮组织的修复进行抑制,采用了Cell Signaling的抗Akt和抗磷酸化Akt抗体进行免疫印迹实验。 Am J Pathol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究知母皂甙AIII对肿瘤细胞造成细胞毒性的机制,使用了Cell Signaling公司的抗Akt抗体来进行蛋白印迹分析。PLoS ONE (2009) ncbi
未注明
  • 免疫印迹; 人类
为了推断钙调磷酸酶活性和白血病细胞凋亡能够通过糖皮质激素介导上调的RCAN1-1来调节,使用了Cell Signaling Technology公司的磷酸化抗体Akt来进行免疫印迹分析。J Mol Signal (2009) ncbi
未注明
  • 免疫印迹; 人类
为了鉴定ERBB4基因的突变在黑素瘤中所起的作用,使用了Cell Signaling公司的磷酸化和非磷酸化抗体AKT来进行免疫印迹分析。Nat Genet (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究PKCdelta在调节CHL1在星形胶质细胞中表达的作用,采用了 Cell Signaling Technology公司的抗磷酸化Akt(Ser473) 抗体产品(1:1000),进行了免疫印迹实验。Glia (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究在人的近曲小管细胞中GRK4对于D3受体信号传导的重要作用,使用了Cell Signaling公司的抗磷酸化AKT抗体进行免疫印迹实验。J Biol Chem (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究rpS6磷酸化在调控肌肉纤维生长和能量储存中的作用,采用了Cell Signaling Technology公司的Akt抗体产品,进行了免疫印迹实验。PLoS ONE (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究sproutys在调控小鼠血管生成和局部缺血中的作用,采用了Cell Signaling Technology公司的抗磷酸化Akt抗体产品,进行了免疫印迹实验。PLoS ONE (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究ARIA在调控内皮细胞凋亡和血管生成中的作用,采用了Cell Signaling公司的抗磷酸化Akt抗体产品,进行了免疫印迹实验。Proc Natl Acad Sci U S A (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究PTEN在调控前列腺损伤生长中的作用,采用Cell Signaling Technologies公司的苏氨酸308位磷酸化AKT抗体产品1:1000,进行了免疫印迹实验。Am J Pathol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究Prdx1在调控肿瘤发生中的作用,采用了Cell Signaling公司的抗Akt抗体产品,进行了免疫印迹实验。EMBO J (2009) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Blood (2009) ncbi
未注明
  • 免疫印迹; 人类
为了说明脂联素单倍不足可以通过抑制PTEN抑癌因子的活性和激活PI3K/Akt信号通路来促进乳腺肿瘤的发生,使用了Cell Signaling Biotechnology公司的抗Akt和抗磷酸化Akt抗体来进行蛋白印迹实验。PLoS ONE (2009) ncbi
未注明
  • 免疫印迹; 人类
为证实JNK1可以抑制脂多糖诱导的金属蛋白酶9的表达,使用了Cell Signaling公司的抗p-Akt抗体来进行蛋白印迹分析。Exp Mol Med (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究STAT3和caveolin-3在调控儿茶酚胺引起的心脏肥大过程中的作用,采用了Cell Signalling公司的 phospho-Akt (Ser473)抗体产品,进行了免疫印迹实验。Exp Mol Med (2009) ncbi
未注明
  • 免疫印迹; 人类
  • 细胞化学; 人类
为了研究p38alpha MAPK在调控巨噬细胞凋亡中的作用,使用了Cell Signaling Technology公司的抗Akt抗体,进行了免疫印迹和细胞化学实验。J Clin Invest (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究Akt1介导的Skp2的磷酸化引起的Skp2细胞质定位和对APCCdh1参与的Skp2降解的损害,采用了Cell Signaling的抗Akt抗体和抗磷酸化Akt抗体进行免疫印迹实验。 Nat Cell Biol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究NDRG2在调控人结肠癌TCF/beta-catenin信号通路中的作用,采用了Cell Signaling Technology 公司的抗磷酸化Akt抗体产品,进行了免疫印迹实验。Carcinogenesis (2009) ncbi
未注明
  • 免疫印迹; 人类
为研究胰岛素生长因子在骨髓瘤细胞生长过程中所发挥的作用,及其受体表达与骨髓瘤患者预后的相关性,将Cell Signaling Technology提供的兔抗Akt和抗磷酸化Akt抗体用于蛋白免疫印迹实验中。Blood (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究AEG1在调节肝癌发病机制中的功能,使用了Cell Signaling Technology公司的兔抗AKT和抗磷酸化AKT多克隆抗体来进行免疫印迹分析。J Clin Invest (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究PTEN的磷酸化在调控ATP敏感的钾离子通道中的作用,采用了Cell Signaling公司的PKB磷酸化(Ser-473)抗体(1:1000)产品,进行了免疫印迹实验。J Biol Chem (2009) ncbi
未注明
  • FC; 人类
为了研究MT1-MMP和RECK在人造血祖细胞的移动,粘附和动员中的作用,使用了Cell Signaling Technology Inc.公司的抗磷酸化Akt (Thr308)抗体进行流式细胞术实验。J Clin Invest (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究purinergic在调控内皮细胞一氧化氮合成酶活性中的作用,采用了Cell Signaling Technology公司的抗磷酸化Akt抗体产品(Ser-473),进行了免疫印迹实验。Circulation (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究Snail1在调控间充质细胞三维空间入侵中的作用,采用了Cell Signaling Technology 公司的anti-Akt phospho-serine 473抗体产品 ,进行了免疫印迹实验。J Cell Biol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究内皮素前体具有刺激前列腺癌细胞的移动、增殖和铆钉细胞生长的作用,使用了Cell Signaling Technology公司的抗Akt多克隆抗体进行蛋白印迹实验。Am J Pathol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了说明在肺癌细胞中ZEB-1可以抑制臂板蛋白3F肿瘤抑制基因,使用了Cell Signaling Technology公司的抗AKT和抗磷酸化AKT抗体进行蛋白印迹实验。Neoplasia (2009) ncbi
未注明
  • 免疫印迹; 人类
为了找出激活的PIK3CA的表达对机体的影响,研究中使用了Cell Signaling公司的抗pAKT 和抗全AKT 抗体来进行蛋白印迹实验。PLoS ONE (2009) ncbi
未注明
  • 免疫印迹; 人类
为研究BAD蛋白磷酸化在β-Arrestin-2介导的抗凋亡反应中的调控作用,采用了Cell Signaling公司的抗AKT/磷酸化AKT抗体进行免疫印迹试验。J Biol Chem (2009) ncbi
未注明
  • 免疫印迹; 人类
为了说明Lyn能抑制破骨细胞的形成,使用了Cell Signaling公司的磷酸化Akt单克隆抗体进行免疫印迹实验。Proc Natl Acad Sci U S A (2009) ncbi
未注明
  • 免疫印迹; 人类
使用Cell Signaling技术公司的兔多克隆抗磷酸化Akt(Ser473)抗体进行免疫印迹实验来研究线粒体中gC1qR对RIG-I和MDA5依赖的抗病毒反应的作用效果。Proc Natl Acad Sci U S A (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究PIP5K1α在胞外钙诱导的第二信使IP3的生成和角质形成细胞分化中的功能,使用了Cell Signaling Technology公司的抗Akt和磷酸化Akt多克隆抗体来进行免疫印迹分析。Mol Biol Cell (2009) ncbi
未注明
  • 免疫印迹; 人类
为了说明肿瘤抑制因子PTEN可以通过染色质修饰来调控ARE激活,使用了Cell Signaling公司的抗AKT和抗磷酸化AKT来进行蛋白印迹实验。Mol Biol Cell (2009) ncbi
未注明
  • 免疫印迹; 人类
为了了研究KRAP在调控小鼠能量平衡和饮食诱导的肥胖中的作用,采用了Cell Signaling公司的Akt抗体产品,进行了免疫印迹实验。PLoS ONE (2009) ncbi
未注明
  • 免疫印迹; 人类
为证实雷帕霉素可以激活表皮生长因子受体进而使细胞免于凋亡,使用了Cell Signaling公司的抗磷酸化Akt抗体来进行蛋白印迹分析。Oncogene (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究PI3k/Akt通路在巨噬细胞介导的抗体依赖细胞介导的细胞毒性作用中的功能,使用了Cell Signaling Technology公司的抗磷酸化Akt抗体来进行免疫印迹分析。PLoS ONE (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究S100B蛋白在星形胶质细胞成形和迁移过程中所起的调控作用,使用了Cell Signaling公司的抗Akt抗体来进行蛋白印迹分析。J Biol Chem (2009) ncbi
未注明
  • 免疫印迹; 人类
  • 免疫沉淀; 人类
为了研究ClipR-59介导的Akt细胞内区室化对脂肪细胞葡萄糖运输的调节作用,使用了Cell Signaling Technology公司的兔抗Akt1单克隆抗体来进行免疫印迹分析和免疫沉淀实验。Mol Cell Biol (2009) ncbi
未注明
  • 免疫印迹; 人类
  • 免疫沉淀; 人类
为评估ApoER2与有活性的蛋白C细胞信号传导机制间的潜在关联性,将Cell Signaling公司的兔多克隆抗Akt抗体和抗磷酸化Akt抗体(Ser473)分别应用于免疫沉淀、蛋白免疫印迹和蛋白免疫印迹。Proc Natl Acad Sci U S A (2009) ncbi
未注明
  • 免疫印迹; 人类
为研究PTEN/Akt/PI3K信号传导过程在前列腺癌干细胞样细胞群的维持和成活力方面所发挥的作用,将Cell Signaling提供的单克隆抗Akt(pan),抗磷酸化Akt (Ser-473)和抗磷酸化Akt(Thr-308)三种抗体用于蛋白免疫印迹。Proc Natl Acad Sci U S A (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究血小板TLR2在免疫和炎症反应答中的功能,使用了Cell Signaling Technology公司的抗磷酸化AKT和抗AKT抗体来进行免疫印迹分析。Circ Res (2009) ncbi
未注明
  • 免疫印迹; 人类
为研究是否PI3K/PTEN途径在调控Fas 诱导的I型和II型细胞的凋亡过程中有着重要作用,将Cell Signaling提供的抗PKB和抗磷酸化PKB(Ser473)抗体用于蛋白免疫印迹。Mol Cell Biol (2009) ncbi
未注明
  • 免疫组化; 人类
为了研究CK2B在子宫内膜癌中抑制凋亡和促进细胞增殖的作用,采用了Cell Signaling的抗磷酸化AKT抗体进行免疫组化实验。Am J Pathol (2009) ncbi
未注明
  • 免疫组化; 人类
为了研究AXL和SHC1表达异常与子宫内膜移位的发生之间的相关性,采用了Cell Signaling的抗磷酸化Akt (Ser473)抗体以1:50稀释进行免疫组化实验。Reprod Biol Endocrinol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究TSC-mTOR通路对胰岛素诱导的TOP mRNAs的翻译激活作用的调节作用,使用了Cell Signaling Technology公司的抗Ser473磷酸化Akt抗体来进行免疫印迹分析。Mol Cell Biol (2009) ncbi
未注明
  • 免疫沉淀; 人类
为了说明有致癌作用的K-Ras可以增加细胞增殖和较少细胞间的接触,使用了Cell Signaling Technology公司的抗AKT和抗磷酸化AKT抗体进行免疫沉淀实验。Mol Biol Cell (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究是否成纤维细胞生长因子受体4在促进肝癌进程过程中具有一定的功能,使用了Cell Signaling Technology公司的抗AKT和抗磷酸化AKT抗体来进行免疫印迹分析。Mol Carcinog (2009) ncbi
未注明
  • 免疫组化; 人类
为了研究固定液在磷酸化蛋白免疫组化测定中的作用使用了Cell Signaling公司的兔抗pAkt抗体来进行免疫组化实验。J Histochem Cytochem (2009) ncbi
未注明
  • 免疫印迹; 人类
为研究Hsp72对致癌基因诱导的老化过程的抑制作用,将Cell Signaling提供的抗磷酸化Akt(Ser473)抗体用于蛋白免疫印迹实验中。Mol Cell Biol (2009) ncbi
未注明
  • 免疫印迹; 人类
使用Cell Signaling技术公司的抗Akt抗体和抗磷酸化Akt抗体(S473)进行免疫印迹实验来研究在ER阳性人乳腺癌细胞系(T47D and ZR-75-1)中降低BRCA1水平和对Tam反应性中的潜在联系。 Oncogene (2009) ncbi
未注明
  • 免疫印迹; 人类
为了分析EB病毒糖蛋白B的功能结构域,采用了Cell Signaling Technologies.公司的AKT抗体产品,进行免疫印迹实验。J Virol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究在肌营养不良症中肌肉Akt信号通路在促进utrophin表达和肌膜稳定的功能,使用了Cell Signaling Technologies公司的抗Akt和抗磷酸化Akt抗体来进行免疫印迹分析。Hum Mol Genet (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究thioredoxin是受IFN-gamma诱导的因子并在细胞因子产生过程中起作用,采用Cell Signaling的抗Akt和抗磷酸化Akt抗体进行蛋白印迹实验。BMC Immunol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究ICAM-2在介导成神经细胞瘤中膜-肌动蛋白联接中的作用,采用了Cell Signaling Technology公司的抗AKT抗体产品,进行了免疫印迹实验。PLoS ONE (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究低氧引起的能量应激在调控头颈扁平细胞瘤中mTOR信号通路中的作用,采用了 Cell Signaling Technology公司的兔多克隆抗磷酸化Akt(Ser473)抗体产品,进行了免疫印迹实验Neoplasia (2008) ncbi
未注明
  • 免疫组化; 人类
为研究UbcH7在细胞周期的s期时所起的调控作用,使用了Cell Signaling公司的抗Akt抗体来进行免疫组化分析。Mol Biol Cell (2009) ncbi
未注明
  • 免疫印迹; 人类
为了说明HSP90伴侣蛋白Cdc37能维持致癌蛋白激酶客户蛋白,使用了Cell Signaling Technology公司的磷酸化AKT抗体进行蛋白印迹实验。Oncogene (2009) ncbi
未注明
  • 免疫印迹; 人类
为了说明HSP90伴侣蛋白Cdc37能维持致癌蛋白激酶客户蛋白,使用了Cell Signaling Technology公司的AKT抗体进行蛋白印迹实验。Oncogene (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究抑制Akt通路后PTEN缺失的肿瘤自噬增多,并对趋溶酶体剂更敏感,采用了Cell Signaling的抗Akt1,anti-total-Akt, anti-p-Akt (Ser473), anti-p-Akt (Thr308)抗体进行免疫印迹实验。J Cell Biol (2008) ncbi
未注明
  • 免疫沉淀; 人类
为研究腺苷环化酶VI增加的Akt活性和phospholamban磷酸化,采用了Cell Signaling公司的抗Akt/磷酸化Akt抗体进行免疫沉淀试验。J Biol Chem (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究RON受体酪氨酸激酶在乳腺上皮细胞中的致瘤性,使用了Cell Signaling公司的抗磷酸化AKT抗体来进行蛋白印迹分析。Oncogene (2009) ncbi
未注明
  • 免疫印迹; 人类
  • 免疫组化; 人类
为了研究人表皮角质细胞终末分化的早期发生机制,采用了Cell Signalling Technology的Akt和磷酸化Akt进行免疫印迹和免疫荧光试验。 Cell Res (2009) ncbi
未注明
  • 免疫组化; 人类
使用了Cell Signaling技术公司的抗磷酸化Akt抗体(Ser473, IHC特异性)进行免疫组织化学实验来研究人类组织石蜡切片肝癌形成的遗传机制。Cancer Res (2008) ncbi
未注明
  • 免疫印迹; 人类
使用Cell Signaling技术公司的AKT抗体(1:1000)进行免疫印迹实验来研究鼠脑转移异种移植模型中lapatinib在抑制乳腺癌细胞向外生长到脑部的效果。J Natl Cancer Inst (2008) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4056)被用于免疫印迹在人类样品上. J Neurochem (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究Joubert综合症的病因,和Ahi1-Hap1复合物在大脑早期发育的作用,采用了Cell Signaling Technology的抗磷酸化的Akt抗体,进行蛋白质印迹实验J Clin Invest (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究Joubert综合症的病因,和Ahi1-Hap1复合物在大脑早期发育的作用,采用了Cell Signaling Technology的抗Akt抗体,进行蛋白质印迹实验J Clin Invest (2008) ncbi
未注明
  • 免疫组化; 人类
为了阐述NS3在羟色胺神经元中调控胰岛素信号和整体生长控制的作用,采用了细胞信号公司的兔抗磷酸化S505 dAkt抗体进行了免疫组化实验。Genes Dev (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究慢性髓细胞性白血病发展过程中人体AQP5所起的作用,使用了Cell Signal公司的抗磷酸Akt抗体,进行了免疫印迹实验。PLoS ONE (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究增加可利用的氨基酸和胰岛素使在泛素蛋白酶体通路中合成代谢信号和酶含量改变的原因,采用Cell Signaling公司的PKB Ser473抗体,进行蛋白质印迹实验。Am J Physiol Endocrinol Metab (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究在肿瘤细胞侵袭中热休克蛋白90α乙酰化和出胞位置的作用,采用Santa Cruz公司的抗AKT抗体,进行蛋白质印迹实验。Cancer Res (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究在肿瘤生长过程中,靶向血管生长组分的基质金属蛋白酶2抑制剂的作用,采用了Cell Signal的丝苏氨酸激酶抗体,进行蛋白质印迹实验Cancer Res (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究在肿瘤生长过程中,靶向血管生长组分的基质金属蛋白酶2抑制剂的作用,采用了Cell Signal的二磷酸丝苏氨酸激酶抗体,进行蛋白质印迹实验Cancer Res (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究VHL肿瘤抑制基因通过成纤维细胞生长因子受体信号通路对内皮功能的影响,采用了Cell Signaling的兔多抗Akt抗体和抗磷酸化Akt抗体进行免疫印迹实验。Cancer Res (2008) ncbi
未注明
  • 免疫印迹; 人类
使用Cell Signaling公司的抗-AKT抗体进行免疫印迹实验以研究热应激激活的细胞通路。Am J Physiol Heart Circ Physiol (2008) ncbi
未注明
  • 免疫印迹; 人类
  • 免疫沉淀; 人类
细胞信号转导用蛋白激酶B(AKT)抗体可用于免疫印迹和免疫沉淀,来研究C-JUN激活域连接蛋白1(Jab1)在表皮生长因子受体EGFR介导的信号通路调控中的作用。Breast Cancer Res (2008) ncbi
未注明
  • 免疫组化; 人类
为了通过对全体个体,无病个体,患病体的病理参数以及入侵物和血管新生的生物标记,研究EGFR和pEGFR的表达和他们之间的关系,采用了Cell Signaling Technology的兔抗磷酸化(Thr308)Akt单抗,进行免疫组化实验Breast Cancer Res (2008) ncbi
未注明
  • 免疫印迹; 人类
使用Cell Signaling技术公司的抗磷酸化Akt (Ser473)抗体和抗Akt抗体进行免疫印迹实验以验证HGF通过抑制致炎细胞因子而抑制肾脏感染的假说是否正确。Am J Pathol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究Raf-1对神经胶质瘤形成的作用,采用了Cell Signaling Technology的抗Akt抗体进行免疫印迹实验。Neoplasia (2008) ncbi
未注明
  • 免疫组化; 人类
为了考察Dickkopfs (Dkks)和Kremen2 (Krm2)在胃肠道癌症中表达的变化,使用了Cell Signaling 公司的抗磷酸化Rac的兔抗人抗体进行了免疫组化实验。 World J Gastroenterol (2008) ncbi
未注明
  • 免疫印迹; 人类
使用Cell Signaling技术公司的抗磷酸化S-473 PKB和抗磷酸化T308 PKB及抗PKB抗体进行免疫印迹实验来鉴别哪一个Aas信号到hVps34是激活mTOR复合体1信号通路的途径和机制。Cell Metab (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究PI3K/Akt 和 MAPK信号通路在调控Myc介导的转录中的作用,采用Cell Signaling Technology公司的抗Akt抗体产品,进行了免疫印迹实验。Proc Natl Acad Sci U S A (2008) ncbi
未注明
  • 免疫印迹; 人类
为了说明牙周膜成纤维细胞可以在血小板源生长因子异构型存在下维持血浆纤溶系统的平衡,使用了Cell Signaling Technologies公司的抗磷酸化Akt(Thr308和Ser473)抗体来进行免疫印迹实验。J Periodontal Res (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究人类疱疹病毒8趋化因子内皮生存和病毒复制中的作用,采用了细胞信号技术公司的抗磷酸化AKT(Ser473)抗体和抗AKT抗体进行了蛋白印迹实验。J Virol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究胞吞作用在调控卡波西氏肉瘤相关疱疹病毒K1蛋白信号的作用,采用了细胞信号公司的抗Akt-Ser473和抗Akt(总)抗体进行了蛋白印迹实验。J Virol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究染料木黄酮如何调控前列腺癌细胞中抑癌基因的表达,采用了Cell Signaling Technology的Akt抗体进行了蛋白质印迹实验。Int J Cancer (2008) ncbi
未注明
  • 免疫印迹; 人类
细胞信号转导用磷酸化Akt(Ser473)抗体可用于免疫印迹实验,来研究NAG-1在经VES处理的人前列腺癌细胞株PC-3中的表达及调控。Mol Cancer Ther (2008) ncbi
未注明
  • 免疫印迹; 人类
细胞信号转导用磷酸化Akt抗体可用于免疫印迹实验,来研究NAG-1在经VES处理的人前列腺癌细胞株PC-3中的表达及调控。Mol Cancer Ther (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究生长激素和/或胰岛素样生长因子-1调节钠和水的保持平衡的机制,采用了细胞信号技术公司的抗磷酸化Akt抗体(1:1,000)进行了蛋白印迹实验。Endocrinology (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究生长激素和/或胰岛素样生长因子-1调节钠和水的保持平衡的机制,采用了细胞信号技术公司的抗Akt抗体(1:1,000)进行了蛋白印迹实验。Endocrinology (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究TG2对FAK/AKT细胞存活信号的调控作用,采用了Cell Signaling 公司的抗AKT (pSer473)磷酸化和抗AKT总蛋白的抗体进行了免疫印记实验。Clin Cancer Res (2008) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Oncogene (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究促甲状腺激素垂体瘤的分子机制,采用了细胞信号技术公司的磷酸化S473AKT抗体(1:500)进行了蛋白印迹实验Endocrinology (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究促甲状腺激素垂体瘤的分子机制,采用了细胞信号技术公司的总的AKT抗体进行了蛋白印迹实验。Endocrinology (2008) ncbi
未注明
  • 免疫组化; 人类
为了研究内皮谷胱甘肽的减少对于由年龄造成的血管内皮功能下降的影响,采用了Cell Signaling Technology的抗磷酸化的Akt抗体,进行免疫组化实验Br J Pharmacol (2008) ncbi
未注明
  • 免疫组化; 人类
为了研究内皮谷胱甘肽的减少对于由年龄造成的血管内皮功能下降的影响,采用了Cell Signaling Technology的抗Akt抗体,进行免疫组化实验Br J Pharmacol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究胰岛素抗性的糖尿病模型中,Gsk-3β是如何控制β细胞数量的,采用了Cell Signaling的Akt,进行蛋白质印迹实验PLoS Biol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究胰岛素抗性的糖尿病模型中,Gsk-3β是如何控制β细胞数量的,采用了Cell Signaling的Ser473磷酸化的Akt,进行蛋白质印迹实验PLoS Biol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究胰岛素抗性的糖尿病模型中,Gsk-3β是如何控制β细胞数量的,采用了Cell Signaling的Thr308磷酸化的Akt,进行蛋白质印迹实验PLoS Biol (2008) ncbi
未注明
  • 免疫印迹; 人类
信号转导用Akt抗体(1:1000)可用于免疫印迹实验,来研究三叶因子(TFF3)在细胞复制中的作用。Mol Endocrinol (2008) ncbi
未注明
  • 免疫印迹; 人类
  • 免疫组化; 人类
细胞信号转导用蛋白激酶B(AKT)抗体和磷酸化AKT抗体可用于免疫印迹和免疫组化实验,来研究受体酪氨酸激酶(RTKs)的表达及胰岛素样生长因子1 (IGF-I)信号通路的激活在子宫肌瘤发展中的作用(组化切片组织来自人体组织)。Mol Med (2008) ncbi
未注明
  • 免疫印迹; 人类
为了验证假说:在患有皮肤炎症的小鼠模型上,把老鼠置于发烧样温度环境中,会使中性粒细胞募集和NF-κB活化丧失,采用了细胞信号公司的Akt抗体进行了蛋白印迹实验。Am J Pathol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了阐述PM胆固醇对PIP2调控的细胞骨架结构对胰岛素调控的GLUT4的转膜和葡萄糖吸收具有重要影响,采用了细胞信号公司的磷酸化Akt抗体进行了蛋白印迹实验。Mol Endocrinol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了阐述PM胆固醇对PIP2调控的细胞骨架结构对胰岛素调控的GLUT4的转膜和葡萄糖吸收具有重要影响,采用了细胞信号公司的Akt抗体进行了蛋白印迹实验。Mol Endocrinol (2008) ncbi
未注明
  • 免疫组化; 人类
为了研究血管周上皮样细胞肿瘤(PEComa)与血管肌脂瘤之间联系的遗传学证据和在PEComa中染色体16p的变化,采用了Cell Signaling Technology的抗p-AKT(Ser473)抗体进行免疫组织化学试验。J Pathol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了阐述锂抑制Smad3/4依赖性的转化生长因子-β-反应基因激活的机理,采用了细胞信号技术公司的pAKTSer476抗体进行了蛋白印迹实验。Mol Cell Neurosci (2008) ncbi
未注明
  • 免疫印迹; 人类
为了阐述锂抑制Smad3/4依赖性的转化生长因子-β-反应基因激活的机理,采用了细胞信号技术公司的Akt抗体进行了蛋白印迹实验。Mol Cell Neurosci (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究间变性淋巴瘤酶催化域中自体活化的分子机制,采用了Cell Signaling Technology的抗Akt和抗phospho-Akt抗体进行免疫印迹试验。J Biol Chem (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究mTOR信号通路在人肌肉蛋白合成中的作用,采用了Cell Signaling公司的抗磷酸化Akt抗体(1:500)进行免疫印迹实验。Am J Physiol Endocrinol Metab (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究VLDLR在抑制细胞分裂上所起的作用,使用了Cell Signaling Technology公司的Akt抗体,进行了免疫印迹实验。Mol Biol Cell (2008) ncbi
未注明
  • 免疫印迹; 人类
使用Cell Signaling公司的兔抗人Akt(Ser 473)抗体进行免疫印迹实验来研究CB2受体激活剂在TNF-α引起的增殖,迁移和信号转导中的作用。 Br J Pharmacol (2008) ncbi
未注明
  • 免疫印迹; 人类
使用Cell Signaling公司的兔抗人Akt抗体进行免疫印迹实验来研究CB2受体激活剂在TNF-α引起的增殖,迁移和信号转导中的作用。Br J Pharmacol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了评估Hsp90抑制剂在治疗肺腺癌上的作用,采用了细胞信号公司的Akt抗体进行了蛋白印迹实验。Virology (2008) ncbi
未注明
  • 免疫印迹; 人类
为了评估Hsp90抑制剂在治疗肺腺癌上的作用,采用了细胞信号公司的磷酸化Akt抗体进行了蛋白印迹实验。Virology (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究调节AGL水平的新方式及调控其的一些信号,采用Cell Signaling Technology公司的抗AKT抗体进行免疫印迹实验。Genes Dev (2007) ncbi
未注明
  • 免疫组化; 人类
为了确定患甲状腺癌及伴随的HT病人的发病率,使用了Cell Signaling公司的抗Akt1抗体,进行了免疫组织化学实验。J Am Coll Surg (2007) ncbi
未注明
  • 免疫印迹; 人类
为了评定隐丹参酮对巨噬细胞趋化性的影响,使用了Cell Signaling Technology公司的Akt抗体,进行了免疫印迹实验。Br J Pharmacol (2007) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling, 4051)被用于免疫印迹在人类样品上. Oncogene (2007) ncbi
未注明
  • 免疫印迹; 人类
为了诊查由P-LAP/IRAP增强的子宫内膜癌恶性潜势是否因为通过胰岛素信号P-LAP/IRAP介导激活增加了葡萄糖的摄取,使用了Cell Signaling Technologies公司的鼠单克隆磷酸-AKT抗体,进行了免疫印迹实验。BMC Cancer (2007) ncbi
未注明
  • 免疫印迹; 人类
为了阐明在人气道上皮细胞中Src介导的磷脂酰3激酶及其下游效应物Akt的激活是鼻病毒信号转导的关键,采用了Cell Signaling公司的兔抗Akt和抗磷酸化的Akt抗体,进行了蛋白质印迹实验。J Virol (2007) ncbi
未注明
  • 免疫组化; 人类
为研究Smad4分子在调控正常胰腺发育和胰腺导管腺癌发生发展中的分子机制,采用了Cell Signaling公司的抗-磷酸化Akt (Ser473)抗体进行免疫组织化学实验。 Genes Dev (2006) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Biochem Biophys Res Commun (2006) ncbi
未注明
  • 免疫印迹; 人类
为了研究肝细胞生长因子诱导的细胞散布的分子机制,采用了Abgent公司的抗磷酸化GSK-3beta和抗GSK-3beta抗体进行免疫印迹实验。EMBO J (2006) ncbi
未注明
  • 免疫印迹; 人类
在western blot实验中使用了Cell Signalling Technology公司AKT抗体来研究异羟肟衍生物LBH589在抗血管生成合抗肿瘤的活性特点。Clin Cancer Res (2006) ncbi
未注明
  • 免疫印迹; 人类
为了研究大鼠肉瘤蛋白所控制的一些微定位对信号传导的影响,选择大鼠肉瘤蛋白12作为研究细胞微定位研究对象,同时也研究了内生肉瘤蛋白在有丝分裂转化信号中的影响,采用了Cell Signaling公司Akt抗体,进行蛋白质印记实验。Mol Cell Biol (2006) ncbi
未注明
  • 免疫印迹; 人类
为了研究内皮间充质细胞转化期间FGF-2对类型1胶原表现的调控作用,使用了Cell Signaling Technology公司的兔抗Akt抗体,进行了免疫印迹实验。Invest Ophthalmol Vis Sci (2005) ncbi
未注明
  • 免疫印迹; 人类
在western blot实验中使用了Cell Signalling Technology公司的兔多克隆磷酸化Akt(Ser473)抗体(1:1000)用于研究SCH66336是否能抑制呼吸道癌细胞的血管生成。J Natl Cancer Inst (2005) ncbi
碧迪BD
小鼠 单克隆(55/PKBa/Akt)
  • FC; 人类; 图1
碧迪BDAkt抗体(BD Biosciences, 560049)被用于流式细胞仪在人类样品上 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(2/PKBa/Akt)
  • 免疫印迹; 狗; 1:1000; 图5A
碧迪BDAkt抗体(BD Biosciencies, 610876)被用于免疫印迹在狗样品上浓度为1:1000 (图5A). Mol Biol Cell (2016) ncbi
小鼠 单克隆(M89-61)
  • FC; 小鼠; 1:6; 图1
碧迪BDAkt抗体(BD, 560343)被用于流式细胞仪在小鼠样品上浓度为1:6 (图1). Nat Commun (2016) ncbi
小鼠 单克隆(M89-61)
  • FC; 人类; 图5
碧迪BDAkt抗体(BD Biosciences, 560858)被用于流式细胞仪在人类样品上 (图5). PLoS ONE (2016) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 小鼠; 1:1000; 图s3
碧迪BDAkt抗体(BD Biosciences, 610860)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s3). Clin Cancer Res (2016) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 人类; 1:1000
碧迪BDAkt抗体(BD Transduction Laboratories, 610860)被用于免疫印迹在人类样品上浓度为1:1000. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(M89-61)
  • FC; 小鼠
碧迪BDAkt抗体(BD Biosciences, 560378)被用于流式细胞仪在小鼠样品上. J Leukoc Biol (2015) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 人类
碧迪BDAkt抗体(BD, 610860)被用于免疫印迹在人类样品上. J Cell Sci (2015) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 人类; 图1
碧迪BDAkt抗体(BD Biosciences, 610860)被用于免疫印迹在人类样品上 (图1). Cell Death Dis (2015) ncbi
小鼠 单克隆(M89-61)
  • FC; 人类
碧迪BDAkt抗体(BD Biosciences, M89-61)被用于流式细胞仪在人类样品上. Eur J Immunol (2015) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • FC; 人类
碧迪BDAkt抗体(BD Biosciences, 560049)被用于流式细胞仪在人类样品上. Trans Am Ophthalmol Soc (2014) ncbi
小鼠 单克隆(M89-61)
  • FC; 人类
碧迪BDAkt抗体(BD Biosciences, 560378)被用于流式细胞仪在人类样品上. Trans Am Ophthalmol Soc (2014) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 人类
碧迪BDAkt抗体(BD Transduction Laboratories, 610861)被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 人类
为了研究MMP-10和CTSF在糖尿病患者角膜伤口治愈不良中的作用,采用了BD Transduction Labs的抗Akt抗体进行免疫印迹试验。 Brain Res Bull (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究STAT3和caveolin-3在调控儿茶酚胺引起的心脏肥大过程中的作用,采用了BD Transduction Laboratories公司的Akt抗体产品,进行了免疫印迹实验。Exp Mol Med (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究PTEN的磷酸化在调控ATP敏感的钾离子通道中的作用,采用了BD Transduction 公司的多克隆抗PKB(1:2500)抗体产品,进行了免疫印迹实验。J Biol Chem (2009) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 人类
结合计算机模拟实验,模拟实验结果的检验,以及蛋白相互作用网络的反向工程实验来确认新的曲妥单抗抗乳腺癌的潜在治疗策略,将BD提供的小鼠抗AKT1抗体(目录号:610860)用于蛋白免疫印迹。BMC Syst Biol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究JAK激酶抑制剂抑制人类真性多血症细胞的增殖,采用了BD Pharmingen AKT (610876)抗体进行了免疫印迹实验。Cancer Sci (2008) ncbi
默克密理博中国
小鼠 单克隆(SKB1)
  • 免疫印迹; 人类; 1:1000; 图1
默克密理博中国Akt抗体(Millipore, 05-591)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
默克密理博中国Akt抗体(Millipore, 07-416)被用于免疫印迹在人类样品上 (图6). Cancer Cell Int (2016) ncbi
小鼠 单克隆(6F5)
  • 免疫印迹; 小鼠; 图8
默克密理博中国Akt抗体(Merck-Millipore, 05-1003)被用于免疫印迹在小鼠样品上 (图8). Mol Biol Cell (2015) ncbi
小鼠 单克隆(6F5)
  • 免疫印迹; 人类; 1:1000
默克密理博中国Akt抗体(Millipore, 05-1003)被用于免疫印迹在人类样品上浓度为1:1000. J Neuroimmunol (2015) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 大鼠; 1:1000; 图2e
默克密理博中国Akt抗体(Millipore, 05-669)被用于免疫印迹在大鼠样品上浓度为1:1000 (图2e). Front Behav Neurosci (2015) ncbi
小鼠 单克隆(SKB1)
  • 免疫印迹; 人类
默克密理博中国Akt抗体(Merck Millipore, 05-591)被用于免疫印迹在人类样品上. J Interferon Cytokine Res (2015) ncbi
兔 单克隆(NL50)
  • 免疫印迹; 人类; 图5
默克密理博中国Akt抗体(Millipore, 05-802R)被用于免疫印迹在人类样品上 (图5). Eur J Appl Physiol (2015) ncbi
小鼠 单克隆(SKB1)
