这是一篇来自已证抗体库的有关人类 Akt的综述,是根据1006篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Akt 抗体。
Akt 同义词: AKT; CWS6; PKB; PKB-ALPHA; PRKBA; RAC; RAC-ALPHA; RAC-alpha serine/threonine-protein kinase; AKT1m; PKB alpha; RAC-PK-alpha; protein kinase B alpha; proto-oncogene c-Akt; rac protein kinase alpha; serine-threonine protein kinase; v-akt murine thymoma viral oncogene homolog 1; v-akt murine thymoma viral oncogene-like protein 1

基因敲除验证
圣克鲁斯生物技术小鼠 单克隆(G-5)
  • 免疫印迹 (基因敲除); 人类; 图5
圣克鲁斯生物技术 Akt抗体(Santa Cruz, sc55523)被用于免疫印迹 (基因敲除)在人类样品上 (图5). PLoS ONE (2014) ncbi
圣克鲁斯生物技术小鼠 单克隆(G-5)
  • 免疫印迹 (基因敲除); 人类; 图1
圣克鲁斯生物技术 Akt抗体(Santa Cruz Biotechnology, sc55523)被用于免疫印迹 (基因敲除)在人类样品上 (图1). Tumour Biol (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 1:500; 图4
圣克鲁斯生物技术 Akt抗体(santa Cruz, Sc5298)被用于免疫印迹在小鼠样品上浓度为1:500 (图4). Sci Rep (2016) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 人类; 1:1000; 图2
圣克鲁斯生物技术 Akt抗体(Santa Cruz, sc-55523)被用于免疫印迹在人类样品上浓度为1:1000 (图2). Mol Med Rep (2016) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 人类; 1:1000; 图2
圣克鲁斯生物技术 Akt抗体(Santa Cruz, sc-81433)被用于免疫印迹在人类样品上浓度为1:1000 (图2). Mol Med Rep (2016) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 小鼠; 1:1000; 图2
圣克鲁斯生物技术 Akt抗体(Santa Cruz, sc-81434)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). Cell Death Dis (2016) ncbi
小鼠 单克隆(5.Ser 473)
  • 免疫印迹; 人类; 1:2500; 图6
圣克鲁斯生物技术 Akt抗体(Santa Cruz Biotechnology, sc-293125)被用于免疫印迹在人类样品上浓度为1:2500 (图6). Oncol Lett (2016) ncbi
小鼠 单克隆(5.Ser 473)
  • 免疫印迹; 人类; 图3
圣克鲁斯生物技术 Akt抗体(Santa Cruz, sc-293125)被用于免疫印迹在人类样品上 (图3). Oncol Lett (2016) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 小鼠; 1:1000; 图4
圣克鲁斯生物技术 Akt抗体(Santa Cruz, sc-55523)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4). Mol Med Rep (2016) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 小鼠; 1:1000; 图4
圣克鲁斯生物技术 Akt抗体(Santa Cruz, sc-81433)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4). Mol Med Rep (2016) ncbi
小鼠 单克隆(104A282)
  • 免疫印迹; 人类; 图6
圣克鲁斯生物技术 Akt抗体(Santa Cruz Biotechnology, sc-52940)被用于免疫印迹在人类样品上 (图6). Cancer Cell Int (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:500; 图3
圣克鲁斯生物技术 Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在人类样品上浓度为1:500 (图3). Oncoimmunology (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图S3
圣克鲁斯生物技术 Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在人类样品上 (图S3). Oncotarget (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图6
圣克鲁斯生物技术 Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在人类样品上 (图6). Oncotarget (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Akt抗体(Santa Cruz Biotechnology, sc-5298)被用于免疫印迹在大鼠样品上. Redox Biol (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 图8
圣克鲁斯生物技术 Akt抗体(Santa Cruz Biotechnology, sc-5298)被用于免疫印迹在小鼠样品上 (图8). Mol Biol Cell (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 大鼠; 图5
圣克鲁斯生物技术 Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在大鼠样品上 (图5). Mar Drugs (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 Akt抗体(Santa Cruz Biotechnology, sc5298)被用于免疫印迹在大鼠样品上浓度为1:500. An Acad Bras Cienc (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Akt抗体(Santa Cruz Biotechnology, sc-5298)被用于免疫印迹在小鼠样品上浓度为1:1000. Cell Death Differ (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 1:1000; 图5
圣克鲁斯生物技术 Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). Cell Death Dis (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 1:500; 图4
圣克鲁斯生物技术 Akt抗体(santa Cruz, Sc5298)被用于免疫印迹在小鼠样品上浓度为1:500 (图4). Int J Biol Sci (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Akt抗体(Santa Cruz Biotechnology, sc-5298)被用于免疫印迹在人类样品上. Colloids Surf B Biointerfaces (2015) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 Akt抗体(Santa Cruz Biotechnology, sc-81434)被用于免疫印迹在大鼠样品上浓度为1:500. World J Gastroenterol (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Akt抗体(Santa Cruz, SC5298)被用于免疫印迹在人类样品上浓度为1:1000. Cell Death Dis (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图1
  • 免疫印迹; 小鼠; 图1
圣克鲁斯生物技术 Akt抗体(Santa Cruz Biotechnologies, sc-5298)被用于免疫印迹在人类样品上 (图1) 和 在小鼠样品上 (图1). Blood (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Akt抗体(Santa Cruz Biotechnology, sc-5298)被用于免疫印迹在人类样品上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类
  • 免疫沉淀; 人类
圣克鲁斯生物技术 Akt抗体(Santa Cruz Biotechnology, B1)被用于免疫印迹在人类样品上 和 免疫沉淀在人类样品上. FEBS J (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在人类样品上浓度为1:1000. Cell Signal (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹 (基因敲除); 人类; 图5
圣克鲁斯生物技术 Akt抗体(Santa Cruz, sc55523)被用于免疫印迹 (基因敲除)在人类样品上 (图5). PLoS ONE (2014) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Akt抗体(Santa Cruz Biotechnology, sc-55523)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在人类样品上. Anat Rec (Hoboken) (2014) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹 (基因敲除); 人类; 图1
圣克鲁斯生物技术 Akt抗体(Santa Cruz Biotechnology, sc55523)被用于免疫印迹 (基因敲除)在人类样品上 (图1). Tumour Biol (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Akt抗体(Santa Cruz, sc-5298)被用于免疫印迹在人类样品上浓度为1:1000. FEBS J (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Akt抗体(Santa Cruz Biotechnology, sc-5298)被用于免疫印迹在人类样品上浓度为1:500. Tumour Biol (2014) ncbi
未注明
  • FC; 人类
为了研究在气喘患者中由TGFbeta和IL-10抑制造成的对T细胞的抗性的信号传导机制,采用了Santa Cruze Biotechnology的抗AKT抗体进行了流式细胞检测。J Immunol (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究STAT3/p63/Notch信号通路在调节小鼠和人的细胞分化中的功能,采用了Santa Cruz Biotechnology公司的TAKT抗体,进行了蛋白质印迹实验。J Oncol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究mTOR通路对Notch信号通路和细胞分化的调节作用,使用了Santa Cruz Biotechnology公司的抗AKT抗体来进行免疫印迹分析。J Clin Invest (2010) ncbi
  • 免疫组化; 人类
为了研究MMP-10和CTSF在糖尿病患者角膜伤口治愈不良中的作用,采用了Santa Cruz Biotechnology的抗磷酸化-Akt(Ser473)抗体进行免疫组化试验。 Brain Res Bull (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究Ischaemic预处理在调节缺血再灌注过程中蛋白酶体的活性和pkcdelta降解中的作用,采用了Santa Cruz Biotechnology公司的多克隆抗Akt抗体产品,进行了免疫印迹实验。Cardiovasc Res (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究神经胶原发生和H-IL-6激活的神经发生途径,使用了Santa Cruz公司的AKT抗体来进行蛋白印迹实验。Mol Biol Cell (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究神经胶原发生和H-IL-6激活的神经发生途径,使用了Santa Cruz公司的phospho-AKT抗体来进行蛋白印迹实验。Mol Biol Cell (2009) ncbi
未注明
  • 细胞化学; 人类
为了证明p130Cas的磷酸化促使了Rac的激活和膜起皱,采用了Santa Cruz Biotechnology的抗Rac抗体,进行免疫细胞化学实验BMC Cell Biol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究miR-126对血管完整性和血管生成的调控作用,采用了Santa Cruz的抗AKT1抗体进行免疫印迹实验。Dev Cell (2008) ncbi
未注明
  • 免疫组化; 人类
兔源性抗磷酸化Akt(Ser473)多克隆抗体(Santa Cruz)可用于免疫组化实验,来研究胰岛素样生长因子-1过表达在乳腺癌组织中的作用(标本均取自BK5.IGF-1转基因小鼠体内人工致癌乳腺组织,并经福尔马林固定)。Am J Pathol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究VHL肿瘤抑制基因通过成纤维细胞生长因子受体信号通路对内皮功能的影响,采用了Santa Cruz的兔多抗ETS1抗体进行免疫印迹实验。Cancer Res (2008) ncbi
未注明
  • 免疫印迹; 人类
兔源性抗丝氨酸Akt 1/2 和磷酸化丝氨酸p-Akt 1/2/3 (Thr 308)多克隆抗体(Santa Cruz)可用于免疫印迹实验,来研究肿瘤抑制基因TSC1和TSC2及其它因子在鳞状细胞癌致癌过程中的作用。BMC Cancer (2008) ncbi
未注明
  • 免疫印迹; 人类
为了检测蛋白酶体抑制剂和组蛋白酰基转移酶抑制剂在GBM细胞株中产生的效应,采用了Santa Cruz Biotechnology的兔抗磷酸化Akt多抗,进行蛋白质印迹实验Neuro Oncol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究人类疱疹病毒8趋化因子内皮生存和病毒复制中的作用,采用了Santa Cruz生物技术公司的抗AKT抗体进行了蛋白印迹实验。J Virol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究生长激素释放激素MZ-J-7-138和JV-1-92对抗物生长对H460人体非小细胞肺癌常位异种嫁接入裸鼠的影响,使用了Santa Cruz Biotechnology公司的多克隆Akt1抗体,进行了免疫印迹实验。Proc Natl Acad Sci U S A (2006) ncbi
赛默飞世尔
兔 单克隆(14-6)
  • 免疫印迹; 大鼠; 1:2500; 图6
赛默飞世尔 Akt抗体(Invitrogen, 44-621G)被用于免疫印迹在大鼠样品上浓度为1:2500 (图6). Cell Signal (2016) ncbi
兔 单克隆(98H9L8)
  • FC; 人类; 图4
赛默飞世尔 Akt抗体(生活技术, 98H9L8)被用于流式细胞仪在人类样品上 (图4). PLoS ONE (2016) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 人类; 1:1000; 图3
赛默飞世尔 Akt抗体(生活技术, 44-621G)被用于免疫印迹在人类样品上浓度为1:1000 (图3). PLoS ONE (2016) ncbi
兔 单克隆(98H9L8)
  • 免疫组化-P; 人类; 1:500; 图2
赛默飞世尔 Akt抗体(生活技术, 700392)被用于免疫组化-石蜡切片在人类样品上浓度为1:500 (图2). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图s7
赛默飞世尔 Akt抗体(Invitrogen, 44-609G)被用于免疫印迹在人类样品上浓度为1:1000 (图s7). Nat Chem Biol (2016) ncbi
小鼠 单克隆(9Q7)
  • 免疫印迹; 人类; 1:1000; 图s7
赛默飞世尔 Akt抗体(Invitrogen, AHO1112)被用于免疫印迹在人类样品上浓度为1:1000 (图s7). Nat Chem Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛默飞世尔 Akt抗体(Invitrogen, 44-602G)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Int J Mol Sci (2015) ncbi
兔 单克隆(98H9L8)
  • 免疫印迹; 人类; 图4b
赛默飞世尔 Akt抗体(Invitrogen, 700392)被用于免疫印迹在人类样品上 (图4b). Cancer Discov (2015) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 Akt抗体(Biosource, 44-C621G)被用于免疫印迹在小鼠样品上浓度为1:500. Mol Nutr Food Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 Akt抗体(Invitrogen, 44-C609G)被用于免疫印迹在小鼠样品上浓度为1:500. Mol Nutr Food Res (2016) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 小鼠; 1:1000; 图6
赛默飞世尔 Akt抗体(Invitrogen, 44-621G)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图6
赛默飞世尔 Akt抗体(Invitrogen, 44-609G)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Oncotarget (2015) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 人类; 1:1000; 图3
赛默飞世尔 Akt抗体(Pierce Biotechnology, OMA1-03061)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Mol Med Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛默飞世尔 Akt抗体(Invitrogen, 44-609G)被用于免疫印迹在小鼠样品上. J Nutr Biochem (2015) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 小鼠
赛默飞世尔 Akt抗体(Invitrogen, 44-621G)被用于免疫印迹在小鼠样品上. J Nutr Biochem (2015) ncbi
兔 单克隆(98H9L8)
  • 免疫印迹; 人类
赛默飞世尔 Akt抗体(Invitrogen, 700392)被用于免疫印迹在人类样品上. J Cell Biol (2015) ncbi
兔 单克隆(98H9L8)
  • 免疫组化-P; 人类; 1:100
赛默飞世尔 Akt抗体(Invitrogen, 98H9L8)被用于免疫组化-石蜡切片在人类样品上浓度为1:100. Anal Cell Pathol (Amst) (2014) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 人类; 图5a
赛默飞世尔 Akt抗体(生活技术, 44-621G)被用于免疫印迹在人类样品上 (图5a). Int J Cancer (2015) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 人类
赛默飞世尔 Akt抗体(Biosource, 44-621G)被用于免疫印迹在人类样品上. Clin Cancer Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛默飞世尔 Akt抗体(生活技术, 44609G)被用于免疫印迹在大鼠样品上. Brain Res (2014) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 人类; 图3
赛默飞世尔 Akt抗体(Invitrogen, 44-621G)被用于免疫印迹在人类样品上 (图3). Sci Signal (2013) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 图4
赛默飞世尔 Akt抗体(Invitrogen, 44-609G)被用于免疫组化在小鼠样品上 (图4). Calcif Tissue Int (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图s2
赛默飞世尔 Akt抗体(Invitrogen, 44-602G)被用于免疫印迹在人类样品上 (图s2). J Biol Chem (2013) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 人类; 图4
赛默飞世尔 Akt抗体(Invitrogen, 44621G)被用于免疫印迹在人类样品上 (图4). Cancer Discov (2013) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 小鼠; 图7
赛默飞世尔 Akt抗体(Invitrogen, 44-621G)被用于免疫印迹在小鼠样品上 (图7). J Immunol (2012) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 人类; 图2
赛默飞世尔 Akt抗体(Invitrogen, 44-621G)被用于免疫印迹在人类样品上 (图2). Nature (2012) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 小鼠; 图 7
赛默飞世尔 Akt抗体(Invitrogen, S473, catalog 44-621G)被用于免疫印迹在小鼠样品上 (图 7). J Immunol (2012) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 大鼠; 图4
赛默飞世尔 Akt抗体(Biosource, 44-621G)被用于免疫印迹在大鼠样品上 (图4). PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
赛默飞世尔 Akt抗体(Invitrogen, 44-623G)被用于免疫印迹在小鼠样品上 (图2). Clin Immunol (2012) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 人类; 图2
赛默飞世尔 Akt抗体(Invitrogen, 44-621G)被用于免疫印迹在人类样品上 (图2). Cancer Cell (2011) ncbi
兔 单克隆(14-6)
  • 免疫印迹; 小鼠; 图6
赛默飞世尔 Akt抗体(Biosource, 44-621G)被用于免疫印迹在小鼠样品上 (图6). Mol Cell Biol (2009) ncbi
艾博抗(上海)贸易有限公司
兔 单克隆(EP2109Y)
  • 免疫印迹; 小鼠; 图1
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, EP2109Y)被用于免疫印迹在小鼠样品上 (图1). Iran J Basic Med Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, ab8805)被用于免疫印迹在小鼠样品上 (图1). Iran J Basic Med Sci (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, ab8932)被用于免疫印迹在人类样品上 (图6). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 兔; 1:1000; 图4
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, ab23509)被用于免疫印迹在兔样品上浓度为1:1000 (图4). Int J Clin Exp Pathol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, 8805)被用于免疫印迹在人类样品上 (图2). Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图4
艾博抗(上海)贸易有限公司 Akt抗体(abcam, Ab66138)被用于免疫印迹在人类样品上浓度为1:1000 (图4). BMC Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 鸡; 1:750; 图5a
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, ab66138)被用于免疫印迹在鸡样品上浓度为1:750 (图5a). Gen Comp Endocrinol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, Ab66138)被用于免疫印迹在小鼠样品上浓度为1:500. Endocrinology (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, Ab8805)被用于免疫印迹在小鼠样品上浓度为1:500. Endocrinology (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, ab8805)被用于免疫印迹在人类样品上 (图3). Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 图1f-j
  • 免疫印迹; 人类; 图4b
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, ab8932)被用于免疫组化-石蜡切片在人类样品上 (图1f-j) 和 免疫印迹在人类样品上 (图4b). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 图1
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, ab8932)被用于免疫组化-石蜡切片在人类样品上 (图1). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫组化-F; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, ab64148)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:100. Nat Neurosci (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, ab66138)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:2000
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, ab66138)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 和 免疫印迹在大鼠样品上浓度为1:2000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:2000
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, ab8805)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 和 免疫印迹在大鼠样品上浓度为1:2000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, ab106693)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, ab23509)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, ab8805)被用于免疫印迹在人类样品上浓度为1:500. Autophagy (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, ab66138)被用于免疫印迹在人类样品上浓度为1:1000 和 在大鼠样品上浓度为1:1000. Neurochem Int (2013) ncbi
兔 多克隆
  • 免疫组化-F; 人类; 1:75
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, ab8805)被用于免疫组化-冰冻切片在人类样品上浓度为1:75. Cell Tissue Res (2013) ncbi
兔 多克隆
  • 免疫组化-P; 大鼠; 1:100
艾博抗(上海)贸易有限公司 Akt抗体(Abcam, ab8805)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100. Behav Brain Res (2013) ncbi
未注明
  • 免疫印迹; 人类
为了说明整合素连接的激酶可以调控气道平滑肌细胞分化,使用了Abcam公司的抗Akt抗体进行蛋白印迹实验。Am J Physiol Lung Cell Mol Physiol (2008) ncbi
武汉三鹰
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图5
武汉三鹰 Akt抗体(Proteintech, 10176-2-AP)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Sci Rep (2016) ncbi
宜康生物技术有限公司
小鼠 单克隆
  • 免疫印迹; 人类; 图5
宜康生物技术有限公司 Akt抗体(Epitomics, 2957)被用于免疫印迹在人类样品上 (图5). Oncotarget (2015) ncbi
Rockland Immunochemicals
小鼠 单克隆(17F6.B11)
  • 免疫组化; 小鼠; 1:500; 图6
Rockland Immunochemicals Akt抗体(Rockland Immunochemicals, 200-301-268)被用于免疫组化在小鼠样品上浓度为1:500 (图6). Fibrogenesis Tissue Repair (2012) ncbi
BioLegend
未注明
  • 免疫印迹; 人类
结合计算机模拟实验,模拟实验结果的检验,以及蛋白相互作用网络的反向工程实验来确认新的曲妥单抗抗乳腺癌的潜在治疗策略,将Covance提供的兔抗磷酸化AKT1抗体(目录号:PRB-542p)用于蛋白免疫印迹。BMC Syst Biol (2009) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在小鼠样品上 (图2). J Biol Chem (2016) ncbi
兔 多克隆
  • 免疫组化-P; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 9271)被用于免疫组化-石蜡切片在人类样品上. Respir Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图7) 和 在小鼠样品上 (图1). elife (2016) ncbi
兔 单克隆(D25E6)
  • 免疫印迹; 人类; 图7
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 13038)被用于免疫印迹在人类样品上 (图7) 和 在小鼠样品上 (图1). elife (2016) ncbi
  • 免疫印迹; 人类; 图7
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上 (图7) 和 在小鼠样品上 (图1). elife (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图3). Cell Discov (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 4060)被用于免疫印迹在人类样品上 (图4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:100; 图st1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在人类样品上浓度为1:100 (图st1). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Cell Commun Signal (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 表1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (表1). J Neuroinflammation (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 中国人仓鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在中国人仓鼠样品上 (图2). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图2). Lipids Health Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9275)被用于免疫印迹在人类样品上 (图2). Lipids Health Dis (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图s7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, C31E5E)被用于免疫印迹在人类样品上浓度为1:1000 (图s7). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Nat Commun (2016) ncbi
  • 免疫印迹; 大鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4691)被用于免疫印迹在大鼠样品上 (图5). Carcinogenesis (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4058)被用于免疫印迹在大鼠样品上 (图5). Carcinogenesis (2016) ncbi
兔 多克隆
  • 免疫组化-F; 大鼠; 1:25; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫组化-冰冻切片在大鼠样品上浓度为1:25 (图3). Mol Vis (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 1:2000; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上浓度为1:2000 (图5). Acta Neuropathol Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图2a
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图2a). BMC Cancer (2016) ncbi
兔 单克隆(D9E)
  • FC; 人类; 图s5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4075)被用于流式细胞仪在人类样品上 (图s5). PLoS ONE (2016) ncbi
  • 免疫印迹; 大鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在大鼠样品上 (图2). Physiol Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在大鼠样品上 (图2). Physiol Rep (2016) ncbi
兔 单克隆(244F9)
  • FC; 小鼠; 1:100; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4056)被用于流式细胞仪在小鼠样品上浓度为1:100 (图6). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠; 1:50; 图s2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫组化在小鼠样品上浓度为1:50 (图s2). Nat Commun (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上 (图2). Cell Death Dis (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4060S)被用于免疫印迹在人类样品上 (图2). Oncoimmunology (2016) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 2938S)被用于免疫印迹在人类样品上 (图2). Oncoimmunology (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:2000; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4691)被用于免疫印迹在小鼠样品上浓度为1:2000 (图5). Nat Commun (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4056)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:2000 (图6). PLoS ONE (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 大鼠; 1:800; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 4056)被用于免疫印迹在大鼠样品上浓度为1:800 (图6). Sci Rep (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 4691)被用于免疫印迹在大鼠样品上浓度为1:1000 (图6). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图2). Oncol Lett (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 9271S)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Oncol Lett (2016) ncbi
兔 单克隆(D25E6)
  • 免疫印迹; 大鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 13038)被用于免疫印迹在大鼠样品上浓度为1:1000 (图1). Sci Rep (2016) ncbi
  • 免疫印迹; 大鼠; 1:2000; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4691)被用于免疫印迹在大鼠样品上浓度为1:2000 (图1). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图6). Sci Rep (2016) ncbi
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, D9E)被用于免疫印迹在人类样品上 (图6). Sci Rep (2016) ncbi
兔 单克隆(D25E6)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, D25E6)被用于免疫印迹在人类样品上 (图6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). Nat Commun (2016) ncbi
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上 (图4). Stem Cell Reports (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上 (图4). Stem Cell Reports (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图s2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图s2). Nat Commun (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 4056)被用于免疫印迹在人类样品上 (图3). BMC Cancer (2016) ncbi
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫印迹在人类样品上 (图6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图6). Sci Rep (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:500; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691s)被用于免疫印迹在大鼠样品上浓度为1:500 (图3). Braz J Med Biol Res (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:500; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060 s)被用于免疫印迹在大鼠样品上浓度为1:500 (图3). Braz J Med Biol Res (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫印迹在小鼠样品上 (图7). PLoS ONE (2016) ncbi
  • 免疫印迹; 小鼠; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4691)被用于免疫印迹在小鼠样品上 (图7). PLoS ONE (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 小鼠; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4056)被用于免疫印迹在小鼠样品上 (图6). Cell Signal (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Alzheimers Dement (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图S11
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:2000 (图S11). Nat Commun (2016) ncbi
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图6A
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图6A). Front Pharmacol (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图6A
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上浓度为1:1000 (图6A). Front Pharmacol (2016) ncbi
  • 免疫印迹; 小鼠; 图s4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 2965)被用于免疫印迹在小鼠样品上 (图s4). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图s4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 4060)被用于免疫印迹在小鼠样品上 (图s4). Nat Commun (2016) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2967)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上 (图2). Cancer Cell Int (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 大鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signal, 4056s)被用于免疫印迹在大鼠样品上浓度为1:1000 (图5). Sci Rep (2016) ncbi
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上 (图1). J Immunol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图1). J Immunol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图s4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在人类样品上浓度为1:1000 (图s4). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图5). Sci Rep (2016) ncbi
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在人类样品上 (图5). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上 (图1). Skelet Muscle (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, D9E)被用于免疫印迹在人类样品上 (图4). Open Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图2). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图5). Nat Cell Biol (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫印迹在小鼠样品上 (图5). Nat Cell Biol (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 大鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4056)被用于免疫印迹在大鼠样品上浓度为1:1000 (图6). Cell Signal (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上 (图4). FASEB J (2016) ncbi
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在小鼠样品上 (图4). FASEB J (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 9271S)被用于免疫印迹在小鼠样品上 (图7). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 9271)被用于免疫印迹在人类样品上浓度为1:500 (图6). Front Cell Infect Microbiol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图st2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图st2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图s2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图s2). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上 (图3). Sci Rep (2016) ncbi
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在小鼠样品上 (图3). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图7). Sci Rep (2016) ncbi
  • 免疫印迹; 人类; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上 (图7). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4). Sci Rep (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 图8
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在大鼠样品上 (图8). PLoS Pathog (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图3). Oncogene (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 1:500; 图3a
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上浓度为1:500 (图3a). Mol Med Rep (2016) ncbi
  • 免疫印迹; 人类; 1:500; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, C73H10)被用于免疫印迹在人类样品上浓度为1:500 (图4). Future Oncol (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4058)被用于免疫印迹在小鼠样品上 (图2). Autophagy (2016) ncbi
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4691)被用于免疫印迹在小鼠样品上 (图2). Autophagy (2016) ncbi
兔 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 13038)被用于免疫印迹在小鼠样品上 (图5). Stem Cell Reports (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4060)被用于免疫印迹在小鼠样品上 (图5). Stem Cell Reports (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4691)被用于免疫印迹在小鼠样品上 (图5). Stem Cell Reports (2016) ncbi
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫印迹在人类样品上 (图5). Cell Signal (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图5). Cell Signal (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图2). Aging (Albany NY) (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图6). Neuroscience (2016) ncbi
兔 单克隆(D25E6)
  • 免疫印迹; 人类; 图6e
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 13038S)被用于免疫印迹在人类样品上 (图6e). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图6e
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691S)被用于免疫印迹在人类样品上 (图6e). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图6e
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在人类样品上 (图6e). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图s3
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4051)被用于免疫印迹在人类样品上 (图s3) 和 在小鼠样品上 (图3). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 4060)被用于免疫印迹在人类样品上 (图6). Sci Rep (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 4691)被用于免疫印迹在人类样品上 (图6). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4). Diabetologia (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 斑马鱼; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫组化-石蜡切片在斑马鱼样品上 (图6). elife (2016) ncbi
  • 免疫印迹; 人类; 1:600; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4051)被用于免疫印迹在人类样品上浓度为1:600 (图6). Autophagy (2016) ncbi
  • 免疫印迹; 小鼠; 1:1000; 图s5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 587 F11)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s5). J Neuroinflammation (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图4). BMC Complement Altern Med (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Mol Med Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:500 (图4). Mol Med Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上 (图2). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图s1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s1). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图s1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s1). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上 (图3). Mol Metab (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上 (图5). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). Int J Obes (Lond) (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图5). J Cancer (2016) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2967S)被用于免疫印迹在人类样品上 (图1). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在人类样品上 (图1). Sci Rep (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965S)被用于免疫印迹在人类样品上 (图1). Sci Rep (2016) ncbi
兔 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图6
  • 免疫印迹; 大鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 13038P)被用于免疫印迹在人类样品上浓度为1:1000 (图6) 和 在大鼠样品上浓度为1:1000 (图6). Oncol Lett (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图6
  • 免疫印迹; 大鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4691P)被用于免疫印迹在人类样品上浓度为1:1000 (图6) 和 在大鼠样品上浓度为1:1000 (图6). Oncol Lett (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在大鼠样品上浓度为1:1000 (图5). Exp Ther Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图4). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060s)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). Front Cell Neurosci (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; African green monkey; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在African green monkey样品上 (图3). Traffic (2016) ncbi
兔 单克隆(D25E6)
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, D25E6)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Oncoimmunology (2016) ncbi
  • 免疫印迹; 小鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Hum Mol Genet (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Hum Mol Genet (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5c
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上 (图5c). Cell Rep (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4691)被用于免疫印迹在人类样品上 (图4). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4060)被用于免疫印迹在人类样品上 (图4). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4060B)被用于免疫印迹在人类样品上 (图2). Biol Open (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 4060)被用于免疫印迹在人类样品上 (图5). Oncogenesis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Nat Commun (2016) ncbi
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 4691)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Nat Commun (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Nat Commun (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在大鼠样品上浓度为1:1000 (图6). Mol Med Rep (2016) ncbi
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫印迹在人类样品上 (图1). J Virol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060P)被用于免疫印迹在人类样品上 (图7). J Biol Chem (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691P)被用于免疫印迹在人类样品上 (图7). J Biol Chem (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠; 1:1000; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在大鼠样品上浓度为1:1000 (图2). Aging (Albany NY) (2016) ncbi
  • 免疫印迹; 大鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在大鼠样品上浓度为1:1000 (图3). Aging (Albany NY) (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上 (图2). J Clin Invest (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在小鼠样品上 (图2). J Clin Invest (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Genes Cancer (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Genes Cancer (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在人类样品上 (图5). BMC Cancer (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
  • 免疫印迹; 小鼠; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上 (图1) 和 在小鼠样品上 (图7). Cell Signal (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 小鼠; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫组化-石蜡切片在小鼠样品上 (图4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上 (图3). J Clin Endocrinol Metab (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图1). Oncogenesis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图1). Oncogene (2016) ncbi
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4691)被用于免疫印迹在人类样品上 (图1). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图6). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上 (图5). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060S)被用于免疫印迹在人类样品上 (图4). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图s4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060P)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s4). Sci Rep (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫印迹在人类样品上 (图3). Mol Biol Cell (2016) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2967)被用于免疫印迹在人类样品上 (图5). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图5). Sci Rep (2016) ncbi
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上 (图5). Sci Rep (2016) ncbi
兔 单克隆(C31E5E)
  • FC; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, C31E5E)被用于流式细胞仪在小鼠样品上 (图5). Nat Immunol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上 (图5). J Clin Invest (2016) ncbi
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上 (图5). J Clin Invest (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, D9E)被用于免疫印迹在小鼠样品上 (图3). Sci Rep (2016) ncbi
  • 免疫印迹; 人类; 1:1000; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4051)被用于免疫印迹在人类样品上浓度为1:1000 (图7). J Gastroenterol Hepatol (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:1000; 图3
  • 免疫印迹; 小鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4051S)被用于免疫印迹在人类样品上浓度为1:1000 (图3) 和 在小鼠样品上浓度为1:1000 (图1). EMBO Mol Med (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 人类; 1:50; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4060S)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图4). EMBO Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图4). Nat Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:500 (图6). Cell Death Differ (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 小鼠; 1:50; 图6
  • 免疫印迹; 人类; 1:1000; 图2
  • 免疫印迹; 小鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:50 (图6) 和 免疫印迹在人类样品上浓度为1:1000 (图2) 和 在小鼠样品上浓度为1:1000 (图6). Oncotarget (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图2
  • 免疫印迹; 小鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4691)被用于免疫印迹在人类样品上浓度为1:1000 (图2) 和 在小鼠样品上浓度为1:1000 (图6). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 4060)被用于免疫印迹在人类样品上浓度为1:2000 (图4). Oncotarget (2016) ncbi
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 4691)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图6). Mol Cancer Ther (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Int J Mol Med (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Mol Med Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图8
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060S)被用于免疫印迹在小鼠样品上浓度为1:1000 (图8). Acta Neuropathol (2016) ncbi
兔 单克隆(C67E7)
  • 免疫沉淀; 人类; 图3
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4691)被用于免疫沉淀在人类样品上 (图3) 和 免疫印迹在人类样品上 (图3). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271S)被用于免疫印迹在人类样品上 (图4). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图3). Hepatology (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 表1
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (表1). J Alzheimers Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图3). PLoS ONE (2016) ncbi
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9275)被用于免疫印迹在人类样品上 (图4). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图1d
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上 (图1d). Cell Death Differ (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691L)被用于免疫印迹在小鼠样品上. Science (2016) ncbi
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上. Science (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图7a
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, C67E7)被用于免疫印迹在人类样品上 (图7a). Nucleic Acids Res (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上 (图6). BMC Cancer (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图6). BMC Cancer (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 4060s)被用于免疫印迹在小鼠样品上 (图4). Stem Cell Reports (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫印迹在人类样品上 (图7). Life Sci (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化; 人类; 1:100; 图4
  • 免疫印迹; 人类; 1:100; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫组化在人类样品上浓度为1:100 (图4) 和 免疫印迹在人类样品上浓度为1:100 (图4). PLoS ONE (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4051S)被用于免疫印迹在人类样品上 (图3). Sci Signal (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Nat Commun (2016) ncbi
  • 免疫印迹; 小鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图7). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上 (图4). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图s5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上 (图s5). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图2). Oncol Lett (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上 (图3). Cell Commun Signal (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图3
  • 免疫印迹; 小鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, cst-4691)被用于免疫印迹在人类样品上浓度为1:1000 (图3) 和 在小鼠样品上浓度为1:1000 (图1). Nat Cell Biol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图3
