这是一篇来自已证抗体库的有关人类 B细胞淋巴瘤6蛋白 (BCL6) 的综述,是根据102篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合B细胞淋巴瘤6蛋白 抗体。
B细胞淋巴瘤6蛋白 同义词: BCL5; BCL6A; LAZ3; ZBTB27; ZNF51

BioLegend
大鼠 单克隆(7D1)
  • 流式细胞仪; 小鼠; 图 s4b
BioLegendB细胞淋巴瘤6蛋白抗体(Biolegend, 7D1)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(IG191E/A8)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendB细胞淋巴瘤6蛋白抗体(Biolegend, 648305)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Commun (2021) ncbi
大鼠 单克隆(7D1)
  • 流式细胞仪; 人类
BioLegendB细胞淋巴瘤6蛋白抗体(BioLegend, 358504)被用于被用于流式细胞仪在人类样本上. Cell (2021) ncbi
大鼠 单克隆(7D1)
  • 流式细胞仪; 小鼠; 1:400; 图 4d
BioLegendB细胞淋巴瘤6蛋白抗体(Biolegend, 7D1)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4d). Nat Commun (2018) ncbi
小鼠 单克隆(IG191E/A8)
  • 流式细胞仪; 小鼠; 1:50; 图 s10a
BioLegendB细胞淋巴瘤6蛋白抗体(Biolegend, 648308)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s10a). Nat Commun (2017) ncbi
小鼠 单克隆(IG191E/A8)
  • 免疫印迹; 小鼠; 图 7
BioLegendB细胞淋巴瘤6蛋白抗体(BioLegend, 648301)被用于被用于免疫印迹在小鼠样本上 (图 7). Cell Death Dis (2015) ncbi
小鼠 单克隆(IG191E/A8)
  • 流式细胞仪; 人类; 图 4
BioLegendB细胞淋巴瘤6蛋白抗体(Biolegend, IG191E/A8)被用于被用于流式细胞仪在人类样本上 (图 4). Toxicol Sci (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-8)
  • 免疫细胞化学; 人类; 1:100; 图 4e
圣克鲁斯生物技术B细胞淋巴瘤6蛋白抗体(Santa Cruz, sc-7388)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4e). Angiogenesis (2020) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 小鼠; 1:200; 图 1e
圣克鲁斯生物技术B细胞淋巴瘤6蛋白抗体(Santa, sc7388)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1e). elife (2019) ncbi
  • ChIP-Seq; 人类; 图 3f
圣克鲁斯生物技术B细胞淋巴瘤6蛋白抗体(Santa Cruz Biotechnology Inc, sc-858)被用于被用于ChIP-Seq在人类样本上 (图 3f). Nat Immunol (2019) ncbi
小鼠 单克隆(D-8)
  • 免疫印迹; 人类; 图 1b, 1c
  • 免疫印迹基因敲除验证; 小鼠; 图 3i
  • 免疫印迹; 小鼠; 图 3i
圣克鲁斯生物技术B细胞淋巴瘤6蛋白抗体(Santa Cruz, sc-7388)被用于被用于免疫印迹在人类样本上 (图 1b, 1c), 被用于免疫印迹基因敲除验证在小鼠样本上 (图 3i) 和 被用于免疫印迹在小鼠样本上 (图 3i). J Biol Chem (2019) ncbi
小鼠 单克隆(D-8)
  • 染色质免疫沉淀 ; 人类; 图 1
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术B细胞淋巴瘤6蛋白抗体(Santa Cruz, SC-7388)被用于被用于染色质免疫沉淀 在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术B细胞淋巴瘤6蛋白抗体(Santa Cruz, sc858)被用于被用于免疫印迹在小鼠样本上 (图 5). Oncotarget (2015) ncbi
  • 染色质免疫沉淀 ; 人类; 图 2a,2b,2c,2d,3b,3c
  • 免疫印迹; 人类; 图 1e,1f,3a,4b,4c,4d,5
圣克鲁斯生物技术B细胞淋巴瘤6蛋白抗体(Santa Cruz Biotechnology, sc-858)被用于被用于染色质免疫沉淀 在人类样本上 (图 2a,2b,2c,2d,3b,3c) 和 被用于免疫印迹在人类样本上 (图 1e,1f,3a,4b,4c,4d,5). Oncogene (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛默飞世尔B细胞淋巴瘤6蛋白抗体(Thermo Scientific, PA5-27390)被用于被用于免疫印迹在人类样本上 (图 4d). Cell Death Dis (2021) ncbi
小鼠 单克隆(GI191E)
  • 免疫印迹; 人类; 1:500
赛默飞世尔B细胞淋巴瘤6蛋白抗体(eBioscience, GI191E)被用于被用于免疫印迹在人类样本上浓度为1:500. Angiogenesis (2020) ncbi
小鼠 单克隆(BCL-UP)
赛默飞世尔B细胞淋巴瘤6蛋白抗体(eBioscience, BCL-UP)被用于. Nature (2017) ncbi
小鼠 单克隆(BL6.02 (PG-B6p))
  • 免疫细胞化学; 人类; 图 s2a
赛默飞世尔B细胞淋巴瘤6蛋白抗体(生活技术, P1F6)被用于被用于免疫细胞化学在人类样本上 (图 s2a). Cancer Res (2016) ncbi
小鼠 单克隆(GI191E)
  • 流式细胞仪; 小鼠
赛默飞世尔B细胞淋巴瘤6蛋白抗体(eBioscience, GI191E)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2011) ncbi
小鼠 单克隆(BL6.02 (PG-B6p))
  • 免疫组化-石蜡切片; 人类; 1:20; 图 1
  • 免疫组化; 人类; 1:20
赛默飞世尔B细胞淋巴瘤6蛋白抗体(Neomarker, clone P1F6+PGB6P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 1) 和 被用于免疫组化在人类样本上浓度为1:20. Mod Pathol (2010) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4g
艾博抗(上海)贸易有限公司B细胞淋巴瘤6蛋白抗体(Abcam, ab19011)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4g). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
艾博抗(上海)贸易有限公司B细胞淋巴瘤6蛋白抗体(Abcam, ab19011)被用于被用于免疫印迹在小鼠样本上 (图 2b). Open Biol (2016) ncbi
Active Motif
单克隆(IG191E)
  • 免疫印迹; 人类; 图 2g
Active MotifB细胞淋巴瘤6蛋白抗体(Active Motif, 61194)被用于被用于免疫印迹在人类样本上 (图 2g). Leukemia (2018) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(PG-B6p)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1n
丹科医疗器械技术服务(上海)有限公司B细胞淋巴瘤6蛋白抗体(Dako, M7211)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1n). Front Immunol (2019) ncbi
小鼠 单克隆(PG-B6p)
  • 免疫组化-石蜡切片; 人类; 1:40; 图 1, 2
丹科医疗器械技术服务(上海)有限公司B细胞淋巴瘤6蛋白抗体(Dako, PG-B6p)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 (图 1, 2). Exp Eye Res (2020) ncbi
小鼠 单克隆(PG-B6p)
  • 免疫组化-石蜡切片; 人类; 1:40; 表 3
丹科医疗器械技术服务(上海)有限公司B细胞淋巴瘤6蛋白抗体(Dako, M7211)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 (表 3). Oncol Lett (2016) ncbi
小鼠 单克隆(PG-B6p)
  • 免疫组化-石蜡切片; 人类; 图 6
丹科医疗器械技术服务(上海)有限公司B细胞淋巴瘤6蛋白抗体(Dako, M7211)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6). J Immunol Res (2015) ncbi
小鼠 单克隆(PG-B6p)
  • 免疫印迹; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司B细胞淋巴瘤6蛋白抗体(Dako, M7211)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(PG-B6p)
  • 免疫组化-石蜡切片; 人类; 1:1
丹科医疗器械技术服务(上海)有限公司B细胞淋巴瘤6蛋白抗体(Dako, PG-B6p)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1. Cytopathology (2016) ncbi