  • 免疫印迹; 小鼠
默克密理博中国Akt抗体(Millipore, 05-591)被用于免疫印迹在小鼠样品上. J Biol Rhythms (2014) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500; 图4
默克密理博中国Akt抗体(Millipore, # 06-885)被用于免疫细胞化学在人类样品上浓度为1:500 (图4). Toxicol In Vitro (2014) ncbi
小鼠 单克隆(SKB1)
  • 免疫印迹; 人类
默克密理博中国Akt抗体(Millipore, 05-591)被用于免疫印迹在人类样品上. Biochem Pharmacol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
默克密理博中国Akt抗体(Upstate, 07-416)被用于免疫印迹在人类样品上. J Diabetes Complications (2014) ncbi
兔 单克隆(AW24)
  • 免疫印迹; 人类; 1:1000
默克密理博中国Akt抗体(Millipore, 05-796)被用于免疫印迹在人类样品上浓度为1:1000. Mol Cell Proteomics (2013) ncbi
小鼠 单克隆(SKB1)
  • 免疫印迹; 小鼠; 图5
默克密理博中国Akt抗体(Millipore, 05-591)被用于免疫印迹在小鼠样品上 (图5). Int J Obes (Lond) (2014) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 人类
  • 细胞化学; 人类
默克密理博中国Akt抗体(Upstate, 11E6)被用于免疫印迹在人类样品上 和 免疫细胞化学在人类样品上. PLoS ONE (2013) ncbi
未注明
  • 免疫组化; 人类
为了研究磷酸化的Akt对后囊的作用采用了Santa Cruz公司的抗pAkt抗体(1:350稀释)来进行免疫组化实验。Mol Vis (2010) ncbi
未注明
  • 免疫印迹; 人类
  • 免疫沉淀; 人类
为了研究ClipR-59介导的Akt细胞内区室化对脂肪细胞葡萄糖运输的调节作用,使用了Millipore公司的兔抗Akt和抗磷酸化Akt抗体来进行免疫印迹分析和免疫沉淀实验。Mol Cell Biol (2009) ncbi
未注明
  • 免疫印迹; 人类
为研究RhoE在角质化细胞的分化和层化过程中所发挥的角色,将密理博公司提供的小鼠单克隆抗Rac抗体(23A8)用于蛋白免疫印迹实验中。Mol Biol Cell (2009) ncbi
安迪生物R&D
小鼠 单克隆(658320)
  • 免疫印迹; 人类; 图2
安迪生物R&DAkt抗体(R&D Systems, MAB7419)被用于免疫印迹在人类样品上 (图2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:400
安迪生物R&DAkt抗体(R & D Systems, AF887)被用于免疫印迹在小鼠样品上浓度为1:400. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000
安迪生物R&DAkt抗体(R&D Systems, AF-887)被用于免疫印迹在人类样品上浓度为1:2000. Taiwan J Obstet Gynecol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2500
安迪生物R&DAkt抗体(R&D Systems, AF2055)被用于免疫印迹在人类样品上浓度为1:2500. Taiwan J Obstet Gynecol (2014) ncbi
小鼠 单克隆(281046)
  • 免疫印迹; 小鼠; 1:5000
安迪生物R&DAkt抗体(R&D Systems, MAB2055)被用于免疫印迹在小鼠样品上浓度为1:5000. Cell Physiol Biochem (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
安迪生物R&DAkt抗体(R&D Systems, AF887)被用于免疫印迹在小鼠样品上浓度为1:500. Cell Physiol Biochem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
安迪生物R&DAkt抗体(R&D Systems, AF887)被用于免疫印迹在人类样品上. Cancer Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:4000
安迪生物R&DAkt抗体(R&D Systems, AF887)被用于免疫印迹在人类样品上浓度为1:4000. J Cell Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:50000
安迪生物R&DAkt抗体(R&D Systems, AF887)被用于免疫印迹在人类样品上浓度为1:50000. Prostate (2014) ncbi
西格玛奥德里奇
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图11
西格玛奥德里奇Akt抗体(Sigma, SAB4500799)被用于免疫印迹在人类样品上浓度为1:1000 (图11). J Neuroinflammation (2015) ncbi
小鼠 单克隆(PKB-175)
  • 免疫印迹; 人类; 图3
西格玛奥德里奇Akt抗体(Sigma-Aldrich, P-2482)被用于免疫印迹在人类样品上 (图3). Biomed Res Int (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:400
西格玛奥德里奇Akt抗体(Sigma, SAB4500797)被用于免疫印迹在大鼠样品上浓度为1:400. Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:400
西格玛奥德里奇Akt抗体(Sigma, SAB4503853)被用于免疫印迹在大鼠样品上浓度为1:400. Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇Akt抗体(Sigma Aldrich, P4112)被用于免疫印迹在人类样品上. J Interferon Cytokine Res (2015) ncbi
兔 多克隆
  • 免疫印迹; kangaroo rats; 1:1000; 图2
西格玛奥德里奇Akt抗体(sigma, SAB4500802)被用于免疫印迹在kangaroo rats样品上浓度为1:1000 (图2). Cell Mol Neurobiol (2015) ncbi
未注明
  • 免疫组化; 人类
为了考察Dickkopfs (Dkks)和Kremen2 (Krm2)在胃肠道癌症中表达的变化,使用了Sigma-Aldrich 公司的抗Rac的小鼠抗人抗体进行了免疫组化实验。 World J Gastroenterol (2008) ncbi
Bioss
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图5
BiossAkt抗体(Bioss, bs-0876R)被用于免疫印迹在大鼠样品上浓度为1:500 (图5). Int J Mol Med (2016) ncbi
丹科医疗器械技术服务(上海)有限公司
兔 单克隆(14-5)
  • 免疫组化; 人类; 1:20; 表2
丹科医疗器械技术服务(上海)有限公司Akt抗体(Dako, M3628)被用于免疫组化在人类样品上浓度为1:20 (表2). Hematol Oncol (2016) ncbi
文章列表
  1. Terry D Hinds et al. (2016). "Biliverdin Reductase A Attenuates Hepatic Steatosis by Inhibition of Glycogen Synthase Kinase (GSK) 3β Phosphorylation of Serine 73 of Peroxisome Proliferator-activated Receptor (PPAR) α".PMID 27738106
  2. Thomas Southworth et al. (2016). "Anti-inflammatory potential of PI3Kδ and JAK inhibitors in asthma patients".PMID 27716212
  3. Onur Cizmecioglu et al. (2016). "Rac1-mediated membrane raft localization of PI3K/p110β is required for its activation by GPCRs or PTEN loss".PMID 27700986
  4. Fridolin Treindl et al. (2016). "A bead-based western for high-throughput cellular signal transduction analyses".PMID 27659302
  5. Deidre Jansson et al. (2016). "Interferon-γ blocks signalling through PDGFRβ in human brain pericytes".PMID 27654972
  6. Britt Christensen et al. (2016). "Erythropoietin does not activate erythropoietin receptor signaling or lipolytic pathways in human subcutaneous white adipose tissue in vivo".PMID 27640183
  7. M lissa Carbonneau et al. (2016). "The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway".PMID 27624942
  8. Rachel A Hesler et al. (2016). "TGF-β-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3".PMID 27604902
  9. Nitasha R Phatak et al. (2016). "Bcl-2, Bcl-xL, and p-AKT are involved in neuroprotective effects of transcription factor Brn3b in an ocular hypertension rat model of glaucoma".PMID 27587945
  10. Annika M Bourgonje et al. (2016). "Comprehensive protein tyrosine phosphatase mRNA profiling identifies new regulators in the progression of glioma".PMID 27586084
  11. Shubhankar Suman et al. (2016). "Space radiation exposure persistently increased leptin and IGF1 in serum and activated leptin-IGF1 signaling axis in mouse intestine".PMID 27558773
  12. Qiong Jiang et al. (2016). "Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease".PMID 27486021
  13. Emi Kawamoto et al. (2016). "Immobilization rapidly induces muscle insulin resistance together with the activation of MAPKs (JNK and p38) and impairment of AS160 phosphorylation".PMID 27482072
  14. Maoyi Lai et al. (2016). "Regulation of B-cell development and tolerance by different members of the miR-17∼92 family microRNAs".PMID 27481093
  15. S Di Siena et al. (2016). "Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury".PMID 27468693
  16. Ornella Franzese et al. (2016). "Polyfunctional Melan-A-specific tumor-reactive CD8(+) T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS".PMID 27467927
  17. Maddalena Coppo et al. (2016). "The transcriptional coregulator GRIP1 controls macrophage polarization and metabolic homeostasis".PMID 27464507
  18. Kai Jiao et al. (2016). "Activation of α2A-adrenergic signal transduction in chondrocytes promotes degenerative remodelling of temporomandibular joint".PMID 27452863
  19. Haidong Bao et al. (2016). "Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK".PMID 27446394
  20. Zhiliang Jin et al. (2016). "Psoralidin inhibits proliferation and enhances apoptosis of human esophageal carcinoma cells via NF-κB and PI3K/Akt signaling pathways".PMID 27446379
  21. Itziar M D Posada et al. (2016). "ASPP2 Is a Novel Pan-Ras Nanocluster Scaffold".PMID 27437940
  22. Bo Pan et al. (2016). "Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats".PMID 27435909
  23. Guofu Li et al. (2016). "The neutrophil elastase inhibitor, sivelestat, attenuates sepsis-related kidney injury in rats".PMID 27430552
  24. Man Song et al. (2016). "Bystander autophagy mediated by radiation-induced exosomal miR-7-5p in non-targeted human bronchial epithelial cells".PMID 27417393
  25. Ting Ma et al. (2016). "Metabonomics applied in exploring the antitumour mechanism of physapubenolide on hepatocellular carcinoma cells by targeting glycolysis through the Akt-p53 pathway".PMID 27416811
  26. Hagoon Jang et al. (2016). "SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding".PMID 27412556
  27. Darcie L McClelland Descalzo et al. (2016). "Glucose-Induced Oxidative Stress Reduces Proliferation in Embryonic Stem Cells via FOXO3A/β-Catenin-Dependent Transcription of p21(cip1)".PMID 27411103
  28. Genevi ve Deblois et al. (2016). "ERRα mediates metabolic adaptations driving lapatinib resistance in breast cancer".PMID 27402251
  29. Andr G Oliveira et al. (2016). "Metformin treatment modulates the tumour-induced wasting effects in muscle protein metabolism minimising the cachexia in tumour-bearing rats".PMID 27388367
  30. Chien Chang Huang et al. (2016). "Cathepsin S attenuates endosomal EGFR signalling: A mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors".PMID 27387133
  31. X Li et al. (2016). "Quercetin alleviates pulmonary angiogenesis in a rat model of hepatopulmonary syndrome".PMID 27383124
  32. Lucy Petrova et al. (2016). "Efficient and Reliable Production of Vectors for the Study of the Repair, Mutagenesis, and Phenotypic Consequences of Defined DNA Damage Lesions in Mammalian Cells".PMID 27362559
  33. Hongxia Zhang et al. (2016). "miR-137 inhibits renal cell carcinoma growth in vitro and in vivo".PMID 27347205
  34. Wenjun Zhao et al. (2016). "Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue".PMID 27343375
  35. Arne Herring et al. (2016). "Kallikrein-8 inhibition attenuates Alzheimer's pathology in mice".PMID 27327541
  36. Chen Chi Liu et al. (2016). "Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells".PMID 27306323
  37. Grazia Maugeri et al. (2016). "PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression".PMID 27303300
  38. Luca Fagnocchi et al. (2016). "A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity".PMID 27301576
  39. Yan Cui et al. (2016). "microRNA-153 Targets mTORC2 Component Rictor to Inhibit Glioma Cells".PMID 27295037
  40. Katrin E Tagscherer et al. (2016). "MicroRNA-210 induces apoptosis in colorectal cancer via induction of reactive oxygen".PMID 27293381
  41. Yang Xu et al. (2016). "Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord".PMID 27282805
  42. Kenji Kobayashi et al. (2016). "Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis".PMID 27279371
  43. Jian Wang et al. (2016). "GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis".PMID 27273304
  44. Ae Lee Jeong et al. (2016). "Patient derived mutation W257G of PPP2R1A enhances cancer cell migration through SRC-JNK-c-Jun pathway".PMID 27272709
  45. Janine H van Ree et al. (2016). "Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes".PMID 27240320
  46. Malte Puchert et al. (2016). "Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise".PMID 27237374
  47. Emmanuel Nwadozi et al. (2016). "Endothelial FoxO proteins impair insulin sensitivity and restrain muscle angiogenesis in response to a high-fat diet".PMID 27235148
  48. Jung ha Park et al. (2016). "Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids".PMID 27232601
  49. Zhai Yang et al. (2016). "Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model".PMID 27220549
  50. Thomas P Kohler et al. (2016). "Induction of Central Host Signaling Kinases during Pneumococcal Infection of Human THP-1 Cells".PMID 27200303
  51. Mohamed Gharib et al. (2016). "Cluster Differentiating 36 (CD36) Deficiency Attenuates Obesity-Associated Oxidative Stress in the Heart".PMID 27195707
  52. Jieqiong Wang et al. (2016). "Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK".PMID 27193833
  53. Elizabeth S Chan et al. (2016). "ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer's disease mouse model".PMID 27189808
  54. Delong Huang et al. (2016). "VEGF-B inhibits hyperglycemia- and Macugen-induced retinal apoptosis".PMID 27189805
  55. Ying Zhu et al. (2016). "An Oncogenic Virus Promotes Cell Survival and Cellular Transformation by Suppressing Glycolysis".PMID 27187079
  56. Bing Shu Li et al. (2016). "Role of mechanical strain-activated PI3K/Akt signaling pathway in pelvic organ prolapse".PMID 27176043
  57. Raffaella Fabbri et al. (2016). "Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue".PMID 27173589
  58. Nunzia Pastore et al. (2016). "TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages".PMID 27171064
  59. Naitao Wang et al. (2016). "Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status".PMID 27167157
  60. Aleksei A Stepanenko et al. (2016). "Temozolomide promotes genomic and phenotypic changes in glioblastoma cells".PMID 27158244
  61. Anne M Cieniewicz et al. (2016). "Novel method demonstrates differential ligand activation and phosphatase-mediated deactivation of insulin receptor tyrosine-specific phosphorylation".PMID 27155325
  62. Yen Ning Huang et al. (2016). "Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling".PMID 27155148
  63. Christina Vorvis et al. (2016). "Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer".PMID 27151939
  64. Yunlong Yang et al. (2016). "The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages".PMID 27150562
  65. Qingli Bie et al. (2016). "Non-tumor tissue derived interleukin-17B activates IL-17RB/AKT/β-catenin pathway to enhance the stemness of gastric cancer".PMID 27146881
  66. Qichao Huang et al. (2016). "Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways".PMID 27124102
  67. Kuan I Lee et al. (2016). "Role of transient receptor potential ankyrin 1 channels in Alzheimer's disease".PMID 27121378
  68. Hyeong Sim Choi et al. (2016). "Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation".PMID 27121110
  69. Ruixia Du et al. (2016). "Trichostatin A potentiates genistein-induced apoptosis and reverses EMT in HEp2 cells".PMID 27121018
  70. Joonbae Seo et al. (2016). "Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene".PMID 27111068
  71. Tobias Boothe et al. (2016). "Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells".PMID 27110488
  72. Fengqin Dong et al. (2016). "TCF7L2 involvement in estradiol- and progesterone-modulated islet and hepatic glucose homeostasis".PMID 27108846
  73. Nerea Rebolleda et al. (2016). "Synergistic Activity of Deguelin and Fludarabine in Cells from Chronic Lymphocytic Leukemia Patients and in the New Zealand Black Murine Model".PMID 27101369
  74. Qianqian Liang et al. (2016). "Application of citrate as a tricarboxylic acid (TCA) cycle intermediate, prevents diabetic-induced heart damages in mice".PMID 27096063
  75. Amandine Thomas et al. (2016). "Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice".PMID 27094951
  76. J Dokas et al. (2016). "Tbc1d1 deletion suppresses obesity in leptin-deficient mice".PMID 27089993
  77. Katharina Dinger et al. (2016). "Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice".PMID 27087690
  78. Wenrong Zeng et al. (2016). "Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-κB Pathway".PMID 27076857
  79. Amit Kumar et al. (2016). "Tuning of AKT-pathway by Nef and its blockade by protease inhibitors results in limited recovery in latently HIV infected T-cell line".PMID 27076174
  80. Zhiyun Yu et al. (2016). "Temozolomide in combination with metformin act synergistically to inhibit proliferation and expansion of glioma stem-like cells".PMID 27073554
  81. Jong Hee Jeong et al. (2016). "Neuroprotective and antioxidant activities of bamboo salt soy sauce against H2O2-induced oxidative stress in rat cortical neurons".PMID 27073423
  82. Eun Jeong Yang et al. (2016). "Early Behavioral Abnormalities and Perinatal Alterations of PTEN/AKT Pathway in Valproic Acid Autism Model Mice".PMID 27071011
  83. Guo hui Huang et al. (2016). "Porf-2 Inhibits Neural Stem Cell Proliferation Through Wnt/β-Catenin Pathway by Its GAP Domain".PMID 27064446
  84. Angela Maselli et al. (2016). "Autoantibodies specific to estrogen receptor alpha act as estrogen agonists and their levels correlate with breast cancer cell proliferation".PMID 27057440
  85. Sandra Hakim et al. (2016). "Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling".PMID 27056978
  86. Yuliya V Katlinskaya et al. (2016). "Suppression of Type I Interferon Signaling Overcomes Oncogene-Induced Senescence and Mediates Melanoma Development and Progression".PMID 27052162
  87. Kendall Phelps-Polirer et al. (2016). "Co-Targeting of JNK and HUNK in Resistant HER2-Positive Breast Cancer".PMID 27045589
  88. Valentina Gandin et al. (2016). "mTORC1 and CK2 coordinate ternary and eIF4F complex assembly".PMID 27040916
  89. Bo Yan et al. (2016). "mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation".PMID 27039827
  90. Jiwei Li et al. (2016). "Mesenchymal stem cells ameliorate inflammatory cytokine-induced impairment of AT-II cells through a keratinocyte growth factor-dependent PI3K/Akt/mTOR signaling pathway".PMID 27035760
  91. Ingrid Elisia et al. (2016). "DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis".PMID 27031833
  92. Sydney Webb Strickland et al. (2016). "The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC".PMID 27030265
  93. Alex Braley et al. (2016). "Regulation of Receptor for Advanced Glycation End Products (RAGE) Ectodomain Shedding and Its Role in Cell Function".PMID 27022018
  94. Yuan Xing et al. (2016). "Mutual inhibition of insulin signaling and PHLPP-1 determines cardioprotective efficiency of Akt in aged heart".PMID 27019292
  95. Dianxin Liu et al. (2016). "Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning".PMID 27018708
  96. Grazia Maugeri et al. (2016). "Expression profile of Wilms Tumor 1 (WT1) isoforms in undifferentiated and all-trans retinoic acid differentiated neuroblastoma cells".PMID 27014421
  97. Jhy Shrian Huang et al. (2016). "Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction".PMID 27012679
  98. Scot R Kimball et al. (2016). "Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation".PMID 27010498
  99. Alaide Domínguez-Calderón et al. (2016). "ZO-2 silencing induces renal hypertrophy through a cell cycle mechanism and the activation of YAP and the mTOR pathway".PMID 27009203
  100. Ninna S Hansen et al. (2016). "Metabolic and Transcriptional Changes in Cultured Muscle Stem Cells from Low Birth Weight Subjects".PMID 27003303
  101. I I Lee et al. (2016). "Akt regulates progesterone receptor B-dependent transcription and angiogenesis in endometrial cancer cells".PMID 26996671
  102. Yasuaki Kabe et al. (2016). "Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance".PMID 26988023
  103. Panagiotis Giannogonas et al. (2016). "Identification of a novel interaction between corticotropin releasing hormone (Crh) and macroautophagy".PMID 26987580
  104. David W Scott et al. (2016). "Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF".PMID 26985018
  105. Tayyaba Afsar et al. (2016). "Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways".PMID 26975752
  106. Sokratis A Apostolidis et al. (2016). "Phosphatase PP2A is requisite for the function of regulatory T cells".PMID 26974206
  107. Jonathon N Winnay et al. (2016). "PI3-kinase mutation linked to insulin and growth factor resistance in vivo".PMID 26974159
  108. Julia Barbara Kral et al. (2016). "Sustained PI3K Activation exacerbates BLM-induced Lung Fibrosis via activation of pro-inflammatory and pro-fibrotic pathways".PMID 26971883
  109. Moon Kyung Joo et al. (2016). "The roles of HOXB7 in promoting migration, invasion and anti-apoptosis in gastric cancer".PMID 26968988
  110. Yukie Takabatake et al. (2016). "Lactation opposes pappalysin-1-driven pregnancy-associated breast cancer".PMID 26951623
  111. Laura Zaldumbide et al. (2016). "Snail heterogeneity in clear cell renal cell carcinoma".PMID 26951092
  112. Cholsoon Jang et al. (2016). "A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance".PMID 26950361
  113. A K Thakur et al. (2016). "TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma".PMID 26943320
  114. Swati Dhar et al. (2016). "Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer".PMID 26943043
  115. Wei Hu et al. (2016). "UBE2T promotes nasopharyngeal carcinoma cell proliferation, invasion, and metastasis by activating the AKT/GSK3β/β-catenin pathway".PMID 26943030
  116. Elena Ardini et al. (2016). "Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications".PMID 26939704
  117. Yang Li et al. (2016). "Silencing of phosphoglucose isomerase/autocrine motility factor decreases U87 human glioblastoma cell migration".PMID 26936801
  118. Huiling Jing et al. (2016). "Shikonin induces apoptosis of HaCaT cells via the mitochondrial, Erk and Akt pathways".PMID 26935874
  119. Stefanie Gurnik et al. (2016). "Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling".PMID 26932603