  • 免疫印迹; 小鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, cst-4060)被用于免疫印迹在人类样品上浓度为1:1000 (图3) 和 在小鼠样品上浓度为1:1000 (图1). Nat Cell Biol (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2500; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling technologies, 4060)被用于免疫印迹在小鼠样品上浓度为1:2500 (图4). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫印迹在人类样品上 (图6). J Biol Chem (2016) ncbi
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, C67E7)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 细胞化学; 小鼠; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫细胞化学在小鼠样品上 (图6). Sci Rep (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). elife (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Oncotarget (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Oncotarget (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 大鼠; 图8
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4051)被用于免疫印迹在大鼠样品上 (图8). J Am Heart Assoc (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 9271)被用于免疫印迹在人类样品上 (图3). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫印迹在人类样品上 (图4). Mol Cancer (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图1
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4060)被用于免疫印迹在人类样品上 (图1) 和 在小鼠样品上 (图5). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2016) ncbi
兔 单克隆(736E11)
  • FC; 小鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 736E11)被用于流式细胞仪在小鼠样品上 (图2). Nature (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图5). Mol Cancer Res (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4060)被用于免疫印迹在大鼠样品上浓度为1:1000 (图4). Stem Cells Int (2016) ncbi
兔 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 13038)被用于免疫印迹在小鼠样品上 (图5). Cell Death Dis (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫印迹在小鼠样品上 (图1). Cell Death Dis (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signalling, #9271)被用于免疫印迹在人类样品上浓度为1:1000 (图2). Cell Mol Gastroenterol Hepatol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275S)被用于免疫印迹在人类样品上 (图3). J Mol Cell Biol (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4051S)被用于免疫印迹在人类样品上 (图3). J Mol Cell Biol (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signalling, 9271)被用于免疫印迹在人类样品上 (图7). Oncotarget (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060S)被用于免疫印迹在小鼠样品上 (图1). PLoS ONE (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Cancer Res (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类; 1:1000; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4056)被用于免疫印迹在人类样品上浓度为1:1000 (图5). Cancer Res (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Nat Commun (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Nat Commun (2016) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 小鼠; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2938)被用于免疫印迹在小鼠样品上 (图6). Cell Res (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图5d
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上 (图5d). Oncotarget (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类; 图5d
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4056)被用于免疫印迹在人类样品上 (图5d). Oncotarget (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000; 图4a
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4a). Sci Rep (2016) ncbi
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上 (图1). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图1
  • 细胞化学; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上 (图1) 和 免疫细胞化学在人类样品上 (图1). Proc Natl Acad Sci U S A (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 人类; 1:50; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 (图5). Dis Model Mech (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:2000; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, CST4060P)被用于免疫印迹在大鼠样品上浓度为1:2000 (图4). Mol Med Rep (2016) ncbi
  • 免疫印迹; 大鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在大鼠样品上 (图5). Mol Biol Cell (2016) ncbi
  • 免疫印迹; 小鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Sci Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Development (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4058s)被用于免疫印迹在小鼠样品上 (图3). Drug Des Devel Ther (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Clin Cancer Res (2016) ncbi
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在小鼠样品上 (图5). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图5). J Cell Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图5
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, D9E)被用于免疫印迹在人类样品上 (图5) 和 在小鼠样品上 (图5). J Immunol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4b
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 9271)被用于免疫印迹在小鼠样品上 (图4b). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上 (图5). J Clin Invest (2016) ncbi
小鼠 单克隆(5G3)
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2917)被用于免疫印迹在人类样品上 (图5). Oncogene (2016) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 大鼠; 图s3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2938)被用于免疫印迹在大鼠样品上 (图s3). Autophagy (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图1). Sci Rep (2015) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 2967)被用于免疫印迹在人类样品上 (图6). Oncotarget (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 2965)被用于免疫印迹在人类样品上 (图6). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271S)被用于免疫印迹在小鼠样品上 (图3). Stem Cell Reports (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 表1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (表1). Oncotarget (2016) ncbi
  • 免疫印迹; 人类; 1:1000; 表1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫印迹在人类样品上浓度为1:1000 (表1). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Nat Commun (2015) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 4056)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3). Nat Commun (2015) ncbi
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上 (图1). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图1). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图5). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3E
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上 (图3E). Sci Rep (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signalling, 4058)被用于免疫印迹在人类样品上 (图2). J Cell Biol (2015) ncbi
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signalling, 2965)被用于免疫印迹在人类样品上 (图2). J Cell Biol (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上 (图2). Sci Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图2). Sci Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图9
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图9). Biochem Pharmacol (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图9
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 5373)被用于免疫印迹在人类样品上浓度为1:1000 (图9). Biochem Pharmacol (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 9271)被用于免疫印迹在小鼠样品上 (图3). Oncogene (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4691)被用于免疫印迹在小鼠样品上 (图3). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图1). Biochem Biophys Res Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:100; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:100 (图5). Genes Dev (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图S3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图S3). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在大鼠样品上浓度为1:1000 (图6). Mol Med Rep (2016) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在小鼠样品上 (图3). Autophagy (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠; 图5
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫组化在小鼠样品上 (图5) 和 免疫印迹在小鼠样品上 (图5). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图4). BMC Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图1) 和 在小鼠样品上 (图1). J Exp Med (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4058)被用于免疫印迹在小鼠样品上 (图4). Nat Immunol (2016) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 小鼠; 图8
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4056)被用于免疫印迹在小鼠样品上 (图8). Nat Immunol (2016) ncbi
兔 单克隆(D9E)
  • FC; 人类; 图2
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于流式细胞仪在人类样品上 (图2) 和 免疫印迹在人类样品上 (图2). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在大鼠样品上 (图5). Physiol Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图2). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上 (图5). Front Oncol (2015) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 人类; 1:1000; 图2
  • 免疫印迹; 小鼠; 1:1000; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 3787)被用于免疫印迹在人类样品上浓度为1:1000 (图2) 和 在小鼠样品上浓度为1:1000 (图2). elife (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271S)被用于免疫印迹在大鼠样品上浓度为1:1000 (图1). Neuroscience (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上 (图6). Sci Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图4b
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上 (图4b) 和 在小鼠样品上 (图2). Oncotarget (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在大鼠样品上. Redox Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图6). Cancer Sci (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 4060)被用于免疫印迹在人类样品上浓度为1:1000. Oncoscience (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图2). Mol Cancer (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691S)被用于免疫印迹在人类样品上浓度为1:1000 (图4). BMC Cancer (2015) ncbi
  • 免疫印迹; 人类; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 2965)被用于免疫印迹在人类样品上浓度为1:1000 (图6). Oncotarget (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图6). Oncotarget (2016) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, C31E5E)被用于免疫印迹在大鼠样品上 (图5). Int J Nanomedicine (2015) ncbi
兔 单克隆(193H12)
  • FC; 人类; 图3
  • 免疫印迹; 人类; 1:750; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于流式细胞仪在人类样品上 (图3) 和 免疫印迹在人类样品上浓度为1:750 (图1). Oncotarget (2015) ncbi
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 4691)被用于免疫印迹在小鼠样品上. Nature (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上 (图1). Biochim Biophys Acta (2016) ncbi
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在小鼠样品上 (图1). Biochim Biophys Acta (2016) ncbi
兔 单克隆(D9E)
  • 免疫组化; 小鼠; 1:100; 图8e-h
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 4060 s)被用于免疫组化在小鼠样品上浓度为1:100 (图8e-h). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图s14b
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:500 (图s14b). J Biol Chem (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上 (图3). Aging Cell (2016) ncbi
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上 (图3). Aging Cell (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6c
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图6c). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图4b
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:2000 (图4b). Exp Cell Res (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, CELL4058S)被用于免疫印迹在小鼠样品上 (图3). PLoS ONE (2015) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上. Development (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图S2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图S2). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图8
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在大鼠样品上浓度为1:1000 (图8). Sci Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:500 (图4). Diagn Pathol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图3
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图3) 和 在小鼠样品上 (图2). Redox Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在大鼠样品上 (图2). J Nutr (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:2000 (图4). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图6). Autophagy (2015) ncbi
  • 免疫组化-P; 小鼠; 1:100; 图s15d
  • 免疫印迹; 小鼠; 1:1000; 图6a
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2965)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:100 (图s15d) 和 免疫印迹在小鼠样品上浓度为1:1000 (图6a). Nat Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图7a
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图7a). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图s5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s5). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:4000; 图s3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上浓度为1:4000 (图s3). Mol Brain (2015) ncbi
兔 多克隆
  • 免疫印迹; 猪; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在猪样品上浓度为1:1000. Am J Physiol Endocrinol Metab (2015) ncbi
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 4060)被用于免疫印迹在人类样品上浓度为1:1000. Proc Natl Acad Sci U S A (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图5). Eur Neuropsychopharmacol (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图4). Oncogene (2016) ncbi
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 2965)被用于免疫印迹在人类样品上 (图4). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图4a
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060S)被用于免疫印迹在人类样品上 (图4a). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4b
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图4b). Int J Hematol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060S)被用于免疫印迹在大鼠样品上浓度为1:1000. Exp Neurol (2015) ncbi
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2938)被用于免疫印迹在大鼠样品上浓度为1:1000. Exp Neurol (2015) ncbi
  • 免疫印迹; 人类; 图1a
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在人类样品上 (图1a). Leukemia (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图1a
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图1a). Leukemia (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图2). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图1). Drug Des Devel Ther (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691S)被用于免疫印迹在人类样品上 (图1). Drug Des Devel Ther (2015) ncbi
  • 免疫印迹; 小鼠; 图6g
赛信通(上海)生物试剂有限公司 Akt抗体(CellSignalingTechnology, 4691)被用于免疫印迹在小鼠样品上 (图6g). Int J Obes (Lond) (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图6g
赛信通(上海)生物试剂有限公司 Akt抗体(CellSignalingTechnology, 9271)被用于免疫印迹在小鼠样品上 (图6g). Int J Obes (Lond) (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:300
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:300. FASEB J (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 狗; 1:1000; 图6a
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在狗样品上浓度为1:1000 (图6a). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上 (图3). Cancer Sci (2015) ncbi
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 4060)被用于免疫印迹在人类样品上浓度为1:2000. Mol Brain (2015) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, C73H10)被用于免疫印迹在人类样品上 (图4). PLoS ONE (2015) ncbi
兔 单克隆(193H12)
  • 免疫组化-P; 人类; 图5
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signal, 193H12)被用于免疫组化-石蜡切片在人类样品上 (图5) 和 免疫印迹在人类样品上 (图4). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 人类; 1:100; 图3
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫组化-石蜡切片在人类样品上浓度为1:100 (图3) 和 免疫印迹在人类样品上 (图3). PLoS ONE (2015) ncbi
兔 多克隆
  • 其他; 小鼠; 1:1000; 图s1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于其他在小鼠样品上浓度为1:1000 (图s1). Front Microbiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Eur Neuropsychopharmacol (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058L)被用于免疫印迹在小鼠样品上 (图3). Nat Struct Mol Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上. Cardiovasc Res (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上 (图3). Sci Rep (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Breast Cancer Res (2015) ncbi
  • 细胞化学; 人类; 1:400
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫细胞化学在人类样品上浓度为1:400 和 免疫印迹在人类样品上浓度为1:1000. Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图S3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在大鼠样品上 (图S3). PLoS ONE (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058-S)被用于免疫印迹在大鼠样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000 (图1). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 细胞化学; 人类; 图s6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060S)被用于免疫细胞化学在人类样品上 (图s6). Oncogene (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. J Cell Sci (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058s)被用于免疫印迹在小鼠样品上浓度为1:1000 (图5). Cell Biosci (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 图1c
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在小鼠样品上 (图1c). J Clin Invest (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000. J Neurochem (2015) ncbi
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:2000. Mol Oncol (2015) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类; 1:2000; 图1c
  • 免疫印迹; 小鼠; 图1b
赛信通(上海)生物试剂有限公司 Akt抗体(Cell SignalinG, 4056)被用于免疫印迹在人类样品上浓度为1:2000 (图1c) 和 在小鼠样品上 (图1b). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000; 图1c
  • 免疫印迹; 小鼠; 图1b
赛信通(上海)生物试剂有限公司 Akt抗体(Cell SignalinG, 9271)被用于免疫印迹在人类样品上浓度为1:2000 (图1c) 和 在小鼠样品上 (图1b). Nat Commun (2015) ncbi
小鼠 单克隆(2H10)
  • 免疫沉淀; 人类; 1:2000; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2967)被用于免疫沉淀在人类样品上浓度为1:2000 (图4). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060P)被用于免疫印迹在人类样品上. Clin Transl Gastroenterol (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691P)被用于免疫印迹在人类样品上. Clin Transl Gastroenterol (2015) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 3787)被用于免疫印迹在人类样品上 (图6). Autophagy (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. J Biomed Sci (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图4d
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图4d). Oncotarget (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠; 1:2000; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4058)被用于免疫印迹在大鼠样品上浓度为1:2000 (图5). PLoS ONE (2015) ncbi
  • 免疫印迹; 大鼠; 1:2000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, #4060)被用于免疫印迹在大鼠样品上浓度为1:2000. Int J Neuropsychopharmacol (2015) ncbi
兔 多克隆
  • IHC-Free; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于immunohistochemistry - free floating section在大鼠样品上. Free Radic Biol Med (2015) ncbi
兔 单克隆(D25E6)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 13038)被用于免疫印迹在人类样品上 (图4). Oncotarget (2015) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2967)被用于免疫印迹在人类样品上. Neoplasia (2015) ncbi
  • 免疫印迹; 人类; 1:1000; 图2.e
赛信通(上海)生物试剂有限公司 Akt抗体(CellSignaling, 4691)被用于免疫印迹在人类样品上浓度为1:1000 (图2.e). Nat Cell Biol (2015) ncbi
兔 单克隆(D25E6)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 13038)被用于免疫印迹在人类样品上 (图3). EMBO J (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4060)被用于免疫印迹在人类样品上 (图3). EMBO J (2015) ncbi
兔 单克隆(D9E)
  • FC; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 5315)被用于流式细胞仪在小鼠样品上. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
  • 免疫组化; 人类; 1:800
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4051)被用于免疫组化在人类样品上浓度为1:800. Mol Clin Oncol (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691P)被用于免疫印迹在小鼠样品上浓度为1:1000. Exp Ther Med (2015) ncbi
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling Technologies, 4060)被用于免疫印迹在小鼠样品上. Cardiovasc Res (2015) ncbi
  • 免疫印迹; 人类; 1:1000; 图1e
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图1e). J Cell Sci (2015) ncbi
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫印迹在小鼠样品上 (图3). Exp Neurobiol (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-F; 斑马鱼; 1:50; 图9
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫组化-冰冻切片在斑马鱼样品上浓度为1:50 (图9). PLoS ONE (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 1:200; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4058)被用于免疫印迹在人类样品上浓度为1:200 (图1). PLoS ONE (2015) ncbi
  • 免疫印迹; 人类; 1:2000; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell-Signaling Technologies, 4060)被用于免疫印迹在人类样品上浓度为1:2000 (图7). PLoS Pathog (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上 和 免疫组化在小鼠样品上. Mol Neurodegener (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图s4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4691L)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s4). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图s4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060L)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s4). Nat Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图s9
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s9). Nat Commun (2015) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 小鼠; 1:1000; 图s9
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 2967)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s9). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(cell signaling, 9275)被用于免疫印迹在人类样品上 (图5). Mol Cell Biol (2015) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2967)被用于免疫印迹在小鼠样品上. Oncogene (2015) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 3787)被用于免疫印迹在小鼠样品上 (图5). Oncogene (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000. J Cell Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 9271)被用于免疫印迹在人类样品上 (图5). Oncotarget (2015) ncbi
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图1). EBioMedicine (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271s)被用于免疫印迹在人类样品上浓度为1:1000. Am J Physiol Endocrinol Metab (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫印迹在人类样品上 (图3). MAbs (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图2a
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上 (图2a). Oncogene (2016) ncbi
兔 单克隆(D9E)
  • 细胞化学; 人类; 1:50; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫细胞化学在人类样品上浓度为1:50 (图4). Nat Commun (2015) ncbi
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上 (图6). Am J Physiol Regul Integr Comp Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图6). Am J Physiol Regul Integr Comp Physiol (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4051)被用于免疫印迹在大鼠样品上. Eur J Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图4b
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上 (图4b). J Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Oncogene (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上 (图4). Am J Transl Res (2015) ncbi
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Oncotarget (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691s)被用于免疫印迹在人类样品上浓度为1:500. Biochim Biophys Acta (2015) ncbi
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:500. Biochim Biophys Acta (2015) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 736E11)被用于免疫印迹在人类样品上. Cancer Med (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图1b
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060S)被用于免疫印迹在小鼠样品上 (图1b). Mol Cell Biol (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图1b
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691P)被用于免疫印迹在小鼠样品上 (图1b). Mol Cell Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化; 狗; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫组化在狗样品上 (图4). PLoS Genet (2015) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 244F9)被用于免疫印迹在人类样品上. Mol Ther Methods Clin Dev (2015) ncbi
兔 单克隆(193H12)
  • FC; 人类; 1:400
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058L)被用于流式细胞仪在人类样品上浓度为1:400. Mol Biol Cell (2015) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2938)被用于免疫印迹在人类样品上浓度为1:1000. Mol Biol Cell (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:250
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:250. Biochim Biophys Acta (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:200; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:200 (图2). PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4060s)被用于免疫印迹在人类样品上 (图1). Int J Mol Med (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 4691)被用于免疫印迹在人类样品上. Cell Signal (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060P)被用于免疫印迹在小鼠样品上 (图4). Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图1b
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 9275)被用于免疫印迹在人类样品上浓度为1:1000 (图1b). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. Carcinogenesis (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图s6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上 (图s6). Sci Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫印迹在大鼠样品上 (图5). Mar Drugs (2015) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2938)被用于免疫印迹在小鼠样品上. J Mol Cell Cardiol (2015) ncbi
  • 免疫组化-P; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 3787)被用于免疫组化-石蜡切片在小鼠样品上 (图5). Oncogene (2016) ncbi
兔 单克隆(193H12)
  • 免疫组化; 人类; 1:50
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫组化在人类样品上浓度为1:50. Hum Pathol (2015) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 大鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2938)被用于免疫印迹在大鼠样品上 (图3). Kidney Int (2015) ncbi
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 4060)被用于免疫印迹在小鼠样品上浓度为1:2000 (图 4). J Mol Cell Cardiol (2015) ncbi
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 3787)被用于免疫印迹在人类样品上 (图5). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 (图5). Nat Commun (2015) ncbi
  • 免疫印迹; 大鼠; 1:2000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在大鼠样品上浓度为1:2000. Exp Neurol (2015) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上. Mol Cancer Ther (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图4b
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图4b). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Mol Cancer Ther (2015) ncbi
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2938)被用于免疫印迹在小鼠样品上浓度为1:1000. J Mol Cell Cardiol (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫细胞化学在人类样品上 和 免疫印迹在大鼠样品上. Toxicol Lett (2015) ncbi
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4691)被用于免疫印迹在小鼠样品上 (图1). FASEB J (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫印迹在小鼠样品上 (图1). FASEB J (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图2). Biochem Biophys Res Commun (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上. Muscle Nerve (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, C67E7)被用于免疫印迹在人类样品上. Cell Mol Life Sci (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. J Cell Sci (2015) ncbi
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000. Int J Mol Sci (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:2000 (图3). Nat Commun (2015) ncbi
  • 免疫印迹; 人类; 1:1000; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 2965)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Oncotarget (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology., 2965)被用于免疫印迹在人类样品上. Cell Signal (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology., 9271)被用于免疫印迹在人类样品上. Cell Signal (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在大鼠样品上 (图1). J Transl Med (2015) ncbi
  • 免疫印迹; 小鼠; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上 (图7). Gastroenterology (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 0.071 ug/ml; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为0.071 ug/ml (图4). Endocrinology (2015) ncbi
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, C67E7)被用于免疫印迹在小鼠样品上. Breast Cancer Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Breast Cancer Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Mol Cell Endocrinol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图f5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上 (图f5). Oncotarget (2015) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 3787)被用于免疫印迹在人类样品上. Sci Rep (2015) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(CST, D9E)被用于免疫印迹在人类样品上. Acta Neuropathol (2015) ncbi
  • 免疫印迹; 小鼠; 1:1000; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 3787)被用于免疫印迹在小鼠样品上浓度为1:1000 (图2). Nat Commun (2015) ncbi
  • 免疫印迹; 人类; 图s8
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫印迹在人类样品上 (图s8). PLoS Pathog (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图3a
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling TECHNOLOGY, 2965)被用于免疫印迹在人类样品上浓度为1:1000 (图3a). Sci Signal (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图3b
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling TECHNOLOGY, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图3b). Sci Signal (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上浓度为1:1000. Mol Psychiatry (2016) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上浓度为1:1000. Mol Psychiatry (2016) ncbi
兔 单克隆(D9E)
  • 细胞化学; 小鼠; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, D9E)被用于免疫细胞化学在小鼠样品上 (图4). J Lipid Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 果蝇
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4054)被用于免疫印迹在果蝇样品上. Cell Mol Life Sci (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图8
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 9271)被用于免疫印迹在人类样品上 (图8). Oncotarget (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上 (图2). Aging Cell (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上 (图2). Aging Cell (2015) ncbi
兔 单克隆(D25E6)
  • 免疫组化-P; 小鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 13038)被用于免疫组化-石蜡切片在小鼠样品上 (图2). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在小鼠样品上 (图5). Oncotarget (2015) ncbi
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9275)被用于免疫印迹在小鼠样品上 (图5). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271S)被用于免疫印迹在大鼠样品上 (图4). Cell Physiol Biochem (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, C31E5E)被用于免疫印迹在人类样品上 (图2). Oncotarget (2015) ncbi
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000. Cell Death Differ (2015) ncbi
  • 免疫组化-P; 小鼠; 1:150
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:150. Endocrinology (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 2965)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图4). Oncotarget (2015) ncbi
兔 多克隆
  • 细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上. Endocrinology (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图8
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000 (图8). Development (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图8
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000 (图8). Development (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图s2
  • 免疫组化; 小鼠; 1:1000; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s2) 和 免疫组化在小鼠样品上浓度为1:1000 (图2). J Clin Invest (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图s2
  • 免疫组化; 小鼠; 1:1000; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s2) 和 免疫组化在小鼠样品上浓度为1:1000 (图2). J Clin Invest (2015) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 小鼠; 1:1000; 图s2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2967)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s2). J Clin Invest (2015) ncbi
兔 单克隆(736E11)
  • IHC-Free; 小鼠; 1:300
  • 免疫印迹; 小鼠; 1:300
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 3787S)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:300 和 免疫印迹在小鼠样品上浓度为1:300. FASEB J (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上浓度为1:1000. Biochem Pharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2015) ncbi
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 2965)被用于免疫印迹在小鼠样品上浓度为1:2000. PLoS ONE (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 4058L)被用于免疫印迹在人类样品上 (图3). Cancer Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图s21
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图s21). PLoS ONE (2015) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 3787s)被用于免疫印迹在人类样品上浓度为1:1000. Exp Ther Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在大鼠样品上浓度为1:1000. Neurobiol Dis (2015) ncbi
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 果蝇; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4054)被用于免疫印迹在果蝇样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图4a
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上 (图4a). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Leukemia (2015) ncbi
  • 免疫印迹; 小鼠; 图6a
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在小鼠样品上 (图6a). Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Mol Med Rep (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图5). Cancer Cell (2015) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, D9E)被用于免疫印迹在人类样品上. J Cell Mol Med (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上. J Clin Invest (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 0.5 ug/ml; 图4b
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为0.5 ug/ml (图4b). Sci Rep (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图6f
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上 (图6f). J Exp Med (2015) ncbi
兔 单克隆(C31E5E)
  • FC; 小鼠; 1:100; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9088)被用于流式细胞仪在小鼠样品上浓度为1:100 (图4). Nat Cell Biol (2015) ncbi
  • 免疫印迹; 小鼠; 1:500; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9018)被用于免疫印迹在小鼠样品上浓度为1:500 (图5). Nat Cell Biol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图2). Pigment Cell Melanoma Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图1). Exp Mol Med (2015) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, C67E7)被用于免疫印迹在人类样品上. Cancer Lett (2015) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4056)被用于免疫印迹在人类样品上. J Interferon Cytokine Res (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4051)被用于免疫印迹在小鼠样品上. J Mol Neurosci (2015) ncbi
  • 免疫印迹; 小鼠; 1:500; 图5b
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫印迹在小鼠样品上浓度为1:500 (图5b). Nat Cell Biol (2015) ncbi
未注明
  • 免疫印迹; 人类
AKT抗体被用于免疫沉淀,来研究抑制EGFR突变的肺癌细胞对SOX2-FOXO6依赖的存活途径的影响。elife (2015) ncbi
未注明
  • 免疫印迹; 人类
pAKT抗体被用于免疫沉淀,来研究抑制EGFR突变的肺癌细胞对SOX2-FOXO6依赖的存活途径的影响。elife (2015) ncbi
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在小鼠样品上浓度为1:1000. Mol Cell Endocrinol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上 (图7). Tissue Eng Part A (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, D9E)被用于免疫印迹在人类样品上 (图2). Oncotarget (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, #4691)被用于免疫印迹在大鼠样品上浓度为1:1000. PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图2). Cell Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, #9271)被用于免疫印迹在人类样品上浓度为1:500. Br J Pharmacol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271S)被用于免疫印迹在人类样品上. Int J Mol Med (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, #4060)被用于免疫印迹在人类样品上 和 在小鼠样品上. Aging Cell (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, #4691)被用于免疫印迹在人类样品上 和 在小鼠样品上. Aging Cell (2015) ncbi
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, C31E5E)被用于免疫印迹在大鼠样品上. PLoS ONE (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 斑马鱼; 1:200
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫组化-石蜡切片在斑马鱼样品上浓度为1:200. Mol Cancer (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 9271S)被用于免疫印迹在人类样品上. Mol Carcinog (2016) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060P)被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:5000 (图7). Rejuvenation Res (2015) ncbi
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Commun (2015) ncbi
  • 免疫组化-P; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫组化-石蜡切片在大鼠样品上. Prostate (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 9271)被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:2000. Arthritis Rheumatol (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000 (图7). Mol Cell Biol (2015) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在人类样品上. Biochim Biophys Acta (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上 (图4). Oncotarget (2015) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signalling, C73H10)被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signalling, 9271)被用于免疫印迹在人类样品上. Oncotarget (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上. J Diabetes (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:5000. Endocrinology (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在小鼠样品上. PLoS ONE (2015) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling Technology, 2938)被用于免疫印迹在人类样品上浓度为1:1000. Oncoscience (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cst, 9271)被用于免疫印迹在小鼠样品上. J Proteome Res (2015) ncbi
  • 免疫印迹; 人类; 图9