小鼠 单克隆(PG-B6p)
  • 免疫组化; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司B细胞淋巴瘤6蛋白抗体(DAKO, PG-B6P)被用于被用于免疫组化在人类样本上浓度为1:40. Leuk Res (2015) ncbi
小鼠 单克隆(PG-B6p)
  • 免疫组化-石蜡切片; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司B细胞淋巴瘤6蛋白抗体(DAKO, PG-B6P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. Int J Hematol (2015) ncbi
小鼠 单克隆(PG-B6p)
  • 免疫组化-石蜡切片; 人类; 1:400
丹科医疗器械技术服务(上海)有限公司B细胞淋巴瘤6蛋白抗体(Dako, M7211)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. PLoS ONE (2014) ncbi
小鼠 单克隆(PG-B6p)
  • 免疫组化-石蜡切片; 人类; 1:25
丹科医疗器械技术服务(上海)有限公司B细胞淋巴瘤6蛋白抗体(Dako, PG-B6p)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. PLoS ONE (2014) ncbi
小鼠 单克隆(PG-B6p)
  • 免疫组化; 人类; 1:10
丹科医疗器械技术服务(上海)有限公司B细胞淋巴瘤6蛋白抗体(Dako, M7211)被用于被用于免疫组化在人类样本上浓度为1:10. Blood Cancer J (2013) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D65C10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤6蛋白抗体(Cell Signaling, 5650S)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Cell (2021) ncbi
domestic rabbit 单克隆(D65C10)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司B细胞淋巴瘤6蛋白抗体(CST, 5650)被用于被用于免疫印迹在人类样本上 (图 6d). Sci Adv (2020) ncbi
domestic rabbit 单克隆(D65C10)
  • ChIP-Seq; 人类; 图 4c
  • 染色质免疫沉淀 ; 人类; 图 4c
赛信通(上海)生物试剂有限公司B细胞淋巴瘤6蛋白抗体(Cell Signaling, 5650)被用于被用于ChIP-Seq在人类样本上 (图 4c) 和 被用于染色质免疫沉淀 在人类样本上 (图 4c). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D65C10)
  • 免疫沉淀; 人类; 图 6b
赛信通(上海)生物试剂有限公司B细胞淋巴瘤6蛋白抗体(Cell Signaling, D65C10)被用于被用于免疫沉淀在人类样本上 (图 6b). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5g
赛信通(上海)生物试剂有限公司B细胞淋巴瘤6蛋白抗体(Cell Signaling, 4242S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5g). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D4I2V)
  • 免疫印迹; 人类; 图 s4a
  • 免疫印迹; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司B细胞淋巴瘤6蛋白抗体(Cell Signaling, 14895)被用于被用于免疫印迹在人类样本上 (图 s4a) 和 被用于免疫印迹在小鼠样本上 (图 3h). Sci Signal (2016) ncbi
domestic rabbit 单克隆(D65C10)
  • 染色质免疫沉淀 ; 小鼠; 图 5d
  • 免疫印迹; 小鼠; 图 2g
赛信通(上海)生物试剂有限公司B细胞淋巴瘤6蛋白抗体(Cell signaling, D65C10)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5d) 和 被用于免疫印迹在小鼠样本上 (图 2g). Open Biol (2016) ncbi
domestic rabbit 单克隆(D65C10)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司B细胞淋巴瘤6蛋白抗体(Cell Signaling Technology, D65C10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Int J Mol Med (2016) ncbi
Cell Marque
单克隆(GL191E/A8)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 i2
Cell MarqueB细胞淋巴瘤6蛋白抗体(Cell Marque, GL191E/A8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 i2). Am J Clin Pathol (2017) ncbi
碧迪BD
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Pharmingen, K112-91)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Nature (2022) ncbi
小鼠 单克隆(K112-91)
  • 免疫组化-石蜡切片; 小鼠; 图 6i
  • 流式细胞仪; 小鼠; 图 6h
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, K112-91)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6i) 和 被用于流式细胞仪在小鼠样本上 (图 6h). JCI Insight (2022) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 人类; 图 2b
  • 免疫印迹; 人类; 图 1g
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 1g). Sci Adv (2021) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 1:40
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, 561522)被用于被用于流式细胞仪在小鼠样本上浓度为1:40. elife (2021) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 1:100
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, 561522)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nature (2021) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 1
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, KI 12-91)被用于被用于流式细胞仪在小鼠样本上 (图 1). Aging Cell (2021) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 1:100; 图 8i
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 8i). elife (2020) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 1g
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Blood Adv (2020) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 3f
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, 561522)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Cell Rep (2019) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 2f
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Science (2019) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 1:50; 图 3c, 3f, s6c
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Horizon, K112-91)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 3c, 3f, s6c). Science (2019) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 人类; 图 4d
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在人类样本上 (图 4d). J Exp Med (2019) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, K112-91)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2019) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 7c