  120. Yujie Zhang et al. (2016). "Akt mediated phosphorylation of LARP6; critical step in biosynthesis of type I collagen".PMID 26932461
  121. D N Lyabin et al. (2016). "Selective regulation of YB-1 mRNA translation by the mTOR signaling pathway is not mediated by 4E-binding protein".PMID 26931209
  122. Qi Gong et al. (2016). "Fibroblast growth factor 21 improves hepatic insulin sensitivity by inhibiting mammalian target of rapamycin complex 1 in mice".PMID 26926384
  123. Florence Guillot et al. (2016). "Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease".PMID 26923018
  124. Te Sheng Chang et al. (2016). "Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma".PMID 26919045
  125. Robert Nakayama et al. (2016). "Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma".PMID 26918731
  126. Martin Schwarzer et al. (2016). "Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition".PMID 26912894
  127. Franz Oswald et al. (2016). "A phospho-dependent mechanism involving NCoR and KMT2D controls a permissive chromatin state at Notch target genes".PMID 26912830
  128. Guang Jer Wu et al. (2016). "METCAM/MUC18 is a novel tumor and metastasis suppressor for the human ovarian cancer SKOV3 cells".PMID 26906545
  129. Mengtao Li et al. (2016). "EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy".PMID 26905199
  130. Satra Nim et al. (2016). "Pooled screening for antiproliferative inhibitors of protein-protein interactions".PMID 26900867
  131. C Leah B Kline et al. (2016). "ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases".PMID 26884600
  132. Pi Xiao Wang et al. (2016). "Hepatocyte TRAF3 promotes liver steatosis and systemic insulin resistance through targeting TAK1-dependent signalling".PMID 26882989
  133. Ming Ding et al. (2016). "Secreted IGFBP5 mediates mTORC1-dependent feedback inhibition of IGF-1 signalling".PMID 26854565
  134. Qi Wang et al. (2016). "Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer".PMID 26848620
  135. Hiroshi Egawa et al. (2016). "The miR-130 family promotes cell migration and invasion in bladder cancer through FAK and Akt phosphorylation by regulating PTEN".PMID 26837847
  136. Fengbin Lin et al. (2015). "Echistatin prevents posterior capsule opacification in diabetic rabbit model via integrin linked kinase signaling pathway".PMID 26823745
  137. Johannes Lutz et al. (2016). "Reactivation of IgG-switched memory B cells by BCR-intrinsic signal amplification promotes IgG antibody production".PMID 26815242
  138. Robert W Button et al. (2016). "Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis".PMID 26814436
  139. Andrea Iorga et al. (2016). "Rescue of Pressure Overload-Induced Heart Failure by Estrogen Therapy".PMID 26802104
  140. Maria Goulielmaki et al. (2016). "BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells".PMID 26802026
  141. Thomas Menter et al. (2016). "Comprehensive phenotypic characterization of PTLD reveals potential reliance on EBV or NF-κB signalling instead of B-cell receptor signalling".PMID 26799990
  142. Takeshi Yoshida et al. (2016). "ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer".PMID 26789630
  143. Chong T Luo et al. (2016). "Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity".PMID 26789248
  144. Indrani Rebbapragada et al. (2016). "Molecular Determinants of GS-9620-Dependent TLR7 Activation".PMID 26784926
  145. M Y Cherepkova et al. (2016). "Leukemia inhibitory factor (LIF) withdrawal activates mTOR signaling pathway in mouse embryonic stem cells through the MEK/ERK/TSC2 pathway".PMID 26775702
  146. Gianluca Cipriani et al. (2016). "Diabetic Csf1(op/op) mice lacking macrophages are protected against the development of delayed gastric emptying".PMID 26771000
  147. Qiang Zhang et al. (2016). "Yin Yang 1 promotes mTORC2-mediated AKT phosphorylation".PMID 26762111
  148. Claudia Pivonello et al. (2016). "The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma".PMID 26756219
  149. Sebastian K Wandinger et al. (2016). "Quantitative Phosphoproteomics Analysis of ERBB3/ERBB4 Signaling".PMID 26745281
  150. Katherine R Amato et al. (2016). "EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer".PMID 26744526
  151. Kyeongjin Kim et al. (2016). "mTORC1-independent Raptor prevents hepatic steatosis by stabilizing PHLPP2".PMID 26743335
  152. Kai Li Gu et al. (2016). "Pluripotency-associated miR-290/302 family of microRNAs promote the dismantling of naive pluripotency".PMID 26742694
  153. Xiao qing Wang et al. (2016). "Epithelial but not stromal expression of collagen alpha-1(III) is a diagnostic and prognostic indicator of colorectal carcinoma".PMID 26741506
  154. Kuei Chuan Lee et al. (2016). "Aliskiren Reduces Hepatic steatosis and Epididymal Fat Mass and Increases Skeletal Muscle Insulin Sensitivity in High-Fat Diet-Fed Mice".PMID 26732252
  155. Jaekwang Jeong et al. (2016). "PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer".PMID 26729871
  156. Hua Zhang et al. (2016). "Glucagon‑like peptide‑1 protects cardiomyocytes from advanced oxidation protein product‑induced apoptosis via the PI3K/Akt/Bad signaling pathway".PMID 26717963
  157. Steven Hung Yi Fan et al. (2016). "Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration".PMID 26700318
  158. Mei Fen Shih et al. (2015). "Possible Mechanisms of Di(2-ethylhexyl) Phthalate-Induced MMP-2 and MMP-9 Expression in A7r5 Rat Vascular Smooth Muscle Cells".PMID 26690114
  159. Rosa Gomez-Villafuertes et al. (2015). "PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions".PMID 26687764
  160. Jing Sun et al. (2015). "Hypoglycemic effect and mechanism of honokiol on type 2 diabetic mice".PMID 26674084
  161. Alexander Drilon et al. (2016). "A Novel Crizotinib-Resistant Solvent-Front Mutation Responsive to Cabozantinib Therapy in a Patient with ROS1-Rearranged Lung Cancer".PMID 26673800
  162. Costanza Giampietro et al. (2015). "The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling".PMID 26668327
  163. Ali Vural et al. (2016). "Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection".PMID 26667172
  164. Ami Patel et al. (2015). "RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome".PMID 26658127
  165. Jian Da Wang et al. (2015). "A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation".PMID 26649942
  166. Anna Trzeciecka et al. (2016). "Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma".PMID 26636537
  167. Simona Daniele et al. (2015). "Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes".PMID 26627476
  168. Hiroyuki Yamakawa et al. (2015). "Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions".PMID 26626177
  169. Jean Baptiste Oudart et al. (2016). "The anti-tumor NC1 domain of collagen XIX inhibits the FAK/ PI3K/Akt/mTOR signaling pathway through αvβ3 integrin interaction".PMID 26621838
  170. Smail Messaoudi et al. (2015). "Endothelial Gata5 transcription factor regulates blood pressure".PMID 26617239
  171. D N Debruyne et al. (2016). "ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT".PMID 26616860
  172. Yinhua Ni et al. (2015). "Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E".PMID 26603489
  173. Simon J Ittig et al. (2015). "A bacterial type III secretion-based protein delivery tool for broad applications in cell biology".PMID 26598622
  174. Zu Ye et al. (2015). "PRL-3 activates mTORC1 in Cancer Progression".PMID 26597054
  175. Lezi E et al. (2016). "Lactate's effect on human neuroblastoma cell bioenergetic fluxes".PMID 26592660
  176. S Diersch et al. (2016). "Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells".PMID 26592448
  177. Yasuhiko Murata et al. (2015). "Activation of mTORC1 under nutrient starvation conditions increases cellular radiosensitivity in human liver cancer cell lines, HepG2 and HuH6".PMID 26585486
  178. Zi Wang et al. (2016). "Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC".PMID 26575790
  179. Yang Hu et al. (2016). "Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro".PMID 26572749
  180. Martina Chrisam et al. (2015). "Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice".PMID 26565691
  181. Reyna Sara Quintero Barceinas et al. (2015). "All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism".PMID 26557664
  182. Birgit Lohberger et al. (2015). "Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation".PMID 26555773
  183. Zhanguang Zhang et al. (2015). "DNAM-1 controls NK cell activation via an ITT-like motif".PMID 26552706
  184. Jens L Hukelmann et al. (2016). "The cytotoxic T cell proteome and its shaping by the kinase mTOR".PMID 26551880
  185. Ayumi Goto et al. (2015). "Heat stress acutely activates insulin-independent glucose transport and 5'-AMP-activated protein kinase prior to an increase in HSP72 protein in rat skeletal muscle".PMID 26542263
  186. Irene Amigo-Jiménez et al. (2015). "Bone marrow stroma-induced resistance of chronic lymphocytic leukemia cells to arsenic trioxide involves Mcl-1 upregulation and is overcome by inhibiting the PI3Kδ or PKCβ signaling pathways".PMID 26540567
  187. Daichao Xu et al. (2015). "Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system".PMID 26523394
  188. M Stanojlovic et al. (2015). "Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus".PMID 26518459
  189. Fatima Rizvi et al. (2015). "Suppression in PHLPP2 induction by morin promotes Nrf2-regulated cellular defenses against oxidative injury to primary rat hepatocytes".PMID 26513344
  190. Philip J Webber et al. (2015). "Combination of heat shock protein 90 and focal adhesion kinase inhibitors synergistically inhibits the growth of non-small cell lung cancer cells".PMID 26501082
  191. Jessica Bauer et al. (2015). "Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer".PMID 26497569
  192. Luigi Pasini et al. (2015). "TrkA is amplified in malignant melanoma patients and induces an anti-proliferative response in cell lines".PMID 26496938
  193. Sue Ellen Verbrugge et al. (2016). "Multifactorial resistance to aminopeptidase inhibitor prodrug CHR2863 in myeloid leukemia cells: down-regulation of carboxylesterase 1, drug sequestration in lipid droplets and pro-survival activation ERK/Akt/mTOR".PMID 26496029
  194. Shinichi Asano et al. (2015). "Cerium oxide nanoparticle treatment ameliorates peritonitis-induced diaphragm dysfunction".PMID 26491293
  195. Alexandra Vétillard et al. (2015). "Akt inhibition improves irinotecan treatment and prevents cell emergence by switching the senescence response to apoptosis".PMID 26485768
  196. Brinton Seashore-Ludlow et al. (2015). "Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset".PMID 26482930
  197. Lin Zhang et al. (2015). "Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth".PMID 26479035
  198. Alexandre Pinel et al. (2016). "N-3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells".PMID 26477381
  199. K R Manda et al. (2015). "NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence".PMID 26477312
  200. Sebastian I Arriola Apelo et al. (2016). "Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system".PMID 26463117
  201. A Barbachano et al. (2015). "SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150".PMID 26455323
  202. Celina Carvalho Borges et al. (2016). "Adverse effects of vitamin D deficiency on the Pi3k/Akt pathway and pancreatic islet morphology in diet-induced obese mice".PMID 26446269
  203. Alisson L da Rocha et al. (2015). "Downhill Running-Based Overtraining Protocol Improves Hepatic Insulin Signaling Pathway without Concomitant Decrease of Inflammatory Proteins".PMID 26445495
  204. Kristin Luehders et al. (2015). "The small leucine-rich repeat secreted protein Asporin induces eyes in Xenopus embryos through the IGF signalling pathway".PMID 26443635
  205. Jessica L Reinardy et al. (2015). "Phosphorylation of Threonine 794 on Tie1 by Rac1/PAK1 Reveals a Novel Angiogenesis Regulatory Pathway".PMID 26436659
  206. Yan Xu et al. (2015). "A short report: PAMM, a novel antioxidant protein, induced by oxidative stress".PMID 26402163
  207. Yulia Haim et al. (2015). "Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1".PMID 26391754
  208. Pawel K Mazur et al. (2015). "Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma".PMID 26390243
  209. N Yokdang et al. (2016). "LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells".PMID 26387542
  210. Daniel A Columbus et al. (2015). "Impact of prolonged leucine supplementation on protein synthesis and lean growth in neonatal pigs".PMID 26374843
  211. Monika A Davare et al. (2015). "Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors".PMID 26372962
  212. Anja Harmeier et al. (2015). "Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers".PMID 26372541
  213. Jonatan Darr et al. (2015). "Phosphoproteomic analysis reveals Smarcb1 dependent EGFR signaling in Malignant Rhabdoid tumor cells".PMID 26370283
  214. K Kitatani et al. (2016). "Ceramide limits phosphatidylinositol-3-kinase C2β-controlled cell motility in ovarian cancer: potential of ceramide as a metastasis-suppressor lipid".PMID 26364609
  215. Constance Vennin et al. (2015). "H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b".PMID 26353930
  216. Shohei Mizuno et al. (2015). "Overexpression of salivary-type amylase reduces the sensitivity to bortezomib in multiple myeloma cells".PMID 26341959
  217. Meng Lin Li et al. (2015). "LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment".PMID 26341392
  218. R Thijssen et al. (2016). "The pan phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) blocks survival, adhesion and proliferation of primary chronic lymphocytic leukemia cells".PMID 26338274
  219. Hong Guang Xia et al. (2015). "Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death".PMID 26323688
  220. Kun Chun Chiang et al. (2015). "PTEN insufficiency modulates ER+ breast cancer cell cycle progression and increases cell growth in vitro and in vivo".PMID 26316702
  221. Y H Lee et al. (2016). "Exogenous administration of DLK1 ameliorates hepatic steatosis and regulates gluconeogenesis via activation of AMPK".PMID 26315841
  222. Ana C Zarpelon et al. (2016). "Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain".PMID 26310268
  223. Claire J Garwood et al. (2015). "Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors".PMID 26297026
  224. Yong Qu Zhang et al. (2015). "Over-Expressed Twist Associates with Markers of Epithelial Mesenchymal Transition and Predicts Poor Prognosis in Breast Cancers via ERK and Akt Activation".PMID 26295469
  225. Chih Yuan Chiang et al. (2015). "A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection".PMID 26284031
  226. María Alvaro-Bartolomé et al. (2015). "The neuroplastic index p-FADD/FADD and phosphoprotein PEA-15, interacting at GABAA receptor, are upregulated in brain cortex during midazolam-induced hypnosis in mice".PMID 26282360
  227. Kishor K Sivaraj et al. (2015). "Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis".PMID 26272756
  228. Beatriz Morancho et al. (2015). "Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence".PMID 26260680
  229. Zhaobin Zeng et al. (2015). "Cyclic mechanical stretch promotes energy metabolism in osteoblast-like cells through an mTOR signaling-associated mechanism".PMID 26251974
  230. Elie Simard et al. (2015). "Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function".PMID 26248341
  231. Judy C Triplett et al. (2015). "Age-related changes in the proteostasis network in the brain of the naked mole-rat: Implications promoting healthy longevity".PMID 26248058
  232. J S Ahn et al. (2016). "JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation".PMID 26234675
  233. José Luis Luna-Acosta et al. (2015). "Direct antiapoptotic effects of growth hormone are mediated by PI3K/Akt pathway in the chicken bursa of Fabricius".PMID 26231908
  234. Hadi Khalil et al. (2015). "The caspase-3-p120-RasGAP module generates a NF-κB repressor in response to cellular stress".PMID 26224876
  235. Yuki Miyamoto et al. (2015). "Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination".PMID 26224309
  236. Wei Zhou et al. (2015). "PTEN signaling is required for the maintenance of spermatogonial stem cells in mouse, by regulating the expressions of PLZF and UTF1".PMID 26221533
  237. Navasona Krishnan et al. (2015). "PTP1B inhibition suggests a therapeutic strategy for Rett syndrome".PMID 26214522
  238. Carmen Rodríguez-Seoane et al. (2015). "DISC1 regulates expression of the neurotrophin VGF through the PI3K/AKT/CREB pathway".PMID 26212236
  239. Y Tang et al. (2015). "EGFR signaling upregulates surface expression of the GluN2B-containing NMDA receptor and contributes to long-term potentiation in the hippocampus".PMID 26204818
  240. KIMBERLY S WILLIAMS et al. (2015). "Differential regulation of macrophage phenotype by mature and pro-nerve growth factor".PMID 26198923
  241. Maik Dahlhoff et al. (2015). "ERBB3 is required for tumor promotion in a mouse model of skin carcinogenesis".PMID 26194695
  242. Min Sik Lee et al. (2015). "PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis".PMID 26183061
  243. Juan Zhou et al. (2015). "EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging".PMID 26181290
  244. Ana Artero-Castro et al. (2015). "Disruption of the ribosomal P complex leads to stress-induced autophagy".PMID 26176264
  245. Chih Chung Lin et al. (2015). "Tumor necrosis factor-alpha induces VCAM-1-mediated inflammation via c-Src-dependent transactivation of EGF receptors in human cardiac fibroblasts".PMID 26173590
  246. Kazuhiro Nagaoka et al. (2015). "A New Therapeutic Modality for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin Induces Cardioprotection from Ischemia-Reperfusion Injury via Activation of PI3K/Akt Pathway and Anti-Inflammation in a Rat Model".PMID 26167913
  247. Daniel García-Pérez et al. (2015). "Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration".PMID 26164717
  248. R M Gorojod et al. (2015). "The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions".PMID 26163003
  249. Simone Patergnani et al. (2015). "The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition".PMID 26156019
  250. Sandy Azzi et al. (2015). "Human Renal Normal, Tumoral, and Cancer Stem Cells Express Membrane-Bound Interleukin-15 Isoforms Displaying Different Functions".PMID 26152359
  251. Kuang Ti Chen et al. (2015). "AMPA Receptor-mTOR Activation is Required for the Antidepressant-Like Effects of Sarcosine during the Forced Swim Test in Rats: Insertion of AMPA Receptor may Play a Role".PMID 26150775
  252. Rémi Martin Laberge et al. (2015). "MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation".PMID 26147250
  253. Carlos R Reis et al. (2015). "Crosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis".PMID 26139537
  254. Stephen E McGowan et al. (2015). "Fibroblast growth factor signaling in myofibroblasts differs from lipofibroblasts during alveolar septation in mice".PMID 26138642
  255. Fiorita Gonzales Lopes Mundim et al. (2015). "MYC is expressed in the stromal and epithelial cells of primary breast carcinoma and paired nodal metastases".PMID 26137258
  256. Linda Andersson et al. (2015). "Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischaemia".PMID 26130752
  257. Jiayi Wang et al. (2015). "Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells".PMID 26124182
  258. Bi Sen Ding et al. (2015). "Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells".PMID 26116571
  259. Min Hee Yi et al. (2015). "Growth Differentiation Factor 15 Expression in Astrocytes After Excitotoxic Lesion in the Mouse Hippocampus".PMID 26113792
  260. Davide Gallo et al. (2015). "GH-Releasing Hormone Promotes Survival and Prevents TNF-α-Induced Apoptosis and Atrophy in C2C12 Myotubes".PMID 26110916
  261. Adam Pickard et al. (2015). "HPV16 Down-Regulates the Insulin-Like Growth Factor Binding Protein 2 to Promote Epithelial Invasion in Organotypic Cultures".PMID 26107517