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图9) 和 在小鼠样品上 (图2). Mol Cell Biol (2015) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类; 图9
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4056)被用于免疫印迹在人类样品上 (图9) 和 在小鼠样品上 (图2). Mol Cell Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 4060)被用于免疫印迹在人类样品上 (图1). Cell Death Dis (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4051)被用于免疫印迹在大鼠样品上浓度为1:1000. J Exerc Nutrition Biochem (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图s6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s6). Development (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. J Clin Invest (2015) ncbi
  • 免疫印迹; 小鼠; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, D9E)被用于免疫印迹在小鼠样品上 (图7). Nat Immunol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上 (图2). Cell (2015) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000; 图s12
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4056)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s12). Antioxid Redox Signal (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图7c
赛信通(上海)生物试剂有限公司 Akt抗体(cell signaling, 9271)被用于免疫印迹在大鼠样品上 (图7c). J Biol Chem (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Neurobiol Learn Mem (2015) ncbi
  • 细胞化学; 人类; 1:100
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫细胞化学在人类样品上浓度为1:100. Stem Cells (2015) ncbi
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:1000. Oncotarget (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-F; 小鼠; 1:200
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Biotechnology, 4060)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:200 和 免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:2000; 图12
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在大鼠样品上浓度为1:2000 (图12). J Appl Toxicol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060P)被用于免疫印迹在人类样品上. Biochim Biophys Acta (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上. Int J Mol Sci (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上. Int J Mol Sci (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上 和 在大鼠样品上. J Lipid Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Diabetes (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上. J Biol Chem (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 2965)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000. Nat Med (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上. Cancer Sci (2015) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4056)被用于免疫印迹在人类样品上. Cancer Sci (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4691)被用于免疫印迹在小鼠样品上. Dev Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫组化-石蜡切片在小鼠样品上 和 免疫印迹在小鼠样品上. Dev Biol (2015) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 2938)被用于免疫印迹在小鼠样品上. Dev Biol (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:750
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在大鼠样品上浓度为1:750. Ann Anat (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上. BMC Cancer (2014) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上. BMC Cancer (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上浓度为1:1000. PLoS ONE (2014) ncbi
  • 免疫印迹; 人类; 图s4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图s4). J Cell Sci (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 猕猴; 图s1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫印迹在猕猴样品上 (图s1). FASEB J (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上. J Proteomics (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691S)被用于免疫印迹在大鼠样品上浓度为1:500. Neuroscience (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在大鼠样品上浓度为1:500. Neuroscience (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(细胞, 4058)被用于免疫印迹在小鼠样品上. Redox Biol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
  • 免疫印迹; 人类; 图s1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 4060)被用于免疫印迹在人类样品上 (图s1). Mol Cell (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在大鼠样品上. Peptides (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 40605)被用于免疫印迹在小鼠样品上. Mol Cell Endocrinol (2015) ncbi
兔 多克隆
  • 免疫组化-F; 人类; 1:50
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling technology, 9271)被用于免疫组化-冰冻切片在人类样品上浓度为1:50. Exp Eye Res (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图1). Cell Cycle (2014) ncbi
兔 多克隆
  • 免疫印迹; 仓鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在仓鼠样品上. Front Cell Infect Microbiol (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图s7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691s)被用于免疫印迹在小鼠样品上 (图s7). Cell Death Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图s7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271s)被用于免疫印迹在小鼠样品上 (图s7). Cell Death Dis (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 193H12)被用于免疫印迹在人类样品上 (图3). J Cell Biol (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 小鼠; 图s4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫组化-石蜡切片在小鼠样品上 (图s4). Nat Commun (2014) ncbi
  • 免疫印迹; 鸡
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4051)被用于免疫印迹在鸡样品上. Proc Natl Acad Sci U S A (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在大鼠样品上. FEBS Open Bio (2014) ncbi
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫印迹在大鼠样品上浓度为1:1000. Mol Neurobiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在大鼠样品上浓度为1:500. Mol Neurobiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. FASEB J (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4051)被用于. Cell Death Dis (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 4060)被用于免疫印迹在人类样品上 (图5). J Med Chem (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 4060)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在人类样品上 (图4). Proc Natl Acad Sci U S A (2014) ncbi
  • 免疫印迹; 大鼠; 1:3000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, D9E)被用于免疫印迹在大鼠样品上浓度为1:3000. Neurochem Res (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在大鼠样品上浓度为1:500. Physiol Rep (2014) ncbi
兔 多克隆赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling Technology, 9275L)被用于. BMC Neurosci (2014) ncbi
兔 多克隆赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling Technology, 9271L)被用于. BMC Neurosci (2014) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2967)被用于免疫印迹在人类样品上 (图2). Blood (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. J Mol Endocrinol (2014) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上. J Cancer Res Clin Oncol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Mol Cancer Ther (2014) ncbi
  • 免疫组化; 人类; 1:50
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, D9E)被用于免疫组化在人类样品上浓度为1:50. Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. J Korean Med Sci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
  • 免疫印迹; 人类; 图s4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在人类样品上 (图s4). Mol Cancer Res (2015) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 193H12)被用于免疫印迹在人类样品上 (图3). PLoS ONE (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 193H12)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4051)被用于免疫印迹在人类样品上. Infect Immun (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图3, 4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上 (图3, 4). Mol Cancer Res (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 587F11)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在小鼠样品上 (图2). Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4051)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:2000. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在大鼠样品上浓度为1:1000. Mol Psychiatry (2015) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2938)被用于免疫印迹在大鼠样品上浓度为1:1000. Mol Psychiatry (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 12000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在大鼠样品上浓度为12000. Behav Brain Res (2015) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上. Genesis (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上. Genesis (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4058S)被用于免疫印迹在人类样品上 (图2). Oncotarget (2014) ncbi
兔 单克隆(D25E6)
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 13038)被用于免疫印迹在小鼠样品上 (图1). Cell (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上 (图1). Cell (2014) ncbi
  • 免疫印迹; 小鼠; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上 (图1). Cell (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在大鼠样品上. Biochem Biophys Res Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Cell Signal (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060s)被用于免疫印迹在人类样品上. Neurobiol Aging (2015) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4056s)被用于免疫印迹在人类样品上. Neurobiol Aging (2015) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4056)被用于免疫印迹在小鼠样品上. Physiol Rep (2014) ncbi
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上. Physiol Rep (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Am J Pathol (2014) ncbi
兔 多克隆
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271S)被用于免疫细胞化学在人类样品上. Cancer Res (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling Technology, 4058S)被用于免疫印迹在人类样品上. Cell Prolif (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4051)被用于免疫印迹在人类样品上. J Nutr Biochem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 9271)被用于免疫印迹在人类样品上. BMC Cancer (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271S)被用于免疫印迹在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在小鼠样品上 (图3). Mol Metab (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图4). J Thorac Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Proteomics (2015) ncbi
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在大鼠样品上. BMC Nephrol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Evid Based Complement Alternat Med (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9275)被用于免疫印迹在小鼠样品上 (图6). Nat Commun (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060)被用于免疫印迹在小鼠样品上 (图6). Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图6
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图6). Stem Cells Dev (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在小鼠样品上. J Biol Chem (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫组化-P; 人类; 1:300
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4051)被用于免疫组化-石蜡切片在人类样品上浓度为1:300. Acta Neuropathol (2014) ncbi
兔 单克隆(C67E7)
  • 免疫组化-F; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 5373)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Bioenerg Biomembr (2015) ncbi
  • 免疫组化-F; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:1000. J Bioenerg Biomembr (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上. Molecules (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. J Leukoc Biol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Mol Cell Biol (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 猪; 1:500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在猪样品上浓度为1:500. Amino Acids (2014) ncbi
  • 免疫印迹; 猪; 1:500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在猪样品上浓度为1:500. Amino Acids (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Biochem Biophys Res Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在小鼠样品上. Arthritis Rheumatol (2014) ncbi
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫印迹在小鼠样品上 和 在大鼠样品上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 和 在大鼠样品上. J Biol Chem (2014) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在人类样品上. Cancer Res (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:300; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:300 (图2). Skelet Muscle (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 4060)被用于免疫印迹在人类样品上 (图2). Oncogene (2015) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(cell Signaling, 4060)被用于免疫印迹在人类样品上. Mol Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Oncotarget (2014) ncbi
  • 免疫印迹; 人类; 图s3b
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图s3b). Proc Natl Acad Sci U S A (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 5373)被用于免疫印迹在小鼠样品上浓度为1:1000. Neurobiol Aging (2014) ncbi
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000. Neurobiol Aging (2014) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4056)被用于免疫印迹在人类样品上. Eur J Cancer (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 2965)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 4060)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3a
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图3a). Genes Dev (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:200
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4051S)被用于免疫印迹在人类样品上浓度为1:200. Biomed Res Int (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4051S)被用于免疫印迹在小鼠样品上浓度为1:1000. Cancer Sci (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling technology, 4060)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:4000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271S)被用于免疫印迹在人类样品上浓度为1:4000. J Biol Chem (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:600
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在人类样品上浓度为1:600. Urol Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上 (图5). J Biol Chem (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上. EMBO J (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Tissue Eng Part A (2014) ncbi
兔 单克隆(D9E)
  • FC; 人类; 1:100
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于流式细胞仪在人类样品上浓度为1:100. Tissue Eng Part A (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Pharmacol Res (2014) ncbi
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:1000. Cell Signal (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. Development (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在人类样品上浓度为1:500. J Virol (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000. Hum Mol Genet (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Cancer Biol Ther (2014) ncbi
  • 免疫印迹; 人类; 1:1000; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9275)被用于免疫印迹在人类样品上浓度为1:1000 (图3). Cancer Biol Ther (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalin g Technology, 4058S)被用于免疫印迹在大鼠样品上 (图7). J Tissue Eng Regen Med (2014) ncbi
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在小鼠样品上 (图5). Cancer Biol Ther (2014) ncbi
  • 免疫印迹; 人类; 图2c
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上 (图2c). Oncotarget (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图2
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Tech, 9271)被用于免疫印迹在人类样品上 (图2). Oncogene (2015) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(cell signaling, 4060S)被用于免疫印迹在人类样品上. Oncogene (2015) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 2965P)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4691P)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060P)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 9271)被用于免疫印迹在人类样品上浓度为1:1000. BMC Cancer (2014) ncbi
兔 多克隆
  • 免疫印迹; 乌颊鱼; 1:200
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在乌颊鱼样品上浓度为1:200. Gen Comp Endocrinol (2014) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上. Cell Signal (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上. J Clin Endocrinol Metab (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275S)被用于免疫印迹在人类样品上 (图5). J Cell Sci (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫组化-石蜡切片在小鼠样品上. PLoS Genet (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. Int J Biochem Cell Biol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4060S)被用于免疫印迹在人类样品上 (图4). Nature (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4691S)被用于免疫印迹在人类样品上 (图4). Nature (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, D9E)被用于免疫印迹在小鼠样品上. J Immunol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 兔; 1:2,000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060S)被用于免疫印迹在兔样品上浓度为1:2,000. Stem Cells Dev (2014) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 兔; 1:2,000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2938S)被用于免疫印迹在兔样品上浓度为1:2,000. Stem Cells Dev (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271S)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271S)被用于免疫印迹在大鼠样品上浓度为1:1000. PLoS ONE (2014) ncbi
  • 细胞化学; 人类; 1:300
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, C31E5E)被用于免疫细胞化学在人类样品上浓度为1:300. Ann Surg Oncol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Int J Oncol (2014) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上. Mol Cell Biol (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上. Mol Cell Biol (2014) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 4691)被用于免疫印迹在人类样品上. Biochem Biophys Res Commun (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在人类样品上. Cell Cycle (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Biochem J (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫组化-P; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:2000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2965)被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100 和 免疫印迹在大鼠样品上浓度为1:2000. PLoS ONE (2014) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 3787)被用于免疫印迹在人类样品上 和 在小鼠样品上. Eur J Neurosci (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上. Biochim Biophys Acta (2014) ncbi
  • 免疫印迹; 大鼠; 1:2000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在大鼠样品上浓度为1:2000. Exp Gerontol (2014) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4056)被用于免疫印迹在人类样品上. Breast Cancer Res (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上. Eur J Immunol (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在人类样品上. Eur J Immunol (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在小鼠样品上浓度为1:200. Glia (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在大鼠样品上浓度为1:1000. Nat Med (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:1000; 图s1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在人类样品上浓度为1:1000 (图s1). Melanoma Res (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在大鼠样品上. Toxicol Pathol (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在大鼠样品上. Brain Res (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 193H12)被用于免疫印迹在小鼠样品上. J Exp Med (2014) ncbi
  • 免疫组化-P; 人类; 1:50
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, D9E)被用于免疫组化-石蜡切片在人类样品上浓度为1:50. Clin Cancer Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271S)被用于免疫印迹在小鼠样品上. Am J Physiol Renal Physiol (2014) ncbi
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(cst, D9E)被用于免疫印迹在人类样品上浓度为1:1000. Nat Commun (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 9271)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 2965)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上. Oncotarget (2014) ncbi
兔 单克隆(193H12)
  • 免疫组化-P; 人类; 1:50
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 193H12)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 和 免疫印迹在人类样品上浓度为1:1000. Br J Dermatol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 9271)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Mol Cancer Ther (2014) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类; 1:500; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 4056)被用于免疫印迹在人类样品上浓度为1:500 (图1). Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling Technology, 9275)被用于免疫印迹在人类样品上. Biochem Pharmacol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 4060)被用于免疫印迹在小鼠样品上. PLoS ONE (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫印迹在人类样品上浓度为1:500. Int J Cancer (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Int J Cancer (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在人类样品上浓度为1:1000. Int J Radiat Oncol Biol Phys (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Biotechnology, 9271S)被用于免疫印迹在人类样品上. Biochem Pharmacol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1,000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275S)被用于免疫印迹在人类样品上浓度为1:1,000. Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Nanomedicine (2014) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在大鼠样品上. Am J Physiol Heart Circ Physiol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上. Free Radic Biol Med (2014) ncbi
  • 免疫组化-P; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 4060)被用于免疫组化-石蜡切片在人类样品上. Neuro Oncol (2014) ncbi
  • 免疫印迹; 小鼠
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上 和 免疫组化在小鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling, 9271)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上. Neuro Oncol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 4060)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 4691)被用于免疫印迹在人类样品上. PLoS ONE (2014) ncbi
  • 免疫组化; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 3787)被用于免疫组化在小鼠样品上浓度为1:50. J Pathol (2014) ncbi
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上. J Biol Chem (2014) ncbi
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上. FEBS Lett (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:400
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上浓度为1:400. FASEB J (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在小鼠样品上浓度为1:1000. Lab Invest (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上. Int J Dev Neurosci (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在大鼠样品上浓度为1:1000. J Nutr Biochem (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. J Biol Chem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Cell Death Dis (2014) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2H10)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:2000. Sci Signal (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上浓度为1:2000. Sci Signal (2014) ncbi
兔 多克隆
  • 免疫印迹; 狗
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 9271)被用于免疫印迹在狗样品上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:1000 (图7). Nat Commun (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫组化-F; 小鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4051)被用于免疫组化-冰冻切片在小鼠样品上 和 免疫印迹在大鼠样品上. Kidney Int (2014) ncbi
兔 多克隆
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫沉淀在人类样品上 和 免疫印迹在人类样品上. Carcinogenesis (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图3, 5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3, 5). Am J Physiol Endocrinol Metab (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图3, 5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000 (图3, 5). Am J Physiol Endocrinol Metab (2014) ncbi
  • 免疫组化; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2965)被用于免疫组化在人类样品上浓度为1:2000. Scand J Med Sci Sports (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在小鼠样品上浓度为1:1000 (图4). PLoS ONE (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:500. Stem Cell Rev (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5, 7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图5, 7). J Cell Sci (2014) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 小鼠; 图5, 7
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4056)被用于免疫印迹在小鼠样品上 (图5, 7). J Cell Sci (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058S)被用于免疫印迹在大鼠样品上浓度为1:1000. Tissue Eng Part A (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691S)被用于免疫印迹在大鼠样品上浓度为1:1000. Tissue Eng Part A (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在大鼠样品上浓度为1:1000. Tissue Eng Part A (2014) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2938S)被用于免疫印迹在大鼠样品上浓度为1:1000. Tissue Eng Part A (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060S)被用于免疫印迹在小鼠样品上浓度为1:1000. J Biol Chem (2014) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4056S)被用于免疫印迹在小鼠样品上浓度为1:1000. J Biol Chem (2014) ncbi
  • 免疫组化; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, D9E)被用于免疫组化在小鼠样品上浓度为1:50. Stem Cells (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上浓度为1:2500. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, D9E)被用于免疫印迹在小鼠样品上. PLoS ONE (2013) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 244F9)被用于免疫印迹在小鼠样品上. PLoS ONE (2013) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058s)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • FC; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, D9E)被用于流式细胞仪在小鼠样品上. Eur J Immunol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Cancer Discov (2014) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 193H12)被用于免疫印迹在人类样品上. J Biol Chem (2014) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4056)被用于免疫印迹在大鼠样品上. J Inorg Biochem (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signaling Technology, 4058)被用于免疫印迹在人类样品上. J Invest Dermatol (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图3). Autophagy (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在小鼠样品上 (图3). Autophagy (2014) ncbi
  • 免疫组化; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫组化在小鼠样品上 (图5). Calcif Tissue Int (2014) ncbi
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, C67E7)被用于免疫印迹在大鼠样品上浓度为1:1000. Neuroscience (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在大鼠样品上. J Neurosci (2013) ncbi
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 9271)被用于免疫印迹在人类样品上. Int J Biochem Cell Biol (2014) ncbi
  • IHC-Free; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于immunohistochemistry - free floating section在小鼠样品上浓度为1:200. J Comp Neurol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Aging Cell (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上. Aging Cell (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Mol Cancer Ther (2014) ncbi
兔 单克隆(D9E)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫组化在人类样品上. Mol Cancer Ther (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling Technology, 9271)被用于免疫印迹在人类样品上. J Physiol (2014) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在大鼠样品上浓度为1:1000. Exp Cell Res (2014) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; African green monkey
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫印迹在African green monkey样品上. J Cell Sci (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; African green monkey
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在African green monkey样品上. J Cell Sci (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4051)被用于免疫印迹在人类样品上浓度为1:1000. Cell Death Dis (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:500. J Biol Chem (2013) ncbi
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2H10)被用于免疫印迹在人类样品上. Br J Cancer (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:5000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:5000. Diabetes (2014) ncbi
  • 免疫印迹; 小鼠; 1:10000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在小鼠样品上浓度为1:10000. Diabetes (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:500. Nat Med (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在小鼠样品上浓度为1:500. Nat Med (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. Neurobiol Dis (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Phytother Res (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 193H12)被用于免疫印迹在大鼠样品上. Neuropsychopharmacology (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上. Am J Pathol (2013) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058S)被用于免疫印迹在小鼠样品上. Biochem J (2013) ncbi
兔 单克隆(736E11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 3787)被用于免疫印迹在小鼠样品上. J Neurosci (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上浓度为1:2000. FASEB J (2014) ncbi
兔 单克隆(193H12)
  • 免疫组化-P; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫组化-石蜡切片在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上. Cancer Res (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在人类样品上. Cancer Res (2013) ncbi
兔 多克隆
  • 免疫组化; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫组化在人类样品上 和 免疫印迹在人类样品上. Cancer Res (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 587F11)被用于免疫印迹在人类样品上. Lab Invest (2013) ncbi
兔 单克隆(D9E)
  • 免疫组化-P; 人类; 1:50
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 4060)被用于免疫组化-石蜡切片在人类样品上浓度为1:50 和 免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫组化-P; 人类; 1:800
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 9275)被用于免疫组化-石蜡切片在人类样品上浓度为1:800 和 免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 单克隆(C67E7)
  • 免疫组化-P; 人类; 1:250
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 4691)被用于免疫组化-石蜡切片在人类样品上浓度为1:250 和 免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2965)被用于免疫印迹在小鼠样品上浓度为1:200. Nat Med (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4691)被用于免疫印迹在人类样品上浓度为1:1000. Mol Cell Proteomics (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. Endocrinology (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271s)被用于免疫印迹在小鼠样品上浓度为1:1000. Food Chem (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271L)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 4060)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058L)被用于免疫印迹在小鼠样品上. Stem Cells (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上. Diabetes (2013) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologies, 193H12)被用于免疫印迹在人类样品上浓度为1:1000. Cell Death Differ (2013) ncbi
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在小鼠样品上 (图5). Int J Obes (Lond) (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图5
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上 (图5). Int J Obes (Lond) (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(细胞, 4058)被用于免疫印迹在大鼠样品上. Ann Transplant (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上. PLoS ONE (2013) ncbi
  • 免疫印迹; 人类; 图4
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 (图4). Mol Carcinog (2014) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058)被用于免疫印迹在人类样品上. Fertil Steril (2013) ncbi
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在大鼠样品上. PLoS ONE (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1,000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1,000. J Comp Neurol (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000. PLoS ONE (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologie, 4691)被用于免疫印迹在人类样品上 和 在小鼠样品上. Oncogenesis (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technologie, 4060)被用于免疫印迹在人类样品上 和 在小鼠样品上. Oncogenesis (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在大鼠样品上浓度为1:1000. Diabetes Res Clin Pract (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在小鼠样品上. Kidney Int (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, D9E)被用于免疫印迹在小鼠样品上. Mol Cancer Ther (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:200
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在大鼠样品上浓度为1:200. Biochem J (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上 和 在小鼠样品上. Invest Ophthalmol Vis Sci (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275)被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 9271)被用于免疫印迹在大鼠样品上. Diabetes (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:2000. Oncogene (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在小鼠样品上浓度为1:1000. Oncogene (2014) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上浓度为1:1000. Brain Res (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上浓度为1:1000. Brain Res (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:1000. Cell Death Dis (2013) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 大鼠; 1:1,000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4056S)被用于免疫印迹在大鼠样品上浓度为1:1,000. Am J Physiol Endocrinol Metab (2013) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4051)被用于免疫印迹在人类样品上 和 在小鼠样品上. Exp Cell Res (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell signal, 9271)被用于免疫印迹在人类样品上. J Cell Mol Med (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在小鼠样品上浓度为1:2000. Cell Biochem Funct (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4051)被用于免疫印迹在小鼠样品上浓度为1:200. Nat Med (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上. Genes Dev (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. J Physiol (2013) ncbi
未注明
  • 免疫印迹; 人类
为了研究磷酸肌醇激酶3在调节细胞因子依赖性细胞存活中的作用,采用了Cell Signalling公司的抗磷酸化Ser473Akt抗体进行了免疫印迹试验。PLoS Biol (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060S)被用于免疫印迹在人类样品上. Biochem J (2013) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058S)被用于免疫印迹在人类样品上. Mol Cell Biol (2013) ncbi
未注明
  • 免疫印迹; 人类
为了研究ING1a诱导细胞衰老的机制,使用细胞信号公司的抗Akt(S473)磷酸化抗体,进行蛋白印迹试验。PLoS Biol (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. J Physiol (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(CST, 4691)被用于免疫印迹在大鼠样品上. Exp Gerontol (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上浓度为1:500. PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • 免疫组化-F; 小鼠; 1:50
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫组化-冰冻切片在小鼠样品上浓度为1:50 和 免疫印迹在小鼠样品上浓度为1:500. PLoS ONE (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4060)被用于免疫印迹在小鼠样品上. PLoS ONE (2013) ncbi
兔 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4691)被用于免疫印迹在小鼠样品上. PLoS ONE (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Cell Cycle (2013) ncbi
兔 单克隆(C31E5E)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 2965)被用于免疫组化在小鼠样品上 和 免疫印迹在小鼠样品上. FASEB J (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:2,000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:2,000. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上浓度为1:1000. FASEB J (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上 和 免疫细胞化学在人类样品上. Cell Cycle (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275S)被用于免疫印迹在人类样品上. Leuk Res (2013) ncbi
兔 单克隆(D9E)
  • 细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上. J Biol Chem (2013) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4056)被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271s)被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4060)被用于免疫印迹在人类样品上浓度为1:1000. FEBS Lett (2013) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4051)被用于免疫印迹在小鼠样品上. Exp Cell Res (2013) ncbi
兔 多克隆
  • 免疫印迹; 仓鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在仓鼠样品上. Mol Cell Biol (2013) ncbi
兔 多克隆
  • 细胞化学; 狗
  • 免疫印迹; 狗
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫细胞化学在狗样品上 和 免疫印迹在狗样品上. J Biol Chem (2012) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在大鼠样品上. Lab Anim Res (2012) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在小鼠样品上. Biochem J (2013) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4058S)被用于免疫印迹在小鼠样品上. PLoS ONE (2012) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 9275)被用于免疫印迹在大鼠样品上. J Appl Physiol (1985) (2012) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signalling, 9271)被用于免疫印迹在大鼠样品上. J Appl Physiol (1985) (2012) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上浓度为1:1000. Oncogene (2013) ncbi
兔 多克隆
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9275)被用于免疫印迹在大鼠样品上. Biochim Biophys Acta (2012) ncbi
未注明
  • 免疫组化; 人类
  • 细胞化学; 人类
为了研究某些GBM病人有FGFR-TACC融合突变,采用了Cell Signaling的兔抗AKT抗体和抗473位磷酸化AKT抗体以1:1000浓度进行免疫组化和免疫细胞化学实验。Science (2012) ncbi
兔 单克隆(193H12)
  • 细胞化学; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫细胞化学在人类样品上. Blood Cancer J (2011) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 4058)被用于免疫印迹在小鼠样品上. Hepatol Res (2012) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图1
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上 (图1). PLoS ONE (2012) ncbi
兔 单克隆(193H12)
  • FC; 人类; 图3
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, #4058)被用于流式细胞仪在人类样品上 (图3). Eur J Haematol (2012) ncbi
未注明
  • 免疫印迹; 人类
为了研究泡状H+-ATPase参与到mTOR通路中mTORC1的转位和激活,采用Cell Signaling的抗Akt和抗S473磷酸化Akt抗体进行蛋白印迹实验。Science (2011) ncbi
未注明
  • 免疫印迹; 人类
为了研究人血糖过低可由激活状态的AKT2突变体引起,采用了Cell Signaling Technologies的抗AKT抗体进行蛋白印迹实验。Science (2011) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9275S)被用于免疫印迹在小鼠样品上. Eur J Immunol (2011) ncbi