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, K112-91)被用于被用于流式细胞仪在小鼠样本上 (图 7c). Front Immunol (2019) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 1d
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, K112-91)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Nat Commun (2018) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 人类; 图 2b
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, 561525)被用于被用于流式细胞仪在人类样本上 (图 2b). Cell Rep (2018) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 s2c
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Infect Immun (2018) ncbi
小鼠 单克隆(K112-91)
  • 免疫组化-冰冻切片; 人类; 图 1a
  • 流式细胞仪; 人类; 图 3d
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1a) 和 被用于流式细胞仪在人类样本上 (图 3d). J Exp Med (2018) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 2f
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Pharmingen, K112-91)被用于被用于流式细胞仪在小鼠样本上 (图 2f). J Virol (2018) ncbi
小鼠 单克隆(K112-91)
  • 免疫组化; 小鼠; 图 2h
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Bioscience, K112-91)被用于被用于免疫组化在小鼠样本上 (图 2h). J Exp Med (2018) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 2d
碧迪BDB细胞淋巴瘤6蛋白抗体(BD bioscience, K112-91)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Nat Commun (2018) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 1:100; 图 s2a
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2a). Nat Commun (2018) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 人类; 图 8a
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, 563581)被用于被用于流式细胞仪在人类样本上 (图 8a). J Virol (2018) ncbi
小鼠 单克隆(K112-91)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, K112-91)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). J Exp Med (2018) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 1:50; 图 1a, 1e
  • 免疫印迹; 小鼠; ; 图 4f
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, K112-91)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1a, 1e) 和 被用于免疫印迹在小鼠样本上浓度为 (图 4f). Nat Commun (2017) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 人类
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在人类样本上. Nature (2017) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 猕猴; 图 4b
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在猕猴样本上 (图 4b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, 561525)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Exp Med (2017) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 人类; 图 s2a
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, K112-91)被用于被用于流式细胞仪在人类样本上 (图 s2a). JCI Insight (2017) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 人类; 表 3
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Pharmingen, K112-91)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 1f
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, K112-91)被用于被用于流式细胞仪在小鼠样本上 (图 1f). J Exp Med (2017) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 2:100; 图 4b
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在小鼠样本上浓度为2:100 (图 4b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 人类; 图 s7
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在人类样本上 (图 s7). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 1h
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, K112-91)被用于被用于流式细胞仪在小鼠样本上 (图 1h). J Clin Invest (2016) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 1:50; 表 s2
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, K112-91)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (表 s2). Nat Immunol (2016) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, K112-91)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2016) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 人类; 图 1a
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在人类样本上 (图 1a). Cytometry B Clin Cytom (2018) ncbi
小鼠 单克隆(K112-91)
  • 免疫组化-冰冻切片; 人类; 图 2a
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2a). Nat Immunol (2016) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 3e
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Eur J Immunol (2016) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 人类; 图 9e
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, K112-91)被用于被用于流式细胞仪在人类样本上 (图 9e). J Exp Med (2016) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 1:50; 图 s12
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s12). Nat Commun (2016) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 人类; 图 6a
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Pharmingen, K112-91)被用于被用于流式细胞仪在人类样本上 (图 6a). PLoS ONE (2016) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 1:50
  • 免疫印迹; 小鼠; 1:500
