这是一篇来自已证抗体库的有关人类 Bcl 2的综述,是根据465篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Bcl 2 抗体。
Bcl 2 同义词: Bcl-2; PPP1R50

圣克鲁斯生物技术
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:300; 图 4b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 4b). Med Sci Monit (2020) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Cancer Lett (2020) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 大鼠; 1:1000; 图 2c
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-509)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2c). Biomolecules (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2k
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 2k). Oncogene (2020) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:1000; 图 1e
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-509)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(100)
  • 免疫细胞化学; 人类; 图 s6a
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, 100)被用于被用于免疫细胞化学在人类样本上 (图 s6a) 和 被用于免疫印迹在人类样本上 (图 7a). Cell Death Dis (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-7382)被用于被用于免疫印迹在人类样本上 (图 5d). Cells (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 3b
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Biosci Rep (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, C-2)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Death Dis (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:2000; 图 2c
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2c). BMC Complement Altern Med (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Oncol Rep (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4e
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4e). BMC Cancer (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 7a). Biomolecules (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:200; 图 4b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4b). Cardiovasc Res (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 5a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5a). J Biol Chem (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:100; 图 4f
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, Inc, SC7382)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 4f). Mol Med Rep (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4h
  • 免疫印迹; 小鼠; 图 4c
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4h) 和 被用于免疫印迹在小鼠样本上 (图 4c). Cell Death Differ (2018) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:200; 图 3a
圣克鲁斯生物技术 Bcl 2抗体(SantaCruz, SC-509)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3a). EMBO Mol Med (2018) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-509)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:500; 图 6a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
圣克鲁斯生物技术 Bcl 2抗体(SantaCruz, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). Biomed Pharmacother (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 2d). Cell (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 5a
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 5a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 Bcl 2抗体(SantaCruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, SC-7382)被用于被用于免疫印迹在人类样本上 (图 4c). Nat Med (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫沉淀; 小鼠; 图 1b
  • 免疫印迹; 小鼠; 1:500; 图 1b
圣克鲁斯生物技术 Bcl 2抗体(SantaCruz, 7382)被用于被用于免疫沉淀在小鼠样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). PLoS Genet (2017) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术 Bcl 2抗体(SantaCruz, sc-56015)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Exp Ther Med (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上 (图 5d). Cell Physiol Biochem (2017) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:2000; 图 2C
圣克鲁斯生物技术 Bcl 2抗体(Santa cruz, sc-509)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2C). Mol Med Rep (2017) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 人类; 1:1000; 图 3b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-56015)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Apoptosis (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Bcl 2抗体(SC Biotech, C-2)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4b). Anticancer Res (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:500; 图 5d
  • 免疫印迹; 人类; 1:500; 图 6f
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5d) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 6f). PLoS ONE (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc7382)被用于被用于免疫印迹在人类样本上 (图 1d). Toxicol In Vitro (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 2d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Int J Mol Med (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4G
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4G). Oncotarget (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, SC-7382)被用于被用于免疫印迹在人类样本上 (图 6a). Nat Commun (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; gerbils; 1:1000; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, SC-7382)被用于被用于免疫印迹在gerbils样本上浓度为1:1000 (图 5). Exp Ther Med (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:500; 图 7a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, SC7382)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7a). Exp Ther Med (2016) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 人类; 1:2000; 图 4a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-56015)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Exp Ther Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 3e). Exp Cell Res (2017) ncbi
小鼠 单克隆(7)
  • 免疫印迹; 人类; 图 s7
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-130308)被用于被用于免疫印迹在人类样本上 (图 s7). PLoS Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3a, b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, C-2)被用于被用于免疫印迹在人类样本上 (图 3a, b). PLoS ONE (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 2d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, C-2)被用于被用于免疫印迹在人类样本上 (图 2d). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, C-2)被用于被用于免疫印迹在人类样本上 (图 2d). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-56015)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, SC-7382)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Exp Ther Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 5). Mol Med Rep (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, Sc-509)被用于被用于免疫印迹在人类样本上 (图 3e). Cell Death Discov (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5e
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 5e). Oncotarget (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
圣克鲁斯生物技术 Bcl 2抗体(santa Cruz, sc-7382)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). Cancer Gene Ther (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc509)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Cell Int (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Biochem Biophys (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫组化; 人类; 1:1000; 图 3
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Autophagy (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 2). Biomed Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4g
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4g). Oncotarget (2017) ncbi
小鼠 单克隆(100)
  • 流式细胞仪; 人类; 图 4a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于流式细胞仪在人类样本上 (图 4a). Eur J Cell Biol (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 1). Genes Dev (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上. J Mol Med (Berl) (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 Bcl 2抗体(SantaCruz Biotechnology, Sc-509)被用于被用于免疫印迹在人类样本上 (图 5c). Urol Oncol (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1000; 图 4
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Int J Mol Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4b). PLoS ONE (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Bcl 2抗体(Santa cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 4). BMC Cancer (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(100)
  • 流式细胞仪; 人类; 图 3a, 3b, 3c, 3d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509 FITC)被用于被用于流式细胞仪在人类样本上 (图 3a, 3b, 3c, 3d). Nutr Cancer (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Bcl 2抗体(santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:300; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 2). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(C-2)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 Bcl 2抗体(SCBT, C-2)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 Bcl 2抗体(SCBT, C-2)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 1d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 1d). Int J Mol Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Med (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, SC-377576)被用于被用于免疫印迹在小鼠样本上 (图 5). Aging Cell (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫组化; 大鼠; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫组化在大鼠样本上 (图 2). Nutr Cancer (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, SC-7382)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Carcinog (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000; 图 5a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). Mol Med Rep (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 仓鼠; 图 6
圣克鲁斯生物技术 Bcl 2抗体(santa Cruz, sc-7382)被用于被用于免疫印迹在仓鼠样本上 (图 6). Int J Mol Sci (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2h
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 2h). J Biol Chem (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 图 4
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上 (图 4). Am J Physiol Heart Circ Physiol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Endocr Relat Cancer (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 3d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Cell Death Dis (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5e
圣克鲁斯生物技术 Bcl 2抗体(Santa, sc-509)被用于被用于免疫印迹在人类样本上 (图 5e). BMC Cancer (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4b). Cancer Cell Int (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 6b). Oncotarget (2015) ncbi
小鼠 单克隆(100)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 3
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, 100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 3). PLoS ONE (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 6c
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-509)被用于被用于免疫印迹在人类样本上 (图 6c). BMC Cancer (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 st2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 st2). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 7d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 7d). J Interferon Cytokine Res (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Bcl 2抗体(santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Bcl 2抗体(santa Cruz, sc7382)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl 2抗体(santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc509)被用于被用于免疫印迹在人类样本上 (图 5). BMC Genomics (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 6A
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 6A). Int J Oncol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Bcl 2抗体(santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 流式细胞仪; 小鼠; 2 ug/ml
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于流式细胞仪在小鼠样本上浓度为2 ug/ml 和 被用于免疫印迹在小鼠样本上. Neuromolecular Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 5a
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cancer Cell Int (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在大鼠样本上 (图 7). Biomed Res Int (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotech, sc-7382)被用于被用于免疫印迹在人类样本上. Ecancermedicalscience (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:200; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 5). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, SC-7382)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 f4, f3
圣克鲁斯生物技术 Bcl 2抗体(santa cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 f4, f3). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnologies, sc-7382)被用于被用于免疫印迹在人类样本上. Lab Invest (2015) ncbi
小鼠 单克隆(12)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-130307)被用于被用于免疫印迹在小鼠样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 图 6c
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上 (图 6c). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:200. FASEB J (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 大鼠; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在大鼠样本上 (图 5). Int J Mol Sci (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:250; 图 2
  • 免疫印迹; 人类; 1:250; 图 1
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382HRP)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:250 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:50
  • 免疫印迹; 小鼠; 1:50
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:50 和 被用于免疫印迹在小鼠样本上浓度为1:50. Reprod Toxicol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 2). Cell Death Dis (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:200; 图 3
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3). Oncol Lett (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:250; 图 1A
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1A). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫组化-石蜡切片; 犬; 图 2
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, SC-7382)被用于被用于免疫组化-石蜡切片在犬样本上 (图 2). J Vet Sci (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上. Cell Oncol (Dordr) (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫沉淀; 人类; 2 ug/time
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫沉淀在人类样本上浓度为2 ug/time 和 被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:2000. Cell Death Dis (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术 Bcl 2抗体(Santa cruz, SC-7382)被用于被用于免疫组化-石蜡切片在小鼠样本上. Oncotarget (2014) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa-Cruz, sc-509)被用于被用于免疫印迹在人类样本上. Biochimie (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. CNS Neurosci Ther (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 人类; 1:200; 图 7
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, C-2)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7). J Cell Physiol (2015) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:200; 图 7
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, C-2)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7). J Cell Physiol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; kangaroo rats; 1:200; 图 3
圣克鲁斯生物技术 Bcl 2抗体(santa cruz, sc-7382)被用于被用于免疫印迹在kangaroo rats样本上浓度为1:200 (图 3). Cell Mol Neurobiol (2015) ncbi
小鼠 单克隆(100)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Ophthalmol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上. Cell Stress Chaperones (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-509)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Technology, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Age (Dordr) (2014) ncbi
小鼠 单克隆(100)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-509)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:300-1:600; 图 6
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, Sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:300-1:600 (图 6). J Neuroinflammation (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6d
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 6d). Oncotarget (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 1). Cell Tissue Res (2014) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫组化; 大鼠; 1:10
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫组化在大鼠样本上浓度为1:10. Arthritis Res Ther (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(7)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-130308)被用于被用于免疫印迹在人类样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(12)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-130307)被用于被用于免疫印迹在小鼠样本上. J Hepatol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1,000
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:1,000. Am J Physiol Endocrinol Metab (2013) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, 100)被用于被用于免疫印迹在人类样本上. Clin Cancer Res (2011) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 s7c
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc 509)被用于被用于免疫印迹在人类样本上 (图 s7c). J Neurochem (2008) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 猕猴