  262. Xing Lin Tan et al. (2015). "Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment".PMID 26104027
  263. Chih Jung Chang et al. (2015). "Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota".PMID 26102296
  264. Kassondra Meyer et al. (2015). "Type 1 Insulin-Like Growth Factor Receptor/Insulin Receptor Substrate 1 Signaling Confers Pathogenic Activity on Breast Tumor Cells Lacking REST".PMID 26100015
  265. S Castillo-Lluva et al. (2015). "A new role of SNAI2 in postlactational involution of the mammary gland links it to luminal breast cancer development".PMID 26096931
  266. Jon M Carthy et al. (2015). "Tamoxifen Inhibits TGF-β-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2".PMID 26096876
  267. Anja Heinemann et al. (2015). "Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling".PMID 26087189
  268. Lu Yang et al. (2015). "Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant".PMID 26086037
  269. Caixia Li et al. (2015). "(Pro)renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose".PMID 26081285
  270. I V Fedorenko et al. (2016). "Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells".PMID 26073081
  271. Björn Koos et al. (2015). "Proximity-dependent initiation of hybridization chain reaction".PMID 26065580
  272. Peter H Albers et al. (2015). "Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery".PMID 26062634
  273. Natalia Rueda-Rincon et al. (2015). "p53 attenuates AKT signaling by modulating membrane phospholipid composition".PMID 26061814
  274. Giulia Ronchi et al. (2016). "The Neuregulin1/ErbB system is selectively regulated during peripheral nerve degeneration and regeneration".PMID 26061116
  275. Chuan Ming Xie et al. (2015). "Erbin is a novel substrate of the Sag-βTrCP E3 ligase that regulates KrasG12D-induced skin tumorigenesis".PMID 26056141
  276. K J Kurppa et al. (2016). "Activating ERBB4 mutations in non-small cell lung cancer".PMID 26050618
  277. Wolfgang Jäger et al. (2015). "Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies".PMID 26041878
  278. Solange Tréhoux et al. (2015). "Micro-RNAs miR-29a and miR-330-5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells".PMID 26036346
  279. Alison G Barber et al. (2015). "PI3K/AKT pathway regulates E-cadherin and Desmoglein 2 in aggressive prostate cancer".PMID 26033689
  280. Lisa M DiPilato et al. (2015). "The Role of PDE3B Phosphorylation in the Inhibition of Lipolysis by Insulin".PMID 26031333
  281. Yi Jen Hsueh et al. (2015). "Lysophosphatidic acid induces YAP-promoted proliferation of human corneal endothelial cells via PI3K and ROCK pathways".PMID 26029725
  282. Monica Hellesøy et al. (2015). "Cellular context-mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis".PMID 26023089
  283. Angela Vinue et al. (2015). "Ink4/Arf locus restores glucose tolerance and insulin sensitivity by reducing hepatic steatosis and inflammation in mice with impaired IRS2-dependent signalling".PMID 26022372
  284. Lingmei Li et al. (2015). "Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells".PMID 26005723
  285. Xun Tang et al. (2015). "CD166 positively regulates MCAM via inhibition to ubiquitin E3 ligases Smurf1 and βTrCP through PI3K/AKT and c-Raf/MEK/ERK signaling in Bel-7402 hepatocellular carcinoma cells".PMID 26004137
  286. Dmitry Petrov et al. (2015). "High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents".PMID 26003667
  287. Jason S L Yu et al. (2015). "PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation".PMID 25998442
  288. Yong Seok Han et al. (2015). "Fucoidan inhibits the migration and proliferation of HT-29 human colon cancer cells via the phosphoinositide-3 kinase/Akt/mechanistic target of rapamycin pathways".PMID 25998232
  289. Thereza Cristina Lonzetti Bargut et al. (2015). "A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice".PMID 25997866
  290. Kun Hui Lu et al. (2015). "Nck adaptor proteins modulate differentiation and effector function of T cells".PMID 25995205
  291. Caroline T Cheung et al. (2015). "Cyclin A2 modulates EMT via β-catenin and phospholipase C pathways".PMID 25993989
  292. Adelaida R Palla et al. (2015). "The pluripotency factor NANOG promotes the formation of squamous cell carcinomas".PMID 25988972
  293. Pei Chuan Li et al. (2015). "Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells".PMID 25988521
  294. Kyo Won Seo et al. (2015). "Mechanical stretch enhances the expression and activity of osteopontin and MMP-2 via the Akt1/AP-1 pathways in VSMC".PMID 25986148
  295. D Pan et al. (2016). "MALT1 is required for EGFR-induced NF-κB activation and contributes to EGFR-driven lung cancer progression".PMID 25982276
  296. Elizabeth G Demicco et al. (2015). "Histologic variability in solitary fibrous tumors reflects angiogenic and growth factor signaling pathway alterations".PMID 25976141
  297. Jianzhong Li et al. (2015). "Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis".PMID 25970154
  298. Elena Revuelta-López et al. (2015). "Hypoxia-driven sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) downregulation depends on low-density lipoprotein receptor-related protein 1 (LRP1)-signalling in cardiomyocytes".PMID 25968337
  299. Hyun Jung Choi et al. (2015). "Yes-associated protein regulates endothelial cell contact-mediated expression of angiopoietin-2".PMID 25962877
  300. Andre Heinen et al. (2015). "Fingolimod induces the transition to a nerve regeneration promoting Schwann cell phenotype".PMID 25957629
  301. Jonathan Rios-Doria et al. (2015). "A Monoclonal Antibody to ADAM17 Inhibits Tumor Growth by Inhibiting EGFR and Non-EGFR-Mediated Pathways".PMID 25948294
  302. Samira M Sadowski et al. (2015). "Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis".PMID 25945839
  303. Alicia M Waters et al. (2015). "Preclinical Evaluation of a Novel RXR Agonist for the Treatment of Neuroblastoma".PMID 25944918
  304. Jennifer L Major et al. (2015). "Interplay between the E2F pathway and β-adrenergic signaling in the pathological hypertrophic response of myocardium".PMID 25944088
  305. Li Zhang et al. (2015). "FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells".PMID 25939952
  306. Eun Ji Lee et al. (2015). "Soluble receptor for advanced glycation end products inhibits disease progression in autosomal dominant polycystic kidney disease by down-regulating cell proliferation".PMID 25934702
  307. Chul Gon Yeom et al. (2015). "Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation".PMID 25934150
  308. Cory M Dungan et al. (2016). "Hyperactive mTORC1 signaling is unaffected by metformin treatment in aged skeletal muscle".PMID 25926238
  309. Chao Quan et al. (2015). "PKB-Mediated Thr649 Phosphorylation of AS160/TBC1D4 Regulates the R-Wave Amplitude in the Heart".PMID 25923736
  310. Tobias Pasqualon et al. (2015). "A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation".PMID 25912030
  311. Donghwan Jang et al. (2015). "Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor".PMID 25908865
  312. Hyo Jung Kim et al. (2015). "Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression".PMID 25903150
  313. Chetna Sharon et al. (2015). "Inhibition of insulin-like growth factor receptor/AKT/mammalian target of rapamycin axis targets colorectal cancer stem cells by attenuating mevalonate-isoprenoid pathway in vitro and in vivo".PMID 25895029
  314. Martin Roffe et al. (2015). "Two widely used RSK inhibitors, BI-D1870 and SL0101, alter mTORC1 signaling in a RSK-independent manner".PMID 25889895
  315. Ahmed Bettaieb et al. (2015). "Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice".PMID 25888330
  316. Clifford J Cookman et al. (2015). "Estrogen Receptor-β Up-Regulates IGF1R Expression and Activity to Inhibit Apoptosis and Increase Growth of Medulloblastoma".PMID 25885794
  317. Deeksha Vishwamitra et al. (2015). "The transcription factors Ik-1 and MZF1 downregulate IGF-IR expression in NPM-ALK⁺ T-cell lymphoma".PMID 25884514
  318. Isabelle Tancioni et al. (2015). "FAK activity protects nucleostemin in facilitating breast cancer spheroid and tumor growth".PMID 25880415
  319. Xiuli Zhang et al. (2015). "Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells".PMID 25872526
  320. Peter Tzu Yu Chien et al. (2015). "c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction".PMID 25869400
  321. Isabelle Hatfield et al. (2015). "The role of TORC1 in muscle development in Drosophila".PMID 25866192
  322. Anna C Navis et al. (2015). "Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein".PMID 25862637
  323. Cristiana S B Salvatierra et al. (2015). "Short-term low-protein diet during pregnancy alters islet area and protein content of phosphatidylinositol 3-kinase pathway in rats".PMID 25860970
  324. Giulia Milan et al. (2015). "Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy".PMID 25858807
  325. Makoto Ohashi et al. (2015). "The EBNA3 family of Epstein-Barr virus nuclear proteins associates with the USP46/USP12 deubiquitination complexes to regulate lymphoblastoid cell line growth".PMID 25855980
  326. Kevin A Janes et al. (2015). "An analysis of critical factors for quantitative immunoblotting".PMID 25852189
  327. N C Gassen et al. (2016). "FKBP51 inhibits GSK3β and augments the effects of distinct psychotropic medications".PMID 25849320
  328. Sujin Park et al. (2015). "O-GlcNAc modification is essential for the regulation of autophagy in Drosophila melanogaster".PMID 25840568
  329. Stefan Hausmann et al. (2015). "Loss of serum and glucocorticoid-regulated kinase 3 (SGK3) does not affect proliferation and survival of multiple myeloma cell lines".PMID 25837824
  330. Laura Brohée et al. (2015). "Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment".PMID 25834103
  331. Kimi Yamakoshi et al. (2015). "Dysregulation of the Bmi-1/p16(Ink⁴a) pathway provokes an aging-associated decline of submandibular gland function".PMID 25832744
  332. Xiaolei Li et al. (2015). "Co-activation of PIK3CA and Yap promotes development of hepatocellular and cholangiocellular tumors in mouse and human liver".PMID 25826091
  333. Wenjie Zhang et al. (2015). "PTPRO-mediated autophagy prevents hepatosteatosis and tumorigenesis".PMID 25826083
  334. Zongqi Zhang et al. (2015). "Activated phosphatidylinositol 3-kinase/Akt inhibits the transition of endothelial progenitor cells to mesenchymal cells by regulating the forkhead box subgroup O-3a signaling".PMID 25824462
  335. Otto L D Cerqueira et al. (2015). "CIP4 promotes metastasis in triple-negative breast cancer and is associated with poor patient prognosis".PMID 25823823
  336. S Marathe et al. (2015). "Notch signaling in response to excitotoxicity induces neurodegeneration via erroneous cell cycle reentry".PMID 25822340
  337. Risheng Ye et al. (2015). "Adiponectin-mediated antilipotoxic effects in regenerating pancreatic islets".PMID 25815422
  338. Elmer Hoekstra et al. (2015). "Low molecular weight protein tyrosine phosphatase (LMWPTP) upregulation mediates malignant potential in colorectal cancer".PMID 25811796
  339. Bharti Balhara et al. (2015). "Severe insulin resistance alters metabolism in mesenchymal progenitor cells".PMID 25811318
  340. Martin Kann et al. (2015). "WT1 targets Gas1 to maintain nephron progenitor cells by modulating FGF signals".PMID 25804736
  341. Brian G Coon et al. (2015). "Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex".PMID 25800053
  342. Aditya Venkatesh et al. (2015). "Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice".PMID 25798619
  343. Anastassios Philippou et al. (2015). "Masticatory muscles of mouse do not undergo atrophy in space".PMID 25795455
  344. Grazia Graziani et al. (2015). "A new water soluble MAPK activator exerts antitumor activity in melanoma cells resistant to the BRAF inhibitor vemurafenib".PMID 25795251
  345. Michael S Dicay et al. (2015). "Interferon-γ suppresses intestinal epithelial aquaporin-1 expression via Janus kinase and STAT3 activation".PMID 25793528
  346. Sean A Newsom et al. (2015). "Lipid mixtures containing a very high proportion of saturated fatty acids only modestly impair insulin signaling in cultured muscle cells".PMID 25793412
  347. Olga Tapia et al. (2015). "Nuclear envelope protein Lem2 is required for mouse development and regulates MAP and AKT kinases".PMID 25790465
  348. Manabu Kawada et al. (2015). "Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction".PMID 25785838
  349. Dan Qu et al. (2015). "Cbl-b-regulated extracellular signal-regulated kinase signaling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro".PMID 25780420
  350. Marni E Harris-White et al. (2015). "A cell-penetrating ester of the neural metabolite lanthionine ketimine stimulates autophagy through the mTORC1 pathway: Evidence for a mechanism of action with pharmacological implications for neurodegenerative pathologies".PMID 25779968
  351. Janani Panneerselvam et al. (2015). "IL-24 inhibits lung cancer cell migration and invasion by disrupting the SDF-1/CXCR4 signaling axis".PMID 25775124
  352. V Tassinari et al. (2015). "Fgf9 inhibition of meiotic differentiation in spermatogonia is mediated by Erk-dependent activation of Nodal-Smad2/3 signaling and is antagonized by Kit Ligand".PMID 25766327
  353. German Cuesto et al. (2015). "GSK3β inhibition promotes synaptogenesis in Drosophila and mammalian neurons".PMID 25764078
  354. Alba Fabiola Torres et al. (2014). "Expression of EGFR and molecules downstream to PI3K/Akt, Raf-1-MEK-1-MAP (Erk1/2), and JAK (STAT3) pathways in invasive lung adenocarcinomas resected at a single institution".PMID 25763322
  355. S P Gorantla et al. (2015). "F604S exchange in FIP1L1-PDGFRA enhances FIP1L1-PDGFRA protein stability via SHP-2 and SRC: a novel mode of kinase inhibitor resistance".PMID 25761934
  356. Enyu Rao et al. (2015). "Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death".PMID 25760243
  357. Weipeng Zhang et al. (2015). "Paclitaxel resistance in MCF-7/PTX cells is reversed by paeonol through suppression of the SET/phosphatidylinositol 3-kinase/Akt pathway".PMID 25760096
  358. Christin Münzberg et al. (2015). "IGF-1 drives chromogranin A secretion via activation of Arf1 in human neuroendocrine tumour cells".PMID 25754106
  359. Joachim Albers et al. (2015). "A versatile modular vector system for rapid combinatorial mammalian genetics".PMID 25751063
  360. Dake Chu et al. (2015). "NDRG4, a novel candidate tumor suppressor, is a predictor of overall survival of colorectal cancer patients".PMID 25749388
  361. Chad McKee et al. (2015). "Amphiregulin activates human hepatic stellate cells and is upregulated in non alcoholic steatohepatitis".PMID 25744849
  362. Heng Hsiung Wu et al. (2015). "Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines".PMID 25732306
  363. Elise Jeffery et al. (2015). "Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity".PMID 25730471
  364. Celia J Vogel et al. (2015). "Cooperative induction of apoptosis in NRAS mutant melanoma by inhibition of MEK and ROCK".PMID 25728708
  365. Yong Weon Yi et al. (2015). "β-TrCP1 degradation is a novel action mechanism of PI3K/mTOR inhibitors in triple-negative breast cancer cells".PMID 25721419
  366. Jehn Chuan Lee et al. (2015). "Upregulation of B-cell translocation gene 2 by epigallocatechin-3-gallate via p38 and ERK signaling blocks cell proliferation in human oral squamous cell carcinoma cells".PMID 25721086
  367. Mandar Bawadekar et al. (2015). "The Extracellular IFI16 Protein Propagates Inflammation in Endothelial Cells Via p38 MAPK and NF-κB p65 Activation".PMID 25715050
  368. Cuiying Wu et al. (2015). "Pcdh11x Negatively Regulates Dendritic Branching".PMID 25687328
  369. Lyndsay Murrow et al. (2015). "ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function".PMID 25686249
  370. S Michael Rothenberg et al. (2015). "Inhibition of mutant EGFR in lung cancer cells triggers SOX2-FOXO6-dependent survival pathways".PMID 25686219
  371. Mingyue Zhu et al. (2015). "Hepatitis B virus X protein induces expression of alpha-fetoprotein and activates PI3K/mTOR signaling pathway in liver cells".PMID 25682869
  372. Shubhankar Suman et al. (2015). "Protracted upregulation of leptin and IGF1 is associated with activation of PI3K/Akt and JAK2 pathway in mouse intestine after ionizing radiation exposure".PMID 25678846
  373. Danalea V Skarra et al. (2015). "FOXO1 is regulated by insulin and IGF1 in pituitary gonadotropes".PMID 25676570
  374. Naoya Okita et al. (2015). "Supplementation of strontium to a chondrogenic medium promotes chondrogenic differentiation of human dedifferentiated fat cells".PMID 25669848
  375. Majid Momeny et al. (2015). "Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines".PMID 25668816
  376. Alessandro Castorina et al. (2015). "PACAP interacts with PAC1 receptors to induce tissue plasminogen activator (tPA) expression and activity in schwann cell-like cultures".PMID 25658447
  377. Marina Barrichon et al. (2015). "Dose-dependent biphasic leptin-induced proliferation is caused by non-specific IL-6/NF-κB pathway activation in human myometrial cells".PMID 25653112
  378. Nieves Gonzalez et al. (2015). "Effect of bombesin receptor subtype-3 and its synthetic agonist on signaling, glucose transport and metabolism in myocytes from patients with obesity and type 2 diabetes".PMID 25653074
  379. Katherine H Schreiber et al. (2015). "Rapamycin-mediated mTORC2 inhibition is determined by the relative expression of FK506-binding proteins".PMID 25652038
  380. Paola Dongiovanni et al. (2015). "High fat diet subverts hepatocellular iron uptake determining dysmetabolic iron overload".PMID 25647178
  381. Bensheng Ju et al. (2015). "Oncogenic KRAS promotes malignant brain tumors in zebrafish".PMID 25644510
  382. Nina Kozlova et al. (2016). "Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231".PMID 25641046
  383. Simin Li et al. (2015). "Quantitative analysis of receptor tyrosine kinase-effector coupling at functionally relevant stimulus levels".PMID 25635057
  384. Aubie K Shaw et al. (2015). "TGFβ signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions".PMID 25629162
  385. Eun Young Lee et al. (2015). "Reconstituted High-Density Lipoprotein Containing Human Growth Hormone-1 Shows Potent Tissue Regeneration Activity with Enhancement of Anti-Oxidant and Anti-Atherosclerotic Activities".PMID 25626070
  386. Ronald L Chandler et al. (2015). "Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling".PMID 25625625
  387. Amr E Ammar et al. (2015). "The effect of pomegranate fruit extract on testosterone-induced BPH in rats".PMID 25620586
  388. Rita Verma et al. (2015). "The endosomal sorting complex required for transport pathway mediates chemokine receptor CXCR4-promoted lysosomal degradation of the mammalian target of rapamycin antagonist DEPTOR".PMID 25605718
  389. Paloma López de Figueroa et al. (2015). "Autophagy activation and protection from mitochondrial dysfunction in human chondrocytes".PMID 25605458
  390. Peter Tontonoz et al. (2015). "The orphan nuclear receptor Nur77 is a determinant of myofiber size and muscle mass in mice".PMID 25605333
  391. Jessica Seeßle et al. (2015). "Palmitate activation by fatty acid transport protein 4 as a model system for hepatocellular apoptosis and steatosis".PMID 25603556
  392. Hoi Yee Chow et al. (2015). "Group I Paks as therapeutic targets in NF2-deficient meningioma".PMID 25596744
  393. Jade Peres et al. (2015). "The T-box transcription factor, TBX3, is a key substrate of AKT3 in melanomagenesis".PMID 25595898
  394. Jung Yoon Yoo et al. (2015). "Role of Mig-6 in hepatic glucose metabolism".PMID 25594850
  395. So Youn Kim et al. (2015). "Cell autonomous phosphoinositide 3-kinase activation in oocytes disrupts normal ovarian function through promoting survival and overgrowth of ovarian follicles".PMID 25594701