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, 561520)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 和 被用于免疫印迹在小鼠样本上浓度为1:500. Nat Commun (2016) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 人类; 图 3
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, 562198)被用于被用于流式细胞仪在人类样本上 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 4
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Pharmingen, K112-91)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2015) ncbi
小鼠 单克隆(K112-91)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫组化-石蜡切片; 沙门氏菌
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Pharmingen, K112-91)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫组化-石蜡切片在沙门氏菌样本上. J Immunol (2015) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 5
  • 流式细胞仪; 人类; 图 1
  • 免疫细胞化学; 人类; 图 2
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在小鼠样本上 (图 5), 被用于流式细胞仪在人类样本上 (图 1) 和 被用于免疫细胞化学在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 9a
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Bioscience, K112-91)被用于被用于流式细胞仪在小鼠样本上 (图 9a). J Exp Med (2015) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 图 s5
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Nat Immunol (2015) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 人类; 图 5
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Pharmingen, K112-91)被用于被用于流式细胞仪在人类样本上 (图 5). Toxicol Sci (2015) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 猕猴
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112-91)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 人类
碧迪BDB细胞淋巴瘤6蛋白抗体(BD, K112-91)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(K112-91)
  • 流式细胞仪; 小鼠; 1:50; 图 2b
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Biosciences, K112.91)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 2b). Nat Commun (2014) ncbi
小鼠 单克隆(K112-91)
  • 免疫印迹; 小鼠; 图 2
碧迪BDB细胞淋巴瘤6蛋白抗体(BD Pharmingen, 561520)被用于被用于免疫印迹在小鼠样本上 (图 2). Nat Immunol (2012) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆(LN22)
  • 免疫组化-石蜡切片; 人类; 图 5n
徕卡显微系统(上海)贸易有限公司B细胞淋巴瘤6蛋白抗体(Leica, PA0212)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5n). Acta Neuropathol (2021) ncbi
单克隆(LN22)
  • 免疫组化-石蜡切片; 人类; 图 1d
徕卡显微系统(上海)贸易有限公司B细胞淋巴瘤6蛋白抗体(Novocastra, LN22)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1d). Nature (2017) ncbi
单克隆(LN22)
  • 免疫组化-石蜡切片; 人类; 图 3
徕卡显微系统(上海)贸易有限公司B细胞淋巴瘤6蛋白抗体(Leica, PA0212)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Plast Reconstr Surg Glob Open (2016) ncbi
单克隆(LN22)
  • 免疫组化-石蜡切片; 人类; 图 2a
徕卡显微系统(上海)贸易有限公司B细胞淋巴瘤6蛋白抗体(Leica, PA0212)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). Front Surg (2016) ncbi
单克隆(LN22)
  • 免疫组化-石蜡切片; 人类; 表 2
徕卡显微系统(上海)贸易有限公司B细胞淋巴瘤6蛋白抗体(Leica, LN22)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Ann Diagn Pathol (2016) ncbi
单克隆(LN22)
  • 免疫组化-石蜡切片; 人类; 表 1
徕卡显微系统(上海)贸易有限公司B细胞淋巴瘤6蛋白抗体(Novocastra, Leica Biosystem, LN22)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Cancer Sci (2016) ncbi
单克隆(LN22)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
徕卡显微系统(上海)贸易有限公司B细胞淋巴瘤6蛋白抗体(Novocastra, LN22)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Rom J Morphol Embryol (2016) ncbi
单克隆(LN22)
  • 免疫组化-石蜡切片; 人类; 1:40; 图 1j
徕卡显微系统(上海)贸易有限公司B细胞淋巴瘤6蛋白抗体(Novocastra, LN22)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 (图 1j). J Hematop (2016) ncbi
单克隆(LN22)
  • 免疫组化; 人类; 1:40
徕卡显微系统(上海)贸易有限公司B细胞淋巴瘤6蛋白抗体(Leica Microsystems, LN22)被用于被用于免疫组化在人类样本上浓度为1:40. Leukemia (2014) ncbi
文章列表
  1. Brown G, Ca xf1 ete P, Wang H, Medhavy A, Bones J, Roco J, et al. TLR7 gain-of-function genetic variation causes human lupus. Nature. 2022;605:349-356 pubmed 出版商
  2. Quách T, Huang W, Sahu R, Diadhiou C, Raparia C, Johnson R, et al. Context-dependent induction of autoimmunity by TNF signaling deficiency. JCI Insight. 2022;7: pubmed 出版商
  3. Horiuchi S, Wu H, Liu W, Schmitt N, Provot J, Liu Y, et al. Tox2 is required for the maintenance of GC TFH cells and the generation of memory TFH cells. Sci Adv. 2021;7:eabj1249 pubmed 出版商
  4. Yuan Y, Cao W, Zhou H, Qian H, Wang H. H2A.Z acetylation by lincZNF337-AS1 via KAT5 implicated in the transcriptional misregulation in cancer signaling pathway in hepatocellular carcinoma. Cell Death Dis. 2021;12:609 pubmed 出版商
  5. Lin X, Twelkmeyer T, Zhu D, Zhang L, Zhao Y, Zhang C, et al. Homeostatic regulation of T follicular helper and antibody response to particle antigens by IL-1Ra of medullary sinus macrophage origin. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  6. Sun Z, Yao Y, You M, Liu J, Guo W, Qi Z, et al. The kinase PDK1 is critical for promoting T follicular helper cell differentiation. elife. 2021;10: pubmed 出版商