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在猕猴样本上. J Virol (2007) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl 2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上. Int J Cancer (2001) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 4f
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). BMC Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b, 4d
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b, 4d). Mol Ther Nucleic Acids (2020) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 小鼠; 1:1000; 图 4h
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4h). Mol Ther Nucleic Acids (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab196495)被用于被用于免疫印迹在人类样本上 (图 2e). EBioMedicine (2020) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:2000; 图 5e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5e). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6e). Front Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1e, 2c, 5g
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab196495)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1e, 2c, 5g). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 9a
  • 免疫印迹; 小鼠; 图 9c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 9a) 和 被用于免疫印迹在小鼠样本上 (图 9c). Neurochem Res (2020) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 人类; 图 8
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab692)被用于被用于免疫印迹在人类样本上 (图 8). Biomolecules (2020) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 图 4h
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上 (图 4h). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫印迹; 人类; 图 1f
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫印迹在人类样本上 (图 1f). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1d
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1200; 图 5b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab196495)被用于被用于免疫印迹在大鼠样本上浓度为1:1200 (图 5b). Biosci Rep (2019) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab185002)被用于被用于免疫印迹在人类样本上 (图 3c). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 2d, 2e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d, 2e). Int J Oncol (2019) ncbi
domestic rabbit 单克隆(E17)
  • 免疫组化-石蜡切片; 人类; 图 8d
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫印迹; 人类; 1:2000; 图 5b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5b). Biol Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
艾博抗(上海)贸易有限公司 Bcl 2抗体(Cell Signaling, ab196495)被用于被用于免疫印迹在小鼠样本上 (图 4d). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 9a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab196495)被用于被用于免疫印迹在人类样本上 (图 1c). Eur Rev Med Pharmacol Sci (2019) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫印迹; 人类; 1:2000; 图 8a, 8h
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 8a, 8h). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3b). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上 (图 2c). Redox Biol (2019) ncbi
小鼠 单克隆(100/D5)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab692)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). Cell Metab (2019) ncbi
domestic rabbit 单克隆(EPR17509)
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab182858)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell Metab (2019) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Front Neurosci (2019) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:2000; 图 5a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). J Cell Physiol (2019) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 图 s24b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上 (图 s24b). Nucleic Acids Res (2019) ncbi
domestic rabbit 单克隆(E17)
  • 免疫组化-石蜡切片; 人类; 图 s1b
  • 免疫印迹; 人类; 图 s1c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1b) 和 被用于免疫印迹在人类样本上 (图 s1c). Science (2018) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:2000; 图 4b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4b). Biosci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上 (图 5a). J Mol Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 7c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7c). Neuropharmacology (2018) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 图 4c, 4d
艾博抗(上海)贸易有限公司 Bcl 2抗体(abcam, ab32124)被用于被用于免疫印迹在人类样本上 (图 4c, 4d). Oncotarget (2017) ncbi
单克隆
  • 免疫印迹; 小鼠; 1:400; 图 6a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab117115)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 6a). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 8a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, 32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上 (图 6a). FEBS Open Bio (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). J Mol Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:750; 图 3a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab196495)被用于被用于免疫印迹在大鼠样本上浓度为1:750 (图 3a). Sci Rep (2016) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 小鼠; 图 s2
艾博抗(上海)贸易有限公司 Bcl 2抗体(abcam, ab692)被用于被用于免疫印迹在小鼠样本上 (图 s2). Biol Sex Differ (2016) ncbi
单克隆
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab117115)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Onco Targets Ther (2016) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 4c
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Oncotarget (2016) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 Bcl 2抗体(abcam, ab692)被用于被用于免疫印迹在人类样本上 (图 4). Cancer Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上 (图 7). BMC Complement Altern Med (2016) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 图 4B
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上 (图 4B). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上 (图 7a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Exp Ther Med (2016) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; domestic rabbit; 1:1000; 图 6
艾博抗(上海)贸易有限公司 Bcl 2抗体(abcam, 692)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 6). Mol Med Rep (2016) ncbi
单克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab117115)被用于被用于免疫印迹在人类样本上 (图 5). J Cancer (2016) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 小鼠; 图 2e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在小鼠样本上 (图 2e). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类; 1:500; 图 3d
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3d). Sci Rep (2016) ncbi
单克隆
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab117115)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2015) ncbi
单克隆
  • 免疫印迹; 人类; 图 4e
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab117115)被用于被用于免疫印迹在人类样本上 (图 4e). Oncol Rep (2015) ncbi
domestic rabbit 单克隆(E17)
  • 免疫组化-石蜡切片; 人类; 图 4
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 5). Phytother Res (2015) ncbi
domestic rabbit 单克隆(E17)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab32124)被用于被用于免疫印迹在人类样本上. Mol Med Rep (2014) ncbi
小鼠 单克隆(100/D5)
  • 流式细胞仪; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Bcl 2抗体(Abcam, ab692)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Genet (2013) ncbi
赛默飞世尔
小鼠 单克隆(100/D5)
  • 流式细胞仪; 人类; 1:50; 图 2d
赛默飞世尔 Bcl 2抗体(Thermo Fisher, MA5-11757)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2d). Oncotarget (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 1d
赛默飞世尔 Bcl 2抗体(ThermoFisher Scientific, PA5-27094)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 1d). Ultrastruct Pathol (2017) ncbi
家羊 多克隆
  • 免疫印迹; 人类; 1:200; 图 5b
赛默飞世尔 Bcl 2抗体(Thermo Fisher Scientific, PA1-28275)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5b). Mol Med Rep (2017) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类; 1:250; 图 1b
赛默飞世尔 Bcl 2抗体(Invitrogen, 138,800)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1b). Mol Cell Biochem (2016) ncbi
小鼠 单克隆(Bcl2/100)
  • 流式细胞仪; 人类; 1:50; 图 4
赛默飞世尔 Bcl 2抗体(Invitrogen, A15796)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类; 1:500; 图 4f
赛默飞世尔 Bcl 2抗体(Invitrogen, 138800)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4f). Sci Rep (2016) ncbi
小鼠 单克隆(100/D5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 Bcl 2抗体(Thermo Scientific, 100/D5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Pathol Res Pract (2016) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 Bcl 2抗体(Invitrogen, 138800)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Biochem (2016) ncbi
小鼠 单克隆(100/D5)
  • 流式细胞仪; 人类; 图 1
  • 免疫印迹; 人类; 图 s1
赛默飞世尔 Bcl 2抗体(Thermo Scientific, 100/D5)被用于被用于流式细胞仪在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化; 人类; 1:80; 图 5
赛默飞世尔 Bcl 2抗体(Invitrogen, Bcl-2-100)被用于被用于免疫组化在人类样本上浓度为1:80 (图 5). Diagn Pathol (2015) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 鸡; 1:1000; 图 7a
赛默飞世尔 Bcl 2抗体(Invitrogen, 13-8800)被用于被用于免疫印迹在鸡样本上浓度为1:1000 (图 7a). Gen Comp Endocrinol (2015) ncbi
小鼠 单克隆(100/D5)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 Bcl 2抗体(Pierce, 100/D5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Asian Pac J Cancer Prev (2015) ncbi
小鼠 单克隆(100/D5)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 Bcl 2抗体(LabVisio, 100/D5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. APMIS (2015) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 Bcl 2抗体(Invitrogen, Bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Int J Hematol (2015) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Bcl 2抗体(Invitrogen, Bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Tumour Biol (2014) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:700
赛默飞世尔 Bcl 2抗体(Invitrogen, 13-8800)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:700. J Am Coll Surg (2014) ncbi
小鼠 单克隆(100/D5)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 Bcl 2抗体(Thermo Scientific, 100/D5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. J BUON (2014) ncbi
小鼠 单克隆(Bcl2/100)
  • 流式细胞仪; 人类; 1:50
赛默飞世尔 Bcl 2抗体(生活技术, A15764)被用于被用于流式细胞仪在人类样本上浓度为1:50. Int J Nanomedicine (2014) ncbi
小鼠 单克隆(100/D5)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 Bcl 2抗体(Thermo Labvision Fremont, MS-123-P0)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Pathol Res Pract (2014) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化; 大鼠; 1:200
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2)被用于被用于免疫组化在大鼠样本上浓度为1:200. Biometals (2014) ncbi
小鼠 单克隆(Bcl-2/100)
  • 流式细胞仪; 人类
赛默飞世尔 Bcl 2抗体(eBioscience, Bcl-2/100)被用于被用于流式细胞仪在人类样本上. J Hepatol (2014) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Dent Res J (Isfahan) (2012) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫沉淀; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Bcl 2抗体(Invitrogen/Life Technologies, 13-8800)被用于被用于免疫沉淀在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Mol Ther Nucleic Acids (2013) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫沉淀; 人类; 图 9
赛默飞世尔 Bcl 2抗体(Invitrogen, 13-8800)被用于被用于免疫沉淀在人类样本上 (图 9). Apoptosis (2013) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 Bcl 2抗体(Zymed, clone Bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Pathol Oncol Res (2012) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类; 1:500
赛默飞世尔 Bcl 2抗体(Zymed, Bcl2-100)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2011) ncbi
小鼠 单克隆(100)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 Bcl 2抗体(Invitrogen, clone 100)被用于被用于流式细胞仪在人类样本上 (图 5). Cytometry A (2011) ncbi
小鼠 单克隆(4D7)
  • 免疫印迹; 人类
赛默飞世尔 Bcl 2抗体(eBioscience, BMS1029)被用于被用于免疫印迹在人类样本上. Cell Cycle (2011) ncbi
小鼠 单克隆(100)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 Bcl 2抗体(Caltag, 100)被用于被用于流式细胞仪在人类样本上 (图 2). Immunobiology (2011) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1, 2, 3
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1, 2, 3). Am J Surg Pathol (2010) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Bcl 2抗体(Invitrogen, 13-8800)被用于被用于免疫印迹在人类样本上 (图 4). Atherosclerosis (2010) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Thyroid (2009) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类
赛默飞世尔 Bcl 2抗体(Zymed Laboratories, Bcl-2-100)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2008) ncbi
小鼠 单克隆(100/D5)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2B
赛默飞世尔 Bcl 2抗体(Biosource, 100/D5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2B). Neuropathology (2008) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:500
赛默飞世尔 Bcl 2抗体(Zymed/Invitrogen, bcl2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Int J Surg Pathol (2007) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Bcl 2抗体(Zymed, bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上. J Korean Med Sci (2007) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔 Bcl 2抗体(Zymed, bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Clin Pathol (2007) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Oral Maxillofac Surg (2006) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Eur J Cancer Prev (2006) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫细胞化学; 人类; 表 1
赛默飞世尔 Bcl 2抗体(Zymed, Bcl2-100)被用于被用于免疫细胞化学在人类样本上 (表 1). J Autoimmun (2006) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化; 大鼠; 表 1
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2-100)被用于被用于免疫组化在大鼠样本上 (表 1). Clin Orthop Relat Res (2004) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2-100)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Proc Natl Acad Sci U S A (2004) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化; 大鼠; 1:100; 图 3
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2-100)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3). J Histochem Cytochem (2004) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 表 1
赛默飞世尔 Bcl 2抗体(Zymed, BCL-2-100)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Int J Gynecol Cancer (2003) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 2
赛默飞世尔 Bcl 2抗体(Zymed, bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 2). Int J Gynecol Cancer (2003) ncbi
小鼠 单克隆(100)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 Bcl 2抗体(Caltag, 100)被用于被用于流式细胞仪在人类样本上 (表 1). J Biol Regul Homeost Agents (2002) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Bcl 2抗体(Zymed, bcl 2-100)被用于被用于免疫组化-石蜡切片在人类样本上. Breast Cancer Res Treat (2002) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化; 人类; 1:20; 表 3
赛默飞世尔 Bcl 2抗体(Zymed, Bcl2-100)被用于被用于免疫组化在人类样本上浓度为1:20 (表 3). Hum Pathol (2002) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Bcl 2抗体(Zymed, 13-8800)被用于被用于免疫印迹在人类样本上 (图 5). Proc Natl Acad Sci U S A (2002) ncbi
小鼠 单克隆(Bcl-2-100)
  • 流式细胞仪; 人类
赛默飞世尔 Bcl 2抗体(Zymed, Bcl-2/100)被用于被用于流式细胞仪在人类样本上. Arthritis Rheum (2000) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 2, 3, 4
赛默飞世尔 Bcl 2抗体(Zymed, bcl-2-100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 2, 3, 4). Cancer (2000) ncbi
小鼠 单克隆(100)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔 Bcl 2抗体(noco, noca)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Histopathology (1995) ncbi
武汉三鹰
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3g
武汉三鹰 Bcl 2抗体(Proteintech, 12,789)被用于被用于免疫印迹在人类样本上 (图 3g). Arthritis Res Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3g
武汉三鹰 Bcl 2抗体(Proteintech, 12,789)被用于被用于免疫印迹在人类样本上 (图 3g). Acta Neurochir (Wien) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3g
武汉三鹰 Bcl 2抗体(Proteintech, 12,789)被用于被用于免疫印迹在人类样本上 (图 3g). BMC Urol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3g
武汉三鹰 Bcl 2抗体(Proteintech, 12,789)被用于被用于免疫印迹在人类样本上 (图 3g). BMC Microbiol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3g
武汉三鹰 Bcl 2抗体(Proteintech, 12,789)被用于被用于免疫印迹在人类样本上 (图 3g). Ann Clin Transl Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3g
武汉三鹰 Bcl 2抗体(Proteintech, 12,789)被用于被用于免疫印迹在人类样本上 (图 3g). BMC Ophthalmol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3g
武汉三鹰 Bcl 2抗体(Proteintech, 12,789)被用于被用于免疫印迹在人类样本上 (图 3g). Animals (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2a
武汉三鹰 Bcl 2抗体(Proteintech, 12789-1-AP)被用于被用于免疫印迹在人类样本上 (图 s2a). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2a
武汉三鹰 Bcl 2抗体(Proteintech, 12789-1-AP)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Front Pharmacol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
武汉三鹰 Bcl 2抗体(Proteintech, 12789-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Cancer Cell Int (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4c
武汉三鹰 Bcl 2抗体(Proteintech, 12789-1-AP)被用于被用于免疫印迹在大鼠样本上 (图 4c). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
武汉三鹰 Bcl 2抗体(Proteintech, 12789-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2019) ncbi
小鼠 单克隆(4H8C6)
  • 免疫印迹; 人类; 1:1000; 图 3b
武汉三鹰 Bcl 2抗体(ProteinTech, 60178-1-Ig)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Mol Med Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
武汉三鹰 Bcl 2抗体(ProteinTech, 12789-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Exp Ther Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