  396. Harumasa Nakazawa et al. (2015). "Role of protein farnesylation in burn-induced metabolic derangements and insulin resistance in mouse skeletal muscle".PMID 25594415
  397. Lihi Ninio-Many et al. (2014). "MicroRNA miR-125a-3p modulates molecular pathway of motility and migration in prostate cancer cells".PMID 25594017
  398. Omid Azimzadeh et al. (2015). "Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction".PMID 25590149
  399. Shan Wang et al. (2015). "Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways".PMID 25582201
  400. Gommaar D'Hulst et al. (2015). "Acute systemic insulin intolerance does not alter the response of the Akt/GSK-3 pathway to environmental hypoxia in human skeletal muscle".PMID 25577409
  401. Yang Shen et al. (2015). "Effect of surface chemistry on the integrin induced pathway in regulating vascular endothelial cells migration".PMID 25575348
  402. Y C Cheng et al. (2015). "Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT".PMID 25569101
  403. Eun Bum Kang et al. (2014). "Effects of treadmill exercise on brain insulin signaling and β-amyloid in intracerebroventricular streptozotocin induced-memory impairment in rats".PMID 25566443
  404. Linkang Zhou et al. (2015). "Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice".PMID 25565658
  405. Anupama Sathyamurthy et al. (2015). "ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination".PMID 25564653
  406. Courtney M Karner et al. (2015). "Increased glutamine catabolism mediates bone anabolism in response to WNT signaling".PMID 25562323
  407. Emilien Loeuillard et al. (2014). "2,4,6-trinitrobenzene sulfonic acid-induced chronic colitis with fibrosis and modulation of TGF-β1 signaling".PMID 25561788
  408. Sharad Shrestha et al. (2015). "Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses".PMID 25559258
  409. Sylvia F Boj et al. (2015). "Organoid models of human and mouse ductal pancreatic cancer".PMID 25557080
  410. Shakeel U R Mir et al. (2015). "Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death".PMID 25548282
  411. Tzu Wei Lin et al. (2015). "Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer's disease (APP/PS1) transgenic mice".PMID 25543023
  412. Sang Hun Lee et al. (2015). "Selective Interference Targeting of Lnk in Umbilical Cord-Derived Late Endothelial Progenitor Cells Improves Vascular Repair, Following Hind Limb Ischemic Injury, via Regulation of JAK2/STAT3 Signaling".PMID 25537795
  413. Xiang Zhang et al. (2015). "MicroRNA-26a promotes anoikis in human hepatocellular carcinoma cells by targeting alpha5 integrin".PMID 25537511
  414. Hong Min Ni et al. (2014). "Role of hypoxia inducing factor-1β in alcohol-induced autophagy, steatosis and liver injury in mice".PMID 25536043
  415. María T L Pino et al. (2015). "Tl(I) and Tl(III) alter the expression of EGF-dependent signals and cyclins required for pheochromocytoma (PC12) cell-cycle resumption and progression".PMID 25534134
  416. Claudia Fiorini et al. (2015). "Onconase induces autophagy sensitizing pancreatic cancer cells to gemcitabine and activates Akt/mTOR pathway in a ROS-dependent manner".PMID 25533084
  417. Junichi Inaba et al. (2014). "Lunasin sensitivity in non-small cell lung cancer cells is linked to suppression of integrin signaling and changes in histone acetylation".PMID 25530619
  418. Bharat Jaishy et al. (2015). "Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity".PMID 25529920
  419. Laura Zemany et al. (2015). "Transthyretin Antisense Oligonucleotides Lower Circulating RBP4 Levels and Improve Insulin Sensitivity in Obese Mice".PMID 25524914
  420. Guang Jer Wu et al. (2014). "Frequent and increased expression of human METCAM/MUC18 in cancer tissues and metastatic lesions is associated with the clinical progression of human ovarian carcinoma".PMID 25510693
  421. Chen Shao et al. (2015). "Inhibition of polo-like kinase 1 (Plk1) enhances the antineoplastic activity of metformin in prostate cancer".PMID 25505174
  422. Alfonso Pastor-Clerigues et al. (2014). "Anti-inflammatory and anti-fibrotic profile of fish oil emulsions used in parenteral nutrition-associated liver disease".PMID 25502575
  423. Hui Zhang et al. (2015). "Dipeptidyl peptidase 9 subcellular localization and a role in cell adhesion involving focal adhesion kinase and paxillin".PMID 25486458
  424. Justin D Crane et al. (2015). "Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis".PMID 25485911
  425. Céline Delloye-Bourgeois et al. (2015). "PlexinA1 is a new Slit receptor and mediates axon guidance function of Slit C-terminal fragments".PMID 25485759
  426. Sho Isoyama et al. (2015). "Basal expression of insulin-like growth factor 1 receptor determines intrinsic resistance of cancer cells to a phosphatidylinositol 3-kinase inhibitor ZSTK474".PMID 25483727
  427. Joseph A Bisson et al. (2015). "Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT".PMID 25482987
  428. Isabelle Matte et al. (2015). "Ovarian cancer ascites enhance the migration of patient-derived peritoneal mesothelial cells via cMet pathway through HGF-dependent and -independent mechanisms".PMID 25482018
  429. Asli Ozmen et al. (2015). "Glucocorticoid exposure altered angiogenic factor expression via Akt/mTOR pathway in rat placenta".PMID 25479925
  430. Rui Yang et al. (2014). "MicroRNA-144 suppresses cholangiocarcinoma cell proliferation and invasion through targeting platelet activating factor acetylhydrolase isoform 1b".PMID 25479763
  431. Ruka Setoguchi et al. (2015). "mTOR signaling promotes a robust and continuous production of IFN-γ by human memory CD8+ T cells and their proliferation".PMID 25476730
  432. Zachary B Smithline et al. (2014). "Inhibiting heat shock protein 90 (HSP90) limits the formation of liver cysts induced by conditional deletion of Pkd1 in mice".PMID 25474361
  433. Rosalba Parenti et al. (2014). "Wilms' tumor gene 1 (WT1) silencing inhibits proliferation of malignant peripheral nerve sheath tumor sNF96.2 cell line".PMID 25474318
  434. Katrin Diesenberg et al. (2015). "SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR".PMID 25472714
  435. Arminja N Kettenbach et al. (2015). "SPECHT - single-stage phosphopeptide enrichment and stable-isotope chemical tagging: quantitative phosphoproteomics of insulin action in muscle".PMID 25463755
  436. M H Galinato et al. (2015). "Methamphetamine differentially affects BDNF and cell death factors in anatomically defined regions of the hippocampus".PMID 25463524
  437. Sharon Manley et al. (2014). "Farnesoid X receptor regulates forkhead Box O3a activation in ethanol-induced autophagy and hepatotoxicity".PMID 25460735
  438. Edward Carter et al. (2014). "Phosphoinositide 3-kinase alpha-dependent regulation of branching morphogenesis in murine embryonic lung: evidence for a role in determining morphogenic properties of FGF7".PMID 25460003
  439. Jessica A Gasser et al. (2014). "SGK3 mediates INPP4B-dependent PI3K signaling in breast cancer".PMID 25458846
  440. Byung Mun Park et al. (2015). "Angiotensin IV stimulates high atrial stretch-induced ANP secretion via insulin regulated aminopeptidase".PMID 25451332
  441. Mehrnoosh Saghizadeh et al. (2014). "Normalization of wound healing and stem cell marker patterns in organ-cultured human diabetic corneas by gene therapy of limbal cells".PMID 25446319
  442. Catia Giovannini et al. (2014). "Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma".PMID 25431954
  443. Jennifer V Hall et al. (2014). "Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development".PMID 25414835
  444. T H Kim et al. (2014). "Identification of Creb3l4 as an essential negative regulator of adipogenesis".PMID 25412305
  445. Raymond S Douglas et al. (2014). "Thyrotropin receptor and CD40 mediate interleukin-8 expression in fibrocytes: implications for thyroid-associated ophthalmopathy (an American Ophthalmological Society thesis)".PMID 25411513
  446. Jianwei Sun et al. (2014). "STIM1- and Orai1-mediated Ca(2+) oscillation orchestrates invadopodium formation and melanoma invasion".PMID 25404747
  447. Yoshihiro Ito et al. (2014). "Oncogenic activity of the regulatory subunit p85β of phosphatidylinositol 3-kinase (PI3K)".PMID 25385636
  448. Minoru Soga et al. (2014). "The di-peptide Trp-His activates AMP-activated protein kinase and enhances glucose uptake independently of insulin in L6 myotubes".PMID 25383313
  449. María José Pérez-Alvarez et al. (2015). "Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus".PMID 25377795
  450. Sharon Israeli-Rosenberg et al. (2015). "Caveolin modulates integrin function and mechanical activation in the cardiomyocyte".PMID 25366344
  451. P L Chavali et al. (2014). "TLX activates MMP-2, promotes self-renewal of tumor spheres in neuroblastoma and correlates with poor patient survival".PMID 25356871
  452. C Nie et al. (2014). "Caspase-9 mediates Puma activation in UCN-01-induced apoptosis".PMID 25356864
  453. Yong Sang Hong et al. (2014). "Src mutation induces acquired lapatinib resistance in ERBB2-amplified human gastroesophageal adenocarcinoma models".PMID 25350844
  454. Li Tan et al. (2014). "Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors".PMID 25349422
  455. Lelin Bing et al. (2015). "DHT inhibits the Aβ25-35-induced apoptosis by regulation of seladin-1, survivin, XIAP, bax, and bcl-xl expression through a rapid PI3-K/Akt signaling in C6 glial cell lines".PMID 25347962
  456. Anirban Bhattachariya et al. (2014). "PYK2 selectively mediates signals for growth versus differentiation in response to stretch of spontaneously active vascular smooth muscle".PMID 25347863
  457. Laura Musazzi et al. (2014). "Time-dependent activation of MAPK/Erk1/2 and Akt/GSK3 cascades: modulation by agomelatine".PMID 25332063
  458. Rachit Badolia et al. (2015). "Gq-mediated Akt translocation to the membrane: a novel PIP3-independent mechanism in platelets".PMID 25331114
  459. Rodrigo W A Souza et al. (2014). "Aerobic exercise training prevents heart failure-induced skeletal muscle atrophy by anti-catabolic, but not anabolic actions".PMID 25330387
  460. Lykke Blaabjerg et al. (2014). "CRFR1 activation protects against cytokine-induced β-cell death".PMID 25324488
  461. William S Holland et al. (2015). "Effects of AKT inhibition on HGF-mediated erlotinib resistance in non-small cell lung cancer cell lines".PMID 25323938
  462. Bella S Guerrouahen et al. (2014). "Akt-activated endothelium constitutes the niche for residual disease and resistance to bevacizumab in ovarian cancer".PMID 25319392
  463. Sung Gyun Kim et al. (2014). "Bilirubin activates transcription of HIF-1α in human proximal tubular cells cultured in the physiologic oxygen content".PMID 25317019
  464. Karin Mössenböck et al. (2014). "Browning of white adipose tissue uncouples glucose uptake from insulin signaling".PMID 25313899
  465. Brandon A Kocher et al. (2015). "DAPK3 suppresses acini morphogenesis and is required for mouse development".PMID 25304685
  466. Xin Cai et al. (2014). "Autonomous stimulation of cancer cell plasticity by the human NKG2D lymphocyte receptor coexpressed with its ligands on cancer cells".PMID 25291178
  467. Ceren Ozek et al. (2014). "Protein-tyrosine phosphatase 1B (PTP1B) is a novel regulator of central brain-derived neurotrophic factor and tropomyosin receptor kinase B (TrkB) signaling".PMID 25288805
  468. Liliana M G Pereira et al. (2014). "Intracellular trafficking of AIP56, an NF-κB-cleaving toxin from Photobacterium damselae subsp. piscicida".PMID 25287919
  469. Marta Puig et al. (2015). "Matrix stiffening and β1 integrin drive subtype-specific fibroblast accumulation in lung cancer".PMID 25280968
  470. Shinya Rai et al. (2014). "Clathrin assembly protein CALM plays a critical role in KIT signaling by regulating its cellular transport from early to late endosomes in hematopoietic cells".PMID 25279552
  471. Caroline Brun et al. (2014). "Absence of hyperplasia in Gasp-1 overexpressing mice is dependent on myostatin up-regulation".PMID 25277978
  472. Minna D Balbas et al. (2014). "MAGI-2 scaffold protein is critical for kidney barrier function".PMID 25271328
  473. Honey Modi et al. (2014). "Glutamine stimulates biosynthesis and secretion of insulin-like growth factor 2 (IGF2), an autocrine regulator of beta cell mass and function".PMID 25271169
  474. Kaja Kannike et al. (2014). "Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop".PMID 25271153
  475. A Ledonne et al. (2015). "Neuregulin 1 signalling modulates mGluR1 function in mesencephalic dopaminergic neurons".PMID 25266126
  476. A K Portella et al. (2015). "Litter size reduction alters insulin signaling in the ventral tegmental area and influences dopamine-related behaviors in adult rats".PMID 25264577
  477. Takashi Morioka et al. (2014). "An important role of endothelial hairy-related transcription factors in mouse vascular development".PMID 25264302
  478. Yona Goldshmit et al. (2014). "Interfering with the interaction between ErbB1, nucleolin and Ras as a potential treatment for glioblastoma".PMID 25261371
  479. Min Peng et al. (2014). "Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling".PMID 25259925
  480. Yasuhiro Serizawa et al. (2014). "Salicylate acutely stimulates 5'-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscles".PMID 25256746
  481. Güliz Vanli et al. (2014). "The activity of the anti-apoptotic fragment generated by the caspase-3/p120 RasGAP stress-sensing module displays strict Akt isoform specificity".PMID 25246356
  482. Martin E Young et al. (2014). "Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart".PMID 25238855
  483. Rita De Santis et al. (2014). "Efficacy of aerosol therapy of lung cancer correlates with EGFR paralysis induced by AvidinOX-anchored biotinylated Cetuximab".PMID 25238453
  484. Yixuan Wang et al. (2015). "Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation".PMID 25219467
  485. Ian R W Ritchie et al. (2014). "Adiponectin is not required for exercise training-induced improvements in glucose and insulin tolerance in mice".PMID 25214523
  486. Lucila Sackmann-Sala et al. (2014). "Prolactin-induced prostate tumorigenesis links sustained Stat5 signaling with the amplification of basal/stem cells and emergence of putative luminal progenitors".PMID 25193592
  487. Ivana Pilchova et al. (2015). "Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia".PMID 25187358
  488. Matthew G Rubashkin et al. (2014). "Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate".PMID 25183785
  489. J Tang et al. (2014). "Overexpression of metadherin mediates metastasis of osteosarcoma by regulating epithelial-mesenchymal transition".PMID 25174891
  490. Jia Liu et al. (2014). "Oleanolic acid inhibits proliferation and invasiveness of Kras-transformed cells via autophagy".PMID 25172632
  491. Camila S Oliveira et al. (2014). "Macrophage migration inhibitory factor engages PI3K/Akt signalling and is a prognostic factor in metastatic melanoma".PMID 25168062
  492. Fang Niu et al. (2014). "Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders".PMID 25164676
  493. Maximilian Kleinert et al. (2014). "Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo".PMID 25161886
  494. Tatsushi Kodama et al. (2014). "A novel mechanism of EML4-ALK rearrangement mediated by chromothripsis in a patient-derived cell line".PMID 25144242
  495. Nerea Osinalde et al. (2015). "Simultaneous dissection and comparison of IL-2 and IL-15 signaling pathways by global quantitative phosphoproteomics".PMID 25142963
  496. Honglin Niu et al. (2014). "Benazepril affects integrin-linked kinase and smooth muscle α-actin expression in diabetic rat glomerulus and cultured mesangial cells".PMID 25142208
  497. Scott Fuller et al. (2014). "St. John's Wort Has Metabolically Favorable Effects on Adipocytes In Vivo".PMID 25136373
  498. Songqing Tang et al. (2014). "RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase".PMID 25118589
  499. Gloria G Curto et al. (2014). "Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb".PMID 25117830
  500. Chhanda Biswas et al. (2014). "Nuclear heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses".PMID 25107906
  501. Mark Yarchoan et al. (2014). "Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies".PMID 25107476
  502. J Eva Selfridge et al. (2015). "Effect of one month duration ketogenic and non-ketogenic high fat diets on mouse brain bioenergetic infrastructure".PMID 25104046
  503. Jong Min Baek et al. (2014). "Aconitum pseudo-laeve var. erectum inhibits receptor activator of nuclear factor kappa-B ligand-induced osteoclastogenesis via the c-Fos/nuclear factor of activated T-cells, cytoplasmic 1 signaling pathway and prevents lipopolysaccharide-induced bone loss".PMID 25100255
  504. Elvira Bailon et al. (2014). "Overexpression of progelatinase B/proMMP-9 affects migration regulatory pathways and impairs chronic lymphocytic leukemia cell homing to bone marrow and spleen".PMID 25080557
  505. Sarah A Tersey et al. (2014). "12-lipoxygenase promotes obesity-induced oxidative stress in pancreatic islets".PMID 25071151
  506. Shihai Zhang et al. (2014). "Leucine stimulates ASCT2 amino acid transporter expression in porcine jejunal epithelial cell line (IPEC-J2) through PI3K/Akt/mTOR and ERK signaling pathways".PMID 25063204
  507. Tadashi Watanabe et al. (2014). "Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma".PMID 25063029
  508. Harpreet Sidhu et al. (2014). "Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model".PMID 25057190
  509. Tianfu Wu et al. (2014). "Prevention of murine lupus nephritis by targeting multiple signaling axes and oxidative stress using a synthetic triterpenoid".PMID 25047252
  510. Ella Zeldich et al. (2014). "The neuroprotective effect of Klotho is mediated via regulation of members of the redox system".PMID 25037225
  511. Curtis H Kugel et al. (2014). "Function-blocking ERBB3 antibody inhibits the adaptive response to RAF inhibitor".PMID 25035390
  512. Suraj Konnath George et al. (2014). "The ALK inhibitor ASP3026 eradicates NPM-ALK⁺ T-cell anaplastic large-cell lymphoma in vitro and in a systemic xenograft lymphoma model".PMID 25026277
  513. Catherine Moorwood et al. (2014). "Absence of γ-sarcoglycan alters the response of p70S6 kinase to mechanical perturbation in murine skeletal muscle".PMID 25024843
  514. Gareth D Hyde et al. (2014). "Axl tyrosine kinase protects against tubulo-interstitial apoptosis and progression of renal failure in a murine model of chronic kidney disease and hyperphosphataemia".PMID 25019319
  515. Valentina Martin et al. (2014). "Increase of MET gene copy number confers resistance to a monovalent MET antibody and establishes drug dependence".PMID 25011627
  516. Masako Yokota et al. (2014). "Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis".PMID 25003957
  517. Yangyang Wang et al. (2014). "Blocking the formation of radiation-induced breast cancer stem cells".PMID 25003837
  518. Elma Zaganjor et al. (2014). "Ras transformation uncouples the kinesin-coordinated cellular nutrient response".PMID 25002494
  519. Lezi E et al. (2014). "Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation".PMID 25002036
  520. Jing Hu et al. (2014). "microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C".PMID 25001183
  521. Julie Abildgaard et al. (2014). "In vitro palmitate treatment of myotubes from postmenopausal women leads to ceramide accumulation, inflammation and affected insulin signaling".PMID 25000528
  522. Chunyang Li et al. (2014). "Molecular switch role of Akt in Polygonatum odoratum lectin-induced apoptosis and autophagy in human non-small cell lung cancer A549 cells".PMID 24992302
  523. Xingnan Zheng et al. (2014). "Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase".PMID 24990963
  524. Georgios Chondrogiannis et al. (2014). "Cytokine effects on cell viability and death of prostate carcinoma cells".PMID 24982891