  7. Heider M, Eichner R, Stroh J, Morath V, Kuisl A, Zecha J, et al. The IMiD target CRBN determines HSP90 activity toward transmembrane proteins essential in multiple myeloma. Mol Cell. 2021;: pubmed 出版商
  8. Merkenschlager J, Finkin S, Ramos V, Kraft J, Cipolla M, Nowosad C, et al. Dynamic regulation of TFH selection during the germinal centre reaction. Nature. 2021;591:458-463 pubmed 出版商
  9. Hickman R, Faust P, Rosenblum M, Marder K, Mehler M, Vonsattel J. Developmental malformations in Huntington disease: neuropathologic evidence of focal neuronal migration defects in a subset of adult brains. Acta Neuropathol. 2021;141:399-413 pubmed 出版商
  10. Yang Y, Li X, Ma Z, Wang C, Yang Q, Byrne Steele M, et al. CTLA-4 expression by B-1a B cells is essential for immune tolerance. Nat Commun. 2021;12:525 pubmed 出版商
  11. Webb L, Fra Bido S, Innocentin S, Matheson L, Attaf N, Bignon A, et al. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell. 2021;20:e13295 pubmed 出版商
  12. Rodda L, Netland J, Shehata L, Pruner K, Morawski P, Thouvenel C, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021;184:169-183.e17 pubmed 出版商
  13. Tacconi C, He Y, Ducoli L, Detmar M. Epigenetic regulation of the lineage specificity of primary human dermal lymphatic and blood vascular endothelial cells. Angiogenesis. 2020;: pubmed 出版商
  14. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  15. Witalis M, Chang J, Zhong M, Bouklouch Y, Panneton V, Li J, et al. Progression of AITL-like tumors in mice is driven by Tfh signature proteins and T-B cross talk. Blood Adv. 2020;4:868-879 pubmed 出版商
  16. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  17. Bell L, Lenhart A, Rosenwald A, Monoranu C, Berberich Siebelt F. Lymphoid Aggregates in the CNS of Progressive Multiple Sclerosis Patients Lack Regulatory T Cells. Front Immunol. 2019;10:3090 pubmed 出版商
  18. Epps S, Coplin N, Luthert P, Dick A, Coupland S, Nicholson L. Features of ectopic lymphoid-like structures in human uveitis. Exp Eye Res. 2020;191:107901 pubmed 出版商
  19. Senigl F, Maman Y, Dinesh R, Alinikula J, Seth R, Pecnova L, et al. Topologically Associated Domains Delineate Susceptibility to Somatic Hypermutation. Cell Rep. 2019;29:3902-3915.e8 pubmed 出版商
  20. Wang L, Shen E, Luo L, Rabe H, Wang Q, Yin J, et al. Control of Germinal Center Localization and Lineage Stability of Follicular Regulatory T Cells by the Blimp1 Transcription Factor. Cell Rep. 2019;29:1848-1861.e6 pubmed 出版商
  21. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  22. Ansaldo E, Slayden L, Ching K, Koch M, Wolf N, Plichta D, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364:1179-1184 pubmed 出版商
  23. Canete P, Sweet R, Gonzalez Figueroa P, Papa I, Ohkura N, Bolton H, et al. Regulatory roles of IL-10-producing human follicular T cells. J Exp Med. 2019;: pubmed 出版商
  24. Kotov J, Kotov D, Linehan J, Bardwell V, Gearhart M, Jenkins M. BCL6 corepressor contributes to Th17 cell formation by inhibiting Th17 fate suppressors. J Exp Med. 2019;216:1450-1464 pubmed 出版商
  25. Mizuno R, Sugiura D, Shimizu K, Maruhashi T, Watada M, Okazaki I, et al. PD-1 Primarily Targets TCR Signal in the Inhibition of Functional T Cell Activation. Front Immunol. 2019;10:630 pubmed 出版商
  26. Sommars M, Ramachandran K, Senagolage M, Futtner C, Germain D, Allred A, et al. Dynamic repression by BCL6 controls the genome-wide liver response to fasting and steatosis. elife. 2019;8: pubmed 出版商
  27. Li F, Zeng Z, Xing S, Gullicksrud J, Shan Q, Choi J, et al. Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nat Commun. 2018;9:5452 pubmed 出版商
  28. Hatzi K, Geng H, Doane A, Meydan C, LaRiviere R, Cárdenas M, et al. Histone demethylase LSD1 is required for germinal center formation and BCL6-driven lymphomagenesis. Nat Immunol. 2019;20:86-96 pubmed 出版商
  29. Kim C, Hu B, Jadhav R, Jin J, Zhang H, Cavanagh M, et al. Activation of miR-21-Regulated Pathways in Immune Aging Selects against Signatures Characteristic of Memory T Cells. Cell Rep. 2018;25:2148-2162.e5 pubmed 出版商
  30. Kim M, Song J, Koh D, Kim J, Hatano M, Jeon B, et al. Reciprocal negative regulation between the tumor suppressor protein p53 and B cell CLL/lymphoma 6 (BCL6) via control of caspase-1 expression. J Biol Chem. 2019;294:299-313 pubmed 出版商
  31. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  32. Noguchi N, Nakamura R, Hatano S, Yamada H, Sun X, Ohara N, et al. Interleukin-21 Induces Short-Lived Effector CD8+ T Cells but Does Not Inhibit Their Exhaustion after Mycobacterium bovis BCG Infection in Mice. Infect Immun. 2018;86: pubmed 出版商
  33. Sayin I, Radtke A, Vella L, Jin W, Wherry E, Buggert M, et al. Spatial distribution and function of T follicular regulatory cells in human lymph nodes. J Exp Med. 2018;215:1531-1542 pubmed 出版商