武汉三鹰 Bcl 2抗体(ProteinTech, 12789-1-AP)被用于被用于免疫印迹在人类样本上 (图 3b). Oncol Lett (2019) ncbi
小鼠 单克隆(4H8C6)
  • 免疫印迹; 人类; 1:1000; 图 1a, 1d
武汉三鹰 Bcl 2抗体(ProteinTech Group, 60178-1-Ig)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a, 1d). Int J Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
武汉三鹰 Bcl 2抗体(ProteinTech, 12789-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Cancer Manag Res (2019) ncbi
小鼠 单克隆(4H8C6)
  • 免疫印迹; 人类; 1:1000; 图 2f
武汉三鹰 Bcl 2抗体(Proteintech, 60178-1-Ig)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Front Pharmacol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3c
武汉三鹰 Bcl 2抗体(ProteinTech, 12789-1)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Front Endocrinol (Lausanne) (2019) ncbi
小鼠 单克隆(4H8C6)
  • 免疫印迹; 人类; 1:1000; 图 5b
武汉三鹰 Bcl 2抗体(ProteinTech, 60178-1-Ig)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Int J Mol Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 8a
武汉三鹰 Bcl 2抗体(Proteintech, 12789-1-AP)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 8a). J Cell Mol Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2
武汉三鹰 Bcl 2抗体(Proteintech, 12789)被用于被用于免疫印迹在人类样本上 (图 s2). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4c
武汉三鹰 Bcl 2抗体(Proteintech, 12789-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4c). Exp Ther Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
武汉三鹰 Bcl 2抗体(Protein Tech Group, 12789-1-AP)被用于被用于免疫印迹在人类样本上 (图 7a). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3
武汉三鹰 Bcl 2抗体(Proteintech Group, 12789-1-AP)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
武汉三鹰 Bcl 2抗体(Proteintech, 12789-1-AP)被用于被用于免疫印迹在小鼠样本上 (图 7). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
武汉三鹰 Bcl 2抗体(Proteintech, 12789)被用于被用于免疫印迹在人类样本上 (图 6b). Tumour Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 3d
武汉三鹰 Bcl 2抗体(Proteintech, 12789-1-AP)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3d). Int J Endocrinol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
武汉三鹰 Bcl 2抗体(Proteintech, 12789-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
武汉三鹰 Bcl 2抗体(Proteintech, 12789-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
武汉三鹰 Bcl 2抗体(ProteinTech Group, 12789-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
武汉三鹰 Bcl 2抗体(ProteinTech, 12789-1-AP)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
武汉三鹰 Bcl 2抗体(Proteintech, 12789-1-AP)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500
武汉三鹰 Bcl 2抗体(Proteintech, 12789-1-AP)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Carcinog (2016) ncbi
BioLegend
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠; 图 s3o, 2j
BioLegend Bcl 2抗体(BioLegend, BCL/10C4)被用于被用于流式细胞仪在小鼠样本上 (图 s3o, 2j). Science (2019) ncbi
小鼠 单克隆(100)
  • mass cytometry; 人类; 图 3a
BioLegend Bcl 2抗体(Biolegend, 658702)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
小鼠 单克隆(100)
  • 流式细胞仪; 人类; 图 7.a','d
BioLegend Bcl 2抗体(BioLegend, 100)被用于被用于流式细胞仪在人类样本上 (图 7.a','d). Clin Exp Immunol (2017) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠; 1:100; 图 2d
BioLegend Bcl 2抗体(BioLegend, BCL/10C4)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2d). Nat Commun (2016) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Bcl 2抗体(Biolegend, 633510)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Bcl 2抗体(BioLegend, BCL10C4)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Arthritis Rheumatol (2016) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠; 图 6c
BioLegend Bcl 2抗体(Biolegend, BCL/10C4)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Sci Rep (2016) ncbi
小鼠 单克隆(BCL/10C4)
  • 免疫印迹; 小鼠; 图 6
BioLegend Bcl 2抗体(BioLegend, 633502)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell Death Differ (2016) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠
BioLegend Bcl 2抗体(Biolegend, BCL/10C4)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠
BioLegend Bcl 2抗体(BioLegend, BCL/10C4)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
武汉博士德生物工程有限公司
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 大鼠; 1:2500; 图 7
武汉博士德生物工程有限公司 Bcl 2抗体(Boster, Bcl-2-100)被用于被用于免疫印迹在大鼠样本上浓度为1:2500 (图 7). Brain Behav (2020) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 2g
伯乐(Bio-Rad)公司 Bcl 2抗体(Bio-Rad, VMA00017)被用于被用于免疫印迹在人类样本上 (图 2g). Oncogene (2019) ncbi
西格玛奥德里奇
domestic goat 多克隆
  • 免疫印迹; 人类; 1:500; 图 7a
西格玛奥德里奇 Bcl 2抗体(Sigma-Aldrich, SAB2500154)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7a). Oncotarget (2017) ncbi
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 人类; 图 8
西格玛奥德里奇 Bcl 2抗体(Sigma, B3170)被用于被用于免疫印迹在人类样本上 (图 8). BMC Complement Altern Med (2016) ncbi
GeneTex
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
GeneTex Bcl 2抗体(GeneTex, GTX100064)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
Biorbyt
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
Biorbyt Bcl 2抗体(Biorbyt, orb10173)被用于被用于免疫印迹在人类样本上 (图 2d). Cell Physiol Biochem (2018) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫印迹; 人类; 1:800; 图 4c
安迪生物R&D Bcl 2抗体(R&D Systems, AF810)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 4c). Mol Med Rep (2019) ncbi
Novus Biologicals
domestic rabbit 多克隆(1251A)
  • 免疫印迹; 人类; 图 7i
Novus Biologicals Bcl 2抗体(Novus, NB100-56101)被用于被用于免疫印迹在人类样本上 (图 7i). J Cell Biochem (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). elife (2020) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Death Differ (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 1c, 4c, 8b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1c, 4c, 8b). Commun Biol (2020) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 1:500; 图 7a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 15071)被用于被用于免疫印迹在人类样本上 (图 3d). Theranostics (2020) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 4223)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Exp Ther Med (2020) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Biosci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 2872)被用于被用于免疫印迹在人类样本上 (图 1b). Oncogenesis (2020) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 1d). Drug Des Devel Ther (2020) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 3498)被用于被用于免疫印迹在小鼠样本上 (图 2c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 3498S)被用于被用于免疫印迹在小鼠样本上 (图 4c). Science (2019) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 4223S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Biol Open (2019) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 15071S)被用于被用于免疫印迹在人类样本上 (图 8). Biomolecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(cell signaling technologies, 2872)被用于被用于免疫印迹在人类样本上 (图 4b). Front Genet (2019) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 15071)被用于被用于免疫印迹在人类样本上 (图 7e). Biomolecules (2019) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上 (图 2c). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫印迹在小鼠样本上 (图 3a). Oxid Med Cell Longev (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上 (图 4f). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 s3d, s6c, s6f
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫印迹在小鼠样本上 (图 s3d, s6c, s6f). Science (2019) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上 (图 4c). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(5H2)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2827)被用于被用于免疫印迹在人类样本上 (图 4e). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 3498S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). elife (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Cancer Sci (2019) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 1:1000; 图 2h
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signalling Technology, 3498)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2h). Redox Biol (2019) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司 Bcl 2抗体(cst, 3498)被用于被用于免疫印迹在小鼠样本上 (图 1h). J Mol Histol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 2872)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nucleic Acids Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 2872)被用于被用于免疫印迹在人类样本上 (图 3b). Oncoimmunology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Am J Transl Res (2018) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 3498)被用于被用于免疫印迹在小鼠样本上 (图 2f). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2017) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 15071)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Biochem Pharmacol (2017) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 15071S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Mol Med Rep (2017) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(cell signalling, 4223)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Am J Transl Res (2017) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 15071)被用于被用于免疫印迹在人类样本上 (图 3). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(cell signalling, 4223)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). Int J Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Bcl 2抗体(cell signalling, 2872)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 1:500; 图 4d
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4d). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 4223)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 15071)被用于被用于免疫印迹在小鼠样本上 (图 2b). Lab Invest (2017) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:3000; 图 5a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 4223)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 3498)被用于被用于免疫印迹在小鼠样本上 (图 1a). JCI Insight (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 15071)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上 (图 5b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上 (图 3a). Cancer Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 10a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上 (图 10a). Nature (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:500; 图 6
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 15071)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 6c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5H2)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2827)被用于被用于免疫印迹在人类样本上 (图 7a). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2875)被用于被用于免疫印迹在人类样本上 (图 7a). Autophagy (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(CST, 15071)被用于被用于免疫印迹在人类样本上 (图 5b). Int J Mol Sci (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 15071)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, D55G8)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:800; 图 4a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 15071)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, D55G8)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 单克隆(5H2)
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 2827)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). Autophagy (2016) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫组化; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫组化在小鼠样本上 (图 5c). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s18
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2872)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s18). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technolog, 3498)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(cell signalling, 2872)被用于被用于免疫印迹在人类样本上 (图 6b). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 4223)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(5H2)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2827)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫印迹在小鼠样本上 (图 5). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(5H2)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2827)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Nat Commun (2015) ncbi
domestic rabbit 单克隆(5H2)
  • 其他; 小鼠; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2827)被用于被用于其他在小鼠样本上浓度为1:1000 (图 s1). Front Microbiol (2015) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫沉淀; 人类; 图 6
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 4223)被用于被用于免疫沉淀在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). Leukemia (2016) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 图 2a
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 3498)被用于被用于免疫印迹在小鼠样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2015) ncbi
domestic rabbit 单克隆(5H2)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell signaling, 2827)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, D17C4)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Mol Brain (2015) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠; 1:2000; 图 7
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 3498)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(5H2)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, 2827)被用于被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2014) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technologies, 4223)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D17C4)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling Technology, 3498)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2013) ncbi
domestic rabbit 单克隆(D55G8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Bcl 2抗体(Cell Signaling, D55G8)被用于被用于免疫印迹在小鼠样本上. Mol Cancer Ther (2013) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 图 s1a
  • 免疫印迹; 人类; 图 s1a
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, MO887)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1a) 和 被用于免疫印迹在人类样本上 (图 s1a). Cell Death Dis (2020) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 5a
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫印迹在人类样本上 (图 5a). Nat Commun (2020) ncbi
小鼠 单克隆(124)
  • 其他; 人类; 图 4c
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 表 4
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DakoCytomation, 124)被用于被用于免疫组化-石蜡切片在人类样本上 (表 4). Ann Hematol (2017) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2e
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2e). Histopathology (2017) ncbi
小鼠 单克隆(124)
  • reverse phase protein lysate microarray; 人类; 图 st6
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, Dako M0887)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 st2
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 st2). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(124)
  • reverse phase protein lysate microarray; 人类; 图 3a
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
小鼠 单克隆(124)
  • 免疫细胞化学; 人类; 1:100; 图 6b
  • 免疫印迹; 人类; 图 6a
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M088729)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6b) 和 被用于免疫印迹在人类样本上 (图 6a). PLoS Pathog (2017) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 图 2f
  • 免疫组化; 人类; 图 1f
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2f) 和 被用于免疫组化在人类样本上 (图 1f). Ann Diagn Pathol (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). Virchows Arch (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 5b,5c,6b,6c,6d
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫印迹在人类样本上 (图 5b,5c,6b,6c,6d). Oncotarget (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 表 2
  • 流式细胞仪; 人类
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2) 和 被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2018) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Cancer Sci (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:500; 图 5c
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, M0887)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5c). Sci Rep (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). Rom J Morphol Embryol (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako Corporation, M0887)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 3). Biomed Res Int (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2d
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2d). Nat Commun (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:160; 图 1c
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:160 (图 1c). J Hematop (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 表 4
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上 (表 4). Chin J Cancer (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化; 人类; 1:50; 图 2
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DakoCytomation, M0887)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 1:1000; 图 6
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(124)
  • 流式细胞仪; 人类; 图 1a