兔 单克隆(C73H10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 2938)被用于免疫印迹在小鼠样品上. Eur J Immunol (2011) ncbi
兔 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271S)被用于免疫印迹在小鼠样品上. Eur J Immunol (2011) ncbi
未注明
  • 免疫印迹; 人类
为了研究溶酶体形成能够被TFEB调控并导致细胞自噬,采用Cell Signaling的抗磷酸化AKT抗体进行蛋白印迹实验。Science (2011) ncbi
未注明
  • 免疫印迹; 人类
为了研究去氢表雄酮和神经生长因子受体之间的相互作用,采用了Cell Signaling公司的抗AKT (9272,1:500)和抗磷酸化AKT(Ser473) (9271,1:500)抗体进行了免疫印记实验。PLoS Biol (2011) ncbi
兔 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, D9E)被用于免疫印迹在小鼠样品上. Mol Cell Biol (2011) ncbi
未注明
  • 免疫印迹; 人类
为了研究肺部发炎部位slit2对嗜酸性粒细胞和嗜中性粒细胞的影响,采用了Cell Signaling Technology公司的抗Akt抗体进行免疫印迹实验。J Immunol (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究microRNA-7在舌鳞状细胞癌细胞中的作用, 采用了Cell Signaling Technology的抗Akt抗体以及两种抗磷酸化的Akt(分别是Thr308和Ser473磷酸化位点)抗体进行了免疫印迹实验。Biochem J (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究在肥胖过程中Sfrp5作为抗炎脂肪因子在调节代谢异常过程中的功能,使用了Cell Signaling Technology公司的抗磷酸化Akt和抗Akt抗体来进行免疫印迹分析。Science (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究LMP2A在鼻咽癌进展中的作用,采用了Cell Signaling的抗Akt抗体进行了免疫印迹实验。PLoS Pathog (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究4E-BPs对mTORC1信号通路的精确调控,使用了Cell Signaling Technology公司的抗Akt和抗磷酸化Akt抗体来进行免疫印迹分析。Science (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究多发性骨髓瘤中细胞周期蛋白K和细胞周期蛋白D1b的作用,采用了Cell Signaling的抗AKT和抗磷酸化AKT (Thr308)抗体进行免疫印迹实验。Mol Cancer (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究SPRR3在结直肠癌肿瘤形成中的作用,采用了Cell Signaling的抗AKT的抗体进行了免疫印记实验。Mol Med (2010) ncbi
未注明
  • 免疫印迹; 人类
为了为了说明多囊蛋白1可以激活结节性硬化症2和抑制mTOR,使用了Cell Signaling Technology公司的抗AKT和抗磷酸化AKT抗体来进行蛋白印迹实验。PLoS ONE (2010) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Cell Death Differ (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究PC-1蛋白的羧基端如何通过改变TSC2的亚细胞定位来抑制mTOR信号通路的机制,作者使用细胞信号通路技术公司的抗AKT,磷酸化AKT抗体进行免疫印迹实验。Proc Natl Acad Sci U S A (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究干扰素γ在人视网膜色素上皮细胞促血管作用的分子机制,以及磷酸肌醇3激酶/雷帕霉素靶(mammalian target of rapamycin,mTOR)蛋白转导途径在这个过程中的作用,采用了细胞信号技术公司的Akt抗体进行了蛋白印迹实验。Mol Vis (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究STAT3/p63/Notch信号通路在调节小鼠和人的细胞分化中的功能,采用了Cell Signaling Technology公司的p-AKT抗体,进行了蛋白质印迹实验。J Oncol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了制备单克隆抗体来对胰腺肿瘤中作用于EphA2的治疗潜能进行评估,采用了Cell Signalling Technology公司的抗Akt抗体和抗磷酸化的Akt抗体,进行了蛋白质印迹实验。J Oncol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究mTOR通路对Notch信号通路和细胞分化的调节作用,使用了Cell Signaling Technology公司的磷酸化AKT抗体来进行免疫印迹分析。J Clin Invest (2010) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. J Endocrinol (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究Tsc/mTORC1信号通路在调控原卵泡休眠和活化中的作用,采用了Cell Signaling Technologies 公司的兔多克隆抗Akt抗体产品,进行了免疫印迹实验Hum Mol Genet (2010) ncbi
兔 多克隆
  • 免疫组化; 人类
为了研究MMP-10和CTSF在糖尿病患者角膜伤口治愈不良中的作用,采用了Cell Signaling的抗磷酸化-Akt(Ser473)抗体进行免疫组化试验。 Brain Res Bull (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究药物洗脱支架诱导自噬从而对内皮组织的修复进行抑制,采用了Cell Signaling的抗Akt和抗磷酸化Akt抗体进行免疫印迹实验。 Am J Pathol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究知母皂甙AIII对肿瘤细胞造成细胞毒性的机制,使用了Cell Signaling公司的抗Akt抗体来进行蛋白印迹分析。PLoS ONE (2009) ncbi
未注明
  • 免疫印迹; 人类
为了推断钙调磷酸酶活性和白血病细胞凋亡能够通过糖皮质激素介导上调的RCAN1-1来调节,使用了Cell Signaling Technology公司的磷酸化抗体Akt来进行免疫印迹分析。J Mol Signal (2009) ncbi
未注明
  • 免疫印迹; 人类
为了鉴定ERBB4基因的突变在黑素瘤中所起的作用,使用了Cell Signaling公司的磷酸化和非磷酸化抗体AKT来进行免疫印迹分析。Nat Genet (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究PKCdelta在调节CHL1在星形胶质细胞中表达的作用,采用了 Cell Signaling Technology公司的抗磷酸化Akt(Ser473) 抗体产品(1:1000),进行了免疫印迹实验。Glia (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究在人的近曲小管细胞中GRK4对于D3受体信号传导的重要作用,使用了Cell Signaling公司的抗磷酸化AKT抗体进行免疫印迹实验。J Biol Chem (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究rpS6磷酸化在调控肌肉纤维生长和能量储存中的作用,采用了Cell Signaling Technology公司的Akt抗体产品,进行了免疫印迹实验。PLoS ONE (2009) ncbi
兔 单克隆(193H12)
  • 免疫印迹; 人类
为了研究sproutys在调控小鼠血管生成和局部缺血中的作用,采用了Cell Signaling Technology公司的抗磷酸化Akt抗体产品,进行了免疫印迹实验。PLoS ONE (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究ARIA在调控内皮细胞凋亡和血管生成中的作用,采用了Cell Signaling公司的抗磷酸化Akt抗体产品,进行了免疫印迹实验。Proc Natl Acad Sci U S A (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究PTEN在调控前列腺损伤生长中的作用,采用Cell Signaling Technologies公司的苏氨酸308位磷酸化AKT抗体产品1:1000,进行了免疫印迹实验。Am J Pathol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究Prdx1在调控肿瘤发生中的作用,采用了Cell Signaling公司的抗Akt抗体产品,进行了免疫印迹实验。EMBO J (2009) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Blood (2009) ncbi
未注明
  • 免疫印迹; 人类
为了说明脂联素单倍不足可以通过抑制PTEN抑癌因子的活性和激活PI3K/Akt信号通路来促进乳腺肿瘤的发生,使用了Cell Signaling Biotechnology公司的抗Akt和抗磷酸化Akt抗体来进行蛋白印迹实验。PLoS ONE (2009) ncbi
未注明
  • 免疫印迹; 人类
为证实JNK1可以抑制脂多糖诱导的金属蛋白酶9的表达,使用了Cell Signaling公司的抗p-Akt抗体来进行蛋白印迹分析。Exp Mol Med (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究STAT3和caveolin-3在调控儿茶酚胺引起的心脏肥大过程中的作用,采用了Cell Signalling公司的 phospho-Akt (Ser473)抗体产品,进行了免疫印迹实验。Exp Mol Med (2009) ncbi
未注明
  • 免疫印迹; 人类
  • 细胞化学; 人类
为了研究p38alpha MAPK在调控巨噬细胞凋亡中的作用,使用了Cell Signaling Technology公司的抗Akt抗体,进行了免疫印迹和细胞化学实验。J Clin Invest (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究Akt1介导的Skp2的磷酸化引起的Skp2细胞质定位和对APCCdh1参与的Skp2降解的损害,采用了Cell Signaling的抗Akt抗体和抗磷酸化Akt抗体进行免疫印迹实验。 Nat Cell Biol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究NDRG2在调控人结肠癌TCF/beta-catenin信号通路中的作用,采用了Cell Signaling Technology 公司的抗磷酸化Akt抗体产品,进行了免疫印迹实验。Carcinogenesis (2009) ncbi
未注明
  • 免疫印迹; 人类
为研究胰岛素生长因子在骨髓瘤细胞生长过程中所发挥的作用,及其受体表达与骨髓瘤患者预后的相关性,将Cell Signaling Technology提供的兔抗Akt和抗磷酸化Akt抗体用于蛋白免疫印迹实验中。Blood (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究AEG1在调节肝癌发病机制中的功能,使用了Cell Signaling Technology公司的兔抗AKT和抗磷酸化AKT多克隆抗体来进行免疫印迹分析。J Clin Invest (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究PTEN的磷酸化在调控ATP敏感的钾离子通道中的作用,采用了Cell Signaling公司的PKB磷酸化(Ser-473)抗体(1:1000)产品,进行了免疫印迹实验。J Biol Chem (2009) ncbi
未注明
  • FC; 人类
为了研究MT1-MMP和RECK在人造血祖细胞的移动,粘附和动员中的作用,使用了Cell Signaling Technology Inc.公司的抗磷酸化Akt (Thr308)抗体进行流式细胞术实验。J Clin Invest (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究purinergic在调控内皮细胞一氧化氮合成酶活性中的作用,采用了Cell Signaling Technology公司的抗磷酸化Akt抗体产品(Ser-473),进行了免疫印迹实验。Circulation (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究Snail1在调控间充质细胞三维空间入侵中的作用,采用了Cell Signaling Technology 公司的anti-Akt phospho-serine 473抗体产品 ,进行了免疫印迹实验。J Cell Biol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究内皮素前体具有刺激前列腺癌细胞的移动、增殖和铆钉细胞生长的作用,使用了Cell Signaling Technology公司的抗Akt多克隆抗体进行蛋白印迹实验。Am J Pathol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了说明在肺癌细胞中ZEB-1可以抑制臂板蛋白3F肿瘤抑制基因,使用了Cell Signaling Technology公司的抗AKT和抗磷酸化AKT抗体进行蛋白印迹实验。Neoplasia (2009) ncbi
未注明
  • 免疫印迹; 人类
为了找出激活的PIK3CA的表达对机体的影响,研究中使用了Cell Signaling公司的抗pAKT 和抗全AKT 抗体来进行蛋白印迹实验。PLoS ONE (2009) ncbi
未注明
  • 免疫印迹; 人类
为研究BAD蛋白磷酸化在β-Arrestin-2介导的抗凋亡反应中的调控作用,采用了Cell Signaling公司的抗AKT/磷酸化AKT抗体进行免疫印迹试验。J Biol Chem (2009) ncbi
未注明
  • 免疫印迹; 人类
为了说明Lyn能抑制破骨细胞的形成,使用了Cell Signaling公司的磷酸化Akt单克隆抗体进行免疫印迹实验。Proc Natl Acad Sci U S A (2009) ncbi
未注明
  • 免疫印迹; 人类
使用Cell Signaling技术公司的兔多克隆抗磷酸化Akt(Ser473)抗体进行免疫印迹实验来研究线粒体中gC1qR对RIG-I和MDA5依赖的抗病毒反应的作用效果。Proc Natl Acad Sci U S A (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究PIP5K1α在胞外钙诱导的第二信使IP3的生成和角质形成细胞分化中的功能,使用了Cell Signaling Technology公司的抗Akt和磷酸化Akt多克隆抗体来进行免疫印迹分析。Mol Biol Cell (2009) ncbi
未注明
  • 免疫印迹; 人类
为了说明肿瘤抑制因子PTEN可以通过染色质修饰来调控ARE激活,使用了Cell Signaling公司的抗AKT和抗磷酸化AKT来进行蛋白印迹实验。Mol Biol Cell (2009) ncbi
未注明
  • 免疫印迹; 人类
为了了研究KRAP在调控小鼠能量平衡和饮食诱导的肥胖中的作用,采用了Cell Signaling公司的Akt抗体产品,进行了免疫印迹实验。PLoS ONE (2009) ncbi
未注明
  • 免疫印迹; 人类
为证实雷帕霉素可以激活表皮生长因子受体进而使细胞免于凋亡,使用了Cell Signaling公司的抗磷酸化Akt抗体来进行蛋白印迹分析。Oncogene (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究PI3k/Akt通路在巨噬细胞介导的抗体依赖细胞介导的细胞毒性作用中的功能,使用了Cell Signaling Technology公司的抗磷酸化Akt抗体来进行免疫印迹分析。PLoS ONE (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究S100B蛋白在星形胶质细胞成形和迁移过程中所起的调控作用,使用了Cell Signaling公司的抗Akt抗体来进行蛋白印迹分析。J Biol Chem (2009) ncbi
未注明
  • 免疫印迹; 人类
  • 免疫沉淀; 人类
为了研究ClipR-59介导的Akt细胞内区室化对脂肪细胞葡萄糖运输的调节作用,使用了Cell Signaling Technology公司的兔抗Akt1单克隆抗体来进行免疫印迹分析和免疫沉淀实验。Mol Cell Biol (2009) ncbi
未注明
  • 免疫印迹; 人类
  • 免疫沉淀; 人类
为评估ApoER2与有活性的蛋白C细胞信号传导机制间的潜在关联性,将Cell Signaling公司的兔多克隆抗Akt抗体和抗磷酸化Akt抗体(Ser473)分别应用于免疫沉淀、蛋白免疫印迹和蛋白免疫印迹。Proc Natl Acad Sci U S A (2009) ncbi
未注明
  • 免疫印迹; 人类
为研究PTEN/Akt/PI3K信号传导过程在前列腺癌干细胞样细胞群的维持和成活力方面所发挥的作用,将Cell Signaling提供的单克隆抗Akt(pan),抗磷酸化Akt (Ser-473)和抗磷酸化Akt(Thr-308)三种抗体用于蛋白免疫印迹。Proc Natl Acad Sci U S A (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究血小板TLR2在免疫和炎症反应答中的功能,使用了Cell Signaling Technology公司的抗磷酸化AKT和抗AKT抗体来进行免疫印迹分析。Circ Res (2009) ncbi
未注明
  • 免疫印迹; 人类
为研究是否PI3K/PTEN途径在调控Fas 诱导的I型和II型细胞的凋亡过程中有着重要作用,将Cell Signaling提供的抗PKB和抗磷酸化PKB(Ser473)抗体用于蛋白免疫印迹。Mol Cell Biol (2009) ncbi
未注明
  • 免疫组化; 人类
为了研究CK2B在子宫内膜癌中抑制凋亡和促进细胞增殖的作用,采用了Cell Signaling的抗磷酸化AKT抗体进行免疫组化实验。Am J Pathol (2009) ncbi
未注明
  • 免疫组化; 人类
为了研究AXL和SHC1表达异常与子宫内膜移位的发生之间的相关性,采用了Cell Signaling的抗磷酸化Akt (Ser473)抗体以1:50稀释进行免疫组化实验。Reprod Biol Endocrinol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究TSC-mTOR通路对胰岛素诱导的TOP mRNAs的翻译激活作用的调节作用,使用了Cell Signaling Technology公司的抗Ser473磷酸化Akt抗体来进行免疫印迹分析。Mol Cell Biol (2009) ncbi
未注明
  • 免疫沉淀; 人类
为了说明有致癌作用的K-Ras可以增加细胞增殖和较少细胞间的接触,使用了Cell Signaling Technology公司的抗AKT和抗磷酸化AKT抗体进行免疫沉淀实验。Mol Biol Cell (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究是否成纤维细胞生长因子受体4在促进肝癌进程过程中具有一定的功能,使用了Cell Signaling Technology公司的抗AKT和抗磷酸化AKT抗体来进行免疫印迹分析。Mol Carcinog (2009) ncbi
未注明
  • 免疫组化; 人类
为了研究固定液在磷酸化蛋白免疫组化测定中的作用使用了Cell Signaling公司的兔抗pAkt抗体来进行免疫组化实验。J Histochem Cytochem (2009) ncbi
未注明
  • 免疫印迹; 人类
为研究Hsp72对致癌基因诱导的老化过程的抑制作用,将Cell Signaling提供的抗磷酸化Akt(Ser473)抗体用于蛋白免疫印迹实验中。Mol Cell Biol (2009) ncbi
未注明
  • 免疫印迹; 人类
使用Cell Signaling技术公司的抗Akt抗体和抗磷酸化Akt抗体(S473)进行免疫印迹实验来研究在ER阳性人乳腺癌细胞系(T47D and ZR-75-1)中降低BRCA1水平和对Tam反应性中的潜在联系。 Oncogene (2009) ncbi
未注明
  • 免疫印迹; 人类
为了分析EB病毒糖蛋白B的功能结构域,采用了Cell Signaling Technologies.公司的AKT抗体产品,进行免疫印迹实验。J Virol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究在肌营养不良症中肌肉Akt信号通路在促进utrophin表达和肌膜稳定的功能,使用了Cell Signaling Technologies公司的抗Akt和抗磷酸化Akt抗体来进行免疫印迹分析。Hum Mol Genet (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究thioredoxin是受IFN-gamma诱导的因子并在细胞因子产生过程中起作用,采用Cell Signaling的抗Akt和抗磷酸化Akt抗体进行蛋白印迹实验。BMC Immunol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究ICAM-2在介导成神经细胞瘤中膜-肌动蛋白联接中的作用,采用了Cell Signaling Technology公司的抗AKT抗体产品,进行了免疫印迹实验。PLoS ONE (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究低氧引起的能量应激在调控头颈扁平细胞瘤中mTOR信号通路中的作用,采用了 Cell Signaling Technology公司的兔多克隆抗磷酸化Akt(Ser473)抗体产品,进行了免疫印迹实验Neoplasia (2008) ncbi
未注明
  • 免疫组化; 人类
为研究UbcH7在细胞周期的s期时所起的调控作用,使用了Cell Signaling公司的抗Akt抗体来进行免疫组化分析。Mol Biol Cell (2009) ncbi
未注明
  • 免疫印迹; 人类
为了说明HSP90伴侣蛋白Cdc37能维持致癌蛋白激酶客户蛋白,使用了Cell Signaling Technology公司的AKT抗体进行蛋白印迹实验。Oncogene (2009) ncbi
未注明
  • 免疫印迹; 人类
为了说明HSP90伴侣蛋白Cdc37能维持致癌蛋白激酶客户蛋白,使用了Cell Signaling Technology公司的磷酸化AKT抗体进行蛋白印迹实验。Oncogene (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究抑制Akt通路后PTEN缺失的肿瘤自噬增多,并对趋溶酶体剂更敏感,采用了Cell Signaling的抗Akt1,anti-total-Akt, anti-p-Akt (Ser473), anti-p-Akt (Thr308)抗体进行免疫印迹实验。J Cell Biol (2008) ncbi
未注明
  • 免疫沉淀; 人类
为研究腺苷环化酶VI增加的Akt活性和phospholamban磷酸化,采用了Cell Signaling公司的抗Akt/磷酸化Akt抗体进行免疫沉淀试验。J Biol Chem (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究RON受体酪氨酸激酶在乳腺上皮细胞中的致瘤性,使用了Cell Signaling公司的抗磷酸化AKT抗体来进行蛋白印迹分析。Oncogene (2009) ncbi
未注明
  • 免疫印迹; 人类
  • 免疫组化; 人类
为了研究人表皮角质细胞终末分化的早期发生机制,采用了Cell Signalling Technology的Akt和磷酸化Akt进行免疫印迹和免疫荧光试验。 Cell Res (2009) ncbi
未注明
  • 免疫组化; 人类
使用了Cell Signaling技术公司的抗磷酸化Akt抗体(Ser473, IHC特异性)进行免疫组织化学实验来研究人类组织石蜡切片肝癌形成的遗传机制。Cancer Res (2008) ncbi
未注明
  • 免疫印迹; 人类
使用Cell Signaling技术公司的AKT抗体(1:1000)进行免疫印迹实验来研究鼠脑转移异种移植模型中lapatinib在抑制乳腺癌细胞向外生长到脑部的效果。J Natl Cancer Inst (2008) ncbi
兔 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4056)被用于免疫印迹在人类样品上. J Neurochem (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究Joubert综合症的病因,和Ahi1-Hap1复合物在大脑早期发育的作用,采用了Cell Signaling Technology的抗磷酸化的Akt抗体,进行蛋白质印迹实验J Clin Invest (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究Joubert综合症的病因,和Ahi1-Hap1复合物在大脑早期发育的作用,采用了Cell Signaling Technology的抗Akt抗体,进行蛋白质印迹实验J Clin Invest (2008) ncbi
未注明
  • 免疫组化; 人类
为了阐述NS3在羟色胺神经元中调控胰岛素信号和整体生长控制的作用,采用了细胞信号公司的兔抗磷酸化S505 dAkt抗体进行了免疫组化实验。Genes Dev (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究慢性髓细胞性白血病发展过程中人体AQP5所起的作用,使用了Cell Signal公司的抗磷酸Akt抗体,进行了免疫印迹实验。PLoS ONE (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究增加可利用的氨基酸和胰岛素使在泛素蛋白酶体通路中合成代谢信号和酶含量改变的原因,采用Cell Signaling公司的PKB Ser473抗体,进行蛋白质印迹实验。Am J Physiol Endocrinol Metab (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究在肿瘤细胞侵袭中热休克蛋白90α乙酰化和出胞位置的作用,采用Santa Cruz公司的抗AKT抗体,进行蛋白质印迹实验。Cancer Res (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究在肿瘤生长过程中,靶向血管生长组分的基质金属蛋白酶2抑制剂的作用,采用了Cell Signal的丝苏氨酸激酶抗体,进行蛋白质印迹实验Cancer Res (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究在肿瘤生长过程中,靶向血管生长组分的基质金属蛋白酶2抑制剂的作用,采用了Cell Signal的二磷酸丝苏氨酸激酶抗体,进行蛋白质印迹实验Cancer Res (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究VHL肿瘤抑制基因通过成纤维细胞生长因子受体信号通路对内皮功能的影响,采用了Cell Signaling的兔多抗Akt抗体和抗磷酸化Akt抗体进行免疫印迹实验。Cancer Res (2008) ncbi
未注明
  • 免疫印迹; 人类
使用Cell Signaling公司的抗-AKT抗体进行免疫印迹实验以研究热应激激活的细胞通路。Am J Physiol Heart Circ Physiol (2008) ncbi
未注明
  • 免疫印迹; 人类
  • 免疫沉淀; 人类
细胞信号转导用蛋白激酶B(AKT)抗体可用于免疫印迹和免疫沉淀,来研究C-JUN激活域连接蛋白1(Jab1)在表皮生长因子受体EGFR介导的信号通路调控中的作用。Breast Cancer Res (2008) ncbi
兔 单克隆(244F9)
  • 免疫组化; 人类
为了通过对全体个体,无病个体,患病体的病理参数以及入侵物和血管新生的生物标记,研究EGFR和pEGFR的表达和他们之间的关系,采用了Cell Signaling Technology的兔抗磷酸化(Thr308)Akt单抗,进行免疫组化实验Breast Cancer Res (2008) ncbi
未注明
  • 免疫印迹; 人类
使用Cell Signaling技术公司的抗磷酸化Akt (Ser473)抗体和抗Akt抗体进行免疫印迹实验以验证HGF通过抑制致炎细胞因子而抑制肾脏感染的假说是否正确。Am J Pathol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究Raf-1对神经胶质瘤形成的作用,采用了Cell Signaling Technology的抗Akt抗体进行免疫印迹实验。Neoplasia (2008) ncbi
未注明
  • 免疫组化; 人类
为了考察Dickkopfs (Dkks)和Kremen2 (Krm2)在胃肠道癌症中表达的变化,使用了Cell Signaling 公司的抗磷酸化Rac的兔抗人抗体进行了免疫组化实验。 World J Gastroenterol (2008) ncbi
未注明
  • 免疫印迹; 人类
使用Cell Signaling技术公司的抗磷酸化S-473 PKB和抗磷酸化T308 PKB及抗PKB抗体进行免疫印迹实验来鉴别哪一个Aas信号到hVps34是激活mTOR复合体1信号通路的途径和机制。Cell Metab (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究PI3K/Akt 和 MAPK信号通路在调控Myc介导的转录中的作用,采用Cell Signaling Technology公司的抗Akt抗体产品,进行了免疫印迹实验。Proc Natl Acad Sci U S A (2008) ncbi
未注明
  • 免疫印迹; 人类
为了说明牙周膜成纤维细胞可以在血小板源生长因子异构型存在下维持血浆纤溶系统的平衡,使用了Cell Signaling Technologies公司的抗磷酸化Akt(Thr308和Ser473)抗体来进行免疫印迹实验。J Periodontal Res (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究人类疱疹病毒8趋化因子内皮生存和病毒复制中的作用,采用了细胞信号技术公司的抗磷酸化AKT(Ser473)抗体和抗AKT抗体进行了蛋白印迹实验。J Virol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究胞吞作用在调控卡波西氏肉瘤相关疱疹病毒K1蛋白信号的作用,采用了细胞信号公司的抗Akt-Ser473和抗Akt(总)抗体进行了蛋白印迹实验。J Virol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究染料木黄酮如何调控前列腺癌细胞中抑癌基因的表达,采用了Cell Signaling Technology的Akt抗体进行了蛋白质印迹实验。Int J Cancer (2008) ncbi
未注明
  • 免疫印迹; 人类
细胞信号转导用磷酸化Akt(Ser473)抗体可用于免疫印迹实验,来研究NAG-1在经VES处理的人前列腺癌细胞株PC-3中的表达及调控。Mol Cancer Ther (2008) ncbi
未注明
  • 免疫印迹; 人类
细胞信号转导用磷酸化Akt抗体可用于免疫印迹实验,来研究NAG-1在经VES处理的人前列腺癌细胞株PC-3中的表达及调控。Mol Cancer Ther (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究生长激素和/或胰岛素样生长因子-1调节钠和水的保持平衡的机制,采用了细胞信号技术公司的抗磷酸化Akt抗体(1:1,000)进行了蛋白印迹实验。Endocrinology (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究生长激素和/或胰岛素样生长因子-1调节钠和水的保持平衡的机制,采用了细胞信号技术公司的抗Akt抗体(1:1,000)进行了蛋白印迹实验。Endocrinology (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究TG2对FAK/AKT细胞存活信号的调控作用,采用了Cell Signaling 公司的抗AKT (pSer473)磷酸化和抗AKT总蛋白的抗体进行了免疫印记实验。Clin Cancer Res (2008) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 9271)被用于免疫印迹在人类样品上. Oncogene (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究促甲状腺激素垂体瘤的分子机制,采用了细胞信号技术公司的磷酸化S473AKT抗体(1:500)进行了蛋白印迹实验Endocrinology (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究促甲状腺激素垂体瘤的分子机制,采用了细胞信号技术公司的总的AKT抗体进行了蛋白印迹实验。Endocrinology (2008) ncbi
未注明
  • 免疫组化; 人类
为了研究内皮谷胱甘肽的减少对于由年龄造成的血管内皮功能下降的影响,采用了Cell Signaling Technology的抗Akt抗体,进行免疫组化实验Br J Pharmacol (2008) ncbi
未注明
  • 免疫组化; 人类
为了研究内皮谷胱甘肽的减少对于由年龄造成的血管内皮功能下降的影响,采用了Cell Signaling Technology的抗磷酸化的Akt抗体,进行免疫组化实验Br J Pharmacol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究胰岛素抗性的糖尿病模型中,Gsk-3β是如何控制β细胞数量的,采用了Cell Signaling的Thr308磷酸化的Akt,进行蛋白质印迹实验PLoS Biol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究胰岛素抗性的糖尿病模型中,Gsk-3β是如何控制β细胞数量的,采用了Cell Signaling的Ser473磷酸化的Akt,进行蛋白质印迹实验PLoS Biol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究胰岛素抗性的糖尿病模型中,Gsk-3β是如何控制β细胞数量的,采用了Cell Signaling的Akt,进行蛋白质印迹实验PLoS Biol (2008) ncbi
未注明
  • 免疫印迹; 人类
信号转导用Akt抗体(1:1000)可用于免疫印迹实验,来研究三叶因子(TFF3)在细胞复制中的作用。Mol Endocrinol (2008) ncbi
未注明
  • 免疫印迹; 人类
  • 免疫组化; 人类
细胞信号转导用蛋白激酶B(AKT)抗体和磷酸化AKT抗体可用于免疫印迹和免疫组化实验,来研究受体酪氨酸激酶(RTKs)的表达及胰岛素样生长因子1 (IGF-I)信号通路的激活在子宫肌瘤发展中的作用(组化切片组织来自人体组织)。Mol Med (2008) ncbi
未注明
  • 免疫印迹; 人类
为了验证假说:在患有皮肤炎症的小鼠模型上,把老鼠置于发烧样温度环境中,会使中性粒细胞募集和NF-κB活化丧失,采用了细胞信号公司的Akt抗体进行了蛋白印迹实验。Am J Pathol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了阐述PM胆固醇对PIP2调控的细胞骨架结构对胰岛素调控的GLUT4的转膜和葡萄糖吸收具有重要影响,采用了细胞信号公司的Akt抗体进行了蛋白印迹实验。Mol Endocrinol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了阐述PM胆固醇对PIP2调控的细胞骨架结构对胰岛素调控的GLUT4的转膜和葡萄糖吸收具有重要影响,采用了细胞信号公司的磷酸化Akt抗体进行了蛋白印迹实验。Mol Endocrinol (2008) ncbi
未注明
  • 免疫组化; 人类
为了研究血管周上皮样细胞肿瘤(PEComa)与血管肌脂瘤之间联系的遗传学证据和在PEComa中染色体16p的变化,采用了Cell Signaling Technology的抗p-AKT(Ser473)抗体进行免疫组织化学试验。J Pathol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了阐述锂抑制Smad3/4依赖性的转化生长因子-β-反应基因激活的机理,采用了细胞信号技术公司的pAKTSer476抗体进行了蛋白印迹实验。Mol Cell Neurosci (2008) ncbi
未注明
  • 免疫印迹; 人类
为了阐述锂抑制Smad3/4依赖性的转化生长因子-β-反应基因激活的机理,采用了细胞信号技术公司的Akt抗体进行了蛋白印迹实验。Mol Cell Neurosci (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究间变性淋巴瘤酶催化域中自体活化的分子机制,采用了Cell Signaling Technology的抗Akt和抗phospho-Akt抗体进行免疫印迹试验。J Biol Chem (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究mTOR信号通路在人肌肉蛋白合成中的作用,采用了Cell Signaling公司的抗磷酸化Akt抗体(1:500)进行免疫印迹实验。Am J Physiol Endocrinol Metab (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究VLDLR在抑制细胞分裂上所起的作用,使用了Cell Signaling Technology公司的Akt抗体,进行了免疫印迹实验。Mol Biol Cell (2008) ncbi
未注明
  • 免疫印迹; 人类
使用Cell Signaling公司的兔抗人Akt抗体进行免疫印迹实验来研究CB2受体激活剂在TNF-α引起的增殖,迁移和信号转导中的作用。Br J Pharmacol (2008) ncbi
未注明
  • 免疫印迹; 人类
使用Cell Signaling公司的兔抗人Akt(Ser 473)抗体进行免疫印迹实验来研究CB2受体激活剂在TNF-α引起的增殖,迁移和信号转导中的作用。 Br J Pharmacol (2008) ncbi
未注明
  • 免疫印迹; 人类
为了评估Hsp90抑制剂在治疗肺腺癌上的作用,采用了细胞信号公司的磷酸化Akt抗体进行了蛋白印迹实验。Virology (2008) ncbi
未注明
  • 免疫印迹; 人类
为了评估Hsp90抑制剂在治疗肺腺癌上的作用,采用了细胞信号公司的Akt抗体进行了蛋白印迹实验。Virology (2008) ncbi
未注明
  • 免疫印迹; 人类
为了研究调节AGL水平的新方式及调控其的一些信号,采用Cell Signaling Technology公司的抗AKT抗体进行免疫印迹实验。Genes Dev (2007) ncbi
未注明
  • 免疫组化; 人类
为了确定患甲状腺癌及伴随的HT病人的发病率,使用了Cell Signaling公司的抗Akt1抗体,进行了免疫组织化学实验。J Am Coll Surg (2007) ncbi
未注明
  • 免疫印迹; 人类
为了评定隐丹参酮对巨噬细胞趋化性的影响,使用了Cell Signaling Technology公司的Akt抗体,进行了免疫印迹实验。Br J Pharmacol (2007) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling, 4051)被用于免疫印迹在人类样品上. Oncogene (2007) ncbi
未注明
  • 免疫印迹; 人类
为了诊查由P-LAP/IRAP增强的子宫内膜癌恶性潜势是否因为通过胰岛素信号P-LAP/IRAP介导激活增加了葡萄糖的摄取,使用了Cell Signaling Technologies公司的鼠单克隆磷酸-AKT抗体,进行了免疫印迹实验。BMC Cancer (2007) ncbi
未注明
  • 免疫印迹; 人类
为了阐明在人气道上皮细胞中Src介导的磷脂酰3激酶及其下游效应物Akt的激活是鼻病毒信号转导的关键,采用了Cell Signaling公司的兔抗Akt和抗磷酸化的Akt抗体,进行了蛋白质印迹实验。J Virol (2007) ncbi
未注明
  • 免疫组化; 人类
为研究Smad4分子在调控正常胰腺发育和胰腺导管腺癌发生发展中的分子机制,采用了Cell Signaling公司的抗-磷酸化Akt (Ser473)抗体进行免疫组织化学实验。 Genes Dev (2006) ncbi
兔 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt抗体(Cell Signaling Technology, 9271)被用于免疫印迹在人类样品上. Biochem Biophys Res Commun (2006) ncbi
未注明
  • 免疫印迹; 人类
为了研究肝细胞生长因子诱导的细胞散布的分子机制,采用了Abgent公司的抗磷酸化GSK-3beta和抗GSK-3beta抗体进行免疫印迹实验。EMBO J (2006) ncbi
未注明
  • 免疫印迹; 人类
在western blot实验中使用了Cell Signalling Technology公司AKT抗体来研究异羟肟衍生物LBH589在抗血管生成合抗肿瘤的活性特点。Clin Cancer Res (2006) ncbi
未注明
  • 免疫印迹; 人类
为了研究大鼠肉瘤蛋白所控制的一些微定位对信号传导的影响,选择大鼠肉瘤蛋白12作为研究细胞微定位研究对象,同时也研究了内生肉瘤蛋白在有丝分裂转化信号中的影响,采用了Cell Signaling公司Akt抗体,进行蛋白质印记实验。Mol Cell Biol (2006) ncbi
未注明
  • 免疫印迹; 人类
为了研究内皮间充质细胞转化期间FGF-2对类型1胶原表现的调控作用,使用了Cell Signaling Technology公司的兔抗Akt抗体,进行了免疫印迹实验。Invest Ophthalmol Vis Sci (2005) ncbi
未注明
  • 免疫印迹; 人类
在western blot实验中使用了Cell Signalling Technology公司的兔多克隆磷酸化Akt(Ser473)抗体(1:1000)用于研究SCH66336是否能抑制呼吸道癌细胞的血管生成。J Natl Cancer Inst (2005) ncbi
碧迪BD
小鼠 单克隆(55/PKBa/Akt)
  • FC; 人类; 图1
碧迪BD Akt抗体(BD Biosciences, 560049)被用于流式细胞仪在人类样品上 (图1). Sci Rep (2016) ncbi
小鼠 单克隆(2/PKBa/Akt)
  • 免疫印迹; 狗; 1:1000; 图5A
碧迪BD Akt抗体(BD Biosciencies, 610876)被用于免疫印迹在狗样品上浓度为1:1000 (图5A). Mol Biol Cell (2016) ncbi
小鼠 单克隆(M89-61)
  • FC; 小鼠; 1:6; 图1
碧迪BD Akt抗体(BD, 560343)被用于流式细胞仪在小鼠样品上浓度为1:6 (图1). Nat Commun (2015) ncbi
小鼠 单克隆(M89-61)
  • FC; 人类; 图5
碧迪BD Akt抗体(BD Biosciences, 560858)被用于流式细胞仪在人类样品上 (图5). PLoS ONE (2016) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 小鼠; 1:1000; 图s3
碧迪BD Akt抗体(BD Biosciences, 610860)被用于免疫印迹在小鼠样品上浓度为1:1000 (图s3). Clin Cancer Res (2016) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 人类; 1:1000
碧迪BD Akt抗体(BD Transduction Laboratories, 610860)被用于免疫印迹在人类样品上浓度为1:1000. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(M89-61)
  • FC; 小鼠
碧迪BD Akt抗体(BD Biosciences, 560378)被用于流式细胞仪在小鼠样品上. J Leukoc Biol (2015) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 人类
碧迪BD Akt抗体(BD, 610860)被用于免疫印迹在人类样品上. J Cell Sci (2015) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 人类; 图1
碧迪BD Akt抗体(BD Biosciences, 610860)被用于免疫印迹在人类样品上 (图1). Cell Death Dis (2015) ncbi
小鼠 单克隆(M89-61)
  • FC; 人类
碧迪BD Akt抗体(BD Biosciences, M89-61)被用于流式细胞仪在人类样品上. Eur J Immunol (2015) ncbi
小鼠 单克隆(M89-61)
  • FC; 人类
碧迪BD Akt抗体(BD Biosciences, 560378)被用于流式细胞仪在人类样品上. Trans Am Ophthalmol Soc (2014) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • FC; 人类
碧迪BD Akt抗体(BD Biosciences, 560049)被用于流式细胞仪在人类样品上. Trans Am Ophthalmol Soc (2014) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 人类
碧迪BD Akt抗体(BD Transduction Laboratories, 610861)被用于免疫印迹在人类样品上. J Biol Chem (2013) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 人类
为了研究MMP-10和CTSF在糖尿病患者角膜伤口治愈不良中的作用,采用了BD Transduction Labs的抗Akt抗体进行免疫印迹试验。 Brain Res Bull (2010) ncbi
未注明
  • 免疫印迹; 人类
为了研究STAT3和caveolin-3在调控儿茶酚胺引起的心脏肥大过程中的作用,采用了BD Transduction Laboratories公司的Akt抗体产品,进行了免疫印迹实验。Exp Mol Med (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究PTEN的磷酸化在调控ATP敏感的钾离子通道中的作用,采用了BD Transduction 公司的多克隆抗PKB(1:2500)抗体产品,进行了免疫印迹实验。J Biol Chem (2009) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 人类
结合计算机模拟实验,模拟实验结果的检验,以及蛋白相互作用网络的反向工程实验来确认新的曲妥单抗抗乳腺癌的潜在治疗策略,将BD提供的小鼠抗AKT1抗体(目录号:610860)用于蛋白免疫印迹。BMC Syst Biol (2009) ncbi
未注明
  • 免疫印迹; 人类
为了研究JAK激酶抑制剂抑制人类真性多血症细胞的增殖,采用了BD Pharmingen AKT (610876)抗体进行了免疫印迹实验。Cancer Sci (2008) ncbi
默克密理博中国
小鼠 单克隆(SKB1)
  • 免疫印迹; 人类; 1:1000; 图1
默克密理博中国 Akt抗体(Millipore, 05-591)被用于免疫印迹在人类样品上浓度为1:1000 (图1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 图6
默克密理博中国 Akt抗体(Millipore, 07-416)被用于免疫印迹在人类样品上 (图6). Cancer Cell Int (2016) ncbi
小鼠 单克隆(6F5)
  • 免疫印迹; 小鼠; 图8
默克密理博中国 Akt抗体(Merck-Millipore, 05-1003)被用于免疫印迹在小鼠样品上 (图8). Mol Biol Cell (2015) ncbi
小鼠 单克隆(6F5)
  • 免疫印迹; 人类; 1:1000
默克密理博中国 Akt抗体(Millipore, 05-1003)被用于免疫印迹在人类样品上浓度为1:1000. J Neuroimmunol (2015) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 大鼠; 1:1000; 图2e
默克密理博中国 Akt抗体(Millipore, 05-669)被用于免疫印迹在大鼠样品上浓度为1:1000 (图2e). Front Behav Neurosci (2015) ncbi
小鼠 单克隆(SKB1)
  • 免疫印迹; 人类
默克密理博中国 Akt抗体(Merck Millipore, 05-591)被用于免疫印迹在人类样品上. J Interferon Cytokine Res (2015) ncbi
兔 单克隆(NL50)
  • 免疫印迹; 人类; 图5
默克密理博中国 Akt抗体(Millipore, 05-802R)被用于免疫印迹在人类样品上 (图5). Eur J Appl Physiol (2015) ncbi
小鼠 单克隆(SKB1)
  • 免疫印迹; 小鼠
默克密理博中国 Akt抗体(Millipore, 05-591)被用于免疫印迹在小鼠样品上. J Biol Rhythms (2014) ncbi
兔 多克隆
  • 细胞化学; 人类; 1:500; 图4
默克密理博中国 Akt抗体(Millipore, # 06-885)被用于免疫细胞化学在人类样品上浓度为1:500 (图4). Toxicol In Vitro (2014) ncbi
小鼠 单克隆(SKB1)
  • 免疫印迹; 人类
默克密理博中国 Akt抗体(Millipore, 05-591)被用于免疫印迹在人类样品上. Biochem Pharmacol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
默克密理博中国 Akt抗体(Upstate, 07-416)被用于免疫印迹在人类样品上. J Diabetes Complications (2014) ncbi
兔 单克隆(AW24)
  • 免疫印迹; 人类; 1:1000
默克密理博中国 Akt抗体(Millipore, 05-796)被用于免疫印迹在人类样品上浓度为1:1000. Mol Cell Proteomics (2013) ncbi
小鼠 单克隆(SKB1)
  • 免疫印迹; 小鼠; 图5
默克密理博中国 Akt抗体(Millipore, 05-591)被用于免疫印迹在小鼠样品上 (图5). Int J Obes (Lond) (2014) ncbi
小鼠 单克隆(11E6)
  • 细胞化学; 人类
  • 免疫印迹; 人类
默克密理博中国 Akt抗体(Upstate, 11E6)被用于免疫细胞化学在人类样品上 和 免疫印迹在人类样品上. PLoS ONE (2013) ncbi
未注明
  • 免疫组化; 人类
为了研究磷酸化的Akt对后囊的作用采用了Santa Cruz公司的抗pAkt抗体(1:350稀释)来进行免疫组化实验。Mol Vis (2010) ncbi
未注明
  • 免疫印迹; 人类
  • 免疫沉淀; 人类
为了研究ClipR-59介导的Akt细胞内区室化对脂肪细胞葡萄糖运输的调节作用,使用了Millipore公司的兔抗Akt和抗磷酸化Akt抗体来进行免疫印迹分析和免疫沉淀实验。Mol Cell Biol (2009) ncbi
未注明
  • 免疫印迹; 人类
为研究RhoE在角质化细胞的分化和层化过程中所发挥的角色,将密理博公司提供的小鼠单克隆抗Rac抗体(23A8)用于蛋白免疫印迹实验中。Mol Biol Cell (2009) ncbi
安迪生物R&D
小鼠 单克隆(658320)
  • 免疫印迹; 人类; 图2
安迪生物R&D Akt抗体(R&D Systems, MAB7419)被用于免疫印迹在人类样品上 (图2). PLoS ONE (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:400
安迪生物R&D Akt抗体(R & D Systems, AF887)被用于免疫印迹在小鼠样品上浓度为1:400. PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2500
安迪生物R&D Akt抗体(R&D Systems, AF2055)被用于免疫印迹在人类样品上浓度为1:2500. Taiwan J Obstet Gynecol (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:2000
安迪生物R&D Akt抗体(R&D Systems, AF-887)被用于免疫印迹在人类样品上浓度为1:2000. Taiwan J Obstet Gynecol (2014) ncbi
小鼠 单克隆(281046)
  • 免疫印迹; 小鼠; 1:5000
安迪生物R&D Akt抗体(R&D Systems, MAB2055)被用于免疫印迹在小鼠样品上浓度为1:5000. Cell Physiol Biochem (2014) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:500
安迪生物R&D Akt抗体(R&D Systems, AF887)被用于免疫印迹在小鼠样品上浓度为1:500. Cell Physiol Biochem (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类
安迪生物R&D Akt抗体(R&D Systems, AF887)被用于免疫印迹在人类样品上. Cancer Res (2014) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:4000
安迪生物R&D Akt抗体(R&D Systems, AF887)被用于免疫印迹在人类样品上浓度为1:4000. J Cell Physiol (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:50000
安迪生物R&D Akt抗体(R&D Systems, AF887)被用于免疫印迹在人类样品上浓度为1:50000. Prostate (2014) ncbi
西格玛奥德里奇
兔 多克隆
  • 免疫印迹; 人类; 1:1000; 图11
西格玛奥德里奇 Akt抗体(Sigma, SAB4500799)被用于免疫印迹在人类样品上浓度为1:1000 (图11). J Neuroinflammation (2015) ncbi
小鼠 单克隆(PKB-175)
  • 免疫印迹; 人类; 图3
西格玛奥德里奇 Akt抗体(Sigma-Aldrich, P-2482)被用于免疫印迹在人类样品上 (图3). Biomed Res Int (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:400
西格玛奥德里奇 Akt抗体(Sigma, SAB4500797)被用于免疫印迹在大鼠样品上浓度为1:400. Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:400
西格玛奥德里奇 Akt抗体(Sigma, SAB4503853)被用于免疫印迹在大鼠样品上浓度为1:400. Int J Mol Med (2015) ncbi
兔 多克隆
  • 免疫印迹; 人类
西格玛奥德里奇 Akt抗体(Sigma Aldrich, P4112)被用于免疫印迹在人类样品上. J Interferon Cytokine Res (2015) ncbi
兔 多克隆
  • 免疫印迹; kangaroo rats; 1:1000; 图2
西格玛奥德里奇 Akt抗体(sigma, SAB4500802)被用于免疫印迹在kangaroo rats样品上浓度为1:1000 (图2). Cell Mol Neurobiol (2015) ncbi
未注明
  • 免疫组化; 人类
为了考察Dickkopfs (Dkks)和Kremen2 (Krm2)在胃肠道癌症中表达的变化,使用了Sigma-Aldrich 公司的抗Rac的小鼠抗人抗体进行了免疫组化实验。 World J Gastroenterol (2008) ncbi
丹科医疗器械技术服务(上海)有限公司
兔 单克隆(14-5)
  • 免疫组化; 人类; 1:20; 表2
丹科医疗器械技术服务(上海)有限公司 Akt抗体(Dako, M3628)被用于免疫组化在人类样品上浓度为1:20 (表2). Hematol Oncol (2016) ncbi
Bioss
兔 多克隆
  • 免疫印迹; 大鼠; 1:500; 图5
Bioss Akt抗体(Bioss, bs-0876R)被用于免疫印迹在大鼠样品上浓度为1:500 (图5). Int J Mol Med (2016) ncbi
文章列表
  1. Terry D Hinds et al. (2016). "Biliverdin Reductase A Attenuates Hepatic Steatosis by Inhibition of Glycogen Synthase Kinase (GSK) 3β Phosphorylation of Serine 73 of Peroxisome Proliferator-activated Receptor (PPAR) α".PMID 27738106
  2. Thomas Southworth et al. (2016). "Anti-inflammatory potential of PI3Kδ and JAK inhibitors in asthma patients".PMID 27716212
  3. Onur Cizmecioglu et al. (2016). "Rac1-mediated membrane raft localization of PI3K/p110β is required for its activation by GPCRs or PTEN loss".PMID 27700986
  4. Haluk Yuzugullu et al. (2016). "NTRK2 activation cooperates with PTEN deficiency in T-ALL through activation of both the PI3K-AKT and JAK-STAT3 pathways".PMID 27672444
  5. Zhiwei Ang et al. (2016). "Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists".PMID 27667443
  6. Fridolin Treindl et al. (2016). "A bead-based western for high-throughput cellular signal transduction analyses".PMID 27659302
  7. Michael J Shamblott et al. (2016). "Neurogenin 3 is regulated by neurotrophic tyrosine kinase receptor type 2 (TRKB) signaling in the adult human exocrine pancreas".PMID 27659207
  8. Deidre Jansson et al. (2016). "Interferon-γ blocks signalling through PDGFRβ in human brain pericytes".PMID 27654972
  9. Qinglei Hang et al. (2016). "N-Glycosylation of integrin α5 acts as a switch for EGFR-mediated complex formation of integrin α5β1 to α6β4".PMID 27641064
  10. Britt Christensen et al. (2016). "Erythropoietin does not activate erythropoietin receptor signaling or lipolytic pathways in human subcutaneous white adipose tissue in vivo".PMID 27640183
  11. Mélissa Carbonneau et al. (2016). "The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway".PMID 27624942
  12. Rachel A Hesler et al. (2016). "TGF-β-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3".PMID 27604902
  13. Nitasha R Phatak et al. (2016). "Bcl-2, Bcl-xL, and p-AKT are involved in neuroprotective effects of transcription factor Brn3b in an ocular hypertension rat model of glaucoma".PMID 27587945
  14. Annika M Bourgonje et al. (2016). "Comprehensive protein tyrosine phosphatase mRNA profiling identifies new regulators in the progression of glioma".PMID 27586084
  15. Narendra Padhan et al. (2016). "High sensitivity isoelectric focusing to establish a signaling biomarker for the diagnosis of human colorectal cancer".PMID 27562229
  16. Shubhankar Suman et al. (2016). "Space radiation exposure persistently increased leptin and IGF1 in serum and activated leptin-IGF1 signaling axis in mouse intestine".PMID 27558773
  17. Samuel Gusscott et al. (2016). "IGF1R Derived PI3K/AKT Signaling Maintains Growth in a Subset of Human T-Cell Acute Lymphoblastic Leukemias".PMID 27532210
  18. Qiong Jiang et al. (2016). "Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease".PMID 27486021
  19. Emi Kawamoto et al. (2016). "Immobilization rapidly induces muscle insulin resistance together with the activation of MAPKs (JNK and p38) and impairment of AS160 phosphorylation".PMID 27482072
  20. Maoyi Lai et al. (2016). "Regulation of B-cell development and tolerance by different members of the miR-17∼92 family microRNAs".PMID 27481093
  21. Antoine Reginensi et al. (2016). "A critical role for NF2 and the Hippo pathway in branching morphogenesis".PMID 27480037
  22. S Di Siena et al. (2016). "Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury".PMID 27468693
  23. Ornella Franzese et al. (2016). "Polyfunctional Melan-A-specific tumor-reactive CD8(+) T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS".PMID 27467927
  24. Maddalena Coppo et al. (2016). "The transcriptional coregulator GRIP1 controls macrophage polarization and metabolic homeostasis".PMID 27464507
  25. Yang Bai et al. (2016). "Pdcd4 Is Involved in the Formation of Stress Granule in Response to Oxidized Low-Density Lipoprotein or High-Fat Diet".PMID 27454120
  26. Kai Jiao et al. (2016). "Activation of α2A-adrenergic signal transduction in chondrocytes promotes degenerative remodelling of temporomandibular joint".PMID 27452863
  27. Fang Fang et al. (2016). "CD147 modulates androgen receptor activity through the Akt/Gsk-3β/β-catenin/AR pathway in prostate cancer cells".PMID 27446405
  28. Haidong Bao et al. (2016). "Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK".PMID 27446394
  29. Zhiliang Jin et al. (2016). "Psoralidin inhibits proliferation and enhances apoptosis of human esophageal carcinoma cells via NF-κB and PI3K/Akt signaling pathways".PMID 27446379
  30. Itziar M D Posada et al. (2016). "ASPP2 Is a Novel Pan-Ras Nanocluster Scaffold".PMID 27437940
  31. Bo Pan et al. (2016). "Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats".PMID 27435909
  32. Guofu Li et al. (2016). "The neutrophil elastase inhibitor, sivelestat, attenuates sepsis-related kidney injury in rats".PMID 27430552
  33. Man Song et al. (2016). "Bystander autophagy mediated by radiation-induced exosomal miR-7-5p in non-targeted human bronchial epithelial cells".PMID 27417393
  34. Ting Ma et al. (2016). "Metabonomics applied in exploring the antitumour mechanism of physapubenolide on hepatocellular carcinoma cells by targeting glycolysis through the Akt-p53 pathway".PMID 27416811
  35. Hagoon Jang et al. (2016). "SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding".PMID 27412556
  36. Darcie L McClelland Descalzo et al. (2016). "Glucose-Induced Oxidative Stress Reduces Proliferation in Embryonic Stem Cells via FOXO3A/β-Catenin-Dependent Transcription of p21(cip1)".PMID 27411103
  37. Geneviève Deblois et al. (2016). "ERRα mediates metabolic adaptations driving lapatinib resistance in breast cancer".PMID 27402251
  38. André G Oliveira et al. (2016). "Metformin treatment modulates the tumour-induced wasting effects in muscle protein metabolism minimising the cachexia in tumour-bearing rats".PMID 27388367
  39. Chien Chang Huang et al. (2016). "Cathepsin S attenuates endosomal EGFR signalling: A mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors".PMID 27387133
  40. X Li et al. (2016). "Quercetin alleviates pulmonary angiogenesis in a rat model of hepatopulmonary syndrome".PMID 27383124
  41. Lucy Petrova et al. (2016). "Efficient and Reliable Production of Vectors for the Study of the Repair, Mutagenesis, and Phenotypic Consequences of Defined DNA Damage Lesions in Mammalian Cells".PMID 27362559
  42. Hongxia Zhang et al. (2016). "miR-137 inhibits renal cell carcinoma growth in vitro and in vivo".PMID 27347205
  43. Wenjun Zhao et al. (2016). "Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue".PMID 27343375
  44. Arne Herring et al. (2016). "Kallikrein-8 inhibition attenuates Alzheimer's disease pathology in mice".PMID 27327541
  45. Jérémie Gautheron et al. (2016). "The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance".PMID 27323669
  46. Chen Chi Liu et al. (2016). "Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells".PMID 27306323
  47. Grazia Maugeri et al. (2016). "PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression".PMID 27303300
  48. Luca Fagnocchi et al. (2016). "A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity".PMID 27301576
  49. Yan Cui et al. (2016). "microRNA-153 Targets mTORC2 Component Rictor to Inhibit Glioma Cells".PMID 27295037
  50. Katrin E Tagscherer et al. (2016). "MicroRNA-210 induces apoptosis in colorectal cancer via induction of reactive oxygen".PMID 27293381
  51. Yang Xu et al. (2016). "Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord".PMID 27282805
  52. Kenji Kobayashi et al. (2016). "Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis".PMID 27279371
  53. Jian Wang et al. (2016). "GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis".PMID 27273304
  54. Ae Lee Jeong et al. (2016). "Patient derived mutation W257G of PPP2R1A enhances cancer cell migration through SRC-JNK-c-Jun pathway".PMID 27272709
  55. Steven J Foltz et al. (2016). "Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy".PMID 27257474
  56. Ioanna Tzani et al. (2016). "Systematic analysis of the PTEN 5' leader identifies a major AUU initiated proteoform".PMID 27249819
  57. Siobhán Leonard et al. (2016). "Regulating the effects of GPR21, a novel target for type 2 diabetes".PMID 27243589
  58. Janine H van Ree et al. (2016). "Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes".PMID 27240320
  59. Malte Puchert et al. (2016). "Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise".PMID 27237374
  60. Emmanuel Nwadozi et al. (2016). "Endothelial FoxO proteins impair insulin sensitivity and restrain muscle angiogenesis in response to a high-fat diet".PMID 27235148
  61. Jung ha Park et al. (2016). "Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids".PMID 27232601
  62. Zhai Yang et al. (2016). "Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model".PMID 27220549