  34. Yang K, Liang Y, Sun Z, Xue D, Xu H, Zhu M, et al. T Cell-Derived Lymphotoxin Is Essential for the Anti-Herpes Simplex Virus 1 Humoral Immune Response. J Virol. 2018;92: pubmed 出版商
  35. Zhang Y, Tech L, George L, Acs A, Durrett R, Hess H, et al. Plasma cell output from germinal centers is regulated by signals from Tfh and stromal cells. J Exp Med. 2018;215:1227-1243 pubmed 出版商
  36. Gaddis D, Padgett L, Wu R, McSkimming C, Romines V, Taylor A, et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun. 2018;9:1095 pubmed 出版商
  37. Yeh C, Nojima T, Kuraoka M, Kelsoe G. Germinal center entry not selection of B cells is controlled by peptide-MHCII complex density. Nat Commun. 2018;9:928 pubmed 出版商
  38. Jegaskanda S, Mason R, Andrews S, Wheatley A, Zhang R, Reynoso G, et al. Intranasal Live Influenza Vaccine Priming Elicits Localized B Cell Responses in Mediastinal Lymph Nodes. J Virol. 2018;92: pubmed 出版商
  39. Kara E, Bastow C, McKenzie D, Gregor C, Fenix K, Babb R, et al. Atypical chemokine receptor 4 shapes activated B cell fate. J Exp Med. 2018;215:801-813 pubmed 出版商
  40. Kunder C, Roncador G, Advani R, Gualco G, Bacchi C, Sabile J, et al. KLHL6 Is Preferentially Expressed in Germinal Center-Derived B-Cell Lymphomas. Am J Clin Pathol. 2017;148:465-476 pubmed 出版商
  41. Yi W, Gupta S, Ricker E, Manni M, Jessberger R, Chinenov Y, et al. The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity. Nat Commun. 2017;8:254 pubmed 出版商
  42. Klymenko T, Bloehdorn J, Bahlo J, Robrecht S, Akylzhanova G, Cox K, et al. Lamin B1 regulates somatic mutations and progression of B-cell malignancies. Leukemia. 2018;32:364-375 pubmed 出版商
  43. Papa I, Saliba D, Ponzoni M, Bustamante S, Canete P, Gonzalez Figueroa P, et al. TFH-derived dopamine accelerates productive synapses in germinal centres. Nature. 2017;547:318-323 pubmed 出版商
  44. Zamarin D, Holmgaard R, Ricca J, Plitt T, Palese P, Sharma P, et al. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat Commun. 2017;8:14340 pubmed 出版商
  45. Mylvaganam G, Rios D, Abdelaal H, Iyer S, Tharp G, Mavigner M, et al. Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection. Proc Natl Acad Sci U S A. 2017;114:1976-1981 pubmed 出版商
  46. Rao D, Gurish M, Marshall J, Slowikowski K, Fonseka C, Liu Y, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 2017;542:110-114 pubmed 出版商
  47. Laidlaw B, Schmidt T, Green J, Allen C, Okada T, Cyster J. The Eph-related tyrosine kinase ligand Ephrin-B1 marks germinal center and memory precursor B cells. J Exp Med. 2017;214:639-649 pubmed 出版商
  48. Martin Gayo E, Cronin J, Hickman T, Ouyang Z, Lindqvist M, Kolb K, et al. Circulating CXCR5+CXCR3+PD-1lo Tfh-like cells in HIV-1 controllers with neutralizing antibody breadth. JCI Insight. 2017;2:e89574 pubmed 出版商
  49. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  50. Koh S, On N, Brasch H, Chibnall A, Armstrong J, Davis P, et al. Embryonic Stem Cell-like Population in Dupuytren's Disease. Plast Reconstr Surg Glob Open. 2016;4:e1064 pubmed
  51. Nish S, Zens K, Kratchmarov R, Lin W, Adams W, Chen Y, et al. CD4+ T cell effector commitment coupled to self-renewal by asymmetric cell divisions. J Exp Med. 2017;214:39-47 pubmed 出版商
  52. Morita K, Okamura T, Inoue M, Komai T, Teruya S, Iwasaki Y, et al. Egr2 and Egr3 in regulatory T cells cooperatively control systemic autoimmunity through Ltbp3-mediated TGF-β3 production. Proc Natl Acad Sci U S A. 2016;113:E8131-E8140 pubmed
  53. Gil V, Bhagat G, Howell L, Zhang J, Kim C, Stengel S, et al. Deregulated expression of HDAC9 in B cells promotes development of lymphoproliferative disease and lymphoma in mice. Dis Model Mech. 2016;9:1483-1495 pubmed
  54. Peters C, Häsler R, Wesch D, Kabelitz D. Human Vδ2 T cells are a major source of interleukin-9. Proc Natl Acad Sci U S A. 2016;113:12520-12525 pubmed
  55. Featherston T, Yu H, Dunne J, Chibnall A, Brasch H, Davis P, et al. Cancer Stem Cells in Moderately Differentiated Buccal Mucosal Squamous Cell Carcinoma Express Components of the Renin-Angiotensin System. Front Surg. 2016;3:52 pubmed
  56. Soon G, Ow G, Chan H, Ng S, Wang S. Primary cardiac diffuse large B-cell lymphoma in immunocompetent patients: clinical, histologic, immunophenotypic, and genotypic features of 3 cases. Ann Diagn Pathol. 2016;24:40-6 pubmed 出版商
  57. Lewis G, Wehrens E, Labarta Bajo L, Streeck H, Zuniga E. TGF-? receptor maintains CD4 T helper cell identity during chronic viral infections. J Clin Invest. 2016;126:3799-3813 pubmed 出版商