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, 124)被用于被用于流式细胞仪在人类样本上 (图 1a). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化-冰冻切片; 大鼠; 1:40; 图 3
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, 124)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:40 (图 3). Ann Anat (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化; 人类; 1:50; 表 1
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化在人类样本上浓度为1:50 (表 1). Oral Surg Oral Med Oral Pathol Oral Radiol (2016) ncbi
小鼠 单克隆(124)
  • 免疫组化; 人类; 1:25; 图 s2
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫组化在人类样本上浓度为1:25 (图 s2). Nat Commun (2015) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 6b
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫印迹在人类样本上 (图 6b). Oncotarget (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化在人类样本上浓度为1:50. Hum Pathol (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:10
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10. APMIS (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Ann Diagn Pathol (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, clone 124)被用于被用于免疫组化在人类样本上. Brain Tumor Pathol (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:75
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:75. Cytopathology (2016) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 3
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫印迹在人类样本上 (图 3). Int J Oncol (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(124)
  • 免疫印迹; 人类; 图 3
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Biol Ther (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化; 人类
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化在人类样本上. Pathol Res Pract (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:80
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:80. Diagn Pathol (2014) ncbi
小鼠 单克隆(124)
  • 流式细胞仪; 人类
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于流式细胞仪在人类样本上. Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:100
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Cancer Med (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:600
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKOCytomation, M0887)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600. Anticancer Res (2014) ncbi
小鼠 单克隆(124)
  • 免疫组化; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化在人类样本上浓度为1:40. Head Neck Pathol (2015) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 2
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 2). PLoS ONE (2014) ncbi
小鼠 单克隆(124)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 1:300
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, 124)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:300. J Biol Chem (2014) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. PLoS ONE (2014) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:40
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. Hum Pathol (2014) ncbi
小鼠 单克隆(124)
  • 免疫组化; 人类; 1:50
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, M0887)被用于被用于免疫组化在人类样本上浓度为1:50. Blood Cancer J (2013) ncbi
小鼠 单克隆(124)
  • 流式细胞仪; 人类; 表 1
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, clone 124)被用于被用于流式细胞仪在人类样本上 (表 1). Cytopathology (2014) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(Dako, 124)被用于被用于免疫组化-石蜡切片在人类样本上. Laryngoscope (2014) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:600
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKOCytomation, M0887)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:600. Oncology (2013) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:300
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DAKO, 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Hum Pathol (2011) ncbi
小鼠 单克隆(124)
  • 免疫组化-石蜡切片; 人类; 1:30
丹科医疗器械技术服务(上海)有限公司 Bcl 2抗体(DakoCytomation, clone 124)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30. J Neuropathol Exp Neurol (2008) ncbi
Bioworld
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6g
Bioworld Bcl 2抗体(Bioworld, bs1511)被用于被用于免疫印迹在小鼠样本上 (图 6g). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
Bioworld Bcl 2抗体(Bioworld Technology, BS1511)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:800; 图 6
Bioworld Bcl 2抗体(Bio-World, bs1511)被用于被用于免疫印迹在大鼠样本上浓度为1:800 (图 6). Mol Med Rep (2016) ncbi
AmyJet Scientific
小鼠 单克隆(6F11)
  • 免疫印迹; 人类; 图 4d
AmyJet Scientific Bcl 2抗体(AmyJet Scientific, ABM40273)被用于被用于免疫印迹在人类样本上 (图 4d). Biomed Pharmacother (2017) ncbi
Cell Marque
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
Cell Marque Bcl 2抗体(Cell Marque, 226R-16)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). Diagn Pathol (2017) ncbi
碧迪BD
小鼠 单克隆(Bcl-2/100)
  • 流式细胞仪; 人类; 图 3d
碧迪BD Bcl 2抗体(BD Bioscience, Bcl-2/100)被用于被用于流式细胞仪在人类样本上 (图 3d). Methods Mol Biol (2019) ncbi
小鼠 单克隆(4D7)
  • 免疫印迹; 人类; 1:1000; 图 2a
碧迪BD Bcl 2抗体(BD, 551097)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Cell Death Dis (2018) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 1:500; 图 4b
碧迪BD Bcl 2抗体(BD Pharmingen, 610539)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Mol Med Rep (2017) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 小鼠; 图 1b
碧迪BD Bcl 2抗体(BD Biosciences, 7)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Death Differ (2017) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫组化-石蜡切片; 人类; 图 6b
碧迪BD Bcl 2抗体(BD Biosciences, 610538)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6b). Oncotarget (2016) ncbi
仓鼠 单克隆(6C8)
  • 免疫印迹; 人类; 图 5
碧迪BD Bcl 2抗体(BD-Transduction Laboratories, 551052)被用于被用于免疫印迹在人类样本上 (图 5). BMC Cancer (2016) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 图 4a
碧迪BD Bcl 2抗体(BD, 610538)被用于被用于免疫印迹在人类样本上 (图 4a). Stem Cells Int (2016) ncbi
  • 流式细胞仪; 人类; 1:10; 表 2
碧迪BD Bcl 2抗体(BD PharMingen, 556535)被用于被用于流式细胞仪在人类样本上浓度为1:10 (表 2). Oncoimmunology (2016) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 1:500; 图 6
碧迪BD Bcl 2抗体(BD, 610538)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Cell Rep (2016) ncbi
仓鼠 单克隆(6C8)
  • 流式细胞仪; 人类; 图 2
碧迪BD Bcl 2抗体(BD Biosciences, 6C8)被用于被用于流式细胞仪在人类样本上 (图 2). Int Immunol (2016) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 图 4
碧迪BD Bcl 2抗体(BD Biosciences, 610539)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(Bcl-2/100)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BD Bcl 2抗体(BD Bioscience, 551107)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Immunol (2016) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 小鼠; 1:100; 图 6d, 6e
碧迪BD Bcl 2抗体(BD Transduction Laboratories, 610539)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 6d, 6e). FEBS Open Bio (2015) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 1:1000; 图 3
碧迪BD Bcl 2抗体(BD Biosciences, 610539)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(Bcl-2/100)
  • 流式细胞仪; 猕猴
碧迪BD Bcl 2抗体(BD Biosciences, Bcl2/100)被用于被用于流式细胞仪在猕猴样本上. Vaccine (2015) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 图 5a,5c
碧迪BD Bcl 2抗体(BD Biosciences, 610538)被用于被用于免疫印迹在人类样本上 (图 5a,5c). Cell Death Dis (2015) ncbi
小鼠 单克隆(4D7)
  • 免疫印迹; 人类; 图 s2b
碧迪BD Bcl 2抗体(BD, 4D7)被用于被用于免疫印迹在人类样本上 (图 s2b). Cell Death Dis (2015) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 图 5
碧迪BD Bcl 2抗体(BD Biosciences, 610538)被用于被用于免疫印迹在人类样本上 (图 5). Biomed Res Int (2015) ncbi
小鼠 单克隆(Bcl-2/100)
  • 流式细胞仪; 猕猴
碧迪BD Bcl 2抗体(BD Biosciences, Bcl-2/100)被用于被用于流式细胞仪在猕猴样本上. J Immunol (2014) ncbi
小鼠 单克隆(Bcl-2/100)
  • 流式细胞仪; 人类
碧迪BD Bcl 2抗体(BD, Bcl-2/100)被用于被用于流式细胞仪在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(Bcl-2/100)
  • 流式细胞仪; 人类
碧迪BD Bcl 2抗体(BD Biosciences, Bcl-2/100)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫沉淀; 人类
碧迪BD Bcl 2抗体(BD Transduction Laboratories, 7/Bcl-2)被用于被用于免疫沉淀在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类
碧迪BD Bcl 2抗体(BD Transduction Laboratories, 610539)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类
碧迪BD Bcl 2抗体(BD Transduction Laboratories, 610539)被用于被用于免疫印迹在人类样本上. J Immunother (2014) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 1:500
碧迪BD Bcl 2抗体(BD Transduction Laboratories, 610538)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(4D7)
  • 免疫印迹; 人类
碧迪BD Bcl 2抗体(BD Biosciences, 551097)被用于被用于免疫印迹在人类样本上. Int J Cancer (2011) ncbi
小鼠 单克隆(Bcl-2/100)
  • 流式细胞仪; 人类; 1 ug
  • 免疫印迹; 人类
碧迪BD Bcl 2抗体(BD Biosciences, Bcl-2/100)被用于被用于流式细胞仪在人类样本上浓度为1 ug 和 被用于免疫印迹在人类样本上. Cell Death Differ (2008) ncbi
徕卡显微系统(上海)贸易有限公司
  • 免疫组化; 人类; 图 3a
徕卡显微系统(上海)贸易有限公司 Bcl 2抗体(Novocastra, bcl-2/100/D5)被用于被用于免疫组化在人类样本上 (图 3a). Histopathology (2017) ncbi
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2c
徕卡显微系统(上海)贸易有限公司 Bcl 2抗体(Leica Microsystems, BCL2-486)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2c). Vet Comp Oncol (2017) ncbi
文章列表
  1. Chen J, Liu X, Ke K, Zou J, Gao Z, Habuchi T, et al. LINC00992 contributes to the oncogenic phenotypes in prostate cancer via targeting miR-3935 and augmenting GOLM1 expression. BMC Cancer. 2020;20:749 pubmed 出版商
  2. Yang X, Guo Q, Feng T, Lu Q, Ge L, Pan J, et al. IL13Rα1 protects against rheumatoid arthritis by combating the apoptotic resistance of fibroblast-like synoviocytes. Arthritis Res Ther. 2020;22:184 pubmed 出版商
  3. Starnoni D, Giammattei L, Cossu G, Link M, Roche P, Chacko A, et al. Surgical management for large vestibular schwannomas: a systematic review, meta-analysis, and consensus statement on behalf of the EANS skull base section. Acta Neurochir (Wien). 2020;162:2595-2617 pubmed 出版商
  4. Nishiyama N, Hirobe M, Kikushima T, Matsuki M, Takahashi A, Yanase M, et al. The neutrophil-lymphocyte ratio has a role in predicting the effectiveness of nivolumab in Japanese patients with metastatic renal cell carcinoma: a multi-institutional retrospective study. BMC Urol. 2020;20:110 pubmed 出版商
  5. Morrow J, Om N, Beattie G, Chambers G, Donovan N, Liefting L, et al. Characterization of the bacterial communities of psyllids associated with Rutaceae in Bhutan by high throughput sequencing. BMC Microbiol. 2020;20:215 pubmed 出版商
  6. Au C, Furness J, Britt K, Oshchepkova S, Ladumor H, Soo K, et al. Three-dimensional growth of breast cancer cells potentiates the anti-tumor effects of unacylated ghrelin and AZP-531. elife. 2020;9: pubmed 出版商
  7. Gray E, Thompson A, Wuu J, Pelt J, Talbot K, Benatar M, et al. CSF chitinases before and after symptom onset in amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2020;: pubmed 出版商
  8. Ghassemi F, Abdi F, Esfahani M. Ophthalmic manifestations of congenital protein C deficiency: a case report and mini review. BMC Ophthalmol. 2020;20:282 pubmed 出版商
  9. Shivaramu S, Lebeda I, Kaspar V, Flajshans M. Intraspecific Hybrids Versus Purebred: A Study of Hatchery-Reared Populations of Sterlet Acipenser ruthenus. Animals (Basel). 2020;10: pubmed 出版商
  10. Yu W, Hua Y, Qiu H, Hao J, Zou K, Li Z, et al. PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis. 2020;11:506 pubmed 出版商
  11. Simula L, Corrado M, Accordi B, Di Rita A, Nazio F, Antonucci Y, et al. JNK1 and ERK1/2 modulate lymphocyte homeostasis via BIM and DRP1 upon AICD induction. Cell Death Differ. 2020;: pubmed 出版商
  12. Wu X, Gardashova G, Lan L, Han S, Zhong C, Marquez R, et al. Targeting the interaction between RNA-binding protein HuR and FOXQ1 suppresses breast cancer invasion and metastasis. Commun Biol. 2020;3:193 pubmed 出版商
  13. Zhao J, Li G, Zhao X, Lin X, Gao Y, Raimundo N, et al. Down-regulation of AMPK signaling pathway rescues hearing loss in TFB1 transgenic mice and delays age-related hearing loss. Aging (Albany NY). 2020;12:5590-5611 pubmed 出版商
  14. Han B, Meng X, Wu P, Li Z, Li S, Zhang Y, et al. ATRX/EZH2 complex epigenetically regulates FADD/PARP1 axis, contributing to TMZ resistance in glioma. Theranostics. 2020;10:3351-3365 pubmed 出版商
  15. Liu D, Bai X, Ma W, Xin D, Chu X, Yuan H, et al. Purmorphamine Attenuates Neuro-Inflammation and Synaptic Impairments After Hypoxic-Ischemic Injury in Neonatal Mice via Shh Signaling. Front Pharmacol. 2020;11:204 pubmed 出版商
  16. Feng C, Zhang H, Zeng A, Bai M, Wang X. Tumor-Suppressive MicroRNA-216b Binds to TPX2, Activating the p53 Signaling in Human Cutaneous Squamous Cell Carcinoma. Mol Ther Nucleic Acids. 2020;20:186-195 pubmed 出版商
  17. Zhao J, He L, Yin L. lncRNA NEAT1 Binds to MiR-339-5p to Increase HOXA1 and Alleviate Ischemic Brain Damage in Neonatal Mice. Mol Ther Nucleic Acids. 2020;20:117-127 pubmed 出版商
  18. Bajpai R, Sharma A, Achreja A, Edgar C, Wei C, Siddiqa A, et al. Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma. Nat Commun. 2020;11:1228 pubmed 出版商
  19. Xiang Q, Kang L, Wang J, Liao Z, Song Y, Zhao K, et al. CircRNA-CIDN mitigated compression loading-induced damage in human nucleus pulposus cells via miR-34a-5p/SIRT1 axis. EBioMedicine. 2020;53:102679 pubmed 出版商
  20. Chen Y, Liu Z, Wang Y, Zhuang J, Peng Y, Mo X, et al. FKBP51 induces p53-dependent apoptosis and enhances drug sensitivity of human non-small-cell lung cancer cells. Exp Ther Med. 2020;19:2236-2242 pubmed 出版商
  21. Wan G, An Y, Tao J, Wang Y, Zhou Q, Yang R, et al. MicroRNA-129-5p alleviates spinal cord injury in mice via suppressing the apoptosis and inflammatory response through HMGB1/TLR4/NF-κB pathway. Biosci Rep. 2020;40: pubmed 出版商
  22. Chandrasekaran B, Dahiya N, Tyagi A, Kolluru V, Saran U, Baby B, et al. Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis. 2020;9:23 pubmed 出版商
  23. Guttà C, Rahman A, Aura C, Dynoodt P, Charles E, Hirschenhahn E, et al. Low expression of pro-apoptotic proteins Bax, Bak and Smac indicates prolonged progression-free survival in chemotherapy-treated metastatic melanoma. Cell Death Dis. 2020;11:124 pubmed 出版商
  24. Huang S, Zhang C, Sun C, Hou Y, Zhang Y, Tam N, et al. Obg-like ATPase 1 (OLA1) overexpression predicts poor prognosis and promotes tumor progression by regulating P21/CDK2 in hepatocellular carcinoma. Aging (Albany NY). 2020;12:3025-3041 pubmed 出版商
  25. Zhuang K, Zuo Y, Sherchan P, Wang J, Yan X, Liu F. Hydrogen Inhalation Attenuates Oxidative Stress Related Endothelial Cells Injury After Subarachnoid Hemorrhage in Rats. Front Neurosci. 2019;13:1441 pubmed 出版商
  26. Li K, Zhao S, Long J, Su J, Wu L, Tao J, et al. A novel chalcone derivative has antitumor activity in melanoma by inducing DNA damage through the upregulation of ROS products. Cancer Cell Int. 2020;20:36 pubmed 出版商
  27. Xiang S, Chen K, Xu L, Wang T, Guo C. Bergenin Exerts Hepatoprotective Effects by Inhibiting the Release of Inflammatory Factors, Apoptosis and Autophagy via the PPAR-γ Pathway. Drug Des Devel Ther. 2020;14:129-143 pubmed 出版商
  28. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  29. Cui J, Duan J, Chu J, Guo C, Xi M, Li Y, et al. Chikusetsu saponin IVa protects pancreatic β cell against intermittent high glucose-induced injury by activating Wnt/β-catenin/TCF7L2 pathway. Aging (Albany NY). 2020;12:1591-1609 pubmed 出版商
  30. Li C, Liu W, Li X, Zhang Z, Qi H, Liu S, et al. The novel GLP-1/GIP analogue DA5-CH reduces tau phosphorylation and normalizes theta rhythm in the icv. STZ rat model of AD. Brain Behav. 2020;10:e01505 pubmed 出版商
  31. Tang X, Yan K, Wang Y, Wang Y, Chen H, Xu J, et al. Activation of PPAR-β/δ Attenuates Brain Injury by Suppressing Inflammation and Apoptosis in a Collagenase-Induced Intracerebral Hemorrhage Mouse Model. Neurochem Res. 2020;45:837-850 pubmed 出版商
  32. Lohard S, Bourgeois N, Maillet L, Gautier F, Fétiveau A, Lasla H, et al. STING-dependent paracriny shapes apoptotic priming of breast tumors in response to anti-mitotic treatment. Nat Commun. 2020;11:259 pubmed 出版商
  33. Sheng L, Zhang J, Li L, Xie X, Wen X, Cheng K. Design, Synthesis, and Evaluation of Novel 2-Methoxyestradiol Derivatives as Apoptotic Inducers Through an Intrinsic Apoptosis Pathway. Biomolecules. 2020;10: pubmed 出版商
  34. Chen X, Zhao Y, Xu J, Bao J, Zhao J, Chen J, et al. The Nephroprotective Effect of TNF Receptor-Associated Factor 6 (TRAF6) Blockade on LPS-Induced Acute Renal Injury Through the Inhibition if Inflammation and Oxidative Stress. Med Sci Monit. 2020;26:e919698 pubmed 出版商
  35. Zhou Z, Zhou Q, Wu X, Xu S, Hu X, Tao X, et al. VCAM-1 secreted from cancer-associated fibroblasts enhances the growth and invasion of lung cancer cells through AKT and MAPK signaling. Cancer Lett. 2020;473:62-73 pubmed 出版商
  36. Tang L, Li J, Fu W, Wu W, Xu J. Suppression of FADS1 induces ROS generation, cell cycle arrest, and apoptosis in melanocytes: implications for vitiligo. Aging (Albany NY). 2019;11:11829-11843 pubmed 出版商