  525. Mousumi Majumder et al. (2014). "Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions".PMID 24981602
  526. Eleftherios P Samartzis et al. (2014). "Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition".PMID 24979463
  527. Jinlin Liu et al. (2014). "CCR6 is a prognostic marker for overall survival in patients with colorectal cancer, and its overexpression enhances metastasis in vivo".PMID 24979261
  528. Matthew C Morris et al. (2014). "Dynamic modulation of innate immune response by varying dosages of lipopolysaccharide (LPS) in human monocytic cells".PMID 24970893
  529. Wu Liang et al. (2014). "CAV-1 contributes to bladder cancer progression by inducing epithelial-to-mesenchymal transition".PMID 24968949
  530. Ilkka Paatero et al. (2014). "Hypoxia-inducible factor-1α induces ErbB4 signaling in the differentiating mammary gland".PMID 24966332
  531. Javier Celis-Gutierrez et al. (2014). "Dok1 and Dok2 proteins regulate natural killer cell development and function".PMID 24963146
  532. Christina A von Roemeling et al. (2014). "Neuronal pentraxin 2 supports clear cell renal cell carcinoma by activating the AMPA-selective glutamate receptor-4".PMID 24962026
  533. You Hee Choi et al. (2014). "Akt enhances Runx2 protein stability by regulating Smurf2 function during osteoblast differentiation".PMID 24961731
  534. Monica Hellesøy et al. (2014). "Akt1 activity regulates vessel maturation in a tissue engineering model of angiogenesis".PMID 24957363
  535. Yuan Xu et al. (2014). "Statins upregulate cystathionine γ-lyase transcription and H2S generation via activating Akt signaling in macrophage".PMID 24951966
  536. Toshiaki Tanaka et al. (2014). "Sec6 regulated cytoplasmic translocation and degradation of p27 via interactions with Jab1 and Siah1".PMID 24949832
  537. Jianquan Chen et al. (2014). "mTORC1 signaling controls mammalian skeletal growth through stimulation of protein synthesis".PMID 24948603
  538. Natalia Cheshenko et al. (2014). "Herpes simplex virus type 2 glycoprotein H interacts with integrin αvβ3 to facilitate viral entry and calcium signaling in human genital tract epithelial cells".PMID 24942591
  539. Adriana Ramos et al. (2014). "Neuropeptide precursor VGF is genetically associated with social anhedonia and underrepresented in the brain of major mental illness: its downregulation by DISC1".PMID 24934694
  540. Maria B Lebron et al. (2014). "A human monoclonal antibody targeting the stem cell factor receptor (c-Kit) blocks tumor cell signaling and inhibits tumor growth".PMID 24921944
  541. Kathy Ye Morgan et al. (2014). "Investigation into the effects of varying frequency of mechanical stimulation in a cycle-by-cycle manner on engineered cardiac construct function".PMID 24916022
  542. Deven Etnyre et al. (2014). "Targeting c-Met in melanoma: mechanism of resistance and efficacy of novel combinatorial inhibitor therapy".PMID 24914950
  543. Xiangping Dai et al. (2014). "Negative regulation of DAB2IP by Akt and SCFFbw7 pathways".PMID 24912918
  544. Amel Dudakovic et al. (2015). "Histone deacetylase inhibition destabilizes the multi-potent state of uncommitted adipose-derived mesenchymal stromal cells".PMID 24912092
  545. S E Moody et al. (2015). "PRKACA mediates resistance to HER2-targeted therapy in breast cancer cells and restores anti-apoptotic signaling".PMID 24909179
  546. J Wang et al. (2015). "Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells".PMID 24909170
  547. Hillary Johnston-Cox et al. (2014). "The macrophage A2B adenosine receptor regulates tissue insulin sensitivity".PMID 24892847
  548. Karen Jung et al. (2014). "YB-1 regulates Sox2 to coordinately sustain stemness and tumorigenic properties in a phenotypically distinct subset of breast cancer cells".PMID 24885403
  549. Emilio J Vélez et al. (2014). "IGF-I and amino acids effects through TOR signaling on proliferation and differentiation of gilthead sea bream cultured myocytes".PMID 24882593
  550. Ya Juan Wan et al. (2014). "Vav1 increases Bcl-2 expression by selective activation of Rac2-Akt in leukemia T cells".PMID 24880064
  551. Hong Chen et al. (2014). "Teprotumumab, an IGF-1R blocking monoclonal antibody inhibits TSH and IGF-1 action in fibrocytes".PMID 24878056
  552. Anastasia Mashukova et al. (2014). "The BAG-1 isoform BAG-1M regulates keratin-associated Hsp70 chaperoning of aPKC in intestinal cells during activation of inflammatory signaling".PMID 24876225
  553. Nathan J Godde et al. (2014). "Scribble modulates the MAPK/Fra1 pathway to disrupt luminal and ductal integrity and suppress tumour formation in the mammary gland".PMID 24852022
  554. Mitchell Barns et al. (2014). "Molecular analyses provide insight into mechanisms underlying sarcopenia and myofibre denervation in old skeletal muscles of mice".PMID 24836906
  555. Randall M Chin et al. (2014). "The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR".PMID 24828042
  556. Sungkyoung Lee et al. (2014). "Loss of Dlg-1 in the mouse lens impairs fibroblast growth factor receptor signaling".PMID 24824078
  557. Victoria A Elliott et al. (2014). "Activation of c-Met and upregulation of CD44 expression are associated with the metastatic phenotype in the colorectal cancer liver metastasis model".PMID 24823486
  558. Catherine Stevenson et al. (2014). "Essential role of Elmo1 in Dock2-dependent lymphocyte migration".PMID 24821968
  559. Ramadevi Subramani et al. (2014). "Targeting insulin-like growth factor 1 receptor inhibits pancreatic cancer growth and metastasis".PMID 24809702
  560. Yonghua Jiang et al. (2014). "Xist deficiency and disorders of X-inactivation in rabbit embryonic stem cells can be rescued by transcription-factor-mediated conversion".PMID 24805295
  561. David I Brown et al. (2014). "Poldip2 knockout results in perinatal lethality, reduced cellular growth and increased autophagy of mouse embryonic fibroblasts".PMID 24797518
  562. Raju Padiya et al. (2014). "Garlic attenuates cardiac oxidative stress via activation of PI3K/AKT/Nrf2-Keap1 pathway in fructose-fed diabetic rat".PMID 24796753
  563. Wen Ting Peng et al. (2014). "Elevated expression of Girdin in the nucleus indicates worse prognosis for patients with estrogen receptor-positive breast cancer".PMID 24793340
  564. Samil Jung et al. (2014). "Distinct regulatory effect of the p34SEI-1 oncoprotein on cancer metastasis in HER2/neu-positive and -negative cells".PMID 24789658
  565. Bo Cen et al. (2014). "The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling".PMID 24777602
  566. Kiseok Kim et al. (2014). "Efficient isolation and elution of cellular proteins using aptamer-mediated protein precipitation assay".PMID 24768638
  567. Zhouyan Bian et al. (2014). "Never in mitosis gene A related kinase-6 attenuates pressure overload-induced activation of the protein kinase B pathway and cardiac hypertrophy".PMID 24763737
  568. Ying Na Bao et al. (2014). "Urokinase-type plasminogen activator receptor signaling is critical in nasopharyngeal carcinoma cell growth and metastasis".PMID 24763226
  569. Alexandra Coomans de Brachène et al. (2014). "The expression of the tumour suppressor HBP1 is down-regulated by growth factors via the PI3K/PKB/FOXO pathway".PMID 24762137
  570. Sara Häggblad Sahlberg et al. (2014). "Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells".PMID 24760019
  571. Xiaoyan Bai et al. (2014). "Antiangiogenic treatment diminishes renal injury and dysfunction via regulation of local AKT in early experimental diabetes".PMID 24759991
  572. Hervé Maurin et al. (2014). "Terminal hypothermic Tau.P301L mice have increased Tau phosphorylation independently of glycogen synthase kinase 3α/β".PMID 24754737
  573. Nagham Asp et al. (2014). "Flotillin depletion affects ErbB protein levels in different human breast cancer cells".PMID 24747692
  574. Shalene E Hardman et al. (2014). "The effects of age and muscle contraction on AMPK activity and heterotrimer composition".PMID 24747582
  575. Sireesha V Garimella et al. (2014). "Identification of novel molecular regulators of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in breast cancer cells by RNAi screening".PMID 24745479
  576. Bi Sheng Liu et al. (2014). "TLR-mediated STAT3 and ERK activation controls IL-10 secretion by human B cells".PMID 24737107
  577. Egle Cekanaviciute et al. (2014). "Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice".PMID 24733756
  578. Kristie T Ota et al. (2014). "REDD1 is essential for stress-induced synaptic loss and depressive behavior".PMID 24728411
  579. Pedro J Beltran et al. (2014). "Ganitumab (AMG 479) inhibits IGF-II-dependent ovarian cancer growth and potentiates platinum-based chemotherapy".PMID 24727326
  580. Yuen Keng Ng et al. (2014). "Pan-erbB inhibition potentiates BRAF inhibitors for melanoma treatment".PMID 24709886
  581. Grainne A McMahon Tobin et al. (2014). "The role of eNOS phosphorylation in causing drug-induced vascular injury".PMID 24705881
  582. Hazem Akkad et al. (2014). "Masseter muscle myofibrillar protein synthesis and degradation in an experimental critical illness myopathy model".PMID 24705179
  583. Michael R Lamprecht et al. (2014). "GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17β-estradiol after an ischemic injury in organotypic hippocampal slice cultures".PMID 24704272
  584. Luis Alberto Pérez-Quintero et al. (2014). "EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cγ, Ca++, and Erk, leading to granule polarization".PMID 24687958
  585. Richard Flavin et al. (2014). "SPINK1 protein expression and prostate cancer progression".PMID 24687926
  586. Birgit Bölck et al. (2014). "Detection of key enzymes, free radical reaction products and activated signaling molecules as biomarkers of cell damage induced by benzo[a]pyrene in human keratinocytes".PMID 24685774
  587. Olga V Glinskii et al. (2014). "Endothelial integrin α3β1 stabilizes carbohydrate-mediated tumor/endothelial cell adhesion and induces macromolecular signaling complex formation at the endothelial cell membrane".PMID 24675526
  588. Stacey E Wahl et al. (2014). "Mammalian target of rapamycin promotes oligodendrocyte differentiation, initiation and extent of CNS myelination".PMID 24671992
  589. Eva Marquez et al. (2014). "Albumin inhibits the insulin-mediated ACE2 increase in cultured podocytes".PMID 24671333
  590. Wan Jiun Chen et al. (2014). "Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling".PMID 24668028
  591. Simone Codeluppi et al. (2014). "Interleukin-6 secretion by astrocytes is dynamically regulated by PI3K-mTOR-calcium signaling".PMID 24667246
  592. Kristina H Knubel et al. (2014). "MerTK inhibition is a novel therapeutic approach for glioblastoma multiforme".PMID 24658326
  593. C Pourreyron et al. (2014). "High levels of type VII collagen expression in recessive dystrophic epidermolysis bullosa cutaneous squamous cell carcinoma keratinocytes increases PI3K and MAPK signalling, cell migration and invasion".PMID 24641191
  594. Peiwen Yu et al. (2014). "Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway".PMID 24634413
  595. Christophe Glorieux et al. (2014). "Catalase expression in MCF-7 breast cancer cells is mainly controlled by PI3K/Akt/mTor signaling pathway".PMID 24630930
  596. Hua Wang et al. (2014). "Polycystin-1 mediates mechanical strain-induced osteoblastic mechanoresponses via potentiation of intracellular calcium and Akt/β-catenin pathway".PMID 24618832
  597. Tao Pan et al. (2014). "Cytohesins/ARNO: the function in colorectal cancer cells".PMID 24618737
  598. Takashi Hamakawa et al. (2014). "Interleukin-18 may lead to benign prostatic hyperplasia via thrombospondin-1 production in prostatic smooth muscle cells".PMID 24615654
  599. Katia Bouchekioua-Bouzaghou et al. (2014). "LKB1 when associated with methylatedERα is a marker of bad prognosis in breast cancer".PMID 24615515
  600. Sivan M Bokobza et al. (2014). "Short-course treatment with gefitinib enhances curative potential of radiation therapy in a mouse model of human non-small cell lung cancer".PMID 24606853
  601. Xuejun Sun et al. (2014). "Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential".PMID 24599264
  602. Sudip Bhattacharyya et al. (2014). "Amelioration of aspirin induced oxidative impairment and apoptotic cell death by a novel antioxidant protein molecule isolated from the herb Phyllanthus niruri".PMID 24586486
  603. Joe Eun Son et al. (2014). "Pelargonidin attenuates PDGF-BB-induced aortic smooth muscle cell proliferation and migration by direct inhibition of focal adhesion kinase".PMID 24582770
  604. Lei Gu et al. (2014). "Pharmacologic suppression of JAK1/2 by JAK1/2 inhibitor AZD1480 potently inhibits IL-6-induced experimental prostate cancer metastases formation".PMID 24577942
  605. Dong Hyun Jo et al. (2014). "Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity".PMID 24566275
  606. Kimberley M Mellor et al. (2014). "Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose".PMID 24561860
  607. Anthony J Valente et al. (2014). "OxLDL induces endothelial dysfunction and death via TRAF3IP2: inhibition by HDL3 and AMPK activators".PMID 24561578
  608. Alizée Boin et al. (2014). "Proteomic screening identifies a YAP-driven signaling network linked to tumor cell proliferation in human schwannomas".PMID 24558021
  609. Jianjun Hu et al. (2014). "Filamin B regulates chondrocyte proliferation and differentiation through Cdk1 signaling".PMID 24551245
  610. Pei Ching Chang et al. (2014). "Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells".PMID 24551118
  611. Chenzhuo Feng et al. (2014). "Regulatory factor X1 is a new tumor suppressive transcription factor that acts via direct downregulation of CD44 in glioblastoma".PMID 24526308
  612. Heejei Yoon et al. (2014). "Targeted inhibition of FAK, PYK2 and BCL-XL synergistically enhances apoptosis in ovarian clear cell carcinoma cell lines".PMID 24523919
  613. Mona Foth et al. (2014). "Fibroblast growth factor receptor 3 activation plays a causative role in urothelial cancer pathogenesis in cooperation with Pten loss in mice".PMID 24519156
  614. Eun Young Park et al. (2014). "Targeting of receptor for advanced glycation end products suppresses cyst growth in polycystic kidney disease".PMID 24515114
  615. Joell L Solan et al. (2014). "Specific Cx43 phosphorylation events regulate gap junction turnover in vivo".PMID 24508467
  616. Weidong Xiao et al. (2014). "Glutamate prevents intestinal atrophy via luminal nutrient sensing in a mouse model of total parenteral nutrition".PMID 24497581
  617. Christoph Dorn et al. (2014). "Increased expression of c-Jun in nonalcoholic fatty liver disease".PMID 24492282
  618. Viktoria Tchetchelnitski et al. (2014). "Developmental co-expression and functional redundancy of tyrosine phosphatases with neurotrophin receptors in developing sensory neurons".PMID 24491805
  619. Qing Yu Zhang et al. (2014). "Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats".PMID 24491314
  620. Rei Taniguchi et al. (2014). "RelB-induced expression of Cot, an MAP3K family member, rescues RANKL-induced osteoclastogenesis in alymphoplasia mice by promoting NF-κB2 processing by IKKα".PMID 24488495
  621. V Pavet et al. (2014). "Plasminogen activator urokinase expression reveals TRAIL responsiveness and supports fractional survival of cancer cells".PMID 24481457
  622. Michael R Longman et al. (2014). "Regulation of PP2AC carboxylmethylation and cellular localisation by inhibitory class G-protein coupled receptors in cardiomyocytes".PMID 24475092
  623. Michael Xiang et al. (2014). "STAT3 induction of miR-146b forms a feedback loop to inhibit the NF-κB to IL-6 signaling axis and STAT3-driven cancer phenotypes".PMID 24473196
  624. Sheng Song Chen et al. (2014). "Liver, but not muscle, has an entrainable metabolic memory".PMID 24465939
  625. Cécile Naudin et al. (2014). "SLAP displays tumour suppressor functions in colorectal cancer via destabilization of the SRC substrate EPHA2".PMID 24457997
  626. Jianzhong Li et al. (2014). "Rictor/mTORC2 protects against cisplatin-induced tubular cell death and acute kidney injury".PMID 24451322
  627. Michele Massimino et al. (2014). "IRF5 is a target of BCR-ABL kinase activity and reduces CML cell proliferation".PMID 24445143
  628. Kristine M Wadosky et al. (2014). "Muscle RING finger-1 attenuates IGF-I-dependent cardiomyocyte hypertrophy by inhibiting JNK signaling".PMID 24425758
  629. J G Jespersen et al. (2015). "Alterations in molecular muscle mass regulators after 8 days immobilizing Special Forces mission".PMID 24422600
  630. Jennifer L Gorman et al. (2014). "Angiotensin II evokes angiogenic signals within skeletal muscle through co-ordinated effects on skeletal myocytes and endothelial cells".PMID 24416421
  631. Jody Groenendyk et al. (2014). "Disrupted WNT signaling in mouse embryonic stem cells in the absence of calreticulin".PMID 24415131
  632. Alice E Zemljic-Harpf et al. (2014). "Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes".PMID 24413171
  633. Kathy Ye Morgan et al. (2014). "Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs".PMID 24410342
  634. Amber N Ziegler et al. (2014). "Insulin-like growth factor-II (IGF-II) and IGF-II analogs with enhanced insulin receptor-a binding affinity promote neural stem cell expansion".PMID 24398690
  635. Cecile L Maire et al. (2014). "Pten loss in Olig2 expressing neural progenitor cells and oligodendrocytes leads to interneuron dysplasia and leukodystrophy".PMID 24395742
  636. Sadie G Wheeler et al. (2014). "Ostα-/- mice exhibit altered expression of intestinal lipid absorption genes, resistance to age-related weight gain, and modestly improved insulin sensitivity".PMID 24381083
  637. Peter Borghgraef et al. (2013). "Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau.P301L mice".PMID 24376810
  638. Xuebing Liu et al. (2014). "Reversing effect of sorcin in the drug resistance of human nasopharyngeal carcinoma".PMID 24376145
  639. Yen Ju Chen et al. (2013). "Global assessment of Antrodia cinnamomea-induced microRNA alterations in hepatocarcinoma cells".PMID 24358224
  640. Donald J McGuire et al. (2014). "CD5 enhances Th17-cell differentiation by regulating IFN-γ response and RORγt localization".PMID 24356888
  641. Justin M Balko et al. (2014). "Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets".PMID 24356096
  642. Weibin Wang et al. (2014). "PIASxα ligase enhances SUMO1 modification of PTEN protein as a SUMO E3 ligase".PMID 24344134
  643. Sara Häggblad Sahlberg et al. (2014). "The influence of AKT isoforms on radiation sensitivity and DNA repair in colon cancer cell lines".PMID 24338765
  644. Yiqun Du et al. (2014). "NF-κB and enhancer-binding CREB protein scaffolded by CREB-binding protein (CBP)/p300 proteins regulate CD59 protein expression to protect cells from complement attack".PMID 24338025
  645. N Domingues et al. (2014). "Therapeutic properties of VO(dmpp)2 as assessed by in vitro and in vivo studies in type 2 diabetic GK rats".PMID 24333827
  646. Jia Zhu et al. (2014). "A fibronectin peptide redirects PDGF-BB/PDGFR complexes to macropinocytosis-like internalization and augments PDGF-BB survival signals".PMID 24304816
  647. Ernesto Diaz-Flores et al. (2013). "PLC-γ and PI3K link cytokines to ERK activation in hematopoietic cells with normal and oncogenic Kras".PMID 24300897
  648. Toshiaki Tanaka et al. (2014). "Knockdown of Sec8 promotes cell-cycle arrest at G1/S phase by inducing p21 via control of FOXO proteins".PMID 24299491
  649. Shi Hao Tan et al. (2014). "Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway".PMID 24296537
  650. Anja Niehoff et al. (2014). "Effect of whole-body vibration and insulin-like growth factor-I on muscle paralysis-induced bone degeneration after botulinum toxin injection in mice".PMID 24292598