  63. Thomas P Kohler et al. (2016). "Induction of Central Host Signaling Kinases during Pneumococcal Infection of Human THP-1 Cells".PMID 27200303
  64. Mohamed Gharib et al. (2016). "Cluster Differentiating 36 (CD36) Deficiency Attenuates Obesity-Associated Oxidative Stress in the Heart".PMID 27195707
  65. Jieqiong Wang et al. (2016). "Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK".PMID 27193833
  66. Elizabeth S Chan et al. (2016). "ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer's disease mouse model".PMID 27189808
  67. Delong Huang et al. (2016). "VEGF-B inhibits hyperglycemia- and Macugen-induced retinal apoptosis".PMID 27189805
  68. Kaiping Wang et al. (2016). "Chronic administration of Angelica sinensis polysaccharide effectively improves fatty liver and glucose homeostasis in high-fat diet-fed mice".PMID 27189109
  69. Ying Zhu et al. (2016). "An Oncogenic Virus Promotes Cell Survival and Cellular Transformation by Suppressing Glycolysis".PMID 27187079
  70. A L Hein et al. (2016). "RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment".PMID 27181206
  71. Bing Shu Li et al. (2016). "Role of mechanical strain-activated PI3K/Akt signaling pathway in pelvic organ prolapse".PMID 27176043
  72. Raffaella Fabbri et al. (2016). "Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue".PMID 27173589
  73. Nunzia Pastore et al. (2016). "TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages".PMID 27171064
  74. Naitao Wang et al. (2016). "Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status".PMID 27167157
  75. Aleksei A Stepanenko et al. (2016). "Temozolomide promotes genomic and phenotypic changes in glioblastoma cells".PMID 27158244
  76. Anne M Cieniewicz et al. (2016). "Novel method demonstrates differential ligand activation and phosphatase-mediated deactivation of insulin receptor tyrosine-specific phosphorylation".PMID 27155325
  77. Ilenia Segatto et al. (2016). "Preclinical validation of a novel compound targeting p70S6 kinase in breast cancer".PMID 27155197
  78. Yen Ning Huang et al. (2016). "Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling".PMID 27155148
  79. Christina Vorvis et al. (2016). "Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer".PMID 27151939
  80. Yunlong Yang et al. (2016). "The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages".PMID 27150562
  81. Qingli Bie et al. (2016). "Non-tumor tissue derived interleukin-17B activates IL-17RB/AKT/β-catenin pathway to enhance the stemness of gastric cancer".PMID 27146881
  82. Kaja Plucińska et al. (2016). "Neuronal human BACE1 knockin induces systemic diabetes in mice".PMID 27138913
  83. Shuning He et al. (2016). "Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain".PMID 27130733
  84. Qichao Huang et al. (2016). "Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways".PMID 27124102
  85. Kuan I Lee et al. (2016). "Role of transient receptor potential ankyrin 1 channels in Alzheimer's disease".PMID 27121378
  86. Hyeong Sim Choi et al. (2016). "Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation".PMID 27121110
  87. Ruixia Du et al. (2016). "Trichostatin A potentiates genistein-induced apoptosis and reverses EMT in HEp2 cells".PMID 27121018
  88. Kazuo Noda et al. (2016). "Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development".PMID 27118846
  89. Joonbae Seo et al. (2016). "Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene".PMID 27111068
  90. Tobias Boothe et al. (2016). "Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells".PMID 27110488
  91. Fengqin Dong et al. (2016). "TCF7L2 involvement in estradiol- and progesterone-modulated islet and hepatic glucose homeostasis".PMID 27108846
  92. Nerea Rebolleda et al. (2016). "Synergistic Activity of Deguelin and Fludarabine in Cells from Chronic Lymphocytic Leukemia Patients and in the New Zealand Black Murine Model".PMID 27101369
  93. Basudev Chowdhury et al. (2016). "PBRM1 Regulates the Expression of Genes Involved in Metabolism and Cell Adhesion in Renal Clear Cell Carcinoma".PMID 27100670
  94. Qianqian Liang et al. (2016). "Application of citrate as a tricarboxylic acid (TCA) cycle intermediate, prevents diabetic-induced heart damages in mice".PMID 27096063
  95. Amandine Thomas et al. (2016). "Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice".PMID 27094951
  96. J Dokas et al. (2016). "Tbc1d1 deletion suppresses obesity in leptin-deficient mice".PMID 27089993
  97. Katharina Dinger et al. (2016). "Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice".PMID 27087690
  98. Wenrong Zeng et al. (2016). "Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-κB Pathway".PMID 27076857
  99. Amit Kumar et al. (2016). "Tuning of AKT-pathway by Nef and its blockade by protease inhibitors results in limited recovery in latently HIV infected T-cell line".PMID 27076174
  100. Zhiyun Yu et al. (2016). "Temozolomide in combination with metformin act synergistically to inhibit proliferation and expansion of glioma stem-like cells".PMID 27073554
  101. Jong Hee Jeong et al. (2016). "Neuroprotective and antioxidant activities of bamboo salt soy sauce against H2O2-induced oxidative stress in rat cortical neurons".PMID 27073423
  102. Eun Jeong Yang et al. (2016). "Early Behavioral Abnormalities and Perinatal Alterations of PTEN/AKT Pathway in Valproic Acid Autism Model Mice".PMID 27071011
  103. Guo hui Huang et al. (2016). "Porf-2 Inhibits Neural Stem Cell Proliferation Through Wnt/β-Catenin Pathway by Its GAP Domain".PMID 27064446
  104. Meng Hsuan Wen et al. (2016). "N-Cadherin Regulates Cell Migration Through a Rab5-Dependent Temporal Control of Macropinocytosis".PMID 27062132
  105. Angela Maselli et al. (2016). "Autoantibodies specific to estrogen receptor alpha act as estrogen agonists and their levels correlate with breast cancer cell proliferation".PMID 27057440
  106. Sandra Hakim et al. (2016). "Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling".PMID 27056978
  107. Yuliya V Katlinskaya et al. (2016). "Suppression of Type I Interferon Signaling Overcomes Oncogene-Induced Senescence and Mediates Melanoma Development and Progression".PMID 27052162
  108. Kendall Phelps-Polirer et al. (2016). "Co-Targeting of JNK and HUNK in Resistant HER2-Positive Breast Cancer".PMID 27045589
  109. Gareth W Fearnley et al. (2016). "VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis".PMID 27044325
  110. E S Papadakis et al. (2016). "The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ".PMID 27043661
  111. Valentina Gandin et al. (2016). "mTORC1 and CK2 coordinate ternary and eIF4F complex assembly".PMID 27040916
  112. Bo Yan et al. (2016). "mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation".PMID 27039827
  113. Jiwei Li et al. (2016). "Mesenchymal stem cells ameliorate inflammatory cytokine-induced impairment of AT-II cells through a keratinocyte growth factor-dependent PI3K/Akt/mTOR signaling pathway".PMID 27035760
  114. Ingrid Elisia et al. (2016). "DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis".PMID 27031833
  115. Sydney Webb Strickland et al. (2016). "The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC".PMID 27030265
  116. Alex Braley et al. (2016). "Regulation of Receptor for Advanced Glycation End Products (RAGE) Ectodomain Shedding and Its Role in Cell Function".PMID 27022018
  117. Yuan Xing et al. (2016). "Mutual inhibition of insulin signaling and PHLPP-1 determines cardioprotective efficiency of Akt in aged heart".PMID 27019292
  118. Dianxin Liu et al. (2016). "Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning".PMID 27018708
  119. Grazia Maugeri et al. (2016). "Expression profile of Wilms Tumor 1 (WT1) isoforms in undifferentiated and all-trans retinoic acid differentiated neuroblastoma cells".PMID 27014421
  120. Jhy Shrian Huang et al. (2016). "Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction".PMID 27012679
  121. Scot R Kimball et al. (2016). "Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation".PMID 27010498
  122. Alaide Domínguez-Calderón et al. (2016). "ZO-2 silencing induces renal hypertrophy through a cell cycle mechanism and the activation of YAP and the mTOR pathway".PMID 27009203
  123. Maria L Mancini et al. (2016). "Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis".PMID 27004402
  124. Ninna S Hansen et al. (2016). "Metabolic and Transcriptional Changes in Cultured Muscle Stem Cells from Low Birth Weight Subjects".PMID 27003303
  125. Y Meng et al. (2016). "A monoclonal antibody targeting ErbB2 domain III inhibits ErbB2 signaling and suppresses the growth of ErbB2-overexpressing breast tumors".PMID 26999718
  126. I I Lee et al. (2016). "Akt regulates progesterone receptor B-dependent transcription and angiogenesis in endometrial cancer cells".PMID 26996671
  127. Ji Yeon Lee et al. (2016). "eIF3f reduces tumor growth by directly interrupting clusterin with anti-apoptotic property in cancer cells".PMID 26988917
  128. Keiichiro Hayashi et al. (2016). "Fluvoxamine, an anti-depressant, inhibits human glioblastoma invasion by disrupting actin polymerization".PMID 26988603
  129. Yasuaki Kabe et al. (2016). "Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance".PMID 26988023
  130. Panagiotis Giannogonas et al. (2016). "Identification of a novel interaction between corticotropin releasing hormone (Crh) and macroautophagy".PMID 26987580
  131. David W Scott et al. (2016). "Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF".PMID 26985018
  132. Tayyaba Afsar et al. (2016). "Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways".PMID 26975752
  133. Sokratis A Apostolidis et al. (2016). "Phosphatase PP2A is requisite for the function of regulatory T cells".PMID 26974206
  134. Jonathon N Winnay et al. (2016). "PI3-kinase mutation linked to insulin and growth factor resistance in vivo".PMID 26974159
  135. Julia Barbara Kral et al. (2016). "Sustained PI3K Activation exacerbates BLM-induced Lung Fibrosis via activation of pro-inflammatory and pro-fibrotic pathways".PMID 26971883
  136. Moon Kyung Joo et al. (2016). "The roles of HOXB7 in promoting migration, invasion, and anti-apoptosis in gastric cancer".PMID 26968988
  137. Yukie Takabatake et al. (2016). "Lactation opposes pappalysin-1-driven pregnancy-associated breast cancer".PMID 26951623
  138. Laura Zaldumbide et al. (2016). "Snail heterogeneity in clear cell renal cell carcinoma".PMID 26951092
  139. Cholsoon Jang et al. (2016). "A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance".PMID 26950361
  140. A K Thakur et al. (2016). "TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma".PMID 26943320
  141. Swati Dhar et al. (2016). "Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer".PMID 26943043
  142. Wei Hu et al. (2016). "UBE2T promotes nasopharyngeal carcinoma cell proliferation, invasion, and metastasis by activating the AKT/GSK3β/β-catenin pathway".PMID 26943030
  143. Elena Ardini et al. (2016). "Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications".PMID 26939704
  144. Yang Li et al. (2016). "Silencing of phosphoglucose isomerase/autocrine motility factor decreases U87 human glioblastoma cell migration".PMID 26936801
  145. Huiling Jing et al. (2016). "Shikonin induces apoptosis of HaCaT cells via the mitochondrial, Erk and Akt pathways".PMID 26935874
  146. Stefanie Gurnik et al. (2016). "Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling".PMID 26932603
  147. Yujie Zhang et al. (2016). "Akt mediated phosphorylation of LARP6; critical step in biosynthesis of type I collagen".PMID 26932461
  148. D N Lyabin et al. (2016). "Selective regulation of YB-1 mRNA translation by the mTOR signaling pathway is not mediated by 4E-binding protein".PMID 26931209
  149. Qi Gong et al. (2016). "Fibroblast growth factor 21 improves hepatic insulin sensitivity by inhibiting mammalian target of rapamycin complex 1 in mice".PMID 26926384
  150. Florence Guillot et al. (2016). "Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease".PMID 26923018
  151. Te Sheng Chang et al. (2016). "Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma".PMID 26919045
  152. Robert Nakayama et al. (2016). "Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma".PMID 26918731
  153. J A Mason et al. (2016). "Oncogenic Ras differentially regulates metabolism and anoikis in extracellular matrix-detached cells".PMID 26915296
  154. Martin Schwarzer et al. (2016). "Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition".PMID 26912894
  155. Franz Oswald et al. (2016). "A phospho-dependent mechanism involving NCoR and KMT2D controls a permissive chromatin state at Notch target genes".PMID 26912830
  156. Guang Jer Wu et al. (2016). "METCAM/MUC18 is a novel tumor and metastasis suppressor for the human ovarian cancer SKOV3 cells".PMID 26906545
  157. Mengtao Li et al. (2016). "EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy".PMID 26905199
  158. Satra Nim et al. (2016). "Pooled screening for antiproliferative inhibitors of protein-protein interactions".PMID 26900867
  159. Enerelt Urnukhsaikhan et al. (2016). "Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs".PMID 26898125
  160. Takamasa Tobita et al. (2016). "SIRT1 Disruption in Human Fetal Hepatocytes Leads to Increased Accumulation of Glucose and Lipids".PMID 26890260
  161. C Leah B Kline et al. (2016). "ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases".PMID 26884600
  162. Pi Xiao Wang et al. (2016). "Hepatocyte TRAF3 promotes liver steatosis and systemic insulin resistance through targeting TAK1-dependent signalling".PMID 26882989
  163. Ozlem Senol-Cosar et al. (2016). "Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion".PMID 26880110
  164. M H Hung et al. (2016). "Upregulation of the oncoprotein SET determines poor clinical outcomes in hepatocellular carcinoma and shows therapeutic potential".PMID 26876205
  165. Claudia J Krause et al. (2016). "MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR".PMID 26871287
  166. Tao Liu et al. (2016). "Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells".PMID 26870186
  167. Anne Hennig et al. (2016). "Feedback activation of neurofibromin terminates growth factor-induced Ras activation".PMID 26861207
  168. Ming Ding et al. (2016). "Secreted IGFBP5 mediates mTORC1-dependent feedback inhibition of IGF-1 signalling".PMID 26854565
  169. Yasmine White et al. (2016). "KRAS insertion mutations are oncogenic and exhibit distinct functional properties".PMID 26854029
  170. Qi Wang et al. (2016). "Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer".PMID 26848620
  171. Christopher J Coke et al. (2016). "Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression".PMID 26841863
  172. Hiroshi Egawa et al. (2016). "The miR-130 family promotes cell migration and invasion in bladder cancer through FAK and Akt phosphorylation by regulating PTEN".PMID 26837847
  173. Fengbin Lin et al. (2015). "Echistatin prevents posterior capsule opacification in diabetic rabbit model via integrin linked kinase signaling pathway".PMID 26823745
  174. Swati Iyer et al. (2016). "Crim1 has cell-autonomous and paracrine roles during embryonic heart development".PMID 26821812
  175. Marina Theodosiou et al. (2016). "Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin".PMID 26821125
  176. Johannes Lutz et al. (2015). "Reactivation of IgG-switched memory B cells by BCR-intrinsic signal amplification promotes IgG antibody production".PMID 26815242
  177. Robert W Button et al. (2016). "Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis".PMID 26814436
  178. Andrea Iorga et al. (2016). "Rescue of Pressure Overload-Induced Heart Failure by Estrogen Therapy".PMID 26802104
  179. Maria Goulielmaki et al. (2016). "BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells".PMID 26802026
  180. Brendan C Luey et al. (2016). "Insulin-like growth factors are essential to prevent anoikis in oestrogen-responsive breast cancer cells: importance of the type I IGF receptor and PI3-kinase/Akt pathway".PMID 26801096
  181. Thomas Menter et al. (2016). "Comprehensive phenotypic characterization of PTLD reveals potential reliance on EBV or NF-κB signalling instead of B-cell receptor signalling".PMID 26799990
  182. Sook In Chung et al. (2016). "Comparison of liver oncogenic potential among human RAS isoforms".PMID 26799184
  183. Takeshi Yoshida et al. (2016). "ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer".PMID 26789630
  184. Chong T Luo et al. (2016). "Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity".PMID 26789248
  185. Guus J J E Heynen et al. (2016). "Mastermind-Like 3 Controls Proliferation and Differentiation in Neuroblastoma".PMID 26785999
  186. Indrani Rebbapragada et al. (2016). "Molecular Determinants of GS-9620-Dependent TLR7 Activation".PMID 26784926
  187. Xin Chen et al. (2016). "Neurotrophic Effect of Adipose Tissue-Derived Stem Cells on Erectile Function Recovery by Pigment Epithelium-Derived Factor Secretion in a Rat Model of Cavernous Nerve Injury".PMID 26783403
  188. M Y Cherepkova et al. (2016). "Leukemia inhibitory factor (LIF) withdrawal activates mTOR signaling pathway in mouse embryonic stem cells through the MEK/ERK/TSC2 pathway".PMID 26775702
  189. Gianluca Cipriani et al. (2016). "Diabetic Csf1op/op mice lacking macrophages are protected against the development of delayed gastric emptying".PMID 26771000
  190. Qiang Zhang et al. (2016). "Yin Yang 1 promotes mTORC2-mediated AKT phosphorylation".PMID 26762111
  191. Claudia Pivonello et al. (2016). "The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma".PMID 26756219
  192. Sebastian K Wandinger et al. (2016). "Quantitative Phosphoproteomics Analysis of ERBB3/ERBB4 Signaling".PMID 26745281
  193. Katherine R Amato et al. (2016). "EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer".PMID 26744526
  194. Kyeongjin Kim et al. (2016). "mTORC1-independent Raptor prevents hepatic steatosis by stabilizing PHLPP2".PMID 26743335
  195. Kai Li Gu et al. (2016). "Pluripotency-associated miR-290/302 family of microRNAs promote the dismantling of naive pluripotency".PMID 26742694
  196. Xiao qing Wang et al. (2016). "Epithelial but not stromal expression of collagen alpha-1(III) is a diagnostic and prognostic indicator of colorectal carcinoma".PMID 26741506
  197. Kuei Chuan Lee et al. (2016). "Aliskiren Reduces Hepatic steatosis and Epididymal Fat Mass and Increases Skeletal Muscle Insulin Sensitivity in High-Fat Diet-Fed Mice".PMID 26732252
  198. Jaekwang Jeong et al. (2016). "PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer".PMID 26729871
  199. Helen Creedon et al. (2016). "Use of a genetically engineered mouse model as a preclinical tool for HER2 breast cancer".PMID 26721874
  200. Zahra Maria et al. (2015). "Diabetes Alters the Expression and Translocation of the Insulin-Sensitive Glucose Transporters 4 and 8 in the Atria".PMID 26720696
  201. Hua Zhang et al. (2016). "Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway".PMID 26717963
  202. Steven Hung Yi Fan et al. (2016). "Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration".PMID 26700318
  203. Mei Fen Shih et al. (2015). "Possible Mechanisms of Di(2-ethylhexyl) Phthalate-Induced MMP-2 and MMP-9 Expression in A7r5 Rat Vascular Smooth Muscle Cells".PMID 26690114
  204. Rosa Gomez-Villafuertes et al. (2015). "PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions".PMID 26687764
  205. Ying Zhang et al. (2016). "Crim1 regulates integrin signaling in murine lens development".PMID 26681494
  206. Jing Sun et al. (2015). "Hypoglycemic effect and mechanism of honokiol on type 2 diabetic mice".PMID 26674084
  207. Alexander Drilon et al. (2016). "A Novel Crizotinib-Resistant Solvent-Front Mutation Responsive to Cabozantinib Therapy in a Patient with ROS1-Rearranged Lung Cancer".PMID 26673800
  208. Costanza Giampietro et al. (2015). "The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling".PMID 26668327
  209. Ali Vural et al. (2016). "Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection".PMID 26667172
  210. Ami Patel et al. (2015). "RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome".PMID 26658127
  211. Sylviane Lagarrigue et al. (2016). "CDK4 is an essential insulin effector in adipocytes".PMID 26657864
  212. M Ceccon et al. (2016). "Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency".PMID 26657151
  213. Jian Da Wang et al. (2015). "A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation".PMID 26649942
  214. Makoto Yamagishi et al. (2015). "Coordinated loss of microRNA group causes defenseless signaling in malignant lymphoma".PMID 26639163
  215. Anna Trzeciecka et al. (2016). "Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma".PMID 26636537
  216. Simona Daniele et al. (2015). "Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes".PMID 26627476
  217. Hiroyuki Yamakawa et al. (2015). "Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions".PMID 26626177
  218. Jean Baptiste Oudart et al. (2016). "The anti-tumor NC1 domain of collagen XIX inhibits the FAK/ PI3K/Akt/mTOR signaling pathway through αvβ3 integrin interaction".PMID 26621838
  219. Smail Messaoudi et al. (2015). "Endothelial Gata5 transcription factor regulates blood pressure".PMID 26617239
  220. D N Debruyne et al. (2016). "ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT".PMID 26616860
  221. M O'Hayre et al. (2016). "Inactivating mutations in GNA13 and RHOA in Burkitt's lymphoma and diffuse large B-cell lymphoma: a tumor suppressor function for the Gα13/RhoA axis in B cells".PMID 26616858
  222. Yinhua Ni et al. (2015). "Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E".PMID 26603489
  223. Simon J Ittig et al. (2015). "A bacterial type III secretion-based protein delivery tool for broad applications in cell biology".PMID 26598622
  224. Zu Ye et al. (2015). "PRL-3 activates mTORC1 in Cancer Progression".PMID 26597054
  225. Lezi E et al. (2016). "Lactate's effect on human neuroblastoma cell bioenergetic fluxes".PMID 26592660
  226. S Diersch et al. (2016). "Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells".PMID 26592448
  227. Yasuhiko Murata et al. (2015). "Activation of mTORC1 under nutrient starvation conditions increases cellular radiosensitivity in human liver cancer cell lines, HepG2 and HuH6".PMID 26585486
  228. Liam C Hunt et al. (2015). "The glucose-sensing transcription factor MLX promotes myogenesis via myokine signaling".PMID 26584623
  229. Zi Wang et al. (2016). "Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC".PMID 26575790
  230. Yang Hu et al. (2016). "Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro".PMID 26572749
  231. Martina Chrisam et al. (2015). "Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice".PMID 26565691
  232. Xiaoyong Hu et al. (2015). "Inhibition of Pten deficient Castration Resistant Prostate Cancer by Targeting of the SET - PP2A Signaling axis".PMID 26563471
  233. Reyna Sara Quintero Barceinas et al. (2015). "All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism".PMID 26557664
  234. Birgit Lohberger et al. (2015). "Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation".PMID 26555773
  235. Zhanguang Zhang et al. (2015). "DNAM-1 controls NK cell activation via an ITT-like motif".PMID 26552706
  236. Jens L Hukelmann et al. (2016). "The cytotoxic T cell proteome and its shaping by the kinase mTOR".PMID 26551880
  237. O Ksionda et al. (2016). "RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines".PMID 26549032
  238. Ayumi Goto et al. (2015). "Heat stress acutely activates insulin-independent glucose transport and 5'-AMP-activated protein kinase prior to an increase in HSP72 protein in rat skeletal muscle".PMID 26542263
  239. Irene Amigo-Jiménez et al. (2015). "Bone marrow stroma-induced resistance of chronic lymphocytic leukemia cells to arsenic trioxide involves Mcl-1 upregulation and is overcome by inhibiting the PI3Kδ or PKCβ signaling pathways".PMID 26540567
  240. Ellen E Jackson et al. (2015). "Loss of Toll-Like Receptor 4 Function Partially Protects against Peripheral and Cardiac Glucose Metabolic Derangements During a Long-Term High-Fat Diet".PMID 26539824
  241. Anna S Nikonova et al. (2015). "Opposing Effects of Inhibitors of Aurora-A and EGFR in Autosomal-Dominant Polycystic Kidney Disease".PMID 26528438
  242. Daichao Xu et al. (2015). "Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system".PMID 26523394
  243. M Stanojlovic et al. (2015). "Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus".PMID 26518459
  244. Chih Wen Lin et al. (2015). "Amiodarone as an autophagy promoter reduces liver injury and enhances liver regeneration and survival in mice after partial hepatectomy".PMID 26515640
  245. Toshiyuki Hirano et al. (2015). "In vitro modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant EGFR mutants in non-small-cell lung cancer".PMID 26515464
  246. Fatima Rizvi et al. (2015). "Suppression in PHLPP2 induction by morin promotes Nrf2-regulated cellular defenses against oxidative injury to primary rat hepatocytes".PMID 26513344
  247. Akira Kurozumi et al. (2016). "Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer".PMID 26509963
  248. Philip J Webber et al. (2015). "Combination of heat shock protein 90 and focal adhesion kinase inhibitors synergistically inhibits the growth of non-small cell lung cancer cells".PMID 26501082
  249. Jessica Bauer et al. (2015). "Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer".PMID 26497569
  250. Luigi Pasini et al. (2015). "TrkA is amplified in malignant melanoma patients and induces an anti-proliferative response in cell lines".PMID 26496938
  251. Sue Ellen Verbrugge et al. (2016). "Multifactorial resistance to aminopeptidase inhibitor prodrug CHR2863 in myeloid leukemia cells: down-regulation of carboxylesterase 1, drug sequestration in lipid droplets and pro-survival activation ERK/Akt/mTOR".PMID 26496029
  252. Shinichi Asano et al. (2015). "Cerium oxide nanoparticle treatment ameliorates peritonitis-induced diaphragm dysfunction".PMID 26491293
  253. Alexandra Vétillard et al. (2015). "Akt inhibition improves irinotecan treatment and prevents cell emergence by switching the senescence response to apoptosis".PMID 26485768
  254. Brinton Seashore-Ludlow et al. (2015). "Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset".PMID 26482930
  255. Lin Zhang et al. (2015). "Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth".PMID 26479035
  256. Alexandre Pinel et al. (2016). "N-3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells".PMID 26477381
  257. K R Manda et al. (2016). "NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence".PMID 26477312
  258. Kun Yang Lin et al. (2015). "Tumor Suppressor Lzap Suppresses Wnt/β-Catenin Signaling to Promote Zebrafish Embryonic Ventral Cell Fates via the Suppression of Inhibitory Phosphorylation of Glycogen Synthase Kinase 3".PMID 26475862
  259. Sebastian I Arriola Apelo et al. (2016). "Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system".PMID 26463117
  260. A Barbachano et al. (2016). "SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150".PMID 26455323
  261. Gabriela Martínez-Revollar et al. (2015). "Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways".PMID 26453937
  262. Celina Carvalho Borges et al. (2016). "Adverse effects of vitamin D deficiency on the Pi3k/Akt pathway and pancreatic islet morphology in diet-induced obese mice".PMID 26446269
  263. Alisson L da Rocha et al. (2015). "Downhill Running-Based Overtraining Protocol Improves Hepatic Insulin Signaling Pathway without Concomitant Decrease of Inflammatory Proteins".PMID 26445495
  264. Kristin Luehders et al. (2015). "The small leucine-rich repeat secreted protein Asporin induces eyes in Xenopus embryos through the IGF signalling pathway".PMID 26443635
  265. Jessica L Reinardy et al. (2015). "Phosphorylation of Threonine 794 on Tie1 by Rac1/PAK1 Reveals a Novel Angiogenesis Regulatory Pathway".PMID 26436659
  266. Li Liu et al. (2015). "Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion".PMID 26412641
  267. Xiang Rong Shu et al. (2015). "PAK4 confers the malignance of cervical cancers and contributes to the cisplatin-resistance in cervical cancer cells via PI3K/AKT pathway".PMID 26411419
  268. Yan Xu et al. (2015). "A short report: PAMM, a novel antioxidant protein, induced by oxidative stress".PMID 26402163
  269. Scot R Kimball et al. (2015). "Amino Acid-Induced Activation of mTORC1 in Rat Liver Is Attenuated by Short-Term Consumption of a High-Fat Diet".PMID 26400964
  270. Iryna Shnitsar et al. (2015). "PTEN regulates cilia through Dishevelled".PMID 26399523
  271. Yulia Haim et al. (2015). "Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1".PMID 26391754
  272. Pawel K Mazur et al. (2015). "Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma".PMID 26390243
  273. N Yokdang et al. (2016). "LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells".PMID 26387542
  274. Daniela Brina et al. (2015). "eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription".PMID 26383020
  275. Rui Liu et al. (2015). "Fstl1 is involved in the regulation of radial glial scaffold development".PMID 26382033
  276. Daniel A Columbus et al. (2015). "Impact of prolonged leucine supplementation on protein synthesis and lean growth in neonatal pigs".PMID 26374843
  277. Monika A Davare et al. (2015). "Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors".PMID 26372962
  278. Anja Harmeier et al. (2015). "Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers".PMID 26372541
  279. Jonatan Darr et al. (2015). "Phosphoproteomic analysis reveals Smarcb1 dependent EGFR signaling in Malignant Rhabdoid tumor cells".PMID 26370283
  280. K Kitatani et al. (2016). "Ceramide limits phosphatidylinositol-3-kinase C2β-controlled cell motility in ovarian cancer: potential of ceramide as a metastasis-suppressor lipid".PMID 26364609
  281. Constance Vennin et al. (2015). "H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b".PMID 26353930
  282. Shohei Mizuno et al. (2015). "Overexpression of salivary-type amylase reduces the sensitivity to bortezomib in multiple myeloma cells".PMID 26341959
  283. Meng Lin Li et al. (2015). "LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment".PMID 26341392
  284. R Thijssen et al. (2016). "The pan phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) blocks survival, adhesion and proliferation of primary chronic lymphocytic leukemia cells".PMID 26338274
  285. Hong Guang Xia et al. (2015). "Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death".PMID 26323688
  286. Kun Chun Chiang et al. (2015). "PTEN insufficiency modulates ER+ breast cancer cell cycle progression and increases cell growth in vitro and in vivo".PMID 26316702
  287. Y H Lee et al. (2016). "Exogenous administration of DLK1 ameliorates hepatic steatosis and regulates gluconeogenesis via activation of AMPK".PMID 26315841
  288. Ana C Zarpelon et al. (2016). "Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain".PMID 26310268
  289. Hüseyin Tuncay et al. (2015). "JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis".PMID 26306570
  290. Chuanke Zhao et al. (2015). "Fibrinogen-derived fibrinostatin inhibits tumor growth through anti-angiogenesis".PMID 26300396
  291. Claire J Garwood et al. (2015). "Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors".PMID 26297026
  292. Yong Qu Zhang et al. (2015). "Over-Expressed Twist Associates with Markers of Epithelial Mesenchymal Transition and Predicts Poor Prognosis in Breast Cancers via ERK and Akt Activation".PMID 26295469
  293. Dario Barbone et al. (2015). "Autophagy Correlates with the Therapeutic Responsiveness of Malignant Pleural Mesothelioma in 3D Models".PMID 26284517
  294. Chih Yuan Chiang et al. (2015). "A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection".PMID 26284031
  295. María Alvaro-Bartolomé et al. (2015). "The neuroplastic index p-FADD/FADD and phosphoprotein PEA-15, interacting at GABAA receptor, are upregulated in brain cortex during midazolam-induced hypnosis in mice".PMID 26282360
  296. Eunyoung Park et al. (2015). "Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6".PMID 26280531
  297. Kishor K Sivaraj et al. (2015). "Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis".PMID 26272756
  298. Xiaopeng Hu et al. (2015). "Deletion of the tyrosine phosphatase Shp2 in Sertoli cells causes infertility in mice".PMID 26265072
  299. Beatriz Morancho et al. (2015). "Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence".PMID 26260680
  300. Zhaobin Zeng et al. (2015). "Cyclic mechanical stretch promotes energy metabolism in osteoblast-like cells through an mTOR signaling-associated mechanism".PMID 26251974
  301. Elie Simard et al. (2015). "Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function".PMID 26248341
  302. Judy C Triplett et al. (2015). "Age-related changes in the proteostasis network in the brain of the naked mole-rat: Implications promoting healthy longevity".PMID 26248058
  303. Thomas S Morley et al. (2015). "Selective enhancement of insulin sensitivity in the mature adipocyte is sufficient for systemic metabolic improvements".PMID 26243466
  304. J S Ahn et al. (2016). "JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation".PMID 26234675
  305. José Luis Luna-Acosta et al. (2015). "Direct antiapoptotic effects of growth hormone are mediated by PI3K/Akt pathway in the chicken bursa of Fabricius".PMID 26231908
  306. Hadi Khalil et al. (2015). "The caspase-3-p120-RasGAP module generates a NF-κB repressor in response to cellular stress".PMID 26224876
  307. Yuki Miyamoto et al. (2015). "Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination".PMID 26224309
  308. Wei Zhou et al. (2015). "PTEN signaling is required for the maintenance of spermatogonial stem cells in mouse, by regulating the expressions of PLZF and UTF1".PMID 26221533
  309. Navasona Krishnan et al. (2015). "PTP1B inhibition suggests a therapeutic strategy for Rett syndrome".PMID 26214522
  310. Carmen Rodríguez-Seoane et al. (2015). "DISC1 regulates expression of the neurotrophin VGF through the PI3K/AKT/CREB pathway".PMID 26212236
  311. KIMBERLY S WILLIAMS et al. (2015). "Differential regulation of macrophage phenotype by mature and pro-nerve growth factor".PMID 26198923
  312. Maik Dahlhoff et al. (2015). "ERBB3 is required for tumor promotion in a mouse model of skin carcinogenesis".PMID 26194695
  313. Min Sik Lee et al. (2015). "PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis".PMID 26183061
  314. Juan Zhou et al. (2015). "EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging".PMID 26181290
  315. Ana Artero-Castro et al. (2015). "Disruption of the ribosomal P complex leads to stress-induced autophagy".PMID 26176264
  316. Chih Chung Lin et al. (2015). "Tumor necrosis factor-alpha induces VCAM-1-mediated inflammation via c-Src-dependent transactivation of EGF receptors in human cardiac fibroblasts".PMID 26173590