  37. Huang X, Ni B, Xi Y, Chu X, Zhang R, You H. Protease-activated receptor 2 (PAR-2) antagonist AZ3451 as a novel therapeutic agent for osteoarthritis. Aging (Albany NY). 2019;11:12532-12545 pubmed 出版商
  38. Xu S, Zhan M, Jiang C, He M, Yang L, Shen H, et al. Genome-wide CRISPR screen identifies ELP5 as a determinant of gemcitabine sensitivity in gallbladder cancer. Nat Commun. 2019;10:5492 pubmed 出版商
  39. Hu Y, Ma Y, Liu J, Cai Y, Zhang M, Fang X. LINC01128 expedites cervical cancer progression by regulating miR-383-5p/SFN axis. BMC Cancer. 2019;19:1157 pubmed 出版商
  40. Moya I, Castaldo S, Van den Mooter L, Soheily S, Sansores Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. 2019;366:1029-1034 pubmed 出版商
  41. Yue G, Chen C, Bai L, Wang G, Huang Y, Wang Y, et al. Knockdown of long noncoding RNA DLEU1 suppresses the progression of renal cell carcinoma by downregulating the Akt pathway. Mol Med Rep. 2019;20:4551-4557 pubmed 出版商
  42. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  43. Jiao W, Ji J, Xu W, Bu W, Zheng Y, Ma A, et al. Distinct downstream signaling and the roles of VEGF and PlGF in high glucose-mediated injuries of human retinal endothelial cells in culture. Sci Rep. 2019;9:15339 pubmed 出版商
  44. Li J, Liu Z, Wang L, Xu H, Wang Y. Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep. 2019;39: pubmed 出版商
  45. Tian M, Gong W, Guo J. Long non-coding RNA SNHG1 indicates poor prognosis and facilitates disease progression in acute myeloid leukemia. Biol Open. 2019;8: pubmed 出版商
  46. Garc a Arroyo F, Monroy S nchez F, Mu oz Jim nez I, Gonzaga G, Andr s Hernando A, Zazueta C, et al. Allopurinol Prevents the Lipogenic Response Induced by an Acute Oral Fructose Challenge in Short-Term Fructose Fed Rats. Biomolecules. 2019;9: pubmed 出版商
  47. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  48. Li F, Wu J, Wang P, Qu L. NKAP functions as an oncogene in Ewing sarcoma cells partly through the AKT signaling pathway. Exp Ther Med. 2019;18:3037-3045 pubmed 出版商
  49. Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY). 2019;11:7830-7846 pubmed 出版商
  50. Shan L, Liu W, Zhan Y. Sulfated polysaccharide of Sepiella maindroni ink targets Akt and overcomes resistance to the FGFR inhibitor AZD4547 in bladder cancer. Aging (Albany NY). 2019;11:7780-7795 pubmed 出版商
  51. Chollat Namy M, Ben Safta Saadoun T, Haferssas D, Meurice G, Chouaib S, Thiery J. The pharmalogical reactivation of p53 function improves breast tumor cell lysis by granzyme B and NK cells through induction of autophagy. Cell Death Dis. 2019;10:695 pubmed 出版商
  52. Barbero G, Castro M, Villanueva M, Quezada M, Fernández N, Demorrow S, et al. An Autocrine Wnt5a Loop Promotes NF-κB Pathway Activation and Cytokine/Chemokine Secretion in Melanoma. Cells. 2019;8: pubmed 出版商
  53. Yan P, Su Z, Zhang Z, Gao T. LncRNA NEAT1 enhances the resistance of anaplastic thyroid carcinoma cells to cisplatin by sponging miR‑9‑5p and regulating SPAG9 expression. Int J Oncol. 2019;55:988-1002 pubmed 出版商
  54. Thangaraj K, Balasubramanian B, Park S, Natesan K, Liu W, Manju V. Orientin Induces G0/G1 Cell Cycle Arrest and Mitochondria Mediated Intrinsic Apoptosis in Human Colorectal Carcinoma HT29 Cells. Biomolecules. 2019;9: pubmed 出版商
  55. Li E, Zhang T, Sun X, Li Y, Geng H, Yu D, et al. Sonic hedgehog pathway mediates genistein inhibition of renal cancer stem cells. Oncol Lett. 2019;18:3081-3091 pubmed 出版商
  56. He Z, Du X, Wu Y, Hua L, Wan L, Yan N. Simvastatin promotes endothelial dysfunction by activating the Wnt/β‑catenin pathway under oxidative stress. Int J Mol Med. 2019;44:1289-1298 pubmed 出版商
  57. Gao L, Wang Z, Lu D, Huang J, Liu J, Hong L. Paeonol induces cytoprotective autophagy via blocking the Akt/mTOR pathway in ovarian cancer cells. Cell Death Dis. 2019;10:609 pubmed 出版商
  58. Ma Y, Guan L, Han Y, Zhou Y, Li X, Liu Y, et al. siPRDX2-elevated DNM3 inhibits the proliferation and metastasis of colon cancer cells via AKT signaling pathway. Cancer Manag Res. 2019;11:5799-5811 pubmed 出版商
  59. Yang N, Li C, Li H, Liu M, Cai X, Cao F, et al. Emodin Induced SREBP1-Dependent and SREBP1-Independent Apoptosis in Hepatocellular Carcinoma Cells. Front Pharmacol. 2019;10:709 pubmed 出版商
  60. Wang X, Peng P, Pan Z, Fang Z, Lu W, Liu X. Psoralen inhibits malignant proliferation and induces apoptosis through triggering endoplasmic reticulum stress in human SMMC7721 hepatoma cells. Biol Res. 2019;52:34 pubmed 出版商
  61. Kaur S, Nag A, Gangenahalli G, Sharma K. Peroxisome Proliferator Activated Receptor Gamma Sensitizes Non-small Cell Lung Carcinoma to Gamma Irradiation Induced Apoptosis. Front Genet. 2019;10:554 pubmed 出版商
  62. Suo L, Chang X, Xu N, Ji H. The Anti-proliferative Activity of GnRH Through Downregulation of the Akt/ERK Pathways in Pancreatic Cancer. Front Endocrinol (Lausanne). 2019;10:370 pubmed 出版商
  63. Zhang L, Feng Q, Wang Z, Liu P, Cui S. Progesterone receptor antagonist provides palliative effects for uterine leiomyoma through a Bcl-2/Beclin1-dependent mechanism. Biosci Rep. 2019;39: pubmed 出版商
  64. Roy N, Monisha J, Padmavathi G, Lalhruaitluanga H, Kumar N, Singh A, et al. Isoform-Specific Role of Akt in Oral Squamous Cell Carcinoma. Biomolecules. 2019;9: pubmed 出版商
  65. Hua L, Wu N, Zhao R, He X, Liu Q, Li X, et al. Sphingomyelin Synthase 2 Promotes Endothelial Dysfunction by Inducing Endoplasmic Reticulum Stress. Int J Mol Sci. 2019;20: pubmed 出版商
  66. Liu F, Fan D, Yang Z, Tang N, Guo Z, Ma S, et al. TLR9 is essential for HMGB1-mediated post-myocardial infarction tissue repair through affecting apoptosis, cardiac healing, and angiogenesis. Cell Death Dis. 2019;10:480 pubmed 出版商
  67. Hou N, He X, Yang Y, Fu J, Zhang W, Guo Z, et al. TRPV1 Induced Apoptosis of Colorectal Cancer Cells by Activating Calcineurin-NFAT2-p53 Signaling Pathway. Biomed Res Int. 2019;2019:6712536 pubmed 出版商
  68. Ma X, Cheng F, Yuan K, Jiang K, Zhu T. Lipid storage droplet protein 5 reduces sodium palmitate‑induced lipotoxicity in human normal liver cells by regulating lipid metabolism‑related factors. Mol Med Rep. 2019;20:879-886 pubmed 出版商
  69. Donadoni M, Cicalese S, Sarkar D, Chang S, Sariyer I. Alcohol exposure alters pre-mRNA splicing of antiapoptotic Mcl-1L isoform and induces apoptosis in neural progenitors and immature neurons. Cell Death Dis. 2019;10:447 pubmed 出版商
  70. Wu K, Zou J, Lin C, Jie Z. MicroRNA-140-5p inhibits cell proliferation, migration and promotes cell apoptosis in gastric cancer through the negative regulation of THY1-mediated Notch signaling. Biosci Rep. 2019;: pubmed 出版商
  71. Sul O, Rajasekaran M, Park H, Suh J, Choi H. MicroRNA-29b Enhances Osteoclast Survival by Targeting BCL-2-Modifying Factor after Lipopolysaccharide Stimulation. Oxid Med Cell Longev. 2019;2019:6018180 pubmed 出版商
  72. Pan C, Jin L, Wang X, Li Y, Chun J, Boese A, et al. Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance. J Clin Invest. 2019;129:2431-2445 pubmed 出版商
  73. Zhao J, Sun H, Zhang J, Wang M, Du X, Zhang J. Long non-coding RNA ANRIL down-regulates microRNA-7 to protect human trabecular meshwork cells in an experimental model for glaucoma. Eur Rev Med Pharmacol Sci. 2019;23:3173-3182 pubmed 出版商
  74. Zhang C, Zhu Q, Gu J, Chen S, Li Q, Ying L. Down-regulation of CCNE1 expression suppresses cell proliferation and sensitizes gastric carcinoma cells to Cisplatin. Biosci Rep. 2019;39: pubmed 出版商
  75. He M, Chaurushiya M, Webster J, Kummerfeld S, Reja R, Chaudhuri S, et al. Intrinsic apoptosis shapes the tumor spectrum linked to inactivation of the deubiquitinase BAP1. Science. 2019;364:283-285 pubmed 出版商
  76. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  77. You Y, Qin Z, Zhang H, Yuan Z, Yu X. MicroRNA-153 promotes brain-derived neurotrophic factor and hippocampal neuron proliferation to alleviate autism symptoms through inhibition of JAK-STAT pathway by LEPR. Biosci Rep. 2019;: pubmed 出版商
  78. Rong X, Rao J, Li D, Jing Q, Lu Y, Ji Y. TRIM69 inhibits cataractogenesis by negatively regulating p53. Redox Biol. 2019;22:101157 pubmed 出版商
  79. Liu Y, Wang X, Deng L, Ping L, Shi Y, Zheng W, et al. ITK inhibition induced in vitro and in vivo anti-tumor activity through downregulating TCR signaling pathway in malignant T cell lymphoma. Cancer Cell Int. 2019;19:32 pubmed 出版商
  80. Thompson P, Shah A, Ntranos V, Van Gool F, Atkinson M, Bhushan A. Targeted Elimination of Senescent Beta Cells Prevents Type 1 Diabetes. Cell Metab. 2019;29:1045-1060.e10 pubmed 出版商
  81. Dong H, Ye X, Zhong L, Xu J, Qiu J, Wang J, et al. Role of FOXO3 Activated by HIV-1 Tat in HIV-Associated Neurocognitive Disorder Neuronal Apoptosis. Front Neurosci. 2019;13:44 pubmed 出版商
  82. Li J, Liu X, Chen H, Sun Z, Chen H, Wang L, et al. Multi-targeting chemoprevention of Chinese herb formula Yanghe Huayan decoction on experimentally induced mammary tumorigenesis. BMC Complement Altern Med. 2019;19:48 pubmed 出版商
  83. Wang Y, Qi Z, Zhou M, Yang W, Hu R, Li G, et al. Stanniocalcin‑1 promotes cell proliferation, chemoresistance and metastasis in hypoxic gastric cancer cells via Bcl‑2. Oncol Rep. 2019;41:1998-2008 pubmed 出版商
  84. Zhu F, Yan P, Zhang J, Cui Y, Zheng M, Cheng Y, et al. Deficiency of TPPP2, a factor linked to oligoasthenozoospermia, causes subfertility in male mice. J Cell Mol Med. 2019;23:2583-2594 pubmed 出版商
  85. Su W, Wang Y, Wang F, Zhang B, Zhang H, Shen Y, et al. Circular RNA hsa_circ_0007059 indicates prognosis and influences malignant behavior via AKT/mTOR in oral squamous cell carcinoma. J Cell Physiol. 2019;: pubmed 出版商
  86. Li Z, Mbah N, Overmeyer J, Sarver J, George S, Trabbic C, et al. The JNK signaling pathway plays a key role in methuosis (non-apoptotic cell death) induced by MOMIPP in glioblastoma. BMC Cancer. 2019;19:77 pubmed 出版商
  87. Huang X, Zhao Y, Pu Q, Liu G, Peng Y, Wang F, et al. Intracellular selection of trans-cleaving hammerhead ribozymes. Nucleic Acids Res. 2019;47:2514-2522 pubmed 出版商
  88. Wysokińska E, Cichos J, Kowalczyk A, Karbowiak M, Strzadała L, Bednarkiewicz A, et al. Toxicity Mechanism of Low Doses of NaGdF₄:Yb3+,Er3+ Upconverting Nanoparticles in Activated Macrophage Cell Lines. Biomolecules. 2019;9: pubmed 出版商
  89. Zhang J, Sheng J, Dong L, Xu Y, Yu L, Liu Y, et al. Cardiomyocyte-specific loss of RMP causes myocardial dysfunction and heart failure. Cardiovasc Res. 2018;: pubmed 出版商
  90. LeBlanc L, Lee B, Yu A, Kim M, Kambhampati A, Dupont S, et al. Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation. elife. 2018;7: pubmed 出版商
  91. Smith M, Tahir S. Quantification of BCL-2 Family Members by Flow Cytometry. Methods Mol Biol. 2019;1877:163-172 pubmed 出版商
  92. Liang C, Ma Y, Yong L, Yang C, Wang P, Liu X, et al. Y-box binding protein-1 promotes tumorigenesis and progression via the epidermal growth factor receptor/AKT pathway in spinal chordoma. Cancer Sci. 2019;110:166-179 pubmed 出版商
  93. Yin D, Li Y, Fu C, Feng Y. Pro-Angiogenic Role of LncRNA HULC in Microvascular Endothelial Cells via Sequestrating miR-124. Cell Physiol Biochem. 2018;50:2188-2202 pubmed 出版商
  94. Li H, Feng J, Zhang Y, Feng J, Wang Q, Zhao S, et al. Mst1 deletion attenuates renal ischaemia-reperfusion injury: The role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway. Redox Biol. 2019;20:261-274 pubmed 出版商
  95. De R, Sarkar S, Mazumder S, Debsharma S, Siddiqui A, Saha S, et al. Macrophage migration inhibitory factor regulates mitochondrial dynamics and cell growth of human cancer cell lines through CD74-NF-κB signaling. J Biol Chem. 2018;293:19740-19760 pubmed 出版商
  96. Wu R, Yang H, Wan J, Deng X, Chen L, Hao S, et al. Knockdown of the Hippo transducer YAP reduces proliferation and promotes apoptosis in the Jurkat leukemia cell. Mol Med Rep. 2018;18:5379-5388 pubmed 出版商
  97. Li W, Yue F, Dai Y, Shi B, Xu G, Jiang X, et al. Suppressor of hepatocellular carcinoma RASSF1A activates autophagy initiation and maturation. Cell Death Differ. 2018;: pubmed 出版商
  98. Zhao H, Pan W, Chen L, Luo Y, Xu R. Nur77 promotes cerebral ischemia-reperfusion injury via activating INF2-mediated mitochondrial fragmentation. J Mol Histol. 2018;49:599-613 pubmed 出版商
  99. Park J, Lee J, Sheu K, Wang L, Balanis N, Nguyen K, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 2018;362:91-95 pubmed 出版商
  100. Yue D, Sun X. Idelalisib promotes Bim-dependent apoptosis through AKT/FoxO3a in hepatocellular carcinoma. Cell Death Dis. 2018;9:935 pubmed 出版商
  101. Lee E, Ouzounova M, Piranlioglu R, Ma M, Guzel M, Marasco D, et al. The pleiotropic effects of TNFα in breast cancer subtypes is regulated by TNFAIP3/A20. Oncogene. 2019;38:469-482 pubmed 出版商
  102. Greenhough A, Bagley C, Heesom K, Gurevich D, Gay D, Bond M, et al. Cancer cell adaptation to hypoxia involves a HIF-GPRC5A-YAP axis. EMBO Mol Med. 2018;10: pubmed 出版商
  103. Pearce M, Gamble J, Kopparapu P, O Donnell E, Mueller M, Jang H, et al. Induction of apoptosis and suppression of tumor growth by Nur77-derived Bcl-2 converting peptide in chemoresistant lung cancer cells. Oncotarget. 2018;9:26072-26085 pubmed 出版商
  104. LI Y, Du L, Aldana Masangkay G, Wang X, Urak R, Forman S, et al. Regulation of miR-34b/c-targeted gene expression program by SUMOylation. Nucleic Acids Res. 2018;: pubmed 出版商
  105. Li R, Sahu S, Schachner M. Phenelzine, a small organic compound mimicking the functions of cell adhesion molecule L1, promotes functional recovery after mouse spinal cord injury. Restor Neurol Neurosci. 2018;36:469-483 pubmed 出版商
  106. Yang M, Li C, Zhu S, Cao L, Kroemer G, Zeh H, et al. TFAM is a novel mediator of immunogenic cancer cell death. Oncoimmunology. 2018;7:e1431086 pubmed 出版商
  107. Pan B, Wu L, Pan L, Yang Y, Li H, Dai Y, et al. Up-regulation of microRNA-340 promotes osteosarcoma cell apoptosis while suppressing proliferation, migration, and invasion by inactivating the CTNNB1-mediated Notch signaling pathway. Biosci Rep. 2018;38: pubmed 出版商
  108. Wang J, Wang F, Zhu J, Song M, An J, Li W. Transcriptome Profiling Reveals PHLDA1 as a Novel Molecular Marker for Ischemic Cardiomyopathy. J Mol Neurosci. 2018;65:102-109 pubmed 出版商
  109. Han F, Xia X, Dou M, Wang Y, Xue W, Ding X, et al. Arctigenin: A two-edged sword in ischemia/reperfusion induced acute kidney injury. Biomed Pharmacother. 2018;103:1127-1136 pubmed 出版商
  110. Xiao G, Chan L, Klemm L, Braas D, Chen Z, Geng H, et al. B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. Cell. 2018;173:470-484.e18 pubmed 出版商
  111. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  112. Yang R, Tao Z, Huang M, Zheng Y, Dai M, Zou Y, et al. Knockout of the placenta specific 8 gene radiosensitizes nasopharyngeal carcinoma cells by activating the PI3K/AKT/GSK3β pathway. Am J Transl Res. 2018;10:455-464 pubmed
  113. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau D, Zavala E, et al. NAD+ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018;115:E1876-E1885 pubmed 出版商
  114. Tan X, Banerjee P, Liu X, Yu J, Gibbons D, Wu P, et al. The epithelial-to-mesenchymal transition activator ZEB1 initiates a prometastatic competing endogenous RNA network. J Clin Invest. 2018;128:1267-1282 pubmed 出版商
  115. Bogenberger J, Whatcott C, Hansen N, Delman D, Shi C, Kim W, et al. Combined venetoclax and alvocidib in acute myeloid leukemia. Oncotarget. 2017;8:107206-107222 pubmed 出版商
  116. Shuang W, Hou L, Zhu Y, Li Q, Hu W. Mcl-1 stabilization confers resistance to taxol in human gastric cancer. Oncotarget. 2017;8:82981-82990 pubmed 出版商
  117. Zhao X, Huang L, Xu W, Chen X, Shen Y, Zeng W, et al. Physapubescin B inhibits tumorgenesis and circumvents taxol resistance of ovarian cancer cells through STAT3 signaling. Oncotarget. 2017;8:70130-70141 pubmed 出版商
  118. Xie Z, Enkhjargal B, Wu L, Zhou K, Sun C, Hu X, et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142-151 pubmed 出版商
  119. Shimono J, Miyoshi H, Kamimura T, Eto T, Miyagishima T, Sasaki Y, et al. Clinicopathological features of primary splenic follicular lymphoma. Ann Hematol. 2017;96:2063-2070 pubmed 出版商
  120. Zou Y, Qiu G, Jiang L, Cai Z, Sun W, Hu H, et al. Overexpression of ubiquitin specific proteases 44 promotes the malignancy of glioma by stabilizing tumor-promoter securin. Oncotarget. 2017;8:58231-58246 pubmed 出版商
  121. Vu L, Pickering B, Cheng Y, Zaccara S, Nguyen D, Minuesa G, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23:1369-1376 pubmed 出版商
  122. Yu J, Wu H, Liu Z, Zhu Q, Shan C, Zhang K. Advanced glycation end products induce the apoptosis of and inflammation in mouse podocytes through CXCL9-mediated JAK2/STAT3 pathway activation. Int J Mol Med. 2017;40:1185-1193 pubmed 出版商