  651. X Yue et al. (2014). "Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinson's disease".PMID 24291725
  652. Yubin Wang et al. (2013). "Distinct roles for μ-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration".PMID 24285894
  653. Yan Zhang et al. (2014). "Growth/differentiation factor 1 alleviates pressure overload-induced cardiac hypertrophy and dysfunction".PMID 24275554
  654. Tim G Ashlin et al. (2014). "The anti-atherogenic cytokine interleukin-33 inhibits the expression of a disintegrin and metalloproteinase with thrombospondin motifs-1, -4 and -5 in human macrophages: Requirement of extracellular signal-regulated kinase, c-Jun N-terminal kinase and pho".PMID 24275094
  655. Michael E Haws et al. (2014). "PTEN knockdown alters dendritic spine/protrusion morphology, not density".PMID 24264880
  656. Tayir El-Ami et al. (2014). "A novel inhibitor of the insulin/IGF signaling pathway protects from age-onset, neurodegeneration-linked proteotoxicity".PMID 24261972
  657. Lin Qi et al. (2014). "Truncation of inhibitor of growth family protein 5 effectively induces senescence, but not apoptosis in human tongue squamous cell carcinoma cell line".PMID 24254310
  658. Jin Wang et al. (2014). "Synergistic combination of novel tubulin inhibitor ABI-274 and vemurafenib overcome vemurafenib acquired resistance in BRAFV600E melanoma".PMID 24249714
  659. Jonas T Treebak et al. (2014). "Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle".PMID 24247980
  660. Alessandro Castorina et al. (2014). "PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways".PMID 24246222
  661. Clarence A Dunn et al. (2014). "Injury-triggered Akt phosphorylation of Cx43: a ZO-1-driven molecular switch that regulates gap junction size".PMID 24213533
  662. F Gong et al. (2013). "Dichloroacetate induces protective autophagy in LoVo cells: involvement of cathepsin D/thioredoxin-like protein 1 and Akt-mTOR-mediated signaling".PMID 24201812
  663. Nadejda Valtcheva et al. (2013). "The orphan adhesion G protein-coupled receptor GPR97 regulates migration of lymphatic endothelial cells via the small GTPases RhoA and Cdc42".PMID 24178298
  664. K Bijian et al. (2013). "Targeting focal adhesion turnover in invasive breast cancer cells by the purine derivative reversine".PMID 24169345
  665. Yuan Fei Peng et al. (2013). "Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells".PMID 24157892
  666. Zheng Chen et al. (2014). "SH2B1 in β-cells regulates glucose metabolism by promoting β-cell survival and islet expansion".PMID 24150605
  667. Tsuyoshi Udagawa et al. (2013). "Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology".PMID 24141422
  668. Kiran Bhaskar et al. (2014). "Microglial derived tumor necrosis factor-α drives Alzheimer's disease-related neuronal cell cycle events".PMID 24141019
  669. Michael J Haas et al. (2014). "The effect of black seed (Nigella sativa) extract on FOXO3 expression in HepG2 cells".PMID 24123556
  670. Brynjulf Mortensen et al. (2014). "Physical inactivity affects skeletal muscle insulin signaling in a birth weight-dependent manner".PMID 24120282
  671. Marco Segatto et al. (2014). "Simvastatin treatment highlights a new role for the isoprenoid/cholesterol biosynthetic pathway in the modulation of emotional reactivity and cognitive performance in rats".PMID 24108067
  672. Hong Min Ni et al. (2013). "Critical role of FoxO3a in alcohol-induced autophagy and hepatotoxicity".PMID 24095927
  673. Melissa E Smith et al. (2013). "Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle".PMID 24073738
  674. Justin Trotter et al. (2013). "Dab1 is required for synaptic plasticity and associative learning".PMID 24068831
  675. Keijiro Ishikawa et al. (2014). "Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy".PMID 24022401
  676. Patrick Pla et al. (2013). "Huntingtin acts non cell-autonomously on hippocampal neurogenesis and controls anxiety-related behaviors in adult mouse".PMID 24019939
  677. Barbara S Paugh et al. (2013). "Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas".PMID 23970477
  678. Miguel Sáinz-Jaspeado et al. (2013). "EphA2-induced angiogenesis in ewing sarcoma cells works through bFGF production and is dependent on caveolin-1".PMID 23951165
  679. Ryoji Yoshida et al. (2013). "The pathological significance of Notch1 in oral squamous cell carcinoma".PMID 23938602
  680. Melanie H Kucherlapati et al. (2013). "Genotype directed therapy in murine mismatch repair deficient tumors".PMID 23935891
  681. Stefan Bittner et al. (2013). "Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS".PMID 23933981
  682. Demetris C Iacovides et al. (2013). "Identification and quantification of AKT isoforms and phosphoforms in breast cancer using a novel nanofluidic immunoassay".PMID 23929892
  683. Janine Dokas et al. (2013). "Conventional knockout of Tbc1d1 in mice impairs insulin- and AICAR-stimulated glucose uptake in skeletal muscle".PMID 23892475
  684. Yi Zhang et al. (2013). "Regulation of lipid and glucose homeostasis by mango tree leaf extract is mediated by AMPK and PI3K/AKT signaling pathways".PMID 23871039
  685. Simon Hauerslev et al. (2013). "Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I".PMID 23840556
  686. Jun Eguchi et al. (2013). "Interferon regulatory factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage polarization".PMID 23835343
  687. A Geissler et al. (2013). "Apoptosis induced by the fungal pathogen gliotoxin requires a triple phosphorylation of Bim by JNK".PMID 23832115
  688. T Pulinilkunnil et al. (2014). "Cardiac-specific adipose triglyceride lipase overexpression protects from cardiac steatosis and dilated cardiomyopathy following diet-induced obesity".PMID 23817015
  689. W Yang et al. (2013). "Alpha-synuclein overexpression increases phospho-protein phosphatase 2A levels via formation of calmodulin/Src complex".PMID 23796501
  690. Tomohide Hori et al. (2013). "Pretreatment of liver grafts in vivo by γ-aminobutyric acid receptor regulation reduces cold ischemia/warm reperfusion injury in rat".PMID 23792534
  691. Audrey N Chang et al. (2013). "The effects of neuregulin on cardiac Myosin light chain kinase gene-ablated hearts".PMID 23776695
  692. Sabine M Brouxhon et al. (2014). "Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers".PMID 23776059
  693. Patrick Imesch et al. (2013). "Histone deacetylase inhibitors down-regulate G-protein-coupled estrogen receptor and the GPER-antagonist G-15 inhibits proliferation in endometriotic cells".PMID 23755949
  694. Naveen Sharma et al. (2014). "Heterogeneous effects of calorie restriction on in vivo glucose uptake and insulin signaling of individual rat skeletal muscles".PMID 23755179
  695. Ulrike Mietzsch et al. (2013). "Comparative analysis of Tsc1 and Tsc2 single and double radial glial cell mutants".PMID 23749404
  696. Richard J Griffeth et al. (2013). "Insulin receptor substrate 2 is required for testicular development".PMID 23741292
  697. T H Beckham et al. (2013). "Acid ceramidase induces sphingosine kinase 1/S1P receptor 2-mediated activation of oncogenic Akt signaling".PMID 23732709
  698. Zhanjiang Hou et al. (2013). "Deferoxamine enhances neovascularization and accelerates wound healing in diabetic rats via the accumulation of hypoxia-inducible factor-1α".PMID 23726275
  699. Dong Zhou et al. (2013). "Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury".PMID 23715119
  700. Hanyu Liang et al. (2013). "Effect of lipopolysaccharide on inflammation and insulin action in human muscle".PMID 23704966
  701. Tian Ma et al. (2013). "Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer".PMID 23686769
  702. Nikhil A Gokhale et al. (2013). "PPIP5K1 modulates ligand competition between diphosphoinositol polyphosphates and PtdIns(3,4,5)P3 for polyphosphoinositide-binding domains".PMID 23682967
  703. Ye Wang et al. (2013). "Overexpression of SIRT1 promotes high glucose-attenuated corneal epithelial wound healing via p53 regulation of the IGFBP3/IGF-1R/AKT pathway".PMID 23661372
  704. Sabine S Neukamm et al. (2013). "Phosphorylation of serine 1137/1138 of mouse insulin receptor substrate (IRS) 2 regulates cAMP-dependent binding to 14-3-3 proteins and IRS2 protein degradation".PMID 23615913
  705. Sarah J Lessard et al. (2013). "Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks".PMID 23610057
  706. M Yu et al. (2014). "Inactivation of TGF-β signaling and loss of PTEN cooperate to induce colon cancer in vivo".PMID 23604118
  707. Himiko Tokami et al. (2013). "RANTES has a potential to play a neuroprotective role in an autocrine/paracrine manner after ischemic stroke".PMID 23602964
  708. K A Bauckman et al. (2013). "Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells".PMID 23598404
  709. Angelina M Hernandez et al. (2013). "Upregulation of p21 activates the intrinsic apoptotic pathway in β-cells".PMID 23592481
  710. Yannick D Benoit et al. (2013). "Pharmacological inhibition of polycomb repressive complex-2 activity induces apoptosis in human colon cancer stem cells".PMID 23588203
  711. Eva Degerman et al. (2013). "Expression of insulin signalling components in the sensory epithelium of the human saccule".PMID 23584706
  712. Ludvig J Backman et al. (2013). "Akt-mediated anti-apoptotic effects of substance P in Anti-Fas-induced apoptosis of human tenocytes".PMID 23577779
  713. Isabel M Chu et al. (2013). "Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß".PMID 23577196
  714. Monte S Willis et al. (2013). "Carboxyl terminus of Hsp70-interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise".PMID 23553918
  715. Dagmar J Haeussler et al. (2013). "Endomembrane H-Ras controls vascular endothelial growth factor-induced nitric-oxide synthase-mediated endothelial cell migration".PMID 23548900
  716. Arnau Busquets-Garcia et al. (2013). "Targeting the endocannabinoid system in the treatment of fragile X syndrome".PMID 23542787
  717. Min Ni et al. (2013). "Amplitude modulation of androgen signaling by c-MYC".PMID 23530127
  718. Hanyu Liang et al. (2013). "Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects".PMID 23529132
  719. Daniel Thomas et al. (2013). "Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival".PMID 23526884
  720. CAROLYN BENTLEY et al. (2013). "A requirement for wild-type Ras isoforms in mutant KRas-driven signalling and transformation".PMID 23496764
  721. Sarah Melissa P Jacobo et al. (2013). "Age-related macular degeneration-associated silent polymorphisms in HtrA1 impair its ability to antagonize insulin-like growth factor 1".PMID 23478260
  722. Uma Karthika Rajarajacholan et al. (2013). "The ING1a tumor suppressor regulates endocytosis to induce cellular senescence via the Rb-E2F pathway".PMID 23472054
  723. José L Areta et al. (2013). "Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis".PMID 23459753
  724. Li Luo et al. (2013). "Chronic resistance training activates autophagy and reduces apoptosis of muscle cells by modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged rats".PMID 23419688
  725. Lilli Stergiou et al. (2013). "Integrin-mediated signaling induced by simian virus 40 leads to transient uncoupling of cortical actin and the plasma membrane".PMID 23409046
  726. Cecilia Brännmark et al. (2013). "Insulin signaling in type 2 diabetes: experimental and modeling analyses reveal mechanisms of insulin resistance in human adipocytes".PMID 23400783
  727. Hyung Jin Kim et al. (2013). "Conditional deletion of pten leads to defects in nerve innervation and neuronal survival in inner ear development".PMID 23393595
  728. Jia Dai et al. (2013). "IKKi deficiency promotes pressure overload-induced cardiac hypertrophy and fibrosis".PMID 23349709
  729. Elisa Carra et al. (2013). "Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures".PMID 23324350
  730. Katarzyna A Cieslik et al. (2013). "Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels".PMID 23303205
  731. Charlotte Suetta et al. (2012). "Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy".PMID 23284670
  732. Laura S Danielson et al. (2013). "Cardiovascular dysregulation of miR-17-92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis".PMID 23271053
  733. Rosa Sánchez-Alvarez et al. (2013). "Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention".PMID 23257780
  734. Akiko Sheala Shingo et al. (2013). "Intracerebroventricular administration of an insulin analogue recovers STZ-induced cognitive decline in rats".PMID 23238038
  735. Ho June Lee et al. (2013). "Noncovalent wild-type-sparing inhibitors of EGFR T790M".PMID 23229345
  736. William D Landry et al. (2013). "Imatinib and Nilotinib inhibit Bcr-Abl-induced ROS through targeted degradation of the NADPH oxidase subunit p22phox".PMID 23218026
  737. Chuan Dong Fan et al. (2013). "Ubiquitin-dependent regulation of phospho-AKT dynamics by the ubiquitin E3 ligase, NEDD4-1, in the insulin-like growth factor-1 response".PMID 23195959
  738. Steffan Vartanian et al. (2013). "Identification of mutant K-Ras-dependent phenotypes using a panel of isogenic cell lines".PMID 23188824
  739. Karthik M Kodigepalli et al. (2013). "SnoN/SkiL expression is modulated via arsenic trioxide-induced activation of the PI3K/AKT pathway in ovarian cancer cells".PMID 23178716
  740. Jasmin Mathew et al. (2013). "Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling".PMID 23164509
  741. Dharini van der Hoeven et al. (2013). "Fendiline inhibits K-Ras plasma membrane localization and blocks K-Ras signal transmission".PMID 23129805
  742. Kwang Jin Cho et al. (2012). "Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins".PMID 23124205
  743. Ji Eun Kim et al. (2012). "Aqueous extract of Liriope platyphylla, a traditional Chinese medicine, significantly inhibits abdominal fat accumulation and improves glucose regulation in OLETF type II diabetes model rats".PMID 23091518
  744. Hong Yu Wang et al. (2013). "AS160 deficiency causes whole-body insulin resistance via composite effects in multiple tissues".PMID 23078342
  745. Kristin K Ambacher et al. (2012). "The JNK- and AKT/GSK3β- signaling pathways converge to regulate Puma induction and neuronal apoptosis induced by trophic factor deprivation".PMID 23056511
  746. Roberto A Gulli et al. (2012). "Exercise restores insulin, but not adiponectin, response in skeletal muscle of high-fat fed rodents".PMID 23054173
  747. George G Schweitzer et al. (2012). "Sustained postexercise increases in AS160 Thr642 and Ser588 phosphorylation in skeletal muscle without sustained increases in kinase phosphorylation".PMID 22936728
  748. N Chatain et al. (2013). "Src family kinases mediate cytoplasmic retention of activated STAT5 in BCR-ABL-positive cells".PMID 22926520
  749. Naveen Sharma et al. (2012). "Preventing the calorie restriction-induced increase in insulin-stimulated Akt2 phosphorylation eliminates calorie restriction's effect on glucose uptake in skeletal muscle".PMID 22846604
  750. Devendra Singh et al. (2012). "Transforming fusions of FGFR and TACC genes in human glioblastoma".PMID 22837387
  751. M Kaiser et al. (2011). "Antileukemic activity of the HSP70 inhibitor pifithrin-μ in acute leukemia".PMID 22829184
  752. Jayakumar S Poovassery et al. (2012). "Type I IFN receptor and the B cell antigen receptor regulate TLR7 responses via distinct molecular mechanisms".PMID 22786773
  753. Timothy R Wilson et al. (2012). "Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors".PMID 22763448
  754. Lindsay B Gardner et al. (2012). "Effect of specific activation of γ-aminobutyric acid receptor in vivo on oxidative stress-induced damage after extended hepatectomy".PMID 22583816
  755. Wei Sha et al. (2012). "Loss of PPARγ expression by fibroblasts enhances dermal wound closure".PMID 22502865
  756. Jens Ruschmann et al. (2012). "The role of SHIP in the development and activation of mouse mucosal and connective tissue mast cells".PMID 22430739
  757. Meytal Shohat et al. (2012). "Protein phosphatase magnesium dependent 1A (PPM1A) plays a role in the differentiation and survival processes of nerve cells".PMID 22384250
  758. Anjum Riaz et al. (2012). "Receptor-specific mechanisms regulate phosphorylation of AKT at Ser473: role of RICTOR in β1 integrin-mediated cell survival".PMID 22384145
  759. Britta Lamottke et al. (2012). "The novel, orally bioavailable HSP90 inhibitor NVP-HSP990 induces cell cycle arrest and apoptosis in multiple myeloma cells and acts synergistically with melphalan by increased cleavage of caspases".PMID 22309072
  760. Jack T Lin et al. (2012). "Differential mTOR and ERK pathway utilization by effector CD4 T cells suggests combinatorial drug therapy of arthritis".PMID 22075384
  761. Roberto Zoncu et al. (2011). "mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase".PMID 22053050
  762. K Hussain et al. (2011). "An activating mutation of AKT2 and human hypoglycemia".PMID 21979934
  763. Timothy R Wilson et al. (2011). "Neuregulin-1-mediated autocrine signaling underlies sensitivity to HER2 kinase inhibitors in a subset of human cancers".PMID 21840482
  764. Thomas F O'Brien et al. (2011). "Regulation of T-cell survival and mitochondrial homeostasis by TSC1".PMID 21805467
  765. Carmine Settembre et al. (2011). "TFEB links autophagy to lysosomal biogenesis".PMID 21617040
  766. Iakovos Lazaridis et al. (2011). "Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis".PMID 21541365
  767. Jifen Li et al. (2011). "Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of {beta}-catenin signaling".PMID 21245375
  768. Heather L Chandler et al. (2010). "The effect of phosphorylated Akt inhibition on posterior capsule opacification in an ex vivo canine model".PMID 21139685
  769. Bu Qing Ye et al. (2010). "Slit2 regulates attractive eosinophil and repulsive neutrophil chemotaxis through differential srGAP1 expression during lung inflammation".PMID 20944010
  770. Qiaoling Liang et al. (2010). "IL-2 and IL-4 stimulate MEK1 expression and contribute to T cell resistance against suppression by TGF-beta and IL-10 in asthma".PMID 20926789
  771. Lu Jiang et al. (2010). "MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells".PMID 20819078
  772. Noriyuki Ouchi et al. (2010). "Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity".PMID 20558665
  773. Qing Li Kong et al. (2010). "Epstein-Barr virus-encoded LMP2A induces an epithelial-mesenchymal transition and increases the number of side population stem-like cancer cells in nasopharyngeal carcinoma".PMID 20532215
  774. Ryan J O Dowling et al. (2010). "mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs".PMID 20508131
  775. Veronique Marsaud et al. (2010). "Cyclin K and cyclin D1b are oncogenic in myeloma cells".PMID 20459741
  776. Dong Hyung Cho et al. (2010). "Upregulation of SPRR3 promotes colorectal tumorigenesis".PMID 20379613
  777. Ruhee Dere et al. (2010). "Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR".PMID 20169078
  778. J K Son et al. (2010). "TRAIL-activated stress kinases suppress apoptosis through transcriptional upregulation of MCL-1".PMID 20168333
  779. Stéphanie Decherf et al. (2010). "Thyroid hormone exerts negative feedback on hypothalamic type 4 melanocortin receptor expression".PMID 20160073
  780. Baoying Liu et al. (2010). "Pro-angiogenic effect of IFNgamma is dependent on the PI3K/mTOR/translational pathway in human retinal pigmented epithelial cells".PMID 20157617
  781. Helenia Ansuini et al. (2009). "Anti-EphA2 Antibodies with Distinct In Vitro Properties Have Equal In Vivo Efficacy in Pancreatic Cancer".PMID 20130824
  782. Jianhui Ma et al. (2010). "Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade".PMID 20038814
  783. Michael Udelhoven et al. (2010). "Neuronal insulin receptor substrate 2 (IRS2) expression is regulated by ZBP89 and SP1 binding to the IRS2 promoter".PMID 19875459
  784. Deepak Adhikari et al. (2010). "Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles".PMID 19843540