  317. Katharina Schipany et al. (2015). "eIF3 controls cell size independently of S6K1-activity".PMID 26172298
  318. Kazuhiro Nagaoka et al. (2015). "A New Therapeutic Modality for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin Induces Cardioprotection from Ischemia-Reperfusion Injury via Activation of PI3K/Akt Pathway and Anti-Inflammation in a Rat Model".PMID 26167913
  319. Daniel García-Pérez et al. (2015). "Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration".PMID 26164717
  320. R M Gorojod et al. (2015). "The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions".PMID 26163003
  321. Simone Patergnani et al. (2015). "The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition".PMID 26156019
  322. Sandy Azzi et al. (2015). "Human Renal Normal, Tumoral, and Cancer Stem Cells Express Membrane-Bound Interleukin-15 Isoforms Displaying Different Functions".PMID 26152359
  323. Kuang Ti Chen et al. (2015). "AMPA Receptor-mTOR Activation is Required for the Antidepressant-Like Effects of Sarcosine during the Forced Swim Test in Rats: Insertion of AMPA Receptor may Play a Role".PMID 26150775
  324. Rémi Martin Laberge et al. (2015). "MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation".PMID 26147250
  325. Carlos R Reis et al. (2015). "Crosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis".PMID 26139537
  326. Stephen E McGowan et al. (2015). "Fibroblast growth factor signaling in myofibroblasts differs from lipofibroblasts during alveolar septation in mice".PMID 26138642
  327. Fiorita Gonzales Lopes Mundim et al. (2015). "MYC is expressed in the stromal and epithelial cells of primary breast carcinoma and paired nodal metastases".PMID 26137258
  328. Lifeng Jing et al. (2015). "Akt/hypoxia-inducible factor-1α signaling deficiency compromises skin wound healing in a type 1 diabetes mouse model".PMID 26136949
  329. Linda Andersson et al. (2015). "Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischaemia".PMID 26130752
  330. Jiayi Wang et al. (2015). "Doxorubicin induces apoptosis by targeting Madcam1 and AKT and inhibiting protein translation initiation in hepatocellular carcinoma cells".PMID 26124182
  331. Bi Sen Ding et al. (2015). "Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells".PMID 26116571
  332. Min Hee Yi et al. (2015). "Growth Differentiation Factor 15 Expression in Astrocytes After Excitotoxic Lesion in the Mouse Hippocampus".PMID 26113792
  333. Davide Gallo et al. (2015). "GH-Releasing Hormone Promotes Survival and Prevents TNF-α-Induced Apoptosis and Atrophy in C2C12 Myotubes".PMID 26110916
  334. Stephanie E Westcot et al. (2015). "Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis".PMID 26110643
  335. Adriana Blancafort et al. (2015). "Dual fatty acid synthase and HER2 signaling blockade shows marked antitumor activity against breast cancer models resistant to anti-HER2 drugs".PMID 26107737
  336. Adam Pickard et al. (2015). "HPV16 Down-Regulates the Insulin-Like Growth Factor Binding Protein 2 to Promote Epithelial Invasion in Organotypic Cultures".PMID 26107517
  337. Xing Lin Tan et al. (2015). "Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment".PMID 26104027
  338. Chih Jung Chang et al. (2015). "Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota".PMID 26102296
  339. Laura Braccini et al. (2015). "PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling".PMID 26100075
  340. Kassondra Meyer et al. (2015). "Type 1 Insulin-Like Growth Factor Receptor/Insulin Receptor Substrate 1 Signaling Confers Pathogenic Activity on Breast Tumor Cells Lacking REST".PMID 26100015
  341. S Castillo-Lluva et al. (2015). "A new role of SNAI2 in postlactational involution of the mammary gland links it to luminal breast cancer development".PMID 26096931
  342. Jon M Carthy et al. (2015). "Tamoxifen Inhibits TGF-β-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2".PMID 26096876
  343. Anja Heinemann et al. (2015). "Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling".PMID 26087189
  344. Lu Yang et al. (2015). "Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant".PMID 26086037
  345. Caixia Li et al. (2015). "(Pro)renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose".PMID 26081285
  346. Yang Shen et al. (2015). "A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation".PMID 26073904
  347. I V Fedorenko et al. (2016). "Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells".PMID 26073081
  348. Björn Koos et al. (2015). "Proximity-dependent initiation of hybridization chain reaction".PMID 26065580
  349. Peter H Albers et al. (2015). "Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery".PMID 26062634
  350. Natalia Rueda-Rincon et al. (2015). "p53 attenuates AKT signaling by modulating membrane phospholipid composition".PMID 26061814
  351. Giulia Ronchi et al. (2016). "The Neuregulin1/ErbB system is selectively regulated during peripheral nerve degeneration and regeneration".PMID 26061116
  352. Chuan Ming Xie et al. (2015). "Erbin is a novel substrate of the Sag-βTrCP E3 ligase that regulates KrasG12D-induced skin tumorigenesis".PMID 26056141
  353. K J Kurppa et al. (2016). "Activating ERBB4 mutations in non-small cell lung cancer".PMID 26050618
  354. Xin Li et al. (2015). "Reversing the reduced level of endometrial GLUT4 expression in polycystic ovary syndrome: a mechanistic study of metformin action".PMID 26045896
  355. Wolfgang Jäger et al. (2015). "Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies".PMID 26041878
  356. Solange Tréhoux et al. (2015). "Micro-RNAs miR-29a and miR-330-5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells".PMID 26036346
  357. Alison G Barber et al. (2015). "PI3K/AKT pathway regulates E-cadherin and Desmoglein 2 in aggressive prostate cancer".PMID 26033689
  358. Lisa M DiPilato et al. (2015). "The Role of PDE3B Phosphorylation in the Inhibition of Lipolysis by Insulin".PMID 26031333
  359. Deli Liu et al. (2015). "Canine spontaneous head and neck squamous cell carcinomas represent their human counterparts at the molecular level".PMID 26030765
  360. Yi Jen Hsueh et al. (2015). "Lysophosphatidic acid induces YAP-promoted proliferation of human corneal endothelial cells via PI3K and ROCK pathways".PMID 26029725
  361. Monica Hellesøy et al. (2015). "Cellular context-mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis".PMID 26023089
  362. Angela Vinue et al. (2015). "Ink4/Arf locus restores glucose tolerance and insulin sensitivity by reducing hepatic steatosis and inflammation in mice with impaired IRS2-dependent signalling".PMID 26022372
  363. Takanobu Nagata et al. (2015). "Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules".PMID 26010537
  364. Lingmei Li et al. (2015). "Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells".PMID 26005723
  365. Xun Tang et al. (2015). "CD166 positively regulates MCAM via inhibition to ubiquitin E3 ligases Smurf1 and βTrCP through PI3K/AKT and c-Raf/MEK/ERK signaling in Bel-7402 hepatocellular carcinoma cells".PMID 26004137
  366. Dmitry Petrov et al. (2015). "High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents".PMID 26003667
  367. Jason S L Yu et al. (2015). "PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation".PMID 25998442
  368. Yong Seok Han et al. (2015). "Fucoidan inhibits the migration and proliferation of HT-29 human colon cancer cells via the phosphoinositide-3 kinase/Akt/mechanistic target of rapamycin pathways".PMID 25998232
  369. Thereza Cristina Lonzetti Bargut et al. (2015). "A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice".PMID 25997866
  370. Kun Hui Lu et al. (2015). "Nck adaptor proteins modulate differentiation and effector function of T cells".PMID 25995205
  371. Caroline T Cheung et al. (2015). "Cyclin A2 modulates EMT via β-catenin and phospholipase C pathways".PMID 25993989
  372. Adelaida R Palla et al. (2015). "The pluripotency factor NANOG promotes the formation of squamous cell carcinomas".PMID 25988972
  373. Pei Chuan Li et al. (2015). "Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells".PMID 25988521
  374. Kyo Won Seo et al. (2015). "Mechanical stretch enhances the expression and activity of osteopontin and MMP-2 via the Akt1/AP-1 pathways in VSMC".PMID 25986148
  375. D Pan et al. (2016). "MALT1 is required for EGFR-induced NF-κB activation and contributes to EGFR-driven lung cancer progression".PMID 25982276
  376. Elizabeth G Demicco et al. (2015). "Histologic variability in solitary fibrous tumors reflects angiogenic and growth factor signaling pathway alterations".PMID 25976141
  377. Jianzhong Li et al. (2015). "Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis".PMID 25970154
  378. Elena Revuelta-López et al. (2015). "Hypoxia-driven sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) downregulation depends on low-density lipoprotein receptor-related protein 1 (LRP1)-signalling in cardiomyocytes".PMID 25968337
  379. Hyun Jung Choi et al. (2015). "Yes-associated protein regulates endothelial cell contact-mediated expression of angiopoietin-2".PMID 25962877
  380. Andre Heinen et al. (2015). "Fingolimod induces the transition to a nerve regeneration promoting Schwann cell phenotype".PMID 25957629
  381. Jonathan Rios-Doria et al. (2015). "A Monoclonal Antibody to ADAM17 Inhibits Tumor Growth by Inhibiting EGFR and Non-EGFR-Mediated Pathways".PMID 25948294
  382. Samira M Sadowski et al. (2015). "Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis".PMID 25945839
  383. Alicia M Waters et al. (2015). "Preclinical Evaluation of a Novel RXR Agonist for the Treatment of Neuroblastoma".PMID 25944918
  384. Jennifer L Major et al. (2015). "Interplay between the E2F pathway and β-adrenergic signaling in the pathological hypertrophic response of myocardium".PMID 25944088
  385. Li Zhang et al. (2015). "FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells".PMID 25939952
  386. Eun Ji Lee et al. (2015). "Soluble receptor for advanced glycation end products inhibits disease progression in autosomal dominant polycystic kidney disease by down-regulating cell proliferation".PMID 25934702
  387. Chul Gon Yeom et al. (2015). "Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation".PMID 25934150
  388. Cory M Dungan et al. (2016). "Hyperactive mTORC1 signaling is unaffected by metformin treatment in aged skeletal muscle".PMID 25926238
  389. Chao Quan et al. (2015). "PKB-Mediated Thr649 Phosphorylation of AS160/TBC1D4 Regulates the R-Wave Amplitude in the Heart".PMID 25923736
  390. Tobias Pasqualon et al. (2015). "A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation".PMID 25912030
  391. Donghwan Jang et al. (2015). "Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor".PMID 25908865
  392. Hyo Jung Kim et al. (2015). "Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression".PMID 25903150
  393. L J Bugaj et al. (2015). "Regulation of endogenous transmembrane receptors through optogenetic Cry2 clustering".PMID 25902152
  394. Chetna Sharon et al. (2015). "Inhibition of insulin-like growth factor receptor/AKT/mammalian target of rapamycin axis targets colorectal cancer stem cells by attenuating mevalonate-isoprenoid pathway in vitro and in vivo".PMID 25895029
  395. Martin Roffe et al. (2015). "Two widely used RSK inhibitors, BI-D1870 and SL0101, alter mTORC1 signaling in a RSK-independent manner".PMID 25889895
  396. Jose B N Moreira et al. (2015). "A small molecule activator of AKT does not reduce ischemic injury of the rat heart".PMID 25889299
  397. Ahmed Bettaieb et al. (2015). "Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice".PMID 25888330
  398. Clifford J Cookman et al. (2015). "Estrogen Receptor-β Up-Regulates IGF1R Expression and Activity to Inhibit Apoptosis and Increase Growth of Medulloblastoma".PMID 25885794
  399. Deeksha Vishwamitra et al. (2015). "The transcription factors Ik-1 and MZF1 downregulate IGF-IR expression in NPM-ALK⁺ T-cell lymphoma".PMID 25884514
  400. Isabelle Tancioni et al. (2015). "FAK activity protects nucleostemin in facilitating breast cancer spheroid and tumor growth".PMID 25880415
  401. Xiuli Zhang et al. (2015). "Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells".PMID 25872526
  402. Peter Tzu Yu Chien et al. (2015). "c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction".PMID 25869400
  403. Laura R H Ip et al. (2015). "Loss of INPP4B causes a DNA repair defect through loss of BRCA1, ATM and ATR and can be targeted with PARP inhibitor treatment".PMID 25868852
  404. Isabelle Hatfield et al. (2015). "The role of TORC1 in muscle development in Drosophila".PMID 25866192
  405. Anna C Navis et al. (2015). "Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein".PMID 25862637
  406. Cristiana S B Salvatierra et al. (2015). "Short-term low-protein diet during pregnancy alters islet area and protein content of phosphatidylinositol 3-kinase pathway in rats".PMID 25860970
  407. Giulia Milan et al. (2015). "Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy".PMID 25858807
  408. Makoto Ohashi et al. (2015). "The EBNA3 family of Epstein-Barr virus nuclear proteins associates with the USP46/USP12 deubiquitination complexes to regulate lymphoblastoid cell line growth".PMID 25855980
  409. Kevin A Janes et al. (2015). "An analysis of critical factors for quantitative immunoblotting".PMID 25852189
  410. N C Gassen et al. (2016). "FKBP51 inhibits GSK3β and augments the effects of distinct psychotropic medications".PMID 25849320
  411. Asuka Ota et al. (2015). "Using SRM-MS to quantify nuclear protein abundance differences between adipose tissue depots of insulin-resistant mice".PMID 25840986
  412. Sujin Park et al. (2015). "O-GlcNAc modification is essential for the regulation of autophagy in Drosophila melanogaster".PMID 25840568
  413. Stefan Hausmann et al. (2015). "Loss of serum and glucocorticoid-regulated kinase 3 (SGK3) does not affect proliferation and survival of multiple myeloma cell lines".PMID 25837824
  414. Laura Brohée et al. (2015). "Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment".PMID 25834103
  415. Kimi Yamakoshi et al. (2015). "Dysregulation of the Bmi-1/p16(Ink⁴a) pathway provokes an aging-associated decline of submandibular gland function".PMID 25832744
  416. Xiaolei Li et al. (2015). "Co-activation of PIK3CA and Yap promotes development of hepatocellular and cholangiocellular tumors in mouse and human liver".PMID 25826091
  417. Wenjie Zhang et al. (2015). "PTPRO-mediated autophagy prevents hepatosteatosis and tumorigenesis".PMID 25826083
  418. Zongqi Zhang et al. (2015). "Activated phosphatidylinositol 3-kinase/Akt inhibits the transition of endothelial progenitor cells to mesenchymal cells by regulating the forkhead box subgroup O-3a signaling".PMID 25824462
  419. Otto L D Cerqueira et al. (2015). "CIP4 promotes metastasis in triple-negative breast cancer and is associated with poor patient prognosis".PMID 25823823
  420. S Marathe et al. (2015). "Notch signaling in response to excitotoxicity induces neurodegeneration via erroneous cell cycle reentry".PMID 25822340
  421. Risheng Ye et al. (2015). "Adiponectin-mediated antilipotoxic effects in regenerating pancreatic islets".PMID 25815422
  422. Elmer Hoekstra et al. (2015). "Low molecular weight protein tyrosine phosphatase (LMWPTP) upregulation mediates malignant potential in colorectal cancer".PMID 25811796
  423. Bharti Balhara et al. (2015). "Severe insulin resistance alters metabolism in mesenchymal progenitor cells".PMID 25811318
  424. Martin Kann et al. (2015). "WT1 targets Gas1 to maintain nephron progenitor cells by modulating FGF signals".PMID 25804736
  425. Brian G Coon et al. (2015). "Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex".PMID 25800053
  426. Aditya Venkatesh et al. (2015). "Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice".PMID 25798619
  427. Anastassios Philippou et al. (2015). "Masticatory muscles of mouse do not undergo atrophy in space".PMID 25795455
  428. Grazia Graziani et al. (2015). "A new water soluble MAPK activator exerts antitumor activity in melanoma cells resistant to the BRAF inhibitor vemurafenib".PMID 25795251
  429. Michael S Dicay et al. (2015). "Interferon-γ suppresses intestinal epithelial aquaporin-1 expression via Janus kinase and STAT3 activation".PMID 25793528
  430. Sean A Newsom et al. (2015). "Lipid mixtures containing a very high proportion of saturated fatty acids only modestly impair insulin signaling in cultured muscle cells".PMID 25793412
  431. Olga Tapia et al. (2015). "Nuclear envelope protein Lem2 is required for mouse development and regulates MAP and AKT kinases".PMID 25790465
  432. Qianhe Zhou et al. (2015). "A chemical genetics approach for the functional assessment of novel cancer genes".PMID 25788694
  433. Manabu Kawada et al. (2015). "Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction".PMID 25785838
  434. Dan Qu et al. (2015). "Cbl-b-regulated extracellular signal-regulated kinase signaling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro".PMID 25780420
  435. Marni E Harris-White et al. (2015). "A cell-penetrating ester of the neural metabolite lanthionine ketimine stimulates autophagy through the mTORC1 pathway: Evidence for a mechanism of action with pharmacological implications for neurodegenerative pathologies".PMID 25779968
  436. Janani Panneerselvam et al. (2015). "IL-24 inhibits lung cancer cell migration and invasion by disrupting the SDF-1/CXCR4 signaling axis".PMID 25775124
  437. V Tassinari et al. (2015). "Fgf9 inhibition of meiotic differentiation in spermatogonia is mediated by Erk-dependent activation of Nodal-Smad2/3 signaling and is antagonized by Kit Ligand".PMID 25766327
  438. German Cuesto et al. (2015). "GSK3β inhibition promotes synaptogenesis in Drosophila and mammalian neurons".PMID 25764078
  439. Alba Fabiola Torres et al. (2014). "Expression of EGFR and molecules downstream to PI3K/Akt, Raf-1-MEK-1-MAP (Erk1/2), and JAK (STAT3) pathways in invasive lung adenocarcinomas resected at a single institution".PMID 25763322
  440. S P Gorantla et al. (2015). "F604S exchange in FIP1L1-PDGFRA enhances FIP1L1-PDGFRA protein stability via SHP-2 and SRC: a novel mode of kinase inhibitor resistance".PMID 25761934
  441. Enyu Rao et al. (2015). "Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death".PMID 25760243
  442. Weipeng Zhang et al. (2015). "Paclitaxel resistance in MCF-7/PTX cells is reversed by paeonol through suppression of the SET/phosphatidylinositol 3-kinase/Akt pathway".PMID 25760096
  443. Frederick H Wilson et al. (2015). "A functional landscape of resistance to ALK inhibition in lung cancer".PMID 25759024
  444. Christin Münzberg et al. (2015). "IGF-1 drives chromogranin A secretion via activation of Arf1 in human neuroendocrine tumour cells".PMID 25754106
  445. Joachim Albers et al. (2015). "A versatile modular vector system for rapid combinatorial mammalian genetics".PMID 25751063
  446. Dake Chu et al. (2015). "NDRG4, a novel candidate tumor suppressor, is a predictor of overall survival of colorectal cancer patients".PMID 25749388
  447. Chad McKee et al. (2015). "Amphiregulin activates human hepatic stellate cells and is upregulated in non alcoholic steatohepatitis".PMID 25744849
  448. Heng Hsiung Wu et al. (2015). "Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines".PMID 25732306
  449. Elise Jeffery et al. (2015). "Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity".PMID 25730471
  450. Celia J Vogel et al. (2015). "Cooperative induction of apoptosis in NRAS mutant melanoma by inhibition of MEK and ROCK".PMID 25728708
  451. Yong Weon Yi et al. (2015). "β-TrCP1 degradation is a novel action mechanism of PI3K/mTOR inhibitors in triple-negative breast cancer cells".PMID 25721419
  452. Jehn Chuan Lee et al. (2015). "Upregulation of B-cell translocation gene 2 by epigallocatechin-3-gallate via p38 and ERK signaling blocks cell proliferation in human oral squamous cell carcinoma cells".PMID 25721086
  453. Mandar Bawadekar et al. (2015). "The Extracellular IFI16 Protein Propagates Inflammation in Endothelial Cells Via p38 MAPK and NF-κB p65 Activation".PMID 25715050
  454. Cuiying Wu et al. (2015). "Pcdh11x Negatively Regulates Dendritic Branching".PMID 25687328
  455. Lyndsay Murrow et al. (2015). "ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function".PMID 25686249
  456. S Michael Rothenberg et al. (2015). "Inhibition of mutant EGFR in lung cancer cells triggers SOX2-FOXO6-dependent survival pathways".PMID 25686219
  457. Mingyue Zhu et al. (2015). "Hepatitis B virus X protein induces expression of alpha-fetoprotein and activates PI3K/mTOR signaling pathway in liver cells".PMID 25682869
  458. Shubhankar Suman et al. (2015). "Protracted upregulation of leptin and IGF1 is associated with activation of PI3K/Akt and JAK2 pathway in mouse intestine after ionizing radiation exposure".PMID 25678846
  459. Danalea V Skarra et al. (2015). "FOXO1 is regulated by insulin and IGF1 in pituitary gonadotropes".PMID 25676570
  460. Naoya Okita et al. (2015). "Supplementation of strontium to a chondrogenic medium promotes chondrogenic differentiation of human dedifferentiated fat cells".PMID 25669848
  461. Majid Momeny et al. (2015). "Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines".PMID 25668816
  462. Alessandro Castorina et al. (2015). "PACAP interacts with PAC1 receptors to induce tissue plasminogen activator (tPA) expression and activity in schwann cell-like cultures".PMID 25658447
  463. Andreas I Papadakis et al. (2015). "SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer".PMID 25656847
  464. Marina Barrichon et al. (2015). "Dose-dependent biphasic leptin-induced proliferation is caused by non-specific IL-6/NF-κB pathway activation in human myometrial cells".PMID 25653112
  465. Nieves Gonzalez et al. (2015). "Effect of bombesin receptor subtype-3 and its synthetic agonist on signaling, glucose transport and metabolism in myocytes from patients with obesity and type 2 diabetes".PMID 25653074
  466. Katherine H Schreiber et al. (2015). "Rapamycin-mediated mTORC2 inhibition is determined by the relative expression of FK506-binding proteins".PMID 25652038
  467. Paola Dongiovanni et al. (2015). "High fat diet subverts hepatocellular iron uptake determining dysmetabolic iron overload".PMID 25647178
  468. Bensheng Ju et al. (2015). "Oncogenic KRAS promotes malignant brain tumors in zebrafish".PMID 25644510
  469. Nina Kozlova et al. (2016). "Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231".PMID 25641046
  470. Simin Li et al. (2015). "Quantitative analysis of receptor tyrosine kinase-effector coupling at functionally relevant stimulus levels".PMID 25635057
  471. Aubie K Shaw et al. (2015). "TGFβ signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions".PMID 25629162
  472. Eun Young Lee et al. (2015). "Reconstituted High-Density Lipoprotein Containing Human Growth Hormone-1 Shows Potent Tissue Regeneration Activity with Enhancement of Anti-Oxidant and Anti-Atherosclerotic Activities".PMID 25626070
  473. Ronald L Chandler et al. (2015). "Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling".PMID 25625625
  474. Amr E Ammar et al. (2015). "The effect of pomegranate fruit extract on testosterone-induced BPH in rats".PMID 25620586
  475. Rita Verma et al. (2015). "The endosomal sorting complex required for transport pathway mediates chemokine receptor CXCR4-promoted lysosomal degradation of the mammalian target of rapamycin antagonist DEPTOR".PMID 25605718
  476. Paloma López de Figueroa et al. (2015). "Autophagy activation and protection from mitochondrial dysfunction in human chondrocytes".PMID 25605458
  477. Peter Tontonoz et al. (2015). "The orphan nuclear receptor Nur77 is a determinant of myofiber size and muscle mass in mice".PMID 25605333
  478. Jessica Seeßle et al. (2015). "Palmitate activation by fatty acid transport protein 4 as a model system for hepatocellular apoptosis and steatosis".PMID 25603556
  479. Hoi Yee Chow et al. (2015). "Group I Paks as therapeutic targets in NF2-deficient meningioma".PMID 25596744
  480. Jade Peres et al. (2015). "The T-box transcription factor, TBX3, is a key substrate of AKT3 in melanomagenesis".PMID 25595898
  481. Jung Yoon Yoo et al. (2016). "Role of Mig-6 in hepatic glucose metabolism".PMID 25594850
  482. So Youn Kim et al. (2015). "Cell autonomous phosphoinositide 3-kinase activation in oocytes disrupts normal ovarian function through promoting survival and overgrowth of ovarian follicles".PMID 25594701
  483. Harumasa Nakazawa et al. (2015). "Role of protein farnesylation in burn-induced metabolic derangements and insulin resistance in mouse skeletal muscle".PMID 25594415
  484. Lihi Ninio-Many et al. (2014). "MicroRNA miR-125a-3p modulates molecular pathway of motility and migration in prostate cancer cells".PMID 25594017
  485. Omid Azimzadeh et al. (2015). "Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction".PMID 25590149
  486. Shan Wang et al. (2015). "Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways".PMID 25582201
  487. Gommaar D'Hulst et al. (2015). "Acute systemic insulin intolerance does not alter the response of the Akt/GSK-3 pathway to environmental hypoxia in human skeletal muscle".PMID 25577409
  488. Yang Shen et al. (2015). "Effect of surface chemistry on the integrin induced pathway in regulating vascular endothelial cells migration".PMID 25575348
  489. Y C Cheng et al. (2015). "Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT".PMID 25569101
  490. Eun Bum Kang et al. (2014). "Effects of treadmill exercise on brain insulin signaling and β-amyloid in intracerebroventricular streptozotocin induced-memory impairment in rats".PMID 25566443
  491. Linkang Zhou et al. (2015). "Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice".PMID 25565658
  492. Anupama Sathyamurthy et al. (2015). "ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination".PMID 25564653
  493. Courtney M Karner et al. (2015). "Increased glutamine catabolism mediates bone anabolism in response to WNT signaling".PMID 25562323
  494. Emilien Loeuillard et al. (2014). "2,4,6-trinitrobenzene sulfonic acid-induced chronic colitis with fibrosis and modulation of TGF-β1 signaling".PMID 25561788
  495. Sharad Shrestha et al. (2015). "Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses".PMID 25559258
  496. Sylvia F Boj et al. (2015). "Organoid models of human and mouse ductal pancreatic cancer".PMID 25557080
  497. Hongzhi Zheng et al. (2015). "CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion".PMID 25556857
  498. Shakeel U R Mir et al. (2015). "Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death".PMID 25548282
  499. Tzu Wei Lin et al. (2015). "Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer's disease (APP/PS1) transgenic mice".PMID 25543023
  500. Sang Hun Lee et al. (2015). "Selective Interference Targeting of Lnk in Umbilical Cord-Derived Late Endothelial Progenitor Cells Improves Vascular Repair, Following Hind Limb Ischemic Injury, via Regulation of JAK2/STAT3 Signaling".PMID 25537795
  501. Xiang Zhang et al. (2015). "MicroRNA-26a promotes anoikis in human hepatocellular carcinoma cells by targeting alpha5 integrin".PMID 25537511
  502. Hong Min Ni et al. (2014). "Role of hypoxia inducing factor-1β in alcohol-induced autophagy, steatosis and liver injury in mice".PMID 25536043
  503. María T L Pino et al. (2015). "Tl(I) and Tl(III) alter the expression of EGF-dependent signals and cyclins required for pheochromocytoma (PC12) cell-cycle resumption and progression".PMID 25534134
  504. Claudia Fiorini et al. (2015). "Onconase induces autophagy sensitizing pancreatic cancer cells to gemcitabine and activates Akt/mTOR pathway in a ROS-dependent manner".PMID 25533084
  505. Junichi Inaba et al. (2014). "Lunasin sensitivity in non-small cell lung cancer cells is linked to suppression of integrin signaling and changes in histone acetylation".PMID 25530619
  506. Bharat Jaishy et al. (2015). "Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity".PMID 25529920
  507. Laura Zemany et al. (2015). "Transthyretin Antisense Oligonucleotides Lower Circulating RBP4 Levels and Improve Insulin Sensitivity in Obese Mice".PMID 25524914
  508. Guang Jer Wu et al. (2014). "Frequent and increased expression of human METCAM/MUC18 in cancer tissues and metastatic lesions is associated with the clinical progression of human ovarian carcinoma".PMID 25510693
  509. Chen Shao et al. (2015). "Inhibition of polo-like kinase 1 (Plk1) enhances the antineoplastic activity of metformin in prostate cancer".PMID 25505174
  510. Alfonso Pastor-Clerigues et al. (2014). "Anti-inflammatory and anti-fibrotic profile of fish oil emulsions used in parenteral nutrition-associated liver disease".PMID 25502575
  511. Hui Zhang et al. (2015). "Dipeptidyl peptidase 9 subcellular localization and a role in cell adhesion involving focal adhesion kinase and paxillin".PMID 25486458
  512. Justin D Crane et al. (2015). "Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis".PMID 25485911
  513. Céline Delloye-Bourgeois et al. (2015). "PlexinA1 is a new Slit receptor and mediates axon guidance function of Slit C-terminal fragments".PMID 25485759
  514. Sho Isoyama et al. (2015). "Basal expression of insulin-like growth factor 1 receptor determines intrinsic resistance of cancer cells to a phosphatidylinositol 3-kinase inhibitor ZSTK474".PMID 25483727
  515. Joseph A Bisson et al. (2015). "Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT".PMID 25482987
  516. Isabelle Matte et al. (2015). "Ovarian cancer ascites enhance the migration of patient-derived peritoneal mesothelial cells via cMet pathway through HGF-dependent and -independent mechanisms".PMID 25482018
  517. Asli Ozmen et al. (2015). "Glucocorticoid exposure altered angiogenic factor expression via Akt/mTOR pathway in rat placenta".PMID 25479925
  518. Rui Yang et al. (2014). "MicroRNA-144 suppresses cholangiocarcinoma cell proliferation and invasion through targeting platelet activating factor acetylhydrolase isoform 1b".PMID 25479763
  519. Ruka Setoguchi et al. (2015). "mTOR signaling promotes a robust and continuous production of IFN-γ by human memory CD8+ T cells and their proliferation".PMID 25476730
  520. Zachary B Smithline et al. (2014). "Inhibiting heat shock protein 90 (HSP90) limits the formation of liver cysts induced by conditional deletion of Pkd1 in mice".PMID 25474361
  521. Rosalba Parenti et al. (2014). "Wilms' tumor gene 1 (WT1) silencing inhibits proliferation of malignant peripheral nerve sheath tumor sNF96.2 cell line".PMID 25474318
  522. Katrin Diesenberg et al. (2015). "SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR".PMID 25472714
  523. Karyn E O'Connell et al. (2015). "The effects of an ActRIIb receptor Fc fusion protein ligand trap in juvenile simian immunodeficiency virus-infected rhesus macaques".PMID 25466897
  524. Arminja N Kettenbach et al. (2015). "SPECHT - single-stage phosphopeptide enrichment and stable-isotope chemical tagging: quantitative phosphoproteomics of insulin action in muscle".PMID 25463755
  525. M H Galinato et al. (2015). "Methamphetamine differentially affects BDNF and cell death factors in anatomically defined regions of the hippocampus".PMID 25463524
  526. Sharon Manley et al. (2014). "Farnesoid X receptor regulates forkhead Box O3a activation in ethanol-induced autophagy and hepatotoxicity".PMID 25460735
  527. Edward Carter et al. (2014). "Phosphoinositide 3-kinase alpha-dependent regulation of branching morphogenesis in murine embryonic lung: evidence for a role in determining morphogenic properties of FGF7".PMID 25460003
  528. Jessica A Gasser et al. (2014). "SGK3 mediates INPP4B-dependent PI3K signaling in breast cancer".PMID 25458846
  529. Byung Mun Park et al. (2015). "Angiotensin IV stimulates high atrial stretch-induced ANP secretion via insulin regulated aminopeptidase".PMID 25451332
  530. Katerina Kapodistria et al. (2015). "Nephrin, a transmembrane protein, is involved in pancreatic beta-cell survival signaling".PMID 25448064
  531. Mehrnoosh Saghizadeh et al. (2014). "Normalization of wound healing and stem cell marker patterns in organ-cultured human diabetic corneas by gene therapy of limbal cells".PMID 25446319
  532. Catia Giovannini et al. (2014). "Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma".PMID 25431954
  533. Guus J J E Heynen et al. (2014). "Resistance to targeted cancer drugs through hepatocyte growth factor signaling".PMID 25426675
  534. Jennifer V Hall et al. (2014). "Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development".PMID 25414835
  535. T H Kim et al. (2014). "Identification of Creb3l4 as an essential negative regulator of adipogenesis".PMID 25412305
  536. Raymond S Douglas et al. (2014). "Thyrotropin receptor and CD40 mediate interleukin-8 expression in fibrocytes: implications for thyroid-associated ophthalmopathy (an American Ophthalmological Society thesis)".PMID 25411513
  537. Jianwei Sun et al. (2014). "STIM1- and Orai1-mediated Ca(2+) oscillation orchestrates invadopodium formation and melanoma invasion".PMID 25404747
  538. Lu Huang et al. (2014). "Decreased tumorigenesis in mice with a Kras point mutation at C118".PMID 25394415
  539. Yoshihiro Ito et al. (2014). "Oncogenic activity of the regulatory subunit p85β of phosphatidylinositol 3-kinase (PI3K)".PMID 25385636
  540. Minoru Soga et al. (2014). "The di-peptide Trp-His activates AMP-activated protein kinase and enhances glucose uptake independently of insulin in L6 myotubes".PMID 25383313
  541. María José Pérez-Alvarez et al. (2015). "Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus".PMID 25377795
  542. Sharon Israeli-Rosenberg et al. (2015). "Caveolin modulates integrin function and mechanical activation in the cardiomyocyte".PMID 25366344
  543. P L Chavali et al. (2014). "TLX activates MMP-2, promotes self-renewal of tumor spheres in neuroblastoma and correlates with poor patient survival".PMID 25356871
  544. C Nie et al. (2014). "Caspase-9 mediates Puma activation in UCN-01-induced apoptosis".PMID 25356864
  545. Jie Qin et al. (2015). "Development of organometallic S6K1 inhibitors".PMID 25356520
  546. Yong Sang Hong et al. (2014). "Src mutation induces acquired lapatinib resistance in ERBB2-amplified human gastroesophageal adenocarcinoma models".PMID 25350844
  547. Li Tan et al. (2014). "Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors".PMID 25349422
  548. Lelin Bing et al. (2015). "DHT inhibits the Aβ25-35-induced apoptosis by regulation of seladin-1, survivin, XIAP, bax, and bcl-xl expression through a rapid PI3-K/Akt signaling in C6 glial cell lines".PMID 25347962
  549. Anirban Bhattachariya et al. (2014). "PYK2 selectively mediates signals for growth versus differentiation in response to stretch of spontaneously active vascular smooth muscle".PMID 25347863
  550. Laura Musazzi et al. (2014). "Time-dependent activation of MAPK/Erk1/2 and Akt/GSK3 cascades: modulation by agomelatine".PMID 25332063