  123. Rocchi A, Yamamoto S, Ting T, Fan Y, SADLEIR K, Wang Y, et al. A Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer's disease. PLoS Genet. 2017;13:e1006962 pubmed 出版商
  124. Zhang Y, Chen P, Hong H, Wang L, Zhou Y, Lang Y. JNK pathway mediates curcumin-induced apoptosis and autophagy in osteosarcoma MG63 cells. Exp Ther Med. 2017;14:593-599 pubmed 出版商
  125. Patel N, Garikapati K, Pandita R, Singh D, Pandita T, Bhadra U, et al. miR-15a/miR-16 down-regulates BMI1, impacting Ub-H2A mediated DNA repair and breast cancer cell sensitivity to doxorubicin. Sci Rep. 2017;7:4263 pubmed 出版商
  126. Verdanet E, Dereure O, René C, Tempier A, Benammar Hafidi A, Gallo M, et al. Diagnostic value of STMN1, LMO2, HGAL, AID expression and 1p36 chromosomal abnormalities in primary cutaneous B cell lymphomas. Histopathology. 2017;71:648-660 pubmed 出版商
  127. Xu X, Cui Y, Cao L, Zhang Y, Yin Y, Hu X. PCSK9 regulates apoptosis in human lung adenocarcinoma A549 cells via endoplasmic reticulum stress and mitochondrial signaling pathways. Exp Ther Med. 2017;13:1993-1999 pubmed 出版商
  128. Angori S, Capanni C, Faulkner G, Bean C, Boriani G, Lattanzi G, et al. Emery-Dreifuss Muscular Dystrophy-Associated Mutant Forms of Lamin A Recruit the Stress Responsive Protein Ankrd2 into the Nucleus, Affecting the Cellular Response to Oxidative Stress. Cell Physiol Biochem. 2017;42:169-184 pubmed 出版商
  129. Zhang Z, Huang A, Zhang A, Zhou C. HuR promotes breast cancer cell proliferation and survival via binding to CDK3 mRNA. Biomed Pharmacother. 2017;91:788-795 pubmed 出版商
  130. Yue X, Zuo Y, Ke H, Luo J, Lou L, Qin W, et al. Identification of 4-arylidene curcumin analogues as novel proteasome inhibitors for potential anticancer agents targeting 19S regulatory particle associated deubiquitinase. Biochem Pharmacol. 2017;137:29-50 pubmed 出版商
  131. Xie Y, Ma W, Meng J, Ren X. Knockdown of ZFPL1 results in increased autophagy and autophagy‑related cell death in NCI‑N87 and BGC‑823 human gastric carcinoma cell lines. Mol Med Rep. 2017;15:2633-2642 pubmed 出版商
  132. Liu Y, Chen X, Li J. Resveratrol protects against oxidized low‑density lipoprotein‑induced human umbilical vein endothelial cell apoptosis via inhibition of mitochondrial‑derived oxidative stress. Mol Med Rep. 2017;15:2457-2464 pubmed 出版商
  133. Lian W, Zhang L, Yang L, Chen W. AP-2α reverses vincristine-induced multidrug resistance of SGC7901 gastric cancer cells by inhibiting the Notch pathway. Apoptosis. 2017;22:933-941 pubmed 出版商
  134. Lee T, Pelletier J. Dependence of p53-deficient cells on the DHX9 DExH-box helicase. Oncotarget. 2017;8:30908-30921 pubmed 出版商
  135. Sun J, Zhang X, Sun Y, Tang Z, Guo D. Effects of Hylomecon vernalis ethanol extracts on cell cycle and apoptosis of colon cancer cells. Mol Med Rep. 2017;15:3485-3492 pubmed 出版商
  136. Gao Y, Zhuang Z, Gao S, Li X, Zhang Z, Ye Z, et al. Tetrahydrocurcumin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury. Am J Transl Res. 2017;9:887-899 pubmed
  137. Jelinek M, Kabelova A, Srámek J, Seitz J, Ojima I, Kovar J. Differing Mechanisms of Death Induction by Fluorinated Taxane SB-T-12854 in Breast Cancer Cells. Anticancer Res. 2017;37:1581-1590 pubmed
  138. Paterniti I, Campolo M, Siracusa R, Cordaro M, Di Paola R, Calabrese V, et al. Liver X receptors activation, through TO901317 binding, reduces neuroinflammation in Parkinson's disease. PLoS ONE. 2017;12:e0174470 pubmed 出版商
  139. Ji X, Pan C, Li X, Gao Y, Xia L, Quan X, et al. Trametes robiniophila may induce apoptosis and inhibit MMPs expression in the human gastric carcinoma cell line MKN-45. Oncol Lett. 2017;13:841-846 pubmed 出版商
  140. Yokoyama T, Kohn E, Brill E, Lee J. Apoptosis is augmented in high-grade serous ovarian cancer by the combined inhibition of Bcl-2/Bcl-xL and PARP. Int J Oncol. 2017;: pubmed 出版商
  141. Mytych J, Romerowicz Misielak M, Koziorowski M. Long-term culture with lipopolysaccharide induces dose-dependent cytostatic and cytotoxic effects in THP-1 monocytes. Toxicol In Vitro. 2017;42:1-9 pubmed 出版商
  142. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  143. Tian Y, Wu X, Guo S, Ma L, Huang W, Zhao X. Minocycline attenuates sevoflurane-induced cell injury via activation of Nrf2. Int J Mol Med. 2017;39:869-878 pubmed 出版商
  144. Fu S, Xu H, Gu M, Liu C, Wang Q, Wan X, et al. Adiponectin deficiency contributes to the development and progression of benign prostatic hyperplasia in obesity. Sci Rep. 2017;7:43771 pubmed 出版商
  145. Zhang H, Wang Y, Liu Z, Yao B, Dou C, Xu M, et al. Lymphocyte-specific protein 1 inhibits the growth of hepatocellular carcinoma by suppressing ERK1/2 phosphorylation. FEBS Open Bio. 2016;6:1227-1237 pubmed 出版商
  146. Cen M, Hu P, Cai Z, Fang T, Zhang J, Lu M. TIEG1 deficiency confers enhanced myocardial protection in the infarcted heart by mediating the Pten/Akt signalling pathway. Int J Mol Med. 2017;39:569-578 pubmed 出版商
  147. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  148. Wu Q, Yan H, Tao S, Wang X, Mou L, Chen P, et al. XIAP 3'-untranslated region as a ceRNA promotes FSCN1 function in inducing the progression of breast cancer by binding endogenous miR-29a-5p. Oncotarget. 2017;8:16784-16800 pubmed 出版商
  149. Dong Q, Fu L, Zhao Y, Tan S, Wang E. Derlin-1 overexpression confers poor prognosis in muscle invasive bladder cancer and contributes to chemoresistance and invasion through PI3K/AKT and ERK/MMP signaling. Oncotarget. 2017;8:17059-17069 pubmed 出版商
  150. Jeffery H, Jeffery L, Lutz P, Corrigan M, Webb G, Hirschfield G, et al. Low-dose interleukin-2 promotes STAT-5 phosphorylation, Treg survival and CTLA-4-dependent function in autoimmune liver diseases. Clin Exp Immunol. 2017;188:394-411 pubmed 出版商
  151. Cayrol F, Praditsuktavorn P, Fernando T, Kwiatkowski N, Marullo R, Calvo Vidal M, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:14290 pubmed 出版商
  152. Li M, Yuan Y, Hu B, Wu L. Study on Lentivirus-Mediated ABCA7 Improves Neurocognitive Function and Related Mechanisms in the C57BL/6 Mouse Model of Alzheimer's Disease. J Mol Neurosci. 2017;61:489-497 pubmed 出版商
  153. Cai L, Wang H, Yang Q. CRKL overexpression promotes cell proliferation and inhibits apoptosis in endometrial carcinoma. Oncol Lett. 2017;13:51-56 pubmed 出版商
  154. Choi I, Hwang L, Jin J, Ko I, Kim S, Shin M, et al. Dexmedetomidine alleviates cerebral ischemia-induced short-term memory impairment by inhibiting the expression of apoptosis-related molecules in the hippocampus of gerbils. Exp Ther Med. 2017;13:107-116 pubmed 出版商
  155. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  156. Graziano A, Cardile V, Avola R, Vicario N, Parenti C, Salvatorelli L, et al. Wilms' tumor gene 1 silencing inhibits proliferation of human osteosarcoma MG-63 cell line by cell cycle arrest and apoptosis activation. Oncotarget. 2017;8:13917-13931 pubmed 出版商
  157. Huang Y, Chen N, Miao D. Radioprotective effects of pyrroloquinoline quinone on parotid glands in C57BL/6J mice. Exp Ther Med. 2016;12:3685-3693 pubmed 出版商
  158. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed 出版商
  159. Chandravanshi B, Bhonde R. Shielding Engineered Islets With Mesenchymal Stem Cells Enhance Survival Under Hypoxia. J Cell Biochem. 2017;118:2672-2683 pubmed 出版商
  160. Candanedo Gonzalez F, Ortiz Arce C, Rosales Perez S, Remirez Castellanos A, Cordova Uscanga C, Gamboa Dominguez A. Immunohistochemical features of giant cell ependymoma of the filum terminale with unusual clinical and radiological presentation. Diagn Pathol. 2017;12:7 pubmed 出版商
  161. Schenk R, Tuzlak S, Carrington E, Zhan Y, Heinzel S, Teh C, et al. Characterisation of mice lacking all functional isoforms of the pro-survival BCL-2 family member A1 reveals minor defects in the haematopoietic compartment. Cell Death Differ. 2017;24:534-545 pubmed 出版商
  162. Silva B, Barbosa M, Andrade P, Ferreira H, Nery J, Corte Real S, et al. Autophagy Is an Innate Mechanism Associated with Leprosy Polarization. PLoS Pathog. 2017;13:e1006103 pubmed 出版商
  163. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  164. Mytych J, Wos I, Solek P, Koziorowski M. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes. Exp Cell Res. 2017;350:358-367 pubmed 出版商
  165. Ren Z, Aerts J, Vandenplas H, Wang J, Gorbenko O, Chen J, et al. Phosphorylated STAT5 regulates p53 expression via BRCA1/BARD1-NPM1 and MDM2. Cell Death Dis. 2016;7:e2560 pubmed 出版商
  166. Zhang W, Kang M, Zhang T, Li B, Liao X, Wang R. Triptolide Combined with Radiotherapy for the Treatment of Nasopharyngeal Carcinoma via NF-κB-Related Mechanism. Int J Mol Sci. 2016;17: pubmed 出版商
  167. Li Y, Buijs Gladdines J, Cant Barrett K, Stubbs A, Vroegindeweij E, Smits W, et al. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study. PLoS Med. 2016;13:e1002200 pubmed 出版商
  168. Xiao F, Zhang J, Zhang C, An W. Hepatic stimulator substance inhibits calcium overflow through the mitochondria-associated membrane compartment during nonalcoholic steatohepatitis. Lab Invest. 2017;97:289-301 pubmed 出版商
  169. Ohs I, Van Den Broek M, Nussbaum K, MUNZ C, Arnold S, Quezada S, et al. Interleukin-12 bypasses common gamma-chain signalling in emergency natural killer cell lymphopoiesis. Nat Commun. 2016;7:13708 pubmed 出版商
  170. Sasaki C, Toman J, Vageli D. The In Vitro Effect of Acidic-Pepsin on Nuclear Factor KappaB Activation and Its Related Oncogenic Effect on Normal Human Hypopharyngeal Cells. PLoS ONE. 2016;11:e0168269 pubmed 出版商
  171. Kattaia A, Abd El Baset S, Mohamed E, Abdul Maksou R, Elfakharany Y. Molecular mechanisms underlying histological and biochemical changes induced by nitrate in rat liver and the efficacy of S-Allylcysteine. Ultrastruct Pathol. 2017;41:10-22 pubmed 出版商
  172. Suzuki J, Nakajima W, Suzuki H, Asano Y, Tanaka N. Chaperone-mediated autophagy promotes lung cancer cell survival through selective stabilization of the pro-survival protein, MCL1. Biochem Biophys Res Commun. 2017;482:1334-1340 pubmed 出版商
  173. Yu G, Dou Z, Jia Z. 5?bromo?3?(3?hydroxyprop?1?ynyl)?2H?pyran?2?one induces apoptosis in T24 human bladder cancer cells through mitochondria-dependent signaling pathways. Mol Med Rep. 2017;15:153-159 pubmed 出版商
  174. He X, Liu Z, Xia Y, Xu J, Lv G, Wang L, et al. HOXB7 overexpression promotes cell proliferation and correlates with poor prognosis in gastric cancer patients by inducing expression of both AKT and MARKs. Oncotarget. 2017;8:1247-1261 pubmed 出版商
  175. Liu Z, Gan L, Wu T, Feng F, Luo D, Gu H, et al. Adiponectin reduces ER stress-induced apoptosis through PPARα transcriptional regulation of ATF2 in mouse adipose. Cell Death Dis. 2016;7:e2487 pubmed 出版商
  176. Su F, Myers V, Knezevic T, Wang J, Gao E, Madesh M, et al. Bcl-2-associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI Insight. 2016;1:e90931 pubmed 出版商
  177. Zhu X, Wang K, Zhang K, Zhang T, Yin Y, Xu F. Ziyuglycoside I Inhibits the Proliferation of MDA-MB-231 Breast Carcinoma Cells through Inducing p53-Mediated G2/M Cell Cycle Arrest and Intrinsic/Extrinsic Apoptosis. Int J Mol Sci. 2016;17: pubmed
  178. Singh A, Agrahari A, Singh R, Yadav S, Srivastava V, Parmar D. Imprinting of cerebral cytochrome P450s in offsprings prenatally exposed to cypermethrin augments toxicity on rechallenge. Sci Rep. 2016;6:37426 pubmed 出版商
  179. Martínez Castillo M, Bonilla Moreno R, Alemán Lazarini L, Meraz Rios M, Orozco L, Cedillo Barron L, et al. A Subpopulation of the K562 Cells Are Killed by Curcumin Treatment after G2/M Arrest and Mitotic Catastrophe. PLoS ONE. 2016;11:e0165971 pubmed 出版商
  180. Carreras J, Kikuti Y, Bea S, Miyaoka M, Hiraiwa S, Ikoma H, et al. Clinicopathological characteristics and genomic profile of primary sinonasal tract diffuse large B cell lymphoma (DLBCL) reveals gain at 1q31 and RGS1 encoding protein; high RGS1 immunohistochemical expression associates with poor overall survival in. Histopathology. 2017;70:595-621 pubmed 出版商
  181. Dey K, Bharti R, Dey G, Pal I, Rajesh Y, Chavan S, et al. S100A7 has an oncogenic role in oral squamous cell carcinoma by activating p38/MAPK and RAB2A signaling pathway. Cancer Gene Ther. 2016;23:382-391 pubmed 出版商
  182. Huang M, Garcia J, Thomas D, Zhu L, Nguyen L, Chan S, et al. Autophagy mediates proteolysis of NPM1 and HEXIM1 and sensitivity to BET inhibition in AML cells. Oncotarget. 2016;7:74917-74930 pubmed 出版商
  183. Alexander Savino C, Hayden M, Richardson C, Zhao J, Poligone B. Doxycycline is an NF-κB inhibitor that induces apoptotic cell death in malignant T-cells. Oncotarget. 2016;7:75954-75967 pubmed 出版商
  184. Rodina A, Wang T, Yan P, Gomes E, Dunphy M, Pillarsetty N, et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature. 2016;538:397-401 pubmed 出版商
  185. Zhan Y, Mou L, Cheng K, Wang C, Deng X, Chen J, et al. Hepatocellular carcinoma stem cell-like cells are enriched following low-dose 5-fluorouracil chemotherapy. Oncol Lett. 2016;12:2511-2516 pubmed
  186. Xu Y, Ding G, Huang J, Xiong Y. Tanshinone IIA pretreatment attenuates ischemia/reperfusion-induced renal injury. Exp Ther Med. 2016;12:2741-2746 pubmed
  187. Schubert C, Raparelli V, Westphal C, Dworatzek E, Petrov G, Kararigas G, et al. Reduction of apoptosis and preservation of mitochondrial integrity under ischemia/reperfusion injury is mediated by estrogen receptor ?. Biol Sex Differ. 2016;7:53 pubmed 出版商
  188. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  189. Soon G, Ow G, Chan H, Ng S, Wang S. Primary cardiac diffuse large B-cell lymphoma in immunocompetent patients: clinical, histologic, immunophenotypic, and genotypic features of 3 cases. Ann Diagn Pathol. 2016;24:40-6 pubmed 出版商
  190. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  191. Ranjan K, Pathak C. Expression of FADD and cFLIPL balances mitochondrial integrity and redox signaling to substantiate apoptotic cell death. Mol Cell Biochem. 2016;422:135-150 pubmed
  192. Gallo M, Cacheux V, Vincent L, Bret C, Tempier A, Guittard C, et al. Leukemic non-nodal mantle cell lymphomas have a distinct phenotype and are associated with deletion of PARP1 and 13q14. Virchows Arch. 2016;469:697-706 pubmed
  193. Lee J, Jung H, Han Y, Yoon Y, Yun C, Sun H, et al. Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells. Mol Med Rep. 2016;14:3777-84 pubmed 出版商
  194. Peng Y, Miao H, Wu S, Yang W, Zhang Y, Xie G, et al. ABHD5 interacts with BECN1 to regulate autophagy and tumorigenesis of colon cancer independent of PNPLA2. Autophagy. 2016;12:2167-2182 pubmed
  195. Cheng S, Jiang X, Ding C, Du C, Owusu Ansah K, Weng X, et al. Expression and Critical Role of Interleukin Enhancer Binding Factor 2 in Hepatocellular Carcinoma. Int J Mol Sci. 2016;17: pubmed 出版商
  196. Jinesh G, Molina J, Huang L, Laing N, Mills G, Bar Eli M, et al. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis. Cell Death Discov. 2016;2:16003 pubmed 出版商
  197. Pomares H, Palmeri C, Iglesias Serret D, Moncunill Massaguer C, Saura Esteller J, Núñez Vázquez S, et al. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells. Oncotarget. 2016;7:64987-65000 pubmed 出版商
  198. Wang H, Li M, Hung C, Sinha M, Lee L, Wiesner D, et al. MyD88 Shapes Vaccine Immunity by Extrinsically Regulating Survival of CD4+ T Cells during the Contraction Phase. PLoS Pathog. 2016;12:e1005787 pubmed 出版商
  199. Liu Y, Wang Y, Ding G, Yang T, Yao L, Hua J, et al. JAK2 inhibitor combined with DC-activated AFP-specific T-cells enhances antitumor function in a Fas/FasL signal-independent pathway. Onco Targets Ther. 2016;9:4425-33 pubmed 出版商
  200. Weyhenmeyer B, Noonan J, Würstle M, Lincoln F, Johnston G, Rehm M, et al. Predicting the cell death responsiveness and sensitization of glioma cells to TRAIL and temozolomide. Oncotarget. 2016;7:61295-61311 pubmed 出版商
  201. Shen H, Zhao L, Feng X, Xu C, Li C, Niu Y. Lin28A activates androgen receptor via regulation of c-myc and promotes malignancy of ER-/Her2+ breast cancer. Oncotarget. 2016;7:60407-60418 pubmed 出版商
  202. Li C, Li Q, Cai Y, He Y, Lan X, Wang W, et al. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis. Cancer Gene Ther. 2016;23:295-302 pubmed 出版商
  203. Tang Y, Bao W, Yang J, Ma L, Yang J, Xu Y, et al. Umbilical cord-derived mesenchymal stem cells inhibit growth and promote apoptosis of HepG2 cells. Mol Med Rep. 2016;14:2717-24 pubmed 出版商
  204. Ren X, Liu H, Zhang M, Wang M, Ma S. Co-expression of ING4 and P53 enhances hypopharyngeal cancer chemosensitivity to cisplatin in vivo. Mol Med Rep. 2016;14:2431-8 pubmed 出版商