  58. Ladle B, Li K, Phillips M, Pucsek A, Haile A, Powell J, et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A. 2016;113:10631-6 pubmed 出版商
  59. Kim G, Das R, Goduni L, McClellan S, Hazlett L, Mahabeleshwar G. Kruppel-like Factor 6 Promotes Macrophage-mediated Inflammation by Suppressing B Cell Leukemia/Lymphoma 6 Expression. J Biol Chem. 2016;291:21271-21282 pubmed
  60. Leong Y, Chen Y, Ong H, Wu D, Man K, Deléage C, et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187-96 pubmed 出版商
  61. Liu W, Kang S, Huang Z, Wu C, Jin H, Maine C, et al. A miR-155-Peli1-c-Rel pathway controls the generation and function of T follicular helper cells. J Exp Med. 2016;213:1901-19 pubmed 出版商
  62. Debliquis A, Voirin J, Harzallah I, Maurer M, Lerintiu F, Drenou B, et al. Cytomorphology and flow cytometry of brain biopsy rinse fluid enables faster and multidisciplinary diagnosis of large B-cell lymphoma of the central nervous system. Cytometry B Clin Cytom. 2018;94:182-188 pubmed 出版商
  63. Lu H, Wang T, Li J, Fedele C, Liu Q, Zhang J, et al. αvβ6 Integrin Promotes Castrate-Resistant Prostate Cancer through JNK1-Mediated Activation of Androgen Receptor. Cancer Res. 2016;76:5163-74 pubmed 出版商
  64. Weiss J, Chen W, Nyuydzefe M, Trzeciak A, Flynn R, Tonra J, et al. ROCK2 signaling is required to induce a subset of T follicular helper cells through opposing effects on STATs in autoimmune settings. Sci Signal. 2016;9:ra73 pubmed 出版商
  65. Locci M, Wu J, Arumemi F, Mikulski Z, Dahlberg C, Miller A, et al. Activin A programs the differentiation of human TFH cells. Nat Immunol. 2016;17:976-84 pubmed 出版商
  66. Takagi Y, Shimada K, Shimada S, Sakamoto A, Naoe T, Nakamura S, et al. SPIB is a novel prognostic factor in diffuse large B-cell lymphoma that mediates apoptosis via the PI3K-AKT pathway. Cancer Sci. 2016;107:1270-80 pubmed 出版商
  67. Frohwitter G, Buerger H, van Diest P, Korsching E, Kleinheinz J, Fillies T. Cytokeratin and protein expression patterns in squamous cell carcinoma of the oral cavity provide evidence for two distinct pathogenetic pathways. Oncol Lett. 2016;12:107-113 pubmed
  68. Hu X, Zhou Y, Yang Y, Peng J, Song T, Xu T, et al. Identification of zinc finger protein Bcl6 as a novel regulator of early adipose commitment. Open Biol. 2016;6: pubmed 出版商
  69. Tuşaliu M, Zainea V, Mogoantă C, Dragu A, GoanŢă C, Niţescu M, et al. Diagnostic and therapeutic aspects in malignant sinonasal lymphoma. Rom J Morphol Embryol. 2016;57:233-6 pubmed
  70. Yamashita K, Kawata K, Matsumiya H, Kamekura R, Jitsukawa S, Nagaya T, et al. Bob1 limits cellular frequency of T-follicular helper cells. Eur J Immunol. 2016;46:1361-70 pubmed 出版商
  71. Jackson S, Jacobs H, Arkatkar T, Dam E, Scharping N, Kolhatkar N, et al. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J Exp Med. 2016;213:733-50 pubmed 出版商
  72. Zeng Q, Tao X, Huang F, Wu T, Wang J, Jiang X, et al. Overexpression of miR-155 promotes the proliferation and invasion of oral squamous carcinoma cells by regulating BCL6/cyclin D2. Int J Mol Med. 2016;37:1274-80 pubmed 出版商
  73. van den Brand M, Balagué O, van Cleef P, Groenen P, Hebeda K, de Jong D, et al. A subset of low-grade B cell lymphomas with a follicular growth pattern but without a BCL2 translocation shows features suggestive of nodal marginal zone lymphoma. J Hematop. 2016;9:3-8 pubmed
  74. Aloulou M, Carr E, Gador M, Bignon A, Liblau R, Fazilleau N, et al. Follicular regulatory T cells can be specific for the immunizing antigen and derive from naive T cells. Nat Commun. 2016;7:10579 pubmed 出版商
  75. Li L, Jiang Y, Lao S, Yang B, Yu S, Zhang Y, et al. Mycobacterium tuberculosis-Specific IL-21+IFN-γ+CD4+ T Cells Are Regulated by IL-12. PLoS ONE. 2016;11:e0147356 pubmed 出版商
  76. McDonald P, Read K, Baker C, Anderson A, Powell M, Ballesteros Tato A, et al. IL-7 signalling represses Bcl-6 and the TFH gene program. Nat Commun. 2016;7:10285 pubmed 出版商
  77. Dupont T, Yang S, Patel J, Hatzi K, Malik A, Tam W, et al. Selective targeting of BCL6 induces oncogene addiction switching to BCL2 in B-cell lymphoma. Oncotarget. 2016;7:3520-32 pubmed 出版商
  78. Cao J, Zhang X, Wang Q, Qiu G, Hou C, Wang J, et al. Smad4 represses the generation of memory-precursor effector T cells but is required for the differentiation of central memory T cells. Cell Death Dis. 2015;6:e1984 pubmed 出版商
  79. Miles B, Miller S, Folkvord J, Kimball A, Chamanian M, Meditz A, et al. Follicular regulatory T cells impair follicular T helper cells in HIV and SIV infection. Nat Commun. 2015;6:8608 pubmed 出版商
  80. Black L, Srivastava R, Schoeb T, Moore R, Barnes S, KABAROWSKI J. Cholesterol-Independent Suppression of Lymphocyte Activation, Autoimmunity, and Glomerulonephritis by Apolipoprotein A-I in Normocholesterolemic Lupus-Prone Mice. J Immunol. 2015;195:4685-98 pubmed 出版商