  785. Mehrnoosh Saghizadeh et al. (2010). "Adenovirus-driven overexpression of proteinases in organ-cultured normal human corneas leads to diabetic-like changes".PMID 19828126
  786. Eric N Churchill et al. (2010). "Ischaemic preconditioning improves proteasomal activity and increases the degradation of deltaPKC during reperfusion".PMID 19820255
  787. Shin Ichiro Hayashi et al. (2009). "The stent-eluting drugs sirolimus and paclitaxel suppress healing of the endothelium by induction of autophagy".PMID 19815708
  788. Frank W King et al. (2009). "Timosaponin AIII is preferentially cytotoxic to tumor cells through inhibition of mTOR and induction of ER stress".PMID 19789631
  789. Yasuko Hirakawa et al. (2009). "Glucocorticoid evoked upregulation of RCAN1-1 in human leukemic CEM cells susceptible to apoptosis".PMID 19725972
  790. Todd D Prickett et al. (2009). "Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4".PMID 19718025
  791. Junfang Wu et al. (2010). "Phosphatidylinositol 3-kinase/protein kinase Cdelta activation induces close homolog of adhesion molecule L1 (CHL1) expression in cultured astrocytes".PMID 19672967
  792. Ana Cerezo et al. (2009). "The absence of caveolin-1 increases proliferation and anchorage- independent growth by a Rac-dependent, Erk-independent mechanism".PMID 19620284
  793. Van Anthony M Villar et al. (2009). "G protein-coupled receptor kinase 4 (GRK4) regulates the phosphorylation and function of the dopamine D3 receptor".PMID 19520868
  794. Igor Ruvinsky et al. (2009). "Mice deficient in ribosomal protein S6 phosphorylation suffer from muscle weakness that reflects a growth defect and energy deficit".PMID 19479038
  795. Koji Taniguchi et al. (2009). "Suppression of Sproutys has a therapeutic effect for a mouse model of ischemia by enhancing angiogenesis".PMID 19424491
  796. Koji Ikeda et al. (2009). "Identification of ARIA regulating endothelial apoptosis and angiogenesis by modulating proteasomal degradation of cIAP-1 and cIAP-2".PMID 19416853
  797. Jorge Blando et al. (2009). "PTEN deficiency is fully penetrant for prostate adenocarcinoma in C57BL/6 mice via mTOR-dependent growth".PMID 19395652
  798. Juxiang Cao et al. (2009). "Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity".PMID 19369943
  799. Mamta Gupta et al. (2009). "A proliferation-inducing ligand mediates follicular lymphoma B-cell proliferation and cyclin D1 expression through phosphatidylinositol 3-kinase-regulated mammalian target of rapamycin activation".PMID 19321861
  800. Janice B B Lam et al. (2009). "Adiponectin haploinsufficiency promotes mammary tumor development in MMTV-PyVT mice by modulation of phosphatase and tensin homolog activities".PMID 19319191
  801. Yun Song Lee et al. (2009). "Regulation of expression of matrix metalloproteinase-9 by JNK in Raw 264.7 cells: presence of inhibitory factor(s) suppressing MMP-9 induction in serum and conditioned media".PMID 19299915
  802. Kyuho Jeong et al. (2009). "Modulation of the caveolin-3 localization to caveolae and STAT3 to mitochondria by catecholamine-induced cardiac hypertrophy in H9c2 cardiomyoblasts".PMID 19299911
  803. Tracie A Seimon et al. (2009). "Macrophage deficiency of p38alpha MAPK promotes apoptosis and plaque necrosis in advanced atherosclerotic lesions in mice".PMID 19287091
  804. DaMing Gao et al. (2009). "Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction".PMID 19270695
  805. Young Jun Kim et al. (2009). "NDRG2 expression decreases with tumor stages and regulates TCF/beta-catenin signaling in human colon carcinoma".PMID 19237607
  806. Anne Catherine Sprynski et al. (2009). "The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor".PMID 19228610
  807. Byoung Kwon Yoo et al. (2009). "Astrocyte elevated gene-1 regulates hepatocellular carcinoma development and progression".PMID 19221438
  808. Ke Ning et al. (2009). "Leptin-dependent phosphorylation of PTEN mediates actin restructuring and activation of ATP-sensitive K+ channels".PMID 19208634
  809. Yaron Vagima et al. (2009). "MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization".PMID 19197139
  810. Cleide Gonçalves da Silva et al. (2009). "Mechanism of purinergic activation of endothelial nitric oxide synthase in endothelial cells".PMID 19188511
  811. R Grant Rowe et al. (2009). "Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs".PMID 19188491
  812. Giada Monami et al. (2009). "Proepithelin regulates prostate cancer cell biology by promoting cell growth, migration, and anchorage-independent growth".PMID 19179604
  813. Jonathan Clarhaut et al. (2009). "ZEB-1, a repressor of the semaphorin 3F tumor suppressor gene in lung cancer cells".PMID 19177200
  814. Shun Liang et al. (2009). "Expression of activated PIK3CA in ovarian surface epithelium results in hyperplasia but not tumor formation".PMID 19172191
  815. Seungkirl Ahn et al. (2009). "{beta}-Arrestin-2 Mediates Anti-apoptotic Signaling through Regulation of BAD Phosphorylation".PMID 19171933
  816. Hyun Ju Kim et al. (2009). "The Src family kinase, Lyn, suppresses osteoclastogenesis in vitro and in vivo".PMID 19171907
  817. Lijuan Xu et al. (2009). "Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria".PMID 19164550
  818. Zhongjian Xie et al. (2009). "Phosphatidylinositol-4-phosphate 5-kinase 1alpha mediates extracellular calcium-induced keratinocyte differentiation".PMID 19158393
  819. Kensuke Sakamoto et al. (2009). "Role of the tumor suppressor PTEN in antioxidant responsive element-mediated transcription and associated histone modifications".PMID 19158375
  820. Takahiro Fujimoto et al. (2009). "Altered energy homeostasis and resistance to diet-induced obesity in KRAP-deficient mice".PMID 19156225
  821. D Chaturvedi et al. (2009). "Rapamycin induces transactivation of the EGFR and increases cell survival".PMID 19151764
  822. Trupti Joshi et al. (2009). "The PtdIns 3-kinase/Akt pathway regulates macrophage-mediated ADCC against B cell lymphoma".PMID 19148288
  823. Flora Brozzi et al. (2009). "S100B Protein Regulates Astrocyte Shape and Migration via Interaction with Src Kinase: IMPLICATIONS FOR ASTROCYTE DEVELOPMENT, ACTIVATION, AND TUMOR GROWTH".PMID 19147496
  824. Jixin Ding et al. (2009). "ClipR-59 interacts with Akt and regulates Akt cellular compartmentalization".PMID 19139280
  825. Ozgur Sahin et al. (2009). "Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance".PMID 19118495
  826. Xia V Yang et al. (2009). "Activated protein C ligation of ApoER2 (LRP8) causes Dab1-dependent signaling in U937 cells".PMID 19116273
  827. Anna Dubrovska et al. (2009). "The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations".PMID 19116269
  828. Price Blair et al. (2009). "Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase".PMID 19106411
  829. James W Peacock et al. (2009). "PTEN loss promotes mitochondrially dependent type II Fas-induced apoptosis via PEA-15".PMID 19103758
  830. Judit Pallares et al. (2009). "CK2beta is expressed in endometrial carcinoma and has a role in apoptosis resistance and cell proliferation".PMID 19056846
  831. Hiroshi Honda et al. (2008). "Serial analysis of gene expression reveals differential expression between endometriosis and normal endometrium. Possible roles for AXL and SHC1 in the pathogenesis of endometriosis".PMID 19055724
  832. Ilona Patursky-Polischuk et al. (2009). "The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner".PMID 19047368
  833. Xue Qing Wang et al. (2009). "Oncogenic K-Ras regulates proliferation and cell junctions in lung epithelial cells through induction of cyclooxygenase-2 and activation of metalloproteinase-9".PMID 19037103
  834. Xinqiang Huang et al. (2009). "Resident hepatocyte fibroblast growth factor receptor 4 limits hepatocarcinogenesis".PMID 19009564
  835. Janine A Burns et al. (2009). "Choice of fixative is crucial to successful immunohistochemical detection of phosphoproteins in paraffin-embedded tumor tissues".PMID 19001637
  836. Vladimir L Gabai et al. (2009). "Heat shock protein Hsp72 controls oncogene-induced senescence pathways in cancer cells".PMID 19001088
  837. J Wen et al. (2009). "Decreased BRCA1 confers tamoxifen resistance in breast cancer cells by altering estrogen receptor-coregulator interactions".PMID 18997820
  838. Jessica J Reimer et al. (2009). "Analysis of Epstein-Barr virus glycoprotein B functional domains via linker insertion mutagenesis".PMID 18987135
  839. Angela K Peter et al. (2009). "Myogenic Akt signaling upregulates the utrophin-glycoprotein complex and promotes sarcolemma stability in muscular dystrophy".PMID 18986978
  840. Seol Hee Kim et al. (2008). "Identification of human thioredoxin as a novel IFN-gamma-induced factor: mechanism of induction and its role in cytokine production".PMID 18983687
  841. Karina Jin Yoon et al. (2008). "ICAM-2 expression mediates a membrane-actin link, confers a nonmetastatic phenotype and reflects favorable tumor stage or histology in neuroblastoma".PMID 18978946
  842. Omedul Islam et al. (2009). "Interleukin-6 and neural stem cells: more than gliogenesis".PMID 18971377
  843. Abraham Schneider et al. (2008). "Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/REDD1 signaling axis in head and neck squamous cell carcinoma".PMID 18953439
  844. Elizabeth A Whitcomb et al. (2009). "Novel control of S phase of the cell cycle by ubiquitin-conjugating enzyme H7".PMID 18946090
  845. J R Smith et al. (2009). "Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors".PMID 18931700
  846. Timo Liebig et al. (2009). "RhoE Is required for keratinocyte differentiation and stratification".PMID 18923151
  847. Michael Degtyarev et al. (2008). "Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents".PMID 18838554
  848. Mei Hua Gao et al. (2008). "Adenylyl cyclase type VI increases Akt activity and phospholamban phosphorylation in cardiac myocytes".PMID 18838385
  849. K J Feres et al. (2009). "The RON receptor tyrosine kinase promotes MSP-independent cell spreading and survival in breast epithelial cells".PMID 18836480
  850. Yidi Wu et al. (2008). "Integrin-linked kinase regulates smooth muscle differentiation marker gene expression in airway tissue".PMID 18805960
  851. Alok Sharma et al. (2008). "Phosphorylation of p130Cas initiates Rac activation and membrane ruffling".PMID 18793427
  852. Sam M Janes et al. (2009). "PI3-kinase-dependent activation of apoptotic machinery occurs on commitment of epidermal keratinocytes to terminal differentiation".PMID 18766172
  853. Derek Y Chiang et al. (2008). "Focal gains of VEGFA and molecular classification of hepatocellular carcinoma".PMID 18701503
  854. Jason E Fish et al. (2008). "miR-126 regulates angiogenic signaling and vascular integrity".PMID 18694566
  855. Krisztina Kovács de Ostrovich et al. (2008). "Paracrine overexpression of insulin-like growth factor-1 enhances mammary tumorigenesis in vivo".PMID 18688034
  856. Brunilde Gril et al. (2008). "Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain".PMID 18664652
  857. Johannes Rieger et al. (2008). "Enzastaurin-induced apoptosis in glioma cells is caspase-dependent and inhibited by BCL-XL".PMID 18662322
  858. Guoqing Sheng et al. (2008). "Huntingtin-associated protein 1 interacts with Ahi1 to regulate cerebellar and brainstem development in mice".PMID 18636121
  859. Daniel D Kaplan et al. (2008). "A nucleostemin family GTPase, NS3, acts in serotonergic neurons to regulate insulin signaling and control body size".PMID 18628395
  860. Young Kwang Chae et al. (2008). "Human AQP5 plays a role in the progression of chronic myelogenous leukemia (CML)".PMID 18612408
  861. P L Greenhaff et al. (2008). "Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle".PMID 18577697
  862. Yonghua Yang et al. (2008). "Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion".PMID 18559531
  863. Chandramu Chetty et al. (2008). "Tissue inhibitor of metalloproteinase 3 suppresses tumor angiogenesis in matrix metalloproteinase 2-down-regulated lung cancer".PMID 18559520
  864. Kristen J Champion et al. (2008). "Endothelial function of von Hippel-Lindau tumor suppressor gene: control of fibroblast growth factor receptor signaling".PMID 18559510
  865. Hongguang Wei et al. (2008). "Heat stress activates AKT via focal adhesion kinase-mediated pathway in neonatal rat ventricular myocytes".PMID 18539755
  866. Sanjukta Chakraborty et al. (2008). "Involvement of TSC genes and differential expression of other members of the mTOR signaling pathway in oral squamous cell carcinoma".PMID 18538015
  867. Jiaxu Wang et al. (2008). "Jab1 is a target of EGFR signaling in ERalpha-negative breast cancer".PMID 18534028
  868. Christina Magkou et al. (2008). "Expression of the epidermal growth factor receptor (EGFR) and the phosphorylated EGFR in invasive breast carcinomas".PMID 18522728
  869. Myrto Giannopoulou et al. (2008). "Hepatocyte growth factor exerts its anti-inflammatory action by disrupting nuclear factor-kappaB signaling".PMID 18502824
  870. Taghi Manshouri et al. (2008). "The JAK kinase inhibitor CP-690,550 suppresses the growth of human polycythemia vera cells carrying the JAK2V617F mutation".PMID 18482053
  871. Yelena Lyustikman et al. (2008). "Constitutive activation of Raf-1 induces glioma formation in mice".PMID 18472967
  872. Tadateru Maehata et al. (2008). "Transcriptional silencing of Dickkopf gene family by CpG island hypermethylation in human gastrointestinal cancer".PMID 18461655
  873. Pawan Gulati et al. (2008). "Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34".PMID 18460336
  874. Jidong Zhu et al. (2008). "Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1".PMID 18451027
  875. H Agis et al. (2008). "Effects of platelet-derived growth factor isoforms on plasminogen activation by periodontal ligament and gingival fibroblasts".PMID 18447857
  876. Chunrong Yu et al. (2008). "Mitochondrial Bax translocation partially mediates synergistic cytotoxicity between histone deacetylase inhibitors and proteasome inhibitors in glioma cells".PMID 18445700
  877. Young Bong Choi et al. (2008). "Autocrine and paracrine promotion of cell survival and virus replication by human herpesvirus 8 chemokines".PMID 18434408
  878. Christine C Tomlinson et al. (2008). "Critical role for endocytosis in the regulation of signaling by the Kaposi's sarcoma-associated herpesvirus K1 protein".PMID 18434405
  879. Nobuyuki Kikuno et al. (2008). "Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells".PMID 18431742
  880. Minsub Shim et al. (2008). "Vitamin E succinate induces NAG-1 expression in a p38 kinase-dependent mechanism".PMID 18413810
  881. Peter Kamenicky et al. (2008). "Epithelial sodium channel is a key mediator of growth hormone-induced sodium retention in acromegaly".PMID 18388193
  882. Amit Verma et al. (2008). "Tissue transglutaminase regulates focal adhesion kinase/AKT activation by modulating PTEN expression in pancreatic cancer cells".PMID 18381937
  883. Y J Jeon et al. (2008). "Ribosomal protein S6 is a selective mediator of TRAIL-apoptotic signaling".PMID 18362888
  884. Changxue Lu et al. (2008). "Activation of phosphatidylinositol 3-kinase signaling promotes aberrant pituitary growth in a mouse model of thyroid-stimulating hormone-secreting pituitary tumors".PMID 18356276
  885. A R Smith et al. (2008). "Lipoic acid significantly restores, in rats, the age-related decline in vasomotion".PMID 18297110
  886. Katsuya Tanabe et al. (2008). "Genetic deficiency of glycogen synthase kinase-3beta corrects diabetes in mouse models of insulin resistance".PMID 18288891
  887. Patrick T Fueger et al. (2008). "Trefoil factor 3 stimulates human and rodent pancreatic islet beta-cell replication with retention of function".PMID 18258687
  888. Linda Yu et al. (2008). "Differential expression of receptor tyrosine kinases (RTKs) and IGF-I pathway activation in human uterine leiomyomas".PMID 18231572
  889. Mira Choi et al. (2008). "Short-term heat exposure inhibits inflammation by abrogating recruitment of and nuclear factor-{kappa}B activation in neutrophils exposed to chemotactic cytokines".PMID 18187571
  890. Emily M Horvath et al. (2008). "Antidiabetogenic effects of chromium mitigate hyperinsulinemia-induced cellular insulin resistance via correction of plasma membrane cholesterol imbalance".PMID 18165437
  891. C C Pan et al. (2008). "Constant allelic alteration on chromosome 16p (TSC2 gene) in perivascular epithelioid cell tumour (PEComa): genetic evidence for the relationship of PEComa with angiomyolipoma".PMID 18085521
  892. Min Huei Liang et al. (2008). "Lithium inhibits Smad3/4 transactivation via increased CREB activity induced by enhanced PKA and AKT signaling".PMID 18077182
  893. Carmen J Tartari et al. (2008). "Characterization of some molecular mechanisms governing autoactivation of the catalytic domain of the anaplastic lymphoma kinase".PMID 18070884
  894. Hans C Dreyer et al. (2008). "Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle".PMID 18056791
  895. Anush Oganesian et al. (2008). "Thrombospondins use the VLDL receptor and a nonapoptotic pathway to inhibit cell division in microvascular endothelial cells".PMID 18032585
  896. M Rajesh et al. (2008). "CB2 cannabinoid receptor agonists attenuate TNF-alpha-induced human vascular smooth muscle cell proliferation and migration".PMID 17994109
  897. Mariana Varela et al. (2008). "A large animal model to evaluate the effects of Hsp90 inhibitors for the treatment of lung adenocarcinoma".PMID 17961623
  898. Alan Cheng et al. (2007). "A role for AGL ubiquitination in the glycogen storage disorders of Lafora and Cori's disease".PMID 17908927
  899. Shawn D Larson et al. (2007). "Increased incidence of well-differentiated thyroid cancer associated with Hashimoto thyroiditis and the role of the PI3k/Akt pathway".PMID 17481480
  900. M J Don et al. (2007). "Cryptotanshinone inhibits chemotactic migration in macrophages through negative regulation of the PI3K signaling pathway".PMID 17471173
  901. L H Meng et al. (2007). "Dose-response transition from cell cycle arrest to apoptosis with selective degradation of Mdm2 and p21WAF1/CIP1 in response to the novel anticancer agent, aminoflavone (NSC 686,288)".PMID 17297446
  902. Kiyosumi Shibata et al. (2007). "P-LAP/IRAP-induced cell proliferation and glucose uptake in endometrial carcinoma cells via insulin receptor signaling".PMID 17233921
  903. J Kelley Bentley et al. (2007). "Rhinovirus activates interleukin-8 expression via a Src/p110beta phosphatidylinositol 3-kinase/Akt pathway in human airway epithelial cells".PMID 17121804
  904. Nabeel Bardeesy et al. (2006). "Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer".PMID 17114584
  905. Barbara Tanno et al. (2006). "Bim-dependent apoptosis follows IGFBP-5 down-regulation in neuroblastoma cells".PMID 17067554
  906. Florian Hohla et al. (2006). "Synergistic inhibition of growth of lung carcinomas by antagonists of growth hormone-releasing hormone in combination with docetaxel".PMID 16983095
  907. Stefan Grotegut et al. (2006). "Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail".PMID 16858414
  908. David Z Qian et al. (2006). "Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589".PMID 16428510
  909. David Matallanas et al. (2006). "Distinct utilization of effectors and biological outcomes resulting from site-specific Ras activation: Ras functions in lipid rafts and Golgi complex are dispensable for proliferation and transformation".PMID 16354683
  910. MinHee K Ko et al. (2005). "Regulatory role of FGF-2 on type I collagen expression during endothelial mesenchymal transformation".PMID 16303940
  911. Ji Youn Han et al. (2005). "Hypoxia-inducible factor 1alpha and antiangiogenic activity of farnesyltransferase inhibitor SCH66336 in human aerodigestive tract cancer".PMID 16145048