  205. Debliquis A, Voirin J, Harzallah I, Maurer M, Lerintiu F, Drenou B, et al. Cytomorphology and flow cytometry of brain biopsy rinse fluid enables faster and multidisciplinary diagnosis of large B-cell lymphoma of the central nervous system. Cytometry B Clin Cytom. 2018;94:182-188 pubmed 出版商
  206. Martinez L, Thames E, Kim J, Chaudhuri G, Singh R, Pervin S. Increased sensitivity of African American triple negative breast cancer cells to nitric oxide-induced mitochondria-mediated apoptosis. BMC Cancer. 2016;16:559 pubmed 出版商
  207. Wang Y, Wang Y, Li G. TRPC1/TRPC3 channels mediate lysophosphatidylcholine-induced apoptosis in cultured human coronary artery smooth muscles cells. Oncotarget. 2016;7:50937-50951 pubmed 出版商
  208. Pang J, Wu Y, Peng J, Yang P, Kuai L, Qin X, et al. Potential implications of Apolipoprotein E in early brain injury after experimental subarachnoid hemorrhage: Involvement in the modulation of blood-brain barrier integrity. Oncotarget. 2016;7:56030-56044 pubmed 出版商
  209. Engel N, Ali I, Adamus A, Frank M, Dad A, Ali S, et al. Antitumor evaluation of two selected Pakistani plant extracts on human bone and breast cancer cell lines. BMC Complement Altern Med. 2016;16:244 pubmed 出版商
  210. Jeong H, Cho Y, Kim K, Kim Y, Kim K, Na Y, et al. Anti-lipoapoptotic effects of Alisma orientalis extract on non-esterified fatty acid-induced HepG2 cells. BMC Complement Altern Med. 2016;16:239 pubmed 出版商
  211. Zhao Y, Zhang B, Lei Y, Sun J, Zhang Y, Yang S, et al. Knockdown of USP39 induces cell cycle arrest and apoptosis in melanoma. Tumour Biol. 2016;37:13167-13176 pubmed
  212. Yu X, Sun K, Tang X, Zhou C, Sun H, Yan Z, et al. Harmine combined with paclitaxel inhibits tumor proliferation and induces apoptosis through down-regulation of cyclooxygenase-2 expression in gastric cancer. Oncol Lett. 2016;12:983-988 pubmed
  213. Geng J, Li J, Huang T, Zhao K, Chen Q, Guo W, et al. A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria. Mol Med Rep. 2016;14:1970-8 pubmed 出版商
  214. Ma T, Fan B, Zhang C, Zhao H, Han C, Gao C, et al. Metabonomics applied in exploring the antitumour mechanism of physapubenolide on hepatocellular carcinoma cells by targeting glycolysis through the Akt-p53 pathway. Sci Rep. 2016;6:29926 pubmed 出版商
  215. Ahmed N, Murakami M, Hirose Y, Nakashima M. Therapeutic Potential of Dental Pulp Stem Cell Secretome for Alzheimer's Disease Treatment: An In Vitro Study. Stem Cells Int. 2016;2016:8102478 pubmed 出版商
  216. Yang W, Ng F, Chan K, Pu X, Poston R, Ren M, et al. Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1/COL4A2 Locus Affects COL4A1/COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction. PLoS Genet. 2016;12:e1006127 pubmed 出版商
  217. Peng H, Cheng Y, Hsu Y, Wu G, Kuo C, Liou J, et al. MPT0B098, a Microtubule Inhibitor, Suppresses JAK2/STAT3 Signaling Pathway through Modulation of SOCS3 Stability in Oral Squamous Cell Carcinoma. PLoS ONE. 2016;11:e0158440 pubmed 出版商
  218. Takagi Y, Shimada K, Shimada S, Sakamoto A, Naoe T, Nakamura S, et al. SPIB is a novel prognostic factor in diffuse large B-cell lymphoma that mediates apoptosis via the PI3K-AKT pathway. Cancer Sci. 2016;107:1270-80 pubmed 出版商
  219. Zhou X, Wei Y, Qiu S, Xu Y, Zhang T, Zhang S. Propofol Decreases Endoplasmic Reticulum Stress-Mediated Apoptosis in Retinal Pigment Epithelial Cells. PLoS ONE. 2016;11:e0157590 pubmed 出版商
  220. Tagscherer K, Fassl A, Sinkovic T, Richter J, Schecher S, Macher Goeppinger S, et al. MicroRNA-210 induces apoptosis in colorectal cancer via induction of reactive oxygen. Cancer Cell Int. 2016;16:42 pubmed 出版商
  221. Qi L, Lv X, Zhang T, Jia P, Yan R, Li S, et al. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells. Sci Rep. 2016;6:26961 pubmed 出版商
  222. Amara S, Zheng M, Tiriveedhi V. Oleanolic Acid Inhibits High Salt-Induced Exaggeration of Warburg-like Metabolism in Breast Cancer Cells. Cell Biochem Biophys. 2016;74:427-34 pubmed 出版商
  223. Kawamura T, Kawatani M, Muroi M, Kondoh Y, Futamura Y, Aono H, et al. Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival. Sci Rep. 2016;6:26521 pubmed 出版商
  224. Zhang C, Li L, Zhao B, Jiao A, Li X, Sun N, et al. Ghrelin Protects against Dexamethasone-Induced INS-1 Cell Apoptosis via ERK and p38MAPK Signaling. Int J Endocrinol. 2016;2016:4513051 pubmed 出版商
  225. Dar A, Majid S, Bezrookove V, Phan B, Ursu S, Nosrati M, et al. BPTF transduces MITF-driven prosurvival signals in melanoma cells. Proc Natl Acad Sci U S A. 2016;113:6254-8 pubmed 出版商
  226. Hein A, Post C, Sheinin Y, Lakshmanan I, Natarajan A, Enke C, et al. RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment. Oncogene. 2016;35:6319-6329 pubmed 出版商
  227. Gao Z, Liu Z, Bi M, Zhang J, Han Z, Han X, et al. Metformin induces apoptosis via a mitochondria-mediated pathway in human breast cancer cells in vitro. Exp Ther Med. 2016;11:1700-1706 pubmed
  228. Tuşaliu M, Zainea V, Mogoantă C, Dragu A, GoanŢă C, Niţescu M, et al. Diagnostic and therapeutic aspects in malignant sinonasal lymphoma. Rom J Morphol Embryol. 2016;57:233-6 pubmed
  229. Wang Y, Li Y, Song L, Li Y, Jiang S, Zhang S. The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits. Mol Med Rep. 2016;14:234-42 pubmed 出版商
  230. Cook A, McDonnell A, Lake R, Nowak A. Dexamethasone co-medication in cancer patients undergoing chemotherapy causes substantial immunomodulatory effects with implications for chemo-immunotherapy strategies. Oncoimmunology. 2016;5:e1066062 pubmed
  231. Thomas R, Demeter Z, Kennedy K, Borst L, Singh K, Valli V, et al. Integrated immunohistochemical and DNA copy number profiling analysis provides insight into the molecular pathogenesis of canine follicular lymphoma. Vet Comp Oncol. 2017;15:852-867 pubmed 出版商
  232. Huang Q, Zhan L, Cao H, Li J, Lyu Y, Guo X, et al. Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways. Autophagy. 2016;12:999-1014 pubmed 出版商
  233. Strappazzon F, Di Rita A, Cianfanelli V, D Orazio M, Nazio F, Fimia G, et al. Prosurvival AMBRA1 turns into a proapoptotic BH3-like protein during mitochondrial apoptosis. Autophagy. 2016;12:963-75 pubmed 出版商
  234. Yao J, Wang Y, Fang B, Zhang S, Cheng B. piR-651 and its function in 95-D lung cancer cells. Biomed Rep. 2016;4:546-550 pubmed
  235. Pallis M, Burrows F, Ryan J, Grundy M, Seedhouse C, Abdul Aziz A, et al. Complementary dynamic BH3 profiles predict co-operativity between the multi-kinase inhibitor TG02 and the BH3 mimetic ABT-199 in acute myeloid leukaemia cells. Oncotarget. 2017;8:16220-16232 pubmed 出版商
  236. Pires A, Marques C, Encarnação J, Abrantes A, Mamede A, Laranjo M, et al. Ascorbic acid and colon cancer: an oxidative stimulus to cell death depending on cell profile. Eur J Cell Biol. 2016;95:208-18 pubmed 出版商
  237. Zeng W, Liu Q, Chen Z, Wu X, Zhong Y, Wu J. Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-?B Pathway. J Cancer. 2016;7:746-57 pubmed 出版商
  238. Conway A, Van Nostrand E, Pratt G, Aigner S, Wilbert M, Sundararaman B, et al. Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival. Cell Rep. 2016;15:666-679 pubmed 出版商
  239. O Neill K, Huang K, Zhang J, Chen Y, Luo X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 2016;30:973-88 pubmed 出版商
  240. Zheng G, Li N, Jia X, Peng C, Luo L, Deng Y, et al. MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J Mol Med (Berl). 2016;94:1129-1141 pubmed
  241. Takeuchi H, Taoka R, Mmeje C, Jinesh G, Safe S, Kamat A. CDODA-Me decreases specificity protein transcription factors and induces apoptosis in bladder cancer cells through induction of reactive oxygen species. Urol Oncol. 2016;34:337.e11-8 pubmed 出版商
  242. Wang H, Zhang H, Chen X, Zhao T, Kong Q, Yan M, et al. The decreased expression of electron transfer flavoprotein ? is associated with tubular cell apoptosis in diabetic nephropathy. Int J Mol Med. 2016;37:1290-8 pubmed 出版商
  243. Li J, Chen K, Li S, Liu T, Wang F, Xia Y, et al. Pretreatment with Fucoidan from Fucus vesiculosus Protected against ConA-Induced Acute Liver Injury by Inhibiting Both Intrinsic and Extrinsic Apoptosis. PLoS ONE. 2016;11:e0152570 pubmed 出版商
  244. Garcia C, Videla Richardson G, Dimopoulos N, Fernandez Espinosa D, Miriuka S, Sevlever G, et al. Human Pluripotent Stem Cells and Derived Neuroprogenitors Display Differential Degrees of Susceptibility to BH3 Mimetics ABT-263, WEHI-539 and ABT-199. PLoS ONE. 2016;11:e0152607 pubmed 出版商
  245. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed 出版商
  246. Li B, Chen D, Li W, Xiao D. 20(S)-Protopanaxadiol saponins inhibit SKOV3 cell migration. Oncol Lett. 2016;11:1693-1698 pubmed
  247. Salzman D, Nakamura K, Nallur S, Dookwah M, Metheetrairut C, Slack F, et al. miR-34 activity is modulated through 5'-end phosphorylation in response to DNA damage. Nat Commun. 2016;7:10954 pubmed 出版商
  248. Li Y, Ma H, Lu Y, Tan B, Xu L, Lawal T, et al. Menoprogen, a TCM Herbal Formula for Menopause, Increases Endogenous E2 in an Aged Rat Model of Menopause by Reducing Ovarian Granulosa Cell Apoptosis. Biomed Res Int. 2016;2016:2574637 pubmed 出版商
  249. Ranjan K, Pathak C. FADD regulates NF-κB activation and promotes ubiquitination of cFLIPL to induce apoptosis. Sci Rep. 2016;6:22787 pubmed 出版商
  250. Bozkurt K, Yalçın Y, ErdemoÄŸlu E, Tatar B, ErdemoÄŸlu E, Çerçi S, et al. The role of immunohistochemical adrenomedullin and Bcl-2 expression in development of type-1 endometrial adenocarcinoma: Adrenomedullin expression in endometrium. Pathol Res Pract. 2016;212:450-5 pubmed 出版商
  251. Qiao C, Lu N, Zhou Y, Ni T, Dai Y, Li Z, et al. Oroxylin A modulates mitochondrial function and apoptosis in human colon cancer cells by inducing mitochondrial translocation of wild-type p53. Oncotarget. 2016;7:17009-20 pubmed 出版商
  252. van der Heijden M, Zimberlin C, Nicholson A, Colak S, Kemp R, Meijer S, et al. Bcl-2 is a critical mediator of intestinal transformation. Nat Commun. 2016;7:10916 pubmed 出版商
  253. van den Brand M, Balagué O, van Cleef P, Groenen P, Hebeda K, de Jong D, et al. A subset of low-grade B cell lymphomas with a follicular growth pattern but without a BCL2 translocation shows features suggestive of nodal marginal zone lymphoma. J Hematop. 2016;9:3-8 pubmed
  254. Brito A, Ribeiro M, Abrantes A, Mamede A, Laranjo M, Casalta Lopes J, et al. New Approach for Treatment of Primary Liver Tumors: The Role of Quercetin. Nutr Cancer. 2016;68:250-66 pubmed 出版商
  255. Barroso González J, Auclair S, Luan S, Thomas L, Atkins K, Aslan J, et al. PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ. 2016;23:1448-57 pubmed 出版商
  256. Kemp M, Sancar A. ATR Kinase Inhibition Protects Non-cycling Cells from the Lethal Effects of DNA Damage and Transcription Stress. J Biol Chem. 2016;291:9330-42 pubmed 出版商
  257. Jing H, Sun W, Fan J, Zhang Y, Yang J, Jia J, et al. Shikonin induces apoptosis of HaCaT cells via the mitochondrial, Erk and Akt pathways. Mol Med Rep. 2016;13:3009-16 pubmed 出版商
  258. Gilormini M, Malesys C, Armandy E, Manas P, Guy J, Magne N, et al. Preferential targeting of cancer stem cells in the radiosensitizing effect of ABT-737 on HNSCC. Oncotarget. 2016;7:16731-44 pubmed 出版商
  259. Yang C, Cui X, Dai X, Liao W. Downregulation of Foxc2 enhances apoptosis induced by 5-fluorouracil through activation of MAPK and AKT pathways in colorectal cancer. Oncol Lett. 2016;11:1549-1554 pubmed
  260. Adighibe O, Leek R, Fernandez Mercado M, Hu J, Snell C, Gatter K, et al. Why some tumours trigger neovascularisation and others don't: the story thus far. Chin J Cancer. 2016;35:18 pubmed 出版商
  261. Liu T, Fang Z, Wang G, Shi M, Wang X, Jiang K, et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol Lett. 2016;11:182-188 pubmed
  262. Lamba Saini M, Bouzin C, Weynand B, Marbaix E. An Appraisal of Proliferation and Apoptotic Markers in Papillary Thyroid Carcinoma: An Automated Analysis. PLoS ONE. 2016;11:e0148656 pubmed 出版商
  263. Fu X, Xie F, Dong P, Li Q, Yu G, Xiao R. High-Dose Fluoride Impairs the Properties of Human Embryonic Stem Cells via JNK Signaling. PLoS ONE. 2016;11:e0148819 pubmed 出版商
  264. Setoguchi R. IL-15 boosts the function and migration of human terminally differentiated CD8+ T cells by inducing a unique gene signature. Int Immunol. 2016;28:293-305 pubmed 出版商
  265. Zhang Y, Zou C, Yang S, Fu J. P120 catenin attenuates the angiotensin II-induced apoptosis of human umbilical vein endothelial cells by suppressing the mitochondrial pathway. Int J Mol Med. 2016;37:623-30 pubmed 出版商
  266. Chen B, Song G, Liu M, Qian L, Wang L, Gu H, et al. Inhibition of miR-29c promotes proliferation, and inhibits apoptosis and differentiation in P19 embryonic carcinoma cells. Mol Med Rep. 2016;13:2527-35 pubmed 出版商
  267. Li Y, Liu J, Gao D, Wei J, Yuan H, Niu X, et al. Age-related changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats. Mol Med Rep. 2016;13:2552-60 pubmed 出版商
  268. De Toni E, Ziesch A, Rizzani A, Török H, Hocke S, Lü S, et al. Inactivation of BRCA2 in human cancer cells identifies a subset of tumors with enhanced sensitivity towards death receptor-mediated apoptosis. Oncotarget. 2016;7:9477-90 pubmed 出版商
  269. Klumpp D, Misovic M, Szteyn K, Shumilina E, Rudner J, Huber S. Targeting TRPM2 Channels Impairs Radiation-Induced Cell Cycle Arrest and Fosters Cell Death of T Cell Leukemia Cells in a Bcl-2-Dependent Manner. Oxid Med Cell Longev. 2016;2016:8026702 pubmed 出版商
  270. Soriano A, París Coderch L, Jubierre L, Martínez A, Zhou X, Piskareva O, et al. MicroRNA-497 impairs the growth of chemoresistant neuroblastoma cells by targeting cell cycle, survival and vascular permeability genes. Oncotarget. 2016;7:9271-87 pubmed 出版商
  271. Chandrasekaran U, Yi W, Gupta S, Weng C, Giannopoulou E, Chinenov Y, et al. Regulation of Effector Treg Cells in Murine Lupus. Arthritis Rheumatol. 2016;68:1454-66 pubmed 出版商
  272. Wojtuszkiewicz A, Schuurhuis G, Kessler F, Piersma S, Knol J, Pham T, et al. Exosomes Secreted by Apoptosis-Resistant Acute Myeloid Leukemia (AML) Blasts Harbor Regulatory Network Proteins Potentially Involved in Antagonism of Apoptosis. Mol Cell Proteomics. 2016;15:1281-98 pubmed 出版商
  273. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  274. Wu M, Ai W, Chen L, Zhao S, Liu E. Bradykinin receptors and EphB2/EphrinB2 pathway in response to high glucose-induced osteoblast dysfunction and hyperglycemia-induced bone deterioration in mice. Int J Mol Med. 2016;37:565-74 pubmed 出版商
  275. Metz P, Lopez J, Kim S, Akimoto K, Ohno S, Chang J. Regulation of Asymmetric Division by Atypical Protein Kinase C Influences Early Specification of CD8(+) T Lymphocyte Fates. Sci Rep. 2016;6:19182 pubmed 出版商
  276. Cloonan S, Glass K, Laucho Contreras M, Bhashyam A, Cervo M, Pabón M, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med. 2016;22:163-74 pubmed 出版商
  277. Li W, Zou J, Yue F, Song K, Chen Q, McKeehan W, et al. Defects in MAP1S-mediated autophagy cause reduction in mouse lifespans especially when fibronectin is overexpressed. Aging Cell. 2016;15:370-9 pubmed 出版商
  278. Cao L, Li H, Lin W, Tan H, Xie L, Zhong Z, et al. Morphine, a potential antagonist of cisplatin cytotoxicity, inhibits cisplatin-induced apoptosis and suppression of tumor growth in nasopharyngeal carcinoma xenografts. Sci Rep. 2016;6:18706 pubmed 出版商
  279. Lub S, Maes A, Maes K, De Veirman K, De Bruyne E, Menu E, et al. Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells. Oncotarget. 2016;7:4062-76 pubmed 出版商
  280. Abdel Hamid A, Firgany A, Ali E. Effect of memantine: A NMDA receptor blocker, on ethambutol-induced retinal injury. Ann Anat. 2016;204:86-92 pubmed 出版商
  281. Bishayee A, Mandal A, Bhattacharyya P, Bhatia D. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis. Nutr Cancer. 2016;68:120-30 pubmed 出版商
  282. Ranjan K, Pathak C. Expression of cFLIPL Determines the Basal Interaction of Bcl-2 With Beclin-1 and Regulates p53 Dependent Ubiquitination of Beclin-1 During Autophagic Stress. J Cell Biochem. 2016;117:1757-68 pubmed 出版商
  283. Dupont T, Yang S, Patel J, Hatzi K, Malik A, Tam W, et al. Selective targeting of BCL6 induces oncogene addiction switching to BCL2 in B-cell lymphoma. Oncotarget. 2016;7:3520-32 pubmed 出版商
  284. Martínez Martínez M, Mosqueda Taylor A, Delgado Azañero W, Rumayor Piña A, de Almeida O. Primary intraosseous squamous cell carcinoma arising in an odontogenic keratocyst previously treated with marsupialization: case report and immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:e87-95 pubmed 出版商