  81. Rodda L, Bannard O, Ludewig B, Nagasawa T, Cyster J. Phenotypic and Morphological Properties of Germinal Center Dark Zone Cxcl12-Expressing Reticular Cells. J Immunol. 2015;195:4781-91 pubmed 出版商
  82. Andersson K, Brisslert M, Cavallini N, Svensson M, Welin A, Erlandsson M, et al. Survivin co-ordinates formation of follicular T-cells acting in synergy with Bcl-6. Oncotarget. 2015;6:20043-57 pubmed
  83. Piccaluga P, Agostinelli C, Fuligni F, Righi S, Tripodo C, Re M, et al. IFI16 Expression Is Related to Selected Transcription Factors during B-Cell Differentiation. J Immunol Res. 2015;2015:747645 pubmed 出版商
  84. Goodman C, Sato T, Peck A, Girondo M, Yang N, Liu C, et al. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism. Oncogene. 2016;35:1373-85 pubmed 出版商
  85. Moguche A, Shafiani S, Clemons C, Larson R, Dinh C, Higdon L, et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med. 2015;212:715-28 pubmed 出版商
  86. Meykler S, Baloch Z, Barroeta J. A case of marginal zone lymphoma with extensive emperipolesis diagnosed on pleural effusion cytology with immunocytochemistry and flow cytometry. Cytopathology. 2016;27:70-2 pubmed 出版商
  87. Hu Z, Blackman M, Kaye K, Usherwood E. Functional heterogeneity in the CD4+ T cell response to murine γ-herpesvirus 68. J Immunol. 2015;194:2746-56 pubmed 出版商
  88. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  89. Phadnis Moghe A, Crawford R, Kaminski N. Suppression of human B cell activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin involves altered regulation of B cell lymphoma-6. Toxicol Sci. 2015;144:39-50 pubmed 出版商
  90. Song M, Chung J, Lee G, Cho S, Hong J, Shin D, et al. Statin use has negative clinical impact on non-germinal center in patients with diffuse large B cell lymphoma in rituximab era. Leuk Res. 2015;39:211-5 pubmed 出版商
  91. Song M, Chung J, Lee J, Yang D, Kim I, Shin D, et al. High Ki-67 expression in involved bone marrow predicts worse clinical outcome in diffuse large B cell lymphoma patients treated with R-CHOP therapy. Int J Hematol. 2015;101:140-7 pubmed 出版商
  92. Knutson S, Warholic N, Johnston L, Klaus C, Wigle T, Iwanowicz D, et al. Synergistic Anti-Tumor Activity of EZH2 Inhibitors and Glucocorticoid Receptor Agonists in Models of Germinal Center Non-Hodgkin Lymphomas. PLoS ONE. 2014;9:e111840 pubmed 出版商
  93. Mylvaganam G, Velu V, Hong J, Sadagopal S, Kwa S, Basu R, et al. Diminished viral control during simian immunodeficiency virus infection is associated with aberrant PD-1hi CD4 T cell enrichment in the lymphoid follicles of the rectal mucosa. J Immunol. 2014;193:4527-36 pubmed 出版商
  94. Kudernatsch R, Letsch A, Guerreiro M, Löbel M, Bauer S, Volk H, et al. Human bone marrow contains a subset of quiescent early memory CD8(+) T cells characterized by high CD127 expression and efflux capacity. Eur J Immunol. 2014;44:3532-42 pubmed 出版商
  95. Bellas C, Garcia D, Vicente Y, Kilany L, Abraira V, Navarro B, et al. Immunohistochemical and molecular characteristics with prognostic significance in diffuse large B-cell lymphoma. PLoS ONE. 2014;9:e98169 pubmed 出版商
  96. Walker S, Liu S, Xiang M, Nicolais M, Hatzi K, Giannopoulou E, et al. The transcriptional modulator BCL6 as a molecular target for breast cancer therapy. Oncogene. 2015;34:1073-82 pubmed 出版商
  97. León B, Bradley J, Lund F, Randall T, Ballesteros Tato A. FoxP3+ regulatory T cells promote influenza-specific Tfh responses by controlling IL-2 availability. Nat Commun. 2014;5:3495 pubmed 出版商
  98. Caramuta S, Lee L, Ozata D, Akçakaya P, Georgii Hemming P, Xie H, et al. Role of microRNAs and microRNA machinery in the pathogenesis of diffuse large B-cell lymphoma. Blood Cancer J. 2013;3:e152 pubmed 出版商
  99. Wong K, Gascoyne D, Brown P, Soilleux E, Snell C, Chen H, et al. Reciprocal expression of the endocytic protein HIP1R and its repressor FOXP1 predicts outcome in R-CHOP-treated diffuse large B-cell lymphoma patients. Leukemia. 2014;28:362-72 pubmed 出版商
  100. Oestreich K, Mohn S, Weinmann A. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nat Immunol. 2012;13:405-11 pubmed 出版商
  101. Wollenberg I, Agua Doce A, Hernandez A, Almeida C, Oliveira V, Faro J, et al. Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J Immunol. 2011;187:4553-60 pubmed 出版商
  102. Liu T, Chen S, Kuo S, Cheng A, Lin C. E2A-positive gastric MALT lymphoma has weaker plasmacytoid infiltrates and stronger expression of the memory B-cell-associated miR-223: possible correlation with stage and treatment response. Mod Pathol. 2010;23:1507-17 pubmed 出版商