  551. Rachit Badolia et al. (2015). "Gq-mediated Akt translocation to the membrane: a novel PIP3-independent mechanism in platelets".PMID 25331114
  552. Rodrigo W A Souza et al. (2014). "Aerobic exercise training prevents heart failure-induced skeletal muscle atrophy by anti-catabolic, but not anabolic actions".PMID 25330387
  553. Lykke Blaabjerg et al. (2014). "CRFR1 activation protects against cytokine-induced β-cell death".PMID 25324488
  554. William S Holland et al. (2015). "Effects of AKT inhibition on HGF-mediated erlotinib resistance in non-small cell lung cancer cell lines".PMID 25323938
  555. Bella S Guerrouahen et al. (2014). "Akt-activated endothelium constitutes the niche for residual disease and resistance to bevacizumab in ovarian cancer".PMID 25319392
  556. Sung Gyun Kim et al. (2014). "Bilirubin activates transcription of HIF-1α in human proximal tubular cells cultured in the physiologic oxygen content".PMID 25317019
  557. Karin Mössenböck et al. (2014). "Browning of white adipose tissue uncouples glucose uptake from insulin signaling".PMID 25313899
  558. Brandon A Kocher et al. (2015). "DAPK3 suppresses acini morphogenesis and is required for mouse development".PMID 25304685
  559. Xin Cai et al. (2014). "Autonomous stimulation of cancer cell plasticity by the human NKG2D lymphocyte receptor coexpressed with its ligands on cancer cells".PMID 25291178
  560. Ceren Ozek et al. (2014). "Protein-tyrosine phosphatase 1B (PTP1B) is a novel regulator of central brain-derived neurotrophic factor and tropomyosin receptor kinase B (TrkB) signaling".PMID 25288805
  561. Liliana M G Pereira et al. (2014). "Intracellular trafficking of AIP56, an NF-κB-cleaving toxin from Photobacterium damselae subsp. piscicida".PMID 25287919
  562. Marta Puig et al. (2015). "Matrix stiffening and β1 integrin drive subtype-specific fibroblast accumulation in lung cancer".PMID 25280968
  563. Shinya Rai et al. (2014). "Clathrin assembly protein CALM plays a critical role in KIT signaling by regulating its cellular transport from early to late endosomes in hematopoietic cells".PMID 25279552
  564. Caroline Brun et al. (2014). "Absence of hyperplasia in Gasp-1 overexpressing mice is dependent on myostatin up-regulation".PMID 25277978
  565. Minna D Balbas et al. (2014). "MAGI-2 scaffold protein is critical for kidney barrier function".PMID 25271328
  566. Honey Modi et al. (2014). "Glutamine stimulates biosynthesis and secretion of insulin-like growth factor 2 (IGF2), an autocrine regulator of beta cell mass and function".PMID 25271169
  567. Kaja Kannike et al. (2014). "Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop".PMID 25271153
  568. A Ledonne et al. (2015). "Neuregulin 1 signalling modulates mGluR1 function in mesencephalic dopaminergic neurons".PMID 25266126
  569. A K Portella et al. (2015). "Litter size reduction alters insulin signaling in the ventral tegmental area and influences dopamine-related behaviors in adult rats".PMID 25264577
  570. Takashi Morioka et al. (2014). "An important role of endothelial hairy-related transcription factors in mouse vascular development".PMID 25264302
  571. Yona Goldshmit et al. (2014). "Interfering with the interaction between ErbB1, nucleolin and Ras as a potential treatment for glioblastoma".PMID 25261371
  572. Min Peng et al. (2014). "Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling".PMID 25259925
  573. Yasuhiro Serizawa et al. (2014). "Salicylate acutely stimulates 5'-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscles".PMID 25256746
  574. Güliz Vanli et al. (2014). "The activity of the anti-apoptotic fragment generated by the caspase-3/p120 RasGAP stress-sensing module displays strict Akt isoform specificity".PMID 25246356
  575. Martin E Young et al. (2014). "Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart".PMID 25238855
  576. Rita De Santis et al. (2014). "Efficacy of aerosol therapy of lung cancer correlates with EGFR paralysis induced by AvidinOX-anchored biotinylated Cetuximab".PMID 25238453
  577. Yixuan Wang et al. (2015). "Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation".PMID 25219467
  578. Ian R W Ritchie et al. (2014). "Adiponectin is not required for exercise training-induced improvements in glucose and insulin tolerance in mice".PMID 25214523
  579. Lucila Sackmann-Sala et al. (2014). "Prolactin-induced prostate tumorigenesis links sustained Stat5 signaling with the amplification of basal/stem cells and emergence of putative luminal progenitors".PMID 25193592
  580. Ivana Pilchova et al. (2015). "Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia".PMID 25187358
  581. Matthew G Rubashkin et al. (2014). "Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate".PMID 25183785
  582. J Tang et al. (2014). "Overexpression of metadherin mediates metastasis of osteosarcoma by regulating epithelial-mesenchymal transition".PMID 25174891
  583. Jia Liu et al. (2014). "Oleanolic acid inhibits proliferation and invasiveness of Kras-transformed cells via autophagy".PMID 25172632
  584. Camila S Oliveira et al. (2014). "Macrophage migration inhibitory factor engages PI3K/Akt signalling and is a prognostic factor in metastatic melanoma".PMID 25168062
  585. Fang Niu et al. (2014). "Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders".PMID 25164676
  586. Maximilian Kleinert et al. (2014). "Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo".PMID 25161886
  587. Tatsushi Kodama et al. (2014). "A novel mechanism of EML4-ALK rearrangement mediated by chromothripsis in a patient-derived cell line".PMID 25144242
  588. Nerea Osinalde et al. (2015). "Simultaneous dissection and comparison of IL-2 and IL-15 signaling pathways by global quantitative phosphoproteomics".PMID 25142963
  589. Honglin Niu et al. (2014). "Benazepril affects integrin-linked kinase and smooth muscle α-actin expression in diabetic rat glomerulus and cultured mesangial cells".PMID 25142208
  590. Scott Fuller et al. (2014). "St. John's Wort Has Metabolically Favorable Effects on Adipocytes In Vivo".PMID 25136373
  591. Songqing Tang et al. (2014). "RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase".PMID 25118589
  592. Gloria G Curto et al. (2014). "Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb".PMID 25117830
  593. Chhanda Biswas et al. (2014). "Nuclear heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses".PMID 25107906
  594. Mark Yarchoan et al. (2014). "Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies".PMID 25107476
  595. J Eva Selfridge et al. (2015). "Effect of one month duration ketogenic and non-ketogenic high fat diets on mouse brain bioenergetic infrastructure".PMID 25104046
  596. Jong Min Baek et al. (2014). "Aconitum pseudo-laeve var. erectum inhibits receptor activator of nuclear factor kappa-B ligand-induced osteoclastogenesis via the c-Fos/nuclear factor of activated T-cells, cytoplasmic 1 signaling pathway and prevents lipopolysaccharide-induced bone loss".PMID 25100255
  597. Elvira Bailon et al. (2014). "Overexpression of progelatinase B/proMMP-9 affects migration regulatory pathways and impairs chronic lymphocytic leukemia cell homing to bone marrow and spleen".PMID 25080557
  598. Sarah A Tersey et al. (2014). "12-lipoxygenase promotes obesity-induced oxidative stress in pancreatic islets".PMID 25071151
  599. Shihai Zhang et al. (2014). "Leucine stimulates ASCT2 amino acid transporter expression in porcine jejunal epithelial cell line (IPEC-J2) through PI3K/Akt/mTOR and ERK signaling pathways".PMID 25063204
  600. Tadashi Watanabe et al. (2014). "Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma".PMID 25063029
  601. Harpreet Sidhu et al. (2014). "Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model".PMID 25057190
  602. Tianfu Wu et al. (2014). "Prevention of murine lupus nephritis by targeting multiple signaling axes and oxidative stress using a synthetic triterpenoid".PMID 25047252
  603. Ella Zeldich et al. (2014). "The neuroprotective effect of Klotho is mediated via regulation of members of the redox system".PMID 25037225
  604. Curtis H Kugel et al. (2014). "Function-blocking ERBB3 antibody inhibits the adaptive response to RAF inhibitor".PMID 25035390
  605. Suraj Konnath George et al. (2014). "The ALK inhibitor ASP3026 eradicates NPM-ALK⁺ T-cell anaplastic large-cell lymphoma in vitro and in a systemic xenograft lymphoma model".PMID 25026277
  606. Catherine Moorwood et al. (2014). "Absence of γ-sarcoglycan alters the response of p70S6 kinase to mechanical perturbation in murine skeletal muscle".PMID 25024843
  607. A Patel et al. (2015). "MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways".PMID 25023700
  608. Gareth D Hyde et al. (2014). "Axl tyrosine kinase protects against tubulo-interstitial apoptosis and progression of renal failure in a murine model of chronic kidney disease and hyperphosphataemia".PMID 25019319
  609. Valentina Martin et al. (2014). "Increase of MET gene copy number confers resistance to a monovalent MET antibody and establishes drug dependence".PMID 25011627
  610. Masako Yokota et al. (2014). "Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis".PMID 25003957
  611. Yangyang Wang et al. (2014). "Blocking the formation of radiation-induced breast cancer stem cells".PMID 25003837
  612. Elma Zaganjor et al. (2014). "Ras transformation uncouples the kinesin-coordinated cellular nutrient response".PMID 25002494
  613. Lezi E et al. (2014). "Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation".PMID 25002036
  614. Jing Hu et al. (2014). "microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C".PMID 25001183
  615. Julie Abildgaard et al. (2014). "In vitro palmitate treatment of myotubes from postmenopausal women leads to ceramide accumulation, inflammation and affected insulin signaling".PMID 25000528
  616. Chunyang Li et al. (2014). "Molecular switch role of Akt in Polygonatum odoratum lectin-induced apoptosis and autophagy in human non-small cell lung cancer A549 cells".PMID 24992302
  617. Xingnan Zheng et al. (2014). "Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase".PMID 24990963
  618. Georgios Chondrogiannis et al. (2014). "Cytokine effects on cell viability and death of prostate carcinoma cells".PMID 24982891
  619. Mousumi Majumder et al. (2014). "Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions".PMID 24981602
  620. Eleftherios P Samartzis et al. (2014). "Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition".PMID 24979463
  621. Jinlin Liu et al. (2014). "CCR6 is a prognostic marker for overall survival in patients with colorectal cancer, and its overexpression enhances metastasis in vivo".PMID 24979261
  622. Matthew C Morris et al. (2014). "Dynamic modulation of innate immune response by varying dosages of lipopolysaccharide (LPS) in human monocytic cells".PMID 24970893
  623. Wu Liang et al. (2014). "CAV-1 contributes to bladder cancer progression by inducing epithelial-to-mesenchymal transition".PMID 24968949
  624. Ilkka Paatero et al. (2014). "Hypoxia-inducible factor-1α induces ErbB4 signaling in the differentiating mammary gland".PMID 24966332
  625. Javier Celis-Gutierrez et al. (2014). "Dok1 and Dok2 proteins regulate natural killer cell development and function".PMID 24963146
  626. Christina A von Roemeling et al. (2014). "Neuronal pentraxin 2 supports clear cell renal cell carcinoma by activating the AMPA-selective glutamate receptor-4".PMID 24962026
  627. You Hee Choi et al. (2014). "Akt enhances Runx2 protein stability by regulating Smurf2 function during osteoblast differentiation".PMID 24961731
  628. Monica Hellesøy et al. (2014). "Akt1 activity regulates vessel maturation in a tissue engineering model of angiogenesis".PMID 24957363
  629. Yuan Xu et al. (2014). "Statins upregulate cystathionine γ-lyase transcription and H2S generation via activating Akt signaling in macrophage".PMID 24951966
  630. Toshiaki Tanaka et al. (2014). "Sec6 regulated cytoplasmic translocation and degradation of p27 via interactions with Jab1 and Siah1".PMID 24949832
  631. Jianquan Chen et al. (2014). "mTORC1 signaling controls mammalian skeletal growth through stimulation of protein synthesis".PMID 24948603
  632. Natalia Cheshenko et al. (2014). "Herpes simplex virus type 2 glycoprotein H interacts with integrin αvβ3 to facilitate viral entry and calcium signaling in human genital tract epithelial cells".PMID 24942591
  633. Adriana Ramos et al. (2014). "Neuropeptide precursor VGF is genetically associated with social anhedonia and underrepresented in the brain of major mental illness: its downregulation by DISC1".PMID 24934694
  634. Maria B Lebron et al. (2014). "A human monoclonal antibody targeting the stem cell factor receptor (c-Kit) blocks tumor cell signaling and inhibits tumor growth".PMID 24921944
  635. Kathy Ye Morgan et al. (2014). "Investigation into the effects of varying frequency of mechanical stimulation in a cycle-by-cycle manner on engineered cardiac construct function".PMID 24916022
  636. Deven Etnyre et al. (2014). "Targeting c-Met in melanoma: mechanism of resistance and efficacy of novel combinatorial inhibitor therapy".PMID 24914950
  637. Xiangping Dai et al. (2014). "Negative regulation of DAB2IP by Akt and SCFFbw7 pathways".PMID 24912918
  638. Amel Dudakovic et al. (2015). "Histone deacetylase inhibition destabilizes the multi-potent state of uncommitted adipose-derived mesenchymal stromal cells".PMID 24912092
  639. S E Moody et al. (2015). "PRKACA mediates resistance to HER2-targeted therapy in breast cancer cells and restores anti-apoptotic signaling".PMID 24909179
  640. J Wang et al. (2015). "Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells".PMID 24909170
  641. Hillary Johnston-Cox et al. (2014). "The macrophage A2B adenosine receptor regulates tissue insulin sensitivity".PMID 24892847
  642. Karen Jung et al. (2014). "YB-1 regulates Sox2 to coordinately sustain stemness and tumorigenic properties in a phenotypically distinct subset of breast cancer cells".PMID 24885403
  643. Emilio J Vélez et al. (2014). "IGF-I and amino acids effects through TOR signaling on proliferation and differentiation of gilthead sea bream cultured myocytes".PMID 24882593
  644. Ya Juan Wan et al. (2014). "Vav1 increases Bcl-2 expression by selective activation of Rac2-Akt in leukemia T cells".PMID 24880064
  645. Hong Chen et al. (2014). "Teprotumumab, an IGF-1R blocking monoclonal antibody inhibits TSH and IGF-1 action in fibrocytes".PMID 24878056
  646. Anastasia Mashukova et al. (2014). "The BAG-1 isoform BAG-1M regulates keratin-associated Hsp70 chaperoning of aPKC in intestinal cells during activation of inflammatory signaling".PMID 24876225
  647. Nathan J Godde et al. (2014). "Scribble modulates the MAPK/Fra1 pathway to disrupt luminal and ductal integrity and suppress tumour formation in the mammary gland".PMID 24852022
  648. Mitchell Barns et al. (2014). "Molecular analyses provide insight into mechanisms underlying sarcopenia and myofibre denervation in old skeletal muscles of mice".PMID 24836906
  649. Randall M Chin et al. (2014). "The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR".PMID 24828042
  650. Sungkyoung Lee et al. (2014). "Loss of Dlg-1 in the mouse lens impairs fibroblast growth factor receptor signaling".PMID 24824078
  651. Victoria A Elliott et al. (2014). "Activation of c-Met and upregulation of CD44 expression are associated with the metastatic phenotype in the colorectal cancer liver metastasis model".PMID 24823486
  652. Catherine Stevenson et al. (2014). "Essential role of Elmo1 in Dock2-dependent lymphocyte migration".PMID 24821968
  653. Ramadevi Subramani et al. (2014). "Targeting insulin-like growth factor 1 receptor inhibits pancreatic cancer growth and metastasis".PMID 24809702
  654. Yonghua Jiang et al. (2014). "Xist deficiency and disorders of X-inactivation in rabbit embryonic stem cells can be rescued by transcription-factor-mediated conversion".PMID 24805295
  655. David I Brown et al. (2014). "Poldip2 knockout results in perinatal lethality, reduced cellular growth and increased autophagy of mouse embryonic fibroblasts".PMID 24797518
  656. Raju Padiya et al. (2014). "Garlic attenuates cardiac oxidative stress via activation of PI3K/AKT/Nrf2-Keap1 pathway in fructose-fed diabetic rat".PMID 24796753
  657. Wen Ting Peng et al. (2014). "Elevated expression of Girdin in the nucleus indicates worse prognosis for patients with estrogen receptor-positive breast cancer".PMID 24793340
  658. Samil Jung et al. (2014). "Distinct regulatory effect of the p34SEI-1 oncoprotein on cancer metastasis in HER2/neu-positive and -negative cells".PMID 24789658
  659. Bo Cen et al. (2014). "The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling".PMID 24777602
  660. Kiseok Kim et al. (2014). "Efficient isolation and elution of cellular proteins using aptamer-mediated protein precipitation assay".PMID 24768638
  661. Zhouyan Bian et al. (2014). "Never in mitosis gene A related kinase-6 attenuates pressure overload-induced activation of the protein kinase B pathway and cardiac hypertrophy".PMID 24763737
  662. Ying Na Bao et al. (2014). "Urokinase-type plasminogen activator receptor signaling is critical in nasopharyngeal carcinoma cell growth and metastasis".PMID 24763226
  663. Alexandra Coomans de Brachène et al. (2014). "The expression of the tumour suppressor HBP1 is down-regulated by growth factors via the PI3K/PKB/FOXO pathway".PMID 24762137
  664. Sara Häggblad Sahlberg et al. (2014). "Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells".PMID 24760019
  665. Xiaoyan Bai et al. (2014). "Antiangiogenic treatment diminishes renal injury and dysfunction via regulation of local AKT in early experimental diabetes".PMID 24759991
  666. Hervé Maurin et al. (2014). "Terminal hypothermic Tau.P301L mice have increased Tau phosphorylation independently of glycogen synthase kinase 3α/β".PMID 24754737
  667. Nagham Asp et al. (2014). "Flotillin depletion affects ErbB protein levels in different human breast cancer cells".PMID 24747692
  668. Shalene E Hardman et al. (2014). "The effects of age and muscle contraction on AMPK activity and heterotrimer composition".PMID 24747582
  669. Sireesha V Garimella et al. (2014). "Identification of novel molecular regulators of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in breast cancer cells by RNAi screening".PMID 24745479
  670. Bi Sheng Liu et al. (2014). "TLR-mediated STAT3 and ERK activation controls IL-10 secretion by human B cells".PMID 24737107
  671. Egle Cekanaviciute et al. (2014). "Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice".PMID 24733756
  672. Kristie T Ota et al. (2014). "REDD1 is essential for stress-induced synaptic loss and depressive behavior".PMID 24728411
  673. Pedro J Beltran et al. (2014). "Ganitumab (AMG 479) inhibits IGF-II-dependent ovarian cancer growth and potentiates platinum-based chemotherapy".PMID 24727326
  674. Yuen Keng Ng et al. (2014). "Pan-erbB inhibition potentiates BRAF inhibitors for melanoma treatment".PMID 24709886
  675. Grainne A McMahon Tobin et al. (2014). "The role of eNOS phosphorylation in causing drug-induced vascular injury".PMID 24705881
  676. Hazem Akkad et al. (2014). "Masseter muscle myofibrillar protein synthesis and degradation in an experimental critical illness myopathy model".PMID 24705179
  677. Michael R Lamprecht et al. (2014). "GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17β-estradiol after an ischemic injury in organotypic hippocampal slice cultures".PMID 24704272
  678. Luis Alberto Pérez-Quintero et al. (2014). "EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cγ, Ca++, and Erk, leading to granule polarization".PMID 24687958
  679. Richard Flavin et al. (2014). "SPINK1 protein expression and prostate cancer progression".PMID 24687926
  680. Birgit Bölck et al. (2014). "Detection of key enzymes, free radical reaction products and activated signaling molecules as biomarkers of cell damage induced by benzo[a]pyrene in human keratinocytes".PMID 24685774
  681. Olga V Glinskii et al. (2014). "Endothelial integrin α3β1 stabilizes carbohydrate-mediated tumor/endothelial cell adhesion and induces macromolecular signaling complex formation at the endothelial cell membrane".PMID 24675526
  682. Stacey E Wahl et al. (2014). "Mammalian target of rapamycin promotes oligodendrocyte differentiation, initiation and extent of CNS myelination".PMID 24671992
  683. Eva Marquez et al. (2014). "Albumin inhibits the insulin-mediated ACE2 increase in cultured podocytes".PMID 24671333
  684. Wan Jiun Chen et al. (2014). "Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling".PMID 24668028
  685. Simone Codeluppi et al. (2014). "Interleukin-6 secretion by astrocytes is dynamically regulated by PI3K-mTOR-calcium signaling".PMID 24667246
  686. Kristina H Knubel et al. (2014). "MerTK inhibition is a novel therapeutic approach for glioblastoma multiforme".PMID 24658326
  687. C Pourreyron et al. (2014). "High levels of type VII collagen expression in recessive dystrophic epidermolysis bullosa cutaneous squamous cell carcinoma keratinocytes increases PI3K and MAPK signalling, cell migration and invasion".PMID 24641191
  688. Peiwen Yu et al. (2014). "Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway".PMID 24634413
  689. Christophe Glorieux et al. (2014). "Catalase expression in MCF-7 breast cancer cells is mainly controlled by PI3K/Akt/mTor signaling pathway".PMID 24630930
  690. Hua Wang et al. (2014). "Polycystin-1 mediates mechanical strain-induced osteoblastic mechanoresponses via potentiation of intracellular calcium and Akt/β-catenin pathway".PMID 24618832
  691. Tao Pan et al. (2014). "Cytohesins/ARNO: the function in colorectal cancer cells".PMID 24618737
  692. Takashi Hamakawa et al. (2014). "Interleukin-18 may lead to benign prostatic hyperplasia via thrombospondin-1 production in prostatic smooth muscle cells".PMID 24615654
  693. Katia Bouchekioua-Bouzaghou et al. (2014). "LKB1 when associated with methylatedERα is a marker of bad prognosis in breast cancer".PMID 24615515
  694. Sivan M Bokobza et al. (2014). "Short-course treatment with gefitinib enhances curative potential of radiation therapy in a mouse model of human non-small cell lung cancer".PMID 24606853
  695. Xuejun Sun et al. (2014). "Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential".PMID 24599264
  696. Sudip Bhattacharyya et al. (2014). "Amelioration of aspirin induced oxidative impairment and apoptotic cell death by a novel antioxidant protein molecule isolated from the herb Phyllanthus niruri".PMID 24586486
  697. Joe Eun Son et al. (2014). "Pelargonidin attenuates PDGF-BB-induced aortic smooth muscle cell proliferation and migration by direct inhibition of focal adhesion kinase".PMID 24582770
  698. Lei Gu et al. (2014). "Pharmacologic suppression of JAK1/2 by JAK1/2 inhibitor AZD1480 potently inhibits IL-6-induced experimental prostate cancer metastases formation".PMID 24577942
  699. Dong Hyun Jo et al. (2014). "Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity".PMID 24566275
  700. Kimberley M Mellor et al. (2014). "Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose".PMID 24561860
  701. Anthony J Valente et al. (2014). "OxLDL induces endothelial dysfunction and death via TRAF3IP2: inhibition by HDL3 and AMPK activators".PMID 24561578
  702. Alizée Boin et al. (2014). "Proteomic screening identifies a YAP-driven signaling network linked to tumor cell proliferation in human schwannomas".PMID 24558021
  703. Jianjun Hu et al. (2014). "Filamin B regulates chondrocyte proliferation and differentiation through Cdk1 signaling".PMID 24551245
  704. Pei Ching Chang et al. (2014). "Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells".PMID 24551118
  705. Chenzhuo Feng et al. (2014). "Regulatory factor X1 is a new tumor suppressive transcription factor that acts via direct downregulation of CD44 in glioblastoma".PMID 24526308
  706. Heejei Yoon et al. (2014). "Targeted inhibition of FAK, PYK2 and BCL-XL synergistically enhances apoptosis in ovarian clear cell carcinoma cell lines".PMID 24523919
  707. Mona Foth et al. (2014). "Fibroblast growth factor receptor 3 activation plays a causative role in urothelial cancer pathogenesis in cooperation with Pten loss in mice".PMID 24519156
  708. Eun Young Park et al. (2014). "Targeting of receptor for advanced glycation end products suppresses cyst growth in polycystic kidney disease".PMID 24515114
  709. Joell L Solan et al. (2014). "Specific Cx43 phosphorylation events regulate gap junction turnover in vivo".PMID 24508467
  710. Weidong Xiao et al. (2014). "Glutamate prevents intestinal atrophy via luminal nutrient sensing in a mouse model of total parenteral nutrition".PMID 24497581
  711. Christoph Dorn et al. (2014). "Increased expression of c-Jun in nonalcoholic fatty liver disease".PMID 24492282
  712. Viktoria Tchetchelnitski et al. (2014). "Developmental co-expression and functional redundancy of tyrosine phosphatases with neurotrophin receptors in developing sensory neurons".PMID 24491805
  713. Qing Yu Zhang et al. (2014). "Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats".PMID 24491314
  714. Rei Taniguchi et al. (2014). "RelB-induced expression of Cot, an MAP3K family member, rescues RANKL-induced osteoclastogenesis in alymphoplasia mice by promoting NF-κB2 processing by IKKα".PMID 24488495
  715. V Pavet et al. (2014). "Plasminogen activator urokinase expression reveals TRAIL responsiveness and supports fractional survival of cancer cells".PMID 24481457
  716. Michael R Longman et al. (2014). "Regulation of PP2AC carboxylmethylation and cellular localisation by inhibitory class G-protein coupled receptors in cardiomyocytes".PMID 24475092
  717. Michael Xiang et al. (2014). "STAT3 induction of miR-146b forms a feedback loop to inhibit the NF-κB to IL-6 signaling axis and STAT3-driven cancer phenotypes".PMID 24473196
  718. Sheng Song Chen et al. (2014). "Liver, but not muscle, has an entrainable metabolic memory".PMID 24465939
  719. Cécile Naudin et al. (2014). "SLAP displays tumour suppressor functions in colorectal cancer via destabilization of the SRC substrate EPHA2".PMID 24457997
  720. Jianzhong Li et al. (2014). "Rictor/mTORC2 protects against cisplatin-induced tubular cell death and acute kidney injury".PMID 24451322
  721. Michele Massimino et al. (2014). "IRF5 is a target of BCR-ABL kinase activity and reduces CML cell proliferation".PMID 24445143
  722. Kristine M Wadosky et al. (2014). "Muscle RING finger-1 attenuates IGF-I-dependent cardiomyocyte hypertrophy by inhibiting JNK signaling".PMID 24425758
  723. J G Jespersen et al. (2015). "Alterations in molecular muscle mass regulators after 8 days immobilizing Special Forces mission".PMID 24422600
  724. Jennifer L Gorman et al. (2014). "Angiotensin II evokes angiogenic signals within skeletal muscle through co-ordinated effects on skeletal myocytes and endothelial cells".PMID 24416421
  725. Jody Groenendyk et al. (2014). "Disrupted WNT signaling in mouse embryonic stem cells in the absence of calreticulin".PMID 24415131
  726. Alice E Zemljic-Harpf et al. (2014). "Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes".PMID 24413171
  727. Kathy Ye Morgan et al. (2014). "Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs".PMID 24410342
  728. Amber N Ziegler et al. (2014). "Insulin-like growth factor-II (IGF-II) and IGF-II analogs with enhanced insulin receptor-a binding affinity promote neural stem cell expansion".PMID 24398690
  729. Cecile L Maire et al. (2014). "Pten loss in Olig2 expressing neural progenitor cells and oligodendrocytes leads to interneuron dysplasia and leukodystrophy".PMID 24395742
  730. Sadie G Wheeler et al. (2014). "Ostα-/- mice exhibit altered expression of intestinal lipid absorption genes, resistance to age-related weight gain, and modestly improved insulin sensitivity".PMID 24381083
  731. Peter Borghgraef et al. (2013). "Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau.P301L mice".PMID 24376810
  732. Xuebing Liu et al. (2014). "Reversing effect of sorcin in the drug resistance of human nasopharyngeal carcinoma".PMID 24376145
  733. Yen Ju Chen et al. (2013). "Global assessment of Antrodia cinnamomea-induced microRNA alterations in hepatocarcinoma cells".PMID 24358224
  734. Donald J McGuire et al. (2014). "CD5 enhances Th17-cell differentiation by regulating IFN-γ response and RORγt localization".PMID 24356888
  735. Justin M Balko et al. (2014). "Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets".PMID 24356096
  736. Weibin Wang et al. (2014). "PIASxα ligase enhances SUMO1 modification of PTEN protein as a SUMO E3 ligase".PMID 24344134
  737. Sara Häggblad Sahlberg et al. (2014). "The influence of AKT isoforms on radiation sensitivity and DNA repair in colon cancer cell lines".PMID 24338765
  738. Yiqun Du et al. (2014). "NF-κB and enhancer-binding CREB protein scaffolded by CREB-binding protein (CBP)/p300 proteins regulate CD59 protein expression to protect cells from complement attack".PMID 24338025
  739. N Domingues et al. (2014). "Therapeutic properties of VO(dmpp)2 as assessed by in vitro and in vivo studies in type 2 diabetic GK rats".PMID 24333827
  740. Jia Zhu et al. (2014). "A fibronectin peptide redirects PDGF-BB/PDGFR complexes to macropinocytosis-like internalization and augments PDGF-BB survival signals".PMID 24304816
  741. Ernesto Diaz-Flores et al. (2013). "PLC-γ and PI3K link cytokines to ERK activation in hematopoietic cells with normal and oncogenic Kras".PMID 24300897
  742. Toshiaki Tanaka et al. (2014). "Knockdown of Sec8 promotes cell-cycle arrest at G1/S phase by inducing p21 via control of FOXO proteins".PMID 24299491
  743. Shi Hao Tan et al. (2014). "Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway".PMID 24296537
  744. Anja Niehoff et al. (2014). "Effect of whole-body vibration and insulin-like growth factor-I on muscle paralysis-induced bone degeneration after botulinum toxin injection in mice".PMID 24292598
  745. X Yue et al. (2014). "Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinson's disease".PMID 24291725
  746. Yubin Wang et al. (2013). "Distinct roles for μ-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration".PMID 24285894
  747. Yan Zhang et al. (2014). "Growth/differentiation factor 1 alleviates pressure overload-induced cardiac hypertrophy and dysfunction".PMID 24275554
  748. Tim G Ashlin et al. (2014). "The anti-atherogenic cytokine interleukin-33 inhibits the expression of a disintegrin and metalloproteinase with thrombospondin motifs-1, -4 and -5 in human macrophages: Requirement of extracellular signal-regulated kinase, c-Jun N-terminal kinase and pho".PMID 24275094
  749. Michael E Haws et al. (2014). "PTEN knockdown alters dendritic spine/protrusion morphology, not density".PMID 24264880
  750. Tayir El-Ami et al. (2014). "A novel inhibitor of the insulin/IGF signaling pathway protects from age-onset, neurodegeneration-linked proteotoxicity".PMID 24261972
  751. Lin Qi et al. (2014). "Truncation of inhibitor of growth family protein 5 effectively induces senescence, but not apoptosis in human tongue squamous cell carcinoma cell line".PMID 24254310
  752. Jin Wang et al. (2014). "Synergistic combination of novel tubulin inhibitor ABI-274 and vemurafenib overcome vemurafenib acquired resistance in BRAFV600E melanoma".PMID 24249714
  753. Jonas T Treebak et al. (2014). "Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle".PMID 24247980
  754. Alessandro Castorina et al. (2014). "PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways".PMID 24246222
  755. Clarence A Dunn et al. (2014). "Injury-triggered Akt phosphorylation of Cx43: a ZO-1-driven molecular switch that regulates gap junction size".PMID 24213533
  756. F Gong et al. (2013). "Dichloroacetate induces protective autophagy in LoVo cells: involvement of cathepsin D/thioredoxin-like protein 1 and Akt-mTOR-mediated signaling".PMID 24201812
  757. Nadejda Valtcheva et al. (2013). "The orphan adhesion G protein-coupled receptor GPR97 regulates migration of lymphatic endothelial cells via the small GTPases RhoA and Cdc42".PMID 24178298
  758. K Bijian et al. (2013). "Targeting focal adhesion turnover in invasive breast cancer cells by the purine derivative reversine".PMID 24169345
  759. Yuan Fei Peng et al. (2013). "Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells".PMID 24157892
  760. Zheng Chen et al. (2014). "SH2B1 in β-cells regulates glucose metabolism by promoting β-cell survival and islet expansion".PMID 24150605
  761. Tsuyoshi Udagawa et al. (2013). "Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology".PMID 24141422
  762. Kiran Bhaskar et al. (2014). "Microglial derived tumor necrosis factor-α drives Alzheimer's disease-related neuronal cell cycle events".PMID 24141019
  763. Michael J Haas et al. (2014). "The effect of black seed (Nigella sativa) extract on FOXO3 expression in HepG2 cells".PMID 24123556
  764. Brynjulf Mortensen et al. (2014). "Physical inactivity affects skeletal muscle insulin signaling in a birth weight-dependent manner".PMID 24120282
  765. Marco Segatto et al. (2014). "Simvastatin treatment highlights a new role for the isoprenoid/cholesterol biosynthetic pathway in the modulation of emotional reactivity and cognitive performance in rats".PMID 24108067
  766. Hong Min Ni et al. (2013). "Critical role of FoxO3a in alcohol-induced autophagy and hepatotoxicity".PMID 24095927
  767. Melissa E Smith et al. (2013). "Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle".PMID 24073738
  768. Justin Trotter et al. (2013). "Dab1 is required for synaptic plasticity and associative learning".PMID 24068831
  769. Keijiro Ishikawa et al. (2014). "Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy".PMID 24022401
  770. Patrick Pla et al. (2013). "Huntingtin acts non cell-autonomously on hippocampal neurogenesis and controls anxiety-related behaviors in adult mouse".PMID 24019939
  771. Barbara S Paugh et al. (2013). "Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas".PMID 23970477
  772. Miguel Sáinz-Jaspeado et al. (2013). "EphA2-induced angiogenesis in ewing sarcoma cells works through bFGF production and is dependent on caveolin-1".PMID 23951165
  773. Ryoji Yoshida et al. (2013). "The pathological significance of Notch1 in oral squamous cell carcinoma".PMID 23938602
  774. Melanie H Kucherlapati et al. (2013). "Genotype directed therapy in murine mismatch repair deficient tumors".PMID 23935891
  775. Stefan Bittner et al. (2013). "Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS".PMID 23933981
  776. Demetris C Iacovides et al. (2013). "Identification and quantification of AKT isoforms and phosphoforms in breast cancer using a novel nanofluidic immunoassay".PMID 23929892
  777. Janine Dokas et al. (2013). "Conventional knockout of Tbc1d1 in mice impairs insulin- and AICAR-stimulated glucose uptake in skeletal muscle".PMID 23892475
  778. Yi Zhang et al. (2013). "Regulation of lipid and glucose homeostasis by mango tree leaf extract is mediated by AMPK and PI3K/AKT signaling pathways".PMID 23871039
  779. Steve Elliott et al. (2013). "Epo receptors are not detectable in primary human tumor tissue samples".PMID 23861852
  780. Simon Hauerslev et al. (2013). "Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I".PMID 23840556
  781. William R Thompson et al. (2013). "Mechanically activated Fyn utilizes mTORC2 to regulate RhoA and adipogenesis in mesenchymal stem cells".PMID 23836527
  782. Jun Eguchi et al. (2013). "Interferon regulatory factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage polarization".PMID 23835343
  783. A Geissler et al. (2013). "Apoptosis induced by the fungal pathogen gliotoxin requires a triple phosphorylation of Bim by JNK".PMID 23832115
  784. T Pulinilkunnil et al. (2014). "Cardiac-specific adipose triglyceride lipase overexpression protects from cardiac steatosis and dilated cardiomyopathy following diet-induced obesity".PMID 23817015
  785. W Yang et al. (2013). "Alpha-synuclein overexpression increases phospho-protein phosphatase 2A levels via formation of calmodulin/Src complex".PMID 23796501
  786. Tomohide Hori et al. (2013). "Pretreatment of liver grafts in vivo by γ-aminobutyric acid receptor regulation reduces cold ischemia/warm reperfusion injury in rat".PMID 23792534
  787. Audrey N Chang et al. (2013). "The effects of neuregulin on cardiac Myosin light chain kinase gene-ablated hearts".PMID 23776695
  788. Sabine M Brouxhon et al. (2014). "Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers".PMID 23776059
  789. Patrick Imesch et al. (2013). "Histone deacetylase inhibitors down-regulate G-protein-coupled estrogen receptor and the GPER-antagonist G-15 inhibits proliferation in endometriotic cells".PMID 23755949
  790. Naveen Sharma et al. (2014). "Heterogeneous effects of calorie restriction on in vivo glucose uptake and insulin signaling of individual rat skeletal muscles".PMID 23755179
  791. Ulrike Mietzsch et al. (2013). "Comparative analysis of Tsc1 and Tsc2 single and double radial glial cell mutants".PMID 23749404
  792. Richard J Griffeth et al. (2013). "Insulin receptor substrate 2 is required for testicular development".PMID 23741292
  793. T H Beckham et al. (2013). "Acid ceramidase induces sphingosine kinase 1/S1P receptor 2-mediated activation of oncogenic Akt signaling".PMID 23732709
  794. Zhanjiang Hou et al. (2013). "Deferoxamine enhances neovascularization and accelerates wound healing in diabetic rats via the accumulation of hypoxia-inducible factor-1α".PMID 23726275
  795. Dong Zhou et al. (2013). "Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury".PMID 23715119
  796. Hanyu Liang et al. (2013). "Effect of lipopolysaccharide on inflammation and insulin action in human muscle".PMID 23704966
  797. Tian Ma et al. (2013). "Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer".PMID 23686769
  798. Nikhil A Gokhale et al. (2013). "PPIP5K1 modulates ligand competition between diphosphoinositol polyphosphates and PtdIns(3,4,5)P3 for polyphosphoinositide-binding domains".PMID 23682967
  799. Ye Wang et al. (2013). "Overexpression of SIRT1 promotes high glucose-attenuated corneal epithelial wound healing via p53 regulation of the IGFBP3/IGF-1R/AKT pathway".PMID 23661372
  800. Sabine S Neukamm et al. (2013). "Phosphorylation of serine 1137/1138 of mouse insulin receptor substrate (IRS) 2 regulates cAMP-dependent binding to 14-3-3 proteins and IRS2 protein degradation".PMID 23615913
  801. Sarah J Lessard et al. (2013). "Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks".PMID 23610057
  802. M Yu et al. (2014). "Inactivation of TGF-β signaling and loss of PTEN cooperate to induce colon cancer in vivo".PMID 23604118
  803. Himiko Tokami et al. (2013). "RANTES has a potential to play a neuroprotective role in an autocrine/paracrine manner after ischemic stroke".PMID 23602964
  804. K A Bauckman et al. (2013). "Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells".PMID 23598404
  805. Angelina M Hernandez et al. (2013). "Upregulation of p21 activates the intrinsic apoptotic pathway in β-cells".PMID 23592481
  806. Yannick D Benoit et al. (2013). "Pharmacological inhibition of polycomb repressive complex-2 activity induces apoptosis in human colon cancer stem cells".PMID 23588203
  807. Eva Degerman et al. (2013). "Expression of insulin signalling components in the sensory epithelium of the human saccule".PMID 23584706
  808. Ludvig J Backman et al. (2013). "Akt-mediated anti-apoptotic effects of substance P in Anti-Fas-induced apoptosis of human tenocytes".PMID 23577779
  809. Isabel M Chu et al. (2013). "Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß".PMID 23577196
  810. Monte S Willis et al. (2013). "Carboxyl terminus of Hsp70-interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise".PMID 23553918
  811. Dagmar J Haeussler et al. (2013). "Endomembrane H-Ras controls vascular endothelial growth factor-induced nitric-oxide synthase-mediated endothelial cell migration".PMID 23548900
  812. Arnau Busquets-Garcia et al. (2013). "Targeting the endocannabinoid system in the treatment of fragile X syndrome".PMID 23542787
  813. Min Ni et al. (2013). "Amplitude modulation of androgen signaling by c-MYC".PMID 23530127
  814. Hanyu Liang et al. (2013). "Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects".PMID 23529132
  815. Daniel Thomas et al. (2013). "Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival".PMID 23526884
  816. CAROLYN BENTLEY et al. (2013). "A requirement for wild-type Ras isoforms in mutant KRas-driven signalling and transformation".PMID 23496764
  817. Sarah Melissa P Jacobo et al. (2013). "Age-related macular degeneration-associated silent polymorphisms in HtrA1 impair its ability to antagonize insulin-like growth factor 1".PMID 23478260
  818. Uma Karthika Rajarajacholan et al. (2013). "The ING1a tumor suppressor regulates endocytosis to induce cellular senescence via the Rb-E2F pathway".PMID 23472054
  819. José L Areta et al. (2013). "Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis".PMID 23459753
  820. Li Luo et al. (2013). "Chronic resistance training activates autophagy and reduces apoptosis of muscle cells by modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged rats".PMID 23419688
  821. Lilli Stergiou et al. (2013). "Integrin-mediated signaling induced by simian virus 40 leads to transient uncoupling of cortical actin and the plasma membrane".PMID 23409046
  822. Cecilia Brännmark et al. (2013). "Insulin signaling in type 2 diabetes: experimental and modeling analyses reveal mechanisms of insulin resistance in human adipocytes".PMID 23400783
  823. Hyung Jin Kim et al. (2013). "Conditional deletion of pten leads to defects in nerve innervation and neuronal survival in inner ear development".PMID 23393595
  824. Jia Dai et al. (2013). "IKKi deficiency promotes pressure overload-induced cardiac hypertrophy and fibrosis".PMID 23349709
  825. Elisa Carra et al. (2013). "Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures".PMID 23324350
  826. Katarzyna A Cieslik et al. (2013). "Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels".PMID 23303205
  827. Charlotte Suetta et al. (2012). "Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy".PMID 23284670
  828. Laura S Danielson et al. (2013). "Cardiovascular dysregulation of miR-17-92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis".PMID 23271053
  829. Rosa Sánchez-Alvarez et al. (2013). "Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention".PMID 23257780
  830. Akiko Sheala Shingo et al. (2013). "Intracerebroventricular administration of an insulin analogue recovers STZ-induced cognitive decline in rats".PMID 23238038
  831. Ho June Lee et al. (2013). "Noncovalent wild-type-sparing inhibitors of EGFR T790M".PMID 23229345
  832. William D Landry et al. (2013). "Imatinib and Nilotinib inhibit Bcr-Abl-induced ROS through targeted degradation of the NADPH oxidase subunit p22phox".PMID 23218026
  833. Chuan Dong Fan et al. (2013). "Ubiquitin-dependent regulation of phospho-AKT dynamics by the ubiquitin E3 ligase, NEDD4-1, in the insulin-like growth factor-1 response".PMID 23195959
  834. Steffan Vartanian et al. (2013). "Identification of mutant K-Ras-dependent phenotypes using a panel of isogenic cell lines".PMID 23188824
  835. Karthik M Kodigepalli et al. (2013). "SnoN/SkiL expression is modulated via arsenic trioxide-induced activation of the PI3K/AKT pathway in ovarian cancer cells".PMID 23178716
  836. Jasmin Mathew et al. (2013). "Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling".PMID 23164509
  837. Dharini van der Hoeven et al. (2013). "Fendiline inhibits K-Ras plasma membrane localization and blocks K-Ras signal transmission".PMID 23129805
  838. Kwang Jin Cho et al. (2012). "Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins".PMID 23124205
  839. Ji Eun Kim et al. (2012). "Aqueous extract of Liriope platyphylla, a traditional Chinese medicine, significantly inhibits abdominal fat accumulation and improves glucose regulation in OLETF type II diabetes model rats".PMID 23091518
  840. Hong Yu Wang et al. (2013). "AS160 deficiency causes whole-body insulin resistance via composite effects in multiple tissues".PMID 23078342
  841. Kristin K Ambacher et al. (2012). "The JNK- and AKT/GSK3β- signaling pathways converge to regulate Puma induction and neuronal apoptosis induced by trophic factor deprivation".PMID 23056511
  842. George G Schweitzer et al. (2012). "Sustained postexercise increases in AS160 Thr642 and Ser588 phosphorylation in skeletal muscle without sustained increases in kinase phosphorylation".PMID 22936728
  843. N Chatain et al. (2013). "Src family kinases mediate cytoplasmic retention of activated STAT5 in BCR-ABL-positive cells".PMID 22926520
  844. Naveen Sharma et al. (2012). "Preventing the calorie restriction-induced increase in insulin-stimulated Akt2 phosphorylation eliminates calorie restriction's effect on glucose uptake in skeletal muscle".PMID 22846604
  845. Devendra Singh et al. (2012). "Transforming fusions of FGFR and TACC genes in human glioblastoma".PMID 22837387
  846. M Kaiser et al. (2011). "Antileukemic activity of the HSP70 inhibitor pifithrin-μ in acute leukemia".PMID 22829184
  847. Jayakumar S Poovassery et al. (2012). "Type I IFN receptor and the B cell antigen receptor regulate TLR7 responses via distinct molecular mechanisms".PMID 22786773
  848. Timothy R Wilson et al. (2012). "Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors".PMID 22763448
  849. Lindsay B Gardner et al. (2012). "Effect of specific activation of γ-aminobutyric acid receptor in vivo on oxidative stress-induced damage after extended hepatectomy".PMID 22583816
  850. Wei Sha et al. (2012). "Loss of PPARγ expression by fibroblasts enhances dermal wound closure".PMID 22502865
  851. Jens Ruschmann et al. (2012). "The role of SHIP in the development and activation of mouse mucosal and connective tissue mast cells".PMID 22430739
  852. Meytal Shohat et al. (2012). "Protein phosphatase magnesium dependent 1A (PPM1A) plays a role in the differentiation and survival processes of nerve cells".PMID 22384250
  853. Anjum Riaz et al. (2012). "Receptor-specific mechanisms regulate phosphorylation of AKT at Ser473: role of RICTOR in β1 integrin-mediated cell survival".PMID 22384145
  854. Britta Lamottke et al. (2012). "The novel, orally bioavailable HSP90 inhibitor NVP-HSP990 induces cell cycle arrest and apoptosis in multiple myeloma cells and acts synergistically with melphalan by increased cleavage of caspases".PMID 22309072
  855. Jack T Lin et al. (2012). "Differential mTOR and ERK pathway utilization by effector CD4 T cells suggests combinatorial drug therapy of arthritis".PMID 22075384
  856. Roberto Zoncu et al. (2011). "mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase".PMID 22053050
  857. K Hussain et al. (2011). "An activating mutation of AKT2 and human hypoglycemia".PMID 21979934
  858. Timothy R Wilson et al. (2011). "Neuregulin-1-mediated autocrine signaling underlies sensitivity to HER2 kinase inhibitors in a subset of human cancers".PMID 21840482
  859. Thomas F O'Brien et al. (2011). "Regulation of T-cell survival and mitochondrial homeostasis by TSC1".PMID 21805467
  860. Carmine Settembre et al. (2011). "TFEB links autophagy to lysosomal biogenesis".PMID 21617040
  861. Iakovos Lazaridis et al. (2011). "Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis".PMID 21541365
  862. Jifen Li et al. (2011). "Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of {beta}-catenin signaling".PMID 21245375
  863. Heather L Chandler et al. (2010). "The effect of phosphorylated Akt inhibition on posterior capsule opacification in an ex vivo canine model".PMID 21139685
  864. Bu Qing Ye et al. (2010). "Slit2 regulates attractive eosinophil and repulsive neutrophil chemotaxis through differential srGAP1 expression during lung inflammation".PMID 20944010
  865. Qiaoling Liang et al. (2010). "IL-2 and IL-4 stimulate MEK1 expression and contribute to T cell resistance against suppression by TGF-beta and IL-10 in asthma".PMID 20926789
  866. Lu Jiang et al. (2010). "MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells".PMID 20819078
  867. Noriyuki Ouchi et al. (2010). "Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity".PMID 20558665
  868. Qing Li Kong et al. (2010). "Epstein-Barr virus-encoded LMP2A induces an epithelial-mesenchymal transition and increases the number of side population stem-like cancer cells in nasopharyngeal carcinoma".PMID 20532215
  869. Ryan J O Dowling et al. (2010). "mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs".PMID 20508131
  870. Veronique Marsaud et al. (2010). "Cyclin K and cyclin D1b are oncogenic in myeloma cells".PMID 20459741
  871. Dong Hyung Cho et al. (2010). "Upregulation of SPRR3 promotes colorectal tumorigenesis".PMID 20379613
  872. Ruhee Dere et al. (2010). "Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR".PMID 20169078
  873. J K Son et al. (2010). "TRAIL-activated stress kinases suppress apoptosis through transcriptional upregulation of MCL-1".PMID 20168333
  874. Stéphanie Decherf et al. (2010). "Thyroid hormone exerts negative feedback on hypothalamic type 4 melanocortin receptor expression".PMID 20160073
  875. Baoying Liu et al. (2010). "Pro-angiogenic effect of IFNgamma is dependent on the PI3K/mTOR/translational pathway in human retinal pigmented epithelial cells".PMID 20157617
  876. Helenia Ansuini et al. (2009). "Anti-EphA2 Antibodies with Distinct In Vitro Properties Have Equal In Vivo Efficacy in Pancreatic Cancer".PMID 20130824
  877. Jianhui Ma et al. (2010). "Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade".PMID 20038814
  878. Michael Udelhoven et al. (2010). "Neuronal insulin receptor substrate 2 (IRS2) expression is regulated by ZBP89 and SP1 binding to the IRS2 promoter".PMID 19875459
  879. Deepak Adhikari et al. (2010). "Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles".PMID 19843540
  880. Mehrnoosh Saghizadeh et al. (2010). "Adenovirus-driven overexpression of proteinases in organ-cultured normal human corneas leads to diabetic-like changes".PMID 19828126
  881. Eric N Churchill et al. (2010). "Ischaemic preconditioning improves proteasomal activity and increases the degradation of deltaPKC during reperfusion".PMID 19820255
  882. Shin Ichiro Hayashi et al. (2009). "The stent-eluting drugs sirolimus and paclitaxel suppress healing of the endothelium by induction of autophagy".PMID 19815708
  883. Frank W King et al. (2009). "Timosaponin AIII is preferentially cytotoxic to tumor cells through inhibition of mTOR and induction of ER stress".PMID 19789631
  884. Yasuko Hirakawa et al. (2009). "Glucocorticoid evoked upregulation of RCAN1-1 in human leukemic CEM cells susceptible to apoptosis".PMID 19725972
  885. Todd D Prickett et al. (2009). "Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4".PMID 19718025
  886. Junfang Wu et al. (2010). "Phosphatidylinositol 3-kinase/protein kinase Cdelta activation induces close homolog of adhesion molecule L1 (CHL1) expression in cultured astrocytes".PMID 19672967
  887. Ana Cerezo et al. (2009). "The absence of caveolin-1 increases proliferation and anchorage- independent growth by a Rac-dependent, Erk-independent mechanism".PMID 19620284
  888. Van Anthony M Villar et al. (2009). "G protein-coupled receptor kinase 4 (GRK4) regulates the phosphorylation and function of the dopamine D3 receptor".PMID 19520868
  889. Igor Ruvinsky et al. (2009). "Mice deficient in ribosomal protein S6 phosphorylation suffer from muscle weakness that reflects a growth defect and energy deficit".PMID 19479038
  890. Koji Taniguchi et al. (2009). "Suppression of Sproutys has a therapeutic effect for a mouse model of ischemia by enhancing angiogenesis".PMID 19424491
  891. Koji Ikeda et al. (2009). "Identification of ARIA regulating endothelial apoptosis and angiogenesis by modulating proteasomal degradation of cIAP-1 and cIAP-2".PMID 19416853
  892. Jorge Blando et al. (2009). "PTEN deficiency is fully penetrant for prostate adenocarcinoma in C57BL/6 mice via mTOR-dependent growth".PMID 19395652
  893. Juxiang Cao et al. (2009). "Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity".PMID 19369943
  894. Mamta Gupta et al. (2009). "A proliferation-inducing ligand mediates follicular lymphoma B-cell proliferation and cyclin D1 expression through phosphatidylinositol 3-kinase-regulated mammalian target of rapamycin activation".PMID 19321861
  895. Janice B B Lam et al. (2009). "Adiponectin haploinsufficiency promotes mammary tumor development in MMTV-PyVT mice by modulation of phosphatase and tensin homolog activities".PMID 19319191
  896. Yun Song Lee et al. (2009). "Regulation of expression of matrix metalloproteinase-9 by JNK in Raw 264.7 cells: presence of inhibitory factor(s) suppressing MMP-9 induction in serum and conditioned media".PMID 19299915
  897. Kyuho Jeong et al. (2009). "Modulation of the caveolin-3 localization to caveolae and STAT3 to mitochondria by catecholamine-induced cardiac hypertrophy in H9c2 cardiomyoblasts".PMID 19299911
  898. Tracie A Seimon et al. (2009). "Macrophage deficiency of p38alpha MAPK promotes apoptosis and plaque necrosis in advanced atherosclerotic lesions in mice".PMID 19287091
  899. DaMing Gao et al. (2009). "Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction".PMID 19270695
  900. Young Jun Kim et al. (2009). "NDRG2 expression decreases with tumor stages and regulates TCF/beta-catenin signaling in human colon carcinoma".PMID 19237607
  901. Anne Catherine Sprynski et al. (2009). "The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor".PMID 19228610
  902. Byoung Kwon Yoo et al. (2009). "Astrocyte elevated gene-1 regulates hepatocellular carcinoma development and progression".PMID 19221438
  903. Ke Ning et al. (2009). "Leptin-dependent phosphorylation of PTEN mediates actin restructuring and activation of ATP-sensitive K+ channels".PMID 19208634
  904. Yaron Vagima et al. (2009). "MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization".PMID 19197139
  905. Cleide Gonçalves da Silva et al. (2009). "Mechanism of purinergic activation of endothelial nitric oxide synthase in endothelial cells".PMID 19188511
  906. R Grant Rowe et al. (2009). "Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs".PMID 19188491
  907. Giada Monami et al. (2009). "Proepithelin regulates prostate cancer cell biology by promoting cell growth, migration, and anchorage-independent growth".PMID 19179604
  908. Jonathan Clarhaut et al. (2009). "ZEB-1, a repressor of the semaphorin 3F tumor suppressor gene in lung cancer cells".PMID 19177200
  909. Shun Liang et al. (2009). "Expression of activated PIK3CA in ovarian surface epithelium results in hyperplasia but not tumor formation".PMID 19172191
  910. Seungkirl Ahn et al. (2009). "{beta}-Arrestin-2 Mediates Anti-apoptotic Signaling through Regulation of BAD Phosphorylation".PMID 19171933
  911. Hyun Ju Kim et al. (2009). "The Src family kinase, Lyn, suppresses osteoclastogenesis in vitro and in vivo".PMID 19171907
  912. Lijuan Xu et al. (2009). "Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria".PMID 19164550
  913. Zhongjian Xie et al. (2009). "Phosphatidylinositol-4-phosphate 5-kinase 1alpha mediates extracellular calcium-induced keratinocyte differentiation".PMID 19158393
  914. Kensuke Sakamoto et al. (2009). "Role of the tumor suppressor PTEN in antioxidant responsive element-mediated transcription and associated histone modifications".PMID 19158375
  915. Takahiro Fujimoto et al. (2009). "Altered energy homeostasis and resistance to diet-induced obesity in KRAP-deficient mice".PMID 19156225
  916. D Chaturvedi et al. (2009). "Rapamycin induces transactivation of the EGFR and increases cell survival".PMID 19151764
  917. Trupti Joshi et al. (2009). "The PtdIns 3-kinase/Akt pathway regulates macrophage-mediated ADCC against B cell lymphoma".PMID 19148288
  918. Flora Brozzi et al. (2009). "S100B Protein Regulates Astrocyte Shape and Migration via Interaction with Src Kinase: IMPLICATIONS FOR ASTROCYTE DEVELOPMENT, ACTIVATION, AND TUMOR GROWTH".PMID 19147496
  919. Jixin Ding et al. (2009). "ClipR-59 interacts with Akt and regulates Akt cellular compartmentalization".PMID 19139280
  920. Ozgur Sahin et al. (2009). "Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance".PMID 19118495
  921. Xia V Yang et al. (2009). "Activated protein C ligation of ApoER2 (LRP8) causes Dab1-dependent signaling in U937 cells".PMID 19116273
  922. Anna Dubrovska et al. (2009). "The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations".PMID 19116269
  923. Price Blair et al. (2009). "Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase".PMID 19106411
  924. James W Peacock et al. (2009). "PTEN loss promotes mitochondrially dependent type II Fas-induced apoptosis via PEA-15".PMID 19103758
  925. Judit Pallares et al. (2009). "CK2beta is expressed in endometrial carcinoma and has a role in apoptosis resistance and cell proliferation".PMID 19056846
  926. Hiroshi Honda et al. (2008). "Serial analysis of gene expression reveals differential expression between endometriosis and normal endometrium. Possible roles for AXL and SHC1 in the pathogenesis of endometriosis".PMID 19055724
  927. Ilona Patursky-Polischuk et al. (2009). "The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner".PMID 19047368
  928. Xue Qing Wang et al. (2009). "Oncogenic K-Ras regulates proliferation and cell junctions in lung epithelial cells through induction of cyclooxygenase-2 and activation of metalloproteinase-9".PMID 19037103
  929. Xinqiang Huang et al. (2009). "Resident hepatocyte fibroblast growth factor receptor 4 limits hepatocarcinogenesis".PMID 19009564
  930. Janine A Burns et al. (2009). "Choice of fixative is crucial to successful immunohistochemical detection of phosphoproteins in paraffin-embedded tumor tissues".PMID 19001637
  931. Vladimir L Gabai et al. (2009). "Heat shock protein Hsp72 controls oncogene-induced senescence pathways in cancer cells".PMID 19001088
  932. J Wen et al. (2009). "Decreased BRCA1 confers tamoxifen resistance in breast cancer cells by altering estrogen receptor-coregulator interactions".PMID 18997820
  933. Jessica J Reimer et al. (2009). "Analysis of Epstein-Barr virus glycoprotein B functional domains via linker insertion mutagenesis".PMID 18987135
  934. Angela K Peter et al. (2009). "Myogenic Akt signaling upregulates the utrophin-glycoprotein complex and promotes sarcolemma stability in muscular dystrophy".PMID 18986978
  935. Seol Hee Kim et al. (2008). "Identification of human thioredoxin as a novel IFN-gamma-induced factor: mechanism of induction and its role in cytokine production".PMID 18983687
  936. Karina Jin Yoon et al. (2008). "ICAM-2 expression mediates a membrane-actin link, confers a nonmetastatic phenotype and reflects favorable tumor stage or histology in neuroblastoma".PMID 18978946
  937. Omedul Islam et al. (2009). "Interleukin-6 and neural stem cells: more than gliogenesis".PMID 18971377
  938. Abraham Schneider et al. (2008). "Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/REDD1 signaling axis in head and neck squamous cell carcinoma".PMID 18953439
  939. Elizabeth A Whitcomb et al. (2009). "Novel control of S phase of the cell cycle by ubiquitin-conjugating enzyme H7".PMID 18946090
  940. J R Smith et al. (2009). "Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors".PMID 18931700
  941. Timo Liebig et al. (2009). "RhoE Is required for keratinocyte differentiation and stratification".PMID 18923151
  942. Michael Degtyarev et al. (2008). "Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents".PMID 18838554
  943. Mei Hua Gao et al. (2008). "Adenylyl cyclase type VI increases Akt activity and phospholamban phosphorylation in cardiac myocytes".PMID 18838385
  944. K J Feres et al. (2009). "The RON receptor tyrosine kinase promotes MSP-independent cell spreading and survival in breast epithelial cells".PMID 18836480
  945. Yidi Wu et al. (2008). "Integrin-linked kinase regulates smooth muscle differentiation marker gene expression in airway tissue".PMID 18805960
  946. Alok Sharma et al. (2008). "Phosphorylation of p130Cas initiates Rac activation and membrane ruffling".PMID 18793427
  947. Sam M Janes et al. (2009). "PI3-kinase-dependent activation of apoptotic machinery occurs on commitment of epidermal keratinocytes to terminal differentiation".PMID 18766172
  948. Derek Y Chiang et al. (2008). "Focal gains of VEGFA and molecular classification of hepatocellular carcinoma".PMID 18701503
  949. Jason E Fish et al. (2008). "miR-126 regulates angiogenic signaling and vascular integrity".PMID 18694566
  950. Krisztina Kovács de Ostrovich et al. (2008). "Paracrine overexpression of insulin-like growth factor-1 enhances mammary tumorigenesis in vivo".PMID 18688034
  951. Brunilde Gril et al. (2008). "Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain".PMID 18664652
  952. Johannes Rieger et al. (2008). "Enzastaurin-induced apoptosis in glioma cells is caspase-dependent and inhibited by BCL-XL".PMID 18662322
  953. Guoqing Sheng et al. (2008). "Huntingtin-associated protein 1 interacts with Ahi1 to regulate cerebellar and brainstem development in mice".PMID 18636121
  954. Daniel D Kaplan et al. (2008). "A nucleostemin family GTPase, NS3, acts in serotonergic neurons to regulate insulin signaling and control body size".PMID 18628395
  955. Young Kwang Chae et al. (2008). "Human AQP5 plays a role in the progression of chronic myelogenous leukemia (CML)".PMID 18612408
  956. P L Greenhaff et al. (2008). "Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle".PMID 18577697
  957. Yonghua Yang et al. (2008). "Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion".PMID 18559531
  958. Chandramu Chetty et al. (2008). "Tissue inhibitor of metalloproteinase 3 suppresses tumor angiogenesis in matrix metalloproteinase 2-down-regulated lung cancer".PMID 18559520
  959. Kristen J Champion et al. (2008). "Endothelial function of von Hippel-Lindau tumor suppressor gene: control of fibroblast growth factor receptor signaling".PMID 18559510
  960. Hongguang Wei et al. (2008). "Heat stress activates AKT via focal adhesion kinase-mediated pathway in neonatal rat ventricular myocytes".PMID 18539755
  961. Sanjukta Chakraborty et al. (2008). "Involvement of TSC genes and differential expression of other members of the mTOR signaling pathway in oral squamous cell carcinoma".PMID 18538015
  962. Jiaxu Wang et al. (2008). "Jab1 is a target of EGFR signaling in ERalpha-negative breast cancer".PMID 18534028
  963. Christina Magkou et al. (2008). "Expression of the epidermal growth factor receptor (EGFR) and the phosphorylated EGFR in invasive breast carcinomas".PMID 18522728
  964. Myrto Giannopoulou et al. (2008). "Hepatocyte growth factor exerts its anti-inflammatory action by disrupting nuclear factor-kappaB signaling".PMID 18502824
  965. Taghi Manshouri et al. (2008). "The JAK kinase inhibitor CP-690,550 suppresses the growth of human polycythemia vera cells carrying the JAK2V617F mutation".PMID 18482053
  966. Yelena Lyustikman et al. (2008). "Constitutive activation of Raf-1 induces glioma formation in mice".PMID 18472967
  967. Tadateru Maehata et al. (2008). "Transcriptional silencing of Dickkopf gene family by CpG island hypermethylation in human gastrointestinal cancer".PMID 18461655
  968. Pawan Gulati et al. (2008). "Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34".PMID 18460336
  969. Jidong Zhu et al. (2008). "Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1".PMID 18451027
  970. H Agis et al. (2008). "Effects of platelet-derived growth factor isoforms on plasminogen activation by periodontal ligament and gingival fibroblasts".PMID 18447857
  971. Chunrong Yu et al. (2008). "Mitochondrial Bax translocation partially mediates synergistic cytotoxicity between histone deacetylase inhibitors and proteasome inhibitors in glioma cells".PMID 18445700
  972. Young Bong Choi et al. (2008). "Autocrine and paracrine promotion of cell survival and virus replication by human herpesvirus 8 chemokines".PMID 18434408
  973. Christine C Tomlinson et al. (2008). "Critical role for endocytosis in the regulation of signaling by the Kaposi's sarcoma-associated herpesvirus K1 protein".PMID 18434405
  974. Nobuyuki Kikuno et al. (2008). "Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells".PMID 18431742
  975. Minsub Shim et al. (2008). "Vitamin E succinate induces NAG-1 expression in a p38 kinase-dependent mechanism".PMID 18413810
  976. Peter Kamenicky et al. (2008). "Epithelial sodium channel is a key mediator of growth hormone-induced sodium retention in acromegaly".PMID 18388193
  977. Amit Verma et al. (2008). "Tissue transglutaminase regulates focal adhesion kinase/AKT activation by modulating PTEN expression in pancreatic cancer cells".PMID 18381937
  978. Y J Jeon et al. (2008). "Ribosomal protein S6 is a selective mediator of TRAIL-apoptotic signaling".PMID 18362888
  979. Changxue Lu et al. (2008). "Activation of phosphatidylinositol 3-kinase signaling promotes aberrant pituitary growth in a mouse model of thyroid-stimulating hormone-secreting pituitary tumors".PMID 18356276
  980. A R Smith et al. (2008). "Lipoic acid significantly restores, in rats, the age-related decline in vasomotion".PMID 18297110
  981. Katsuya Tanabe et al. (2008). "Genetic deficiency of glycogen synthase kinase-3beta corrects diabetes in mouse models of insulin resistance".PMID 18288891
  982. Patrick T Fueger et al. (2008). "Trefoil factor 3 stimulates human and rodent pancreatic islet beta-cell replication with retention of function".PMID 18258687
  983. Linda Yu et al. (2008). "Differential expression of receptor tyrosine kinases (RTKs) and IGF-I pathway activation in human uterine leiomyomas".PMID 18231572
  984. Mira Choi et al. (2008). "Short-term heat exposure inhibits inflammation by abrogating recruitment of and nuclear factor-{kappa}B activation in neutrophils exposed to chemotactic cytokines".PMID 18187571
  985. Emily M Horvath et al. (2008). "Antidiabetogenic effects of chromium mitigate hyperinsulinemia-induced cellular insulin resistance via correction of plasma membrane cholesterol imbalance".PMID 18165437
  986. C C Pan et al. (2008). "Constant allelic alteration on chromosome 16p (TSC2 gene) in perivascular epithelioid cell tumour (PEComa): genetic evidence for the relationship of PEComa with angiomyolipoma".PMID 18085521
  987. Min Huei Liang et al. (2008). "Lithium inhibits Smad3/4 transactivation via increased CREB activity induced by enhanced PKA and AKT signaling".PMID 18077182
  988. Carmen J Tartari et al. (2008). "Characterization of some molecular mechanisms governing autoactivation of the catalytic domain of the anaplastic lymphoma kinase".PMID 18070884
  989. Hans C Dreyer et al. (2008). "Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle".PMID 18056791
  990. Anush Oganesian et al. (2008). "Thrombospondins use the VLDL receptor and a nonapoptotic pathway to inhibit cell division in microvascular endothelial cells".PMID 18032585
  991. M Rajesh et al. (2008). "CB2 cannabinoid receptor agonists attenuate TNF-alpha-induced human vascular smooth muscle cell proliferation and migration".PMID 17994109
  992. Mariana Varela et al. (2008). "A large animal model to evaluate the effects of Hsp90 inhibitors for the treatment of lung adenocarcinoma".PMID 17961623
  993. Alan Cheng et al. (2007). "A role for AGL ubiquitination in the glycogen storage disorders of Lafora and Cori's disease".PMID 17908927
  994. Shawn D Larson et al. (2007). "Increased incidence of well-differentiated thyroid cancer associated with Hashimoto thyroiditis and the role of the PI3k/Akt pathway".PMID 17481480
  995. M J Don et al. (2007). "Cryptotanshinone inhibits chemotactic migration in macrophages through negative regulation of the PI3K signaling pathway".PMID 17471173
  996. L H Meng et al. (2007). "Dose-response transition from cell cycle arrest to apoptosis with selective degradation of Mdm2 and p21WAF1/CIP1 in response to the novel anticancer agent, aminoflavone (NSC 686,288)".PMID 17297446
  997. Kiyosumi Shibata et al. (2007). "P-LAP/IRAP-induced cell proliferation and glucose uptake in endometrial carcinoma cells via insulin receptor signaling".PMID 17233921
  998. J Kelley Bentley et al. (2007). "Rhinovirus activates interleukin-8 expression via a Src/p110beta phosphatidylinositol 3-kinase/Akt pathway in human airway epithelial cells".PMID 17121804
  999. Nabeel Bardeesy et al. (2006). "Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer".PMID 17114584
  1000. Barbara Tanno et al. (2006). "Bim-dependent apoptosis follows IGFBP-5 down-regulation in neuroblastoma cells".PMID 17067554
  1001. Florian Hohla et al. (2006). "Synergistic inhibition of growth of lung carcinomas by antagonists of growth hormone-releasing hormone in combination with docetaxel".PMID 16983095
  1002. Stefan Grotegut et al. (2006). "Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail".PMID 16858414
  1003. David Z Qian et al. (2006). "Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589".PMID 16428510
  1004. David Matallanas et al. (2006). "Distinct utilization of effectors and biological outcomes resulting from site-specific Ras activation: Ras functions in lipid rafts and Golgi complex are dispensable for proliferation and transformation".PMID 16354683
  1005. MinHee K Ko et al. (2005). "Regulatory role of FGF-2 on type I collagen expression during endothelial mesenchymal transformation".PMID 16303940
  1006. Ji Youn Han et al. (2005). "Hypoxia-inducible factor 1alpha and antiangiogenic activity of farnesyltransferase inhibitor SCH66336 in human aerodigestive tract cancer".PMID 16145048