  285. Bo Q, Sun X, Liu J, Sui X, Li G. Antitumor action of the peroxisome proliferator-activated receptor-γ agonist rosiglitazone in hepatocellular carcinoma. Oncol Lett. 2015;10:1979-1984 pubmed
  286. De Luca T, Pelosi A, Trisciuoglio D, D Aguanno S, Desideri M, Farini V, et al. miR-211 and MITF modulation by Bcl-2 protein in melanoma cells. Mol Carcinog. 2016;55:2304-2312 pubmed 出版商
  287. Wang S, Song T, Leng C, Lan K, Ning J, Chu H. Propofol protects against the neurotoxicity of 1‑methyl‑4‑phenylpyridinium. Mol Med Rep. 2016;13:309-14 pubmed 出版商
  288. Fridriksdottir A, Kim J, Villadsen R, Klitgaard M, Hopkinson B, Petersen O, et al. Propagation of oestrogen receptor-positive and oestrogen-responsive normal human breast cells in culture. Nat Commun. 2015;6:8786 pubmed 出版商
  289. Zucal C, D Agostino V, Casini A, Mantelli B, Thongon N, Soncini D, et al. EIF2A-dependent translational arrest protects leukemia cells from the energetic stress induced by NAMPT inhibition. BMC Cancer. 2015;15:855 pubmed 出版商
  290. Amigo Jiménez I, Bailón E, Aguilera Montilla N, Terol M, García Marco J, García Pardo A. Bone marrow stroma-induced resistance of chronic lymphocytic leukemia cells to arsenic trioxide involves Mcl-1 upregulation and is overcome by inhibiting the PI3Kδ or PKCβ signaling pathways. Oncotarget. 2015;6:44832-48 pubmed 出版商
  291. Herriott A, Tudhope S, Junge G, Rodrigues N, Patterson M, Woodhouse L, et al. PARP1 expression, activity and ex vivo sensitivity to the PARP inhibitor, talazoparib (BMN 673), in chronic lymphocytic leukaemia. Oncotarget. 2015;6:43978-91 pubmed 出版商
  292. Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17:95-103 pubmed 出版商
  293. Ting W, Kuo W, Hsieh D, Yeh Y, Day C, Chen Y, et al. Heat Killed Lactobacillus reuteri GMNL-263 Reduces Fibrosis Effects on the Liver and Heart in High Fat Diet-Hamsters via TGF-β Suppression. Int J Mol Sci. 2015;16:25881-96 pubmed 出版商
  294. Antonucci L, Fagman J, Kim J, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A. 2015;112:E6166-74 pubmed 出版商
  295. Deisting W, Raum T, Kufer P, Baeuerle P, Münz M. Impact of Diverse Immune Evasion Mechanisms of Cancer Cells on T Cells Engaged by EpCAM/CD3-Bispecific Antibody Construct AMG 110. PLoS ONE. 2015;10:e0141669 pubmed 出版商
  296. Chauhan S, Ahmed Z, Bradfute S, Arko Mensah J, Mandell M, Won Choi S, et al. Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nat Commun. 2015;6:8620 pubmed 出版商
  297. Li M, Quan C, Toth R, Campbell D, MacKintosh C, Wang H, et al. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders. J Biol Chem. 2015;290:30030-41 pubmed 出版商
  298. Nichols C, Shepherd D, Knuckles T, Thapa D, Stricker J, Stapleton P, et al. Cardiac and mitochondrial dysfunction following acute pulmonary exposure to mountaintop removal mining particulate matter. Am J Physiol Heart Circ Physiol. 2015;309:H2017-30 pubmed 出版商
  299. Moncunill Massaguer C, Saura Esteller J, Pérez Perarnau A, Palmeri C, Núñez Vázquez S, Cosialls A, et al. A novel prohibitin-binding compound induces the mitochondrial apoptotic pathway through NOXA and BIM upregulation. Oncotarget. 2015;6:41750-65 pubmed 出版商
  300. Kroon J, Puhr M, Buijs J, van der Horst G, Hemmer D, Marijt K, et al. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer. Endocr Relat Cancer. 2016;23:35-45 pubmed 出版商
  301. Ci X, Li B, Ma X, Kong F, Zheng C, Björkholm M, et al. Bortezomib-mediated down-regulation of telomerase and disruption of telomere homeostasis contributes to apoptosis of malignant cells. Oncotarget. 2015;6:38079-92 pubmed 出版商
  302. Guo W, Zhang Y, Ling Z, Liu X, Zhao X, Yuan Z, et al. Caspase-3 feedback loop enhances Bid-induced AIF/endoG and Bak activation in Bax and p53-independent manner. Cell Death Dis. 2015;6:e1919 pubmed 出版商
  303. Sochalska M, Ottina E, Tuzlak S, Herzog S, Herold M, Villunger A. Conditional knockdown of BCL2A1 reveals rate-limiting roles in BCR-dependent B-cell survival. Cell Death Differ. 2016;23:628-39 pubmed 出版商
  304. Ertoy Baydar D, Kosemehmetoglu K, Aydin O, Bridge J, Buyukeren B, Aki F. Primary sclerosing epithelioid fibrosarcoma of kidney with variant histomorphologic features: report of 2 cases and review of the literature. Diagn Pathol. 2015;10:186 pubmed 出版商
  305. Ambroise G, Portier A, Roders N, Arnoult D, Vazquez A. Subcellular localization of PUMA regulates its pro-apoptotic activity in Burkitt's lymphoma B cells. Oncotarget. 2015;6:38181-94 pubmed 出版商
  306. Anderson K, Russell A, Foletta V. NDRG2 promotes myoblast proliferation and caspase 3/7 activities during differentiation, and attenuates hydrogen peroxide - But not palmitate-induced toxicity. FEBS Open Bio. 2015;5:668-81 pubmed 出版商
  307. Ray A, Vasudevan S, Sengupta S. 6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death. PLoS ONE. 2015;10:e0137614 pubmed 出版商
  308. Salim H, Zong D, Hååg P, Novak M, Mörk B, Lewensohn R, et al. DKK1 is a potential novel mediator of cisplatin-refractoriness in non-small cell lung cancer cell lines. BMC Cancer. 2015;15:628 pubmed 出版商
  309. Ramírez de Arellano A, Lopez Pulido E, Martínez Neri P, Estrada Chávez C, González Lucano R, Fafutis Morris M, et al. STAT3 activation is required for the antiapoptotic effects of prolactin in cervical cancer cells. Cancer Cell Int. 2015;15:83 pubmed 出版商
  310. Lavik A, Zhong F, Chang M, Greenberg E, Choudhary Y, Smith M, et al. A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2. Oncotarget. 2015;6:27388-402 pubmed 出版商
  311. Schmidt L, Kümmel A, Görlich D, Mohr M, Bröckling S, Mikesch J, et al. PD-1 and PD-L1 Expression in NSCLC Indicate a Favorable Prognosis in Defined Subgroups. PLoS ONE. 2015;10:e0136023 pubmed 出版商
  312. Kumarasamy V, Shin Y, White J, Sun D. Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer. 2015;15:599 pubmed 出版商
  313. Tiffen J, Gunatilake D, Gallagher S, Gowrishankar K, Heinemann A, Cullinane C, et al. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget. 2015;6:27023-36 pubmed 出版商
  314. Adachi K, Miki Y, Saito R, Hata S, Yamauchi M, Mikami Y, et al. Intracrine steroid production and mammalian target of rapamycin pathways in pulmonary lymphangioleiomyomatosis. Hum Pathol. 2015;46:1685-93 pubmed 出版商
  315. Lorkova L, Scigelova M, Arrey T, Vit O, Pospisilova J, Doktorova E, et al. Detailed Functional and Proteomic Characterization of Fludarabine Resistance in Mantle Cell Lymphoma Cells. PLoS ONE. 2015;10:e0135314 pubmed 出版商
  316. Chiang C, Uzoma I, Lane D, MemiÅ¡ević V, Alem F, Yao K, et al. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection. Front Microbiol. 2015;6:683 pubmed 出版商
  317. Akahane K, Sanda T, Mansour M, Radimerski T, DeAngelo D, Weinstock D, et al. HSP90 inhibition leads to degradation of the TYK2 kinase and apoptotic cell death in T-cell acute lymphoblastic leukemia. Leukemia. 2016;30:219-28 pubmed 出版商
  318. Oteiza A, Mechti N. Control of FoxO4 Activity and Cell Survival by TRIM22 Directs TLR3-Stimulated Cells Toward IFN Type I Gene Induction or Apoptosis. J Interferon Cytokine Res. 2015;35:859-74 pubmed 出版商
  319. Luna Acosta J, Alba Betancourt C, Martínez Moreno C, Ramírez C, Carranza M, Luna M, et al. Direct antiapoptotic effects of growth hormone are mediated by PI3K/Akt pathway in the chicken bursa of Fabricius. Gen Comp Endocrinol. 2015;224:148-59 pubmed 出版商
  320. Zhang X, Wang X, Wu T, Li B, Liu T, Wang R, et al. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 2015;5:12579 pubmed 出版商
  321. Patergnani S, Giorgi C, Maniero S, Missiroli S, Maniscalco P, Bononi I, et al. The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition. Oncotarget. 2015;6:23427-44 pubmed
  322. Wu C, Huang K, Yang T, Li Y, Wen C, Hsu S, et al. The Topoisomerase 1 Inhibitor Austrobailignan-1 Isolated from Koelreuteria henryi Induces a G2/M-Phase Arrest and Cell Death Independently of p53 in Non-Small Cell Lung Cancer Cells. PLoS ONE. 2015;10:e0132052 pubmed 出版商
  323. Masotti A, Donninelli G, Da Sacco L, Varano B, Del Cornò M, Gessani S. HIV-1 gp120 influences the expression of microRNAs in human monocyte-derived dendritic cells via STAT3 activation. BMC Genomics. 2015;16:480 pubmed 出版商
  324. Mavroeidis L, Sheldon H, Briasoulis E, Marselos M, Pappas P, Harris A. Metronomic vinorelbine: Anti-angiogenic activity in vitro in normoxic and severe hypoxic conditions, and severe hypoxia-induced resistance to its anti-proliferative effect with reversal by Akt inhibition. Int J Oncol. 2015;47:455-64 pubmed 出版商
  325. Bresin A, Callegari E, D Abundo L, Cattani C, Bassi C, Zagatti B, et al. miR-181b as a therapeutic agent for chronic lymphocytic leukemia in the Eµ-TCL1 mouse model. Oncotarget. 2015;6:19807-18 pubmed
  326. Heinemann A, Cullinane C, De Paoli Iseppi R, Wilmott J, Gunatilake D, Madore J, et al. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling. Oncotarget. 2015;6:21507-21 pubmed
  327. Balzamino B, Esposito G, Marino R, Keller F, Micera A. NGF Expression in Reelin-Deprived Retinal Cells: A Potential Neuroprotective Effect. Neuromolecular Med. 2015;17:314-25 pubmed 出版商
  328. Andreasen S, Therkildsen M, Grauslund M, Friis Hansen L, Wessel I, Homøe P. Activation of the interleukin-6/Janus kinase/STAT3 pathway in pleomorphic adenoma of the parotid gland. APMIS. 2015;123:706-15 pubmed 出版商
  329. Soares A, Müller T, Chege G, Williamson A, Burgers W. Transient global T cell activation after vaccination of rhesus macaques with a DNA-poxvirus vaccine regimen for HIV. Vaccine. 2015;33:3435-9 pubmed 出版商
  330. García Cano J, Ambroise G, Pascual Serra R, Carrión M, Serrano Oviedo L, Ortega Muelas M, et al. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget. 2015;6:15551-65 pubmed
  331. Ohlmann C, Brecht I, Junker K, van der Zee J, Nistor A, Bohle R, et al. Sclerosing epithelioid fibrosarcoma of the kidney: clinicopathologic and molecular study of a rare neoplasm at a novel location. Ann Diagn Pathol. 2015;19:221-5 pubmed 出版商
  332. Wang Z, Ma B, Ji X, Deng Y, Zhang T, Zhang X, et al. MicroRNA-378-5p suppresses cell proliferation and induces apoptosis in colorectal cancer cells by targeting BRAF. Cancer Cell Int. 2015;15:40 pubmed 出版商
  333. Cuevas C, Tapia Rojas C, Cespedes C, Inestrosa N, Vio C. β-Catenin-Dependent Signaling Pathway Contributes to Renal Fibrosis in Hypertensive Rats. Biomed Res Int. 2015;2015:726012 pubmed 出版商
  334. Dai W, Wang F, Lu J, Xia Y, He L, Chen K, et al. By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice. Oncotarget. 2015;6:13703-17 pubmed
  335. Mishra A, Kumar R, Tyagi A, Kohaar I, Hedau S, Bharti A, et al. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer. Ecancermedicalscience. 2015;9:525 pubmed 出版商
  336. Vuillefroy de Silly R, Ducimetière L, Yacoub Maroun C, Dietrich P, Derouazi M, Walker P. Phenotypic switch of CD8(+) T cells reactivated under hypoxia toward IL-10 secreting, poorly proliferative effector cells. Eur J Immunol. 2015;45:2263-75 pubmed 出版商
  337. Haschka M, Soratroi C, Kirschnek S, Hacker G, Hilbe R, Geley S, et al. The NOXA-MCL1-BIM axis defines lifespan on extended mitotic arrest. Nat Commun. 2015;6:6891 pubmed 出版商
  338. Zou Z, Cai Y, Chen Y, Chen S, Liu L, Shen Z, et al. Bone marrow-derived mesenchymal stem cells attenuate acute liver injury and regulate the expression of fibrinogen-like-protein 1 and signal transducer and activator of transcription 3. Mol Med Rep. 2015;12:2089-97 pubmed 出版商
  339. Nakada S, Minato H, Takegami T, Kurose N, Ikeda H, Kobayashi M, et al. NAB2-STAT6 fusion gene analysis in two cases of meningeal solitary fibrous tumor/hemangiopericytoma with late distant metastases. Brain Tumor Pathol. 2015;32:268-74 pubmed 出版商
  340. Chen Y, Li X, Guo L, Wu X, He C, Zhang S, et al. Combining radiation with autophagy inhibition enhances suppression of tumor growth and angiogenesis in esophageal cancer. Mol Med Rep. 2015;12:1645-52 pubmed 出版商
  341. Hotokezaka Y, Katayama I, van Leyen K, Nakamura T. GSK-3β-dependent downregulation of γ-taxilin and αNAC merge to regulate ER stress responses. Cell Death Dis. 2015;6:e1719 pubmed 出版商
  342. Yang L, Zhang S, George S, Teng R, You X, Xu M, et al. Targeting Notch1 and proteasome as an effective strategy to suppress T-cell lymphoproliferative neoplasms. Oncotarget. 2015;6:14953-69 pubmed
  343. Maity G, De A, Das A, Banerjee S, Sarkar S, Banerjee S. Aspirin blocks growth of breast tumor cells and tumor-initiating cells and induces reprogramming factors of mesenchymal to epithelial transition. Lab Invest. 2015;95:702-17 pubmed 出版商
  344. Zhang W, Hou J, Wang X, Jiang R, Yin Y, Ji J, et al. PTPRO-mediated autophagy prevents hepatosteatosis and tumorigenesis. Oncotarget. 2015;6:9420-33 pubmed
  345. McMillan E, Paré M, Baechler B, Graham D, Rush J, Quadrilatero J. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise. PLoS ONE. 2015;10:e0119382 pubmed 出版商
  346. Farrugia M, Sharma S, Lin C, McLaughlin S, Vanderbilt D, Ammer A, et al. Regulation of anti-apoptotic signaling by Kruppel-like factors 4 and 5 mediates lapatinib resistance in breast cancer. Cell Death Dis. 2015;6:e1699 pubmed 出版商
  347. Freeman J, Feng Y, Demehri F, Dempsey P, Teitelbaum D. TPN-associated intestinal epithelial cell atrophy is modulated by TLR4/EGF signaling pathways. FASEB J. 2015;29:2943-58 pubmed 出版商
  348. Giunta S, Castorina A, Marzagalli R, Szychlinska M, Pichler K, Mobasheri A, et al. Ameliorative effects of PACAP against cartilage degeneration. Morphological, immunohistochemical and biochemical evidence from in vivo and in vitro models of rat osteoarthritis. Int J Mol Sci. 2015;16:5922-44 pubmed 出版商
  349. Schüll S, Günther S, Brodesser S, Seeger J, Tosetti B, Wiegmann K, et al. Cytochrome c oxidase deficiency accelerates mitochondrial apoptosis by activating ceramide synthase 6. Cell Death Dis. 2015;6:e1691 pubmed 出版商
  350. Chen W, Xu B, Xiao A, Liu L, Fang X, Liu R, et al. TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury. Mol Brain. 2015;8:11 pubmed 出版商
  351. Alikanoglu A, Yildirim M, Suren D, Tutus B, Kaya V, Topal C, et al. Expression of Cox-2 and Bcl-2 in Paget's disease of the breast. Asian Pac J Cancer Prev. 2015;16:1041-5 pubmed
  352. Pedro J, Wei Y, Sica V, Maiuri M, Zou Z, Kroemer G, et al. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy. 2015;11:452-9 pubmed 出版商
  353. Shi S, Wang Q, Xu J, Jang J, Padilla M, Nyunoya T, et al. Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis. Oncotarget. 2015;6:1640-51 pubmed
  354. Meykler S, Baloch Z, Barroeta J. A case of marginal zone lymphoma with extensive emperipolesis diagnosed on pleural effusion cytology with immunocytochemistry and flow cytometry. Cytopathology. 2016;27:70-2 pubmed 出版商
  355. Long J, Schoonen P, Graczyk D, O Prey J, Ryan K. p73 engages A2B receptor signalling to prime cancer cells to chemotherapy-induced death. Oncogene. 2015;34:5152-62 pubmed 出版商
  356. Huang S, Cui Y, Guo X, Wang L, Li S, Lu Y, et al. 2,2',4,4'-Tetrabromodiphenyl ether disrupts spermatogenesis, impairs mitochondrial function and induces apoptosis of early leptotene spermatocytes in rats. Reprod Toxicol. 2015;51:114-24 pubmed 出版商
  357. Guan J, Zhang X, Sun W, Qi L, Wu J, Qin Z. DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX. Cell Death Dis. 2015;6:e1624 pubmed 出版商
  358. Huang P, Hung S, Pao C, Wang T. N-(1-pyrenyl) maleimide induces bak oligomerization and mitochondrial dysfunction in Jurkat Cells. Biomed Res Int. 2015;2015:798489 pubmed 出版商
  359. Hole S, Pedersen A, Hansen S, Lundqvist J, Yde C, Lykkesfeldt A. New cell culture model for aromatase inhibitor-resistant breast cancer shows sensitivity to fulvestrant treatment and cross-resistance between letrozole and exemestane. Int J Oncol. 2015;46:1481-90 pubmed 出版商
  360. Suo H, Song J, Zhou Y, Liu Z, Yi R, Zhu K, et al. Induction of apoptosis in HCT-116 colon cancer cells by polysaccharide of Larimichthys crocea swim bladder. Oncol Lett. 2015;9:972-978 pubmed
  361. Singh K, Hjort M, Thorvaldson L, Sandler S. Concomitant analysis of Helios and Neuropilin-1 as a marker to detect thymic derived regulatory T cells in naïve mice. Sci Rep. 2015;5:7767 pubmed 出版商
  362. Xia J, Chen S, Lv Y, Lu L, Hu W, Zhou Y. ZGDHu-1 induces Gâ‚‚/M phase arrest and apoptosis in Kasumi-1 cells. Mol Med Rep. 2015;11:3398-404 pubmed 出版商
  363. Zhang X, Pan Q, Pan K, Weng D, Wang Q, Zhao J, et al. Expression and prognostic role of ubiquitination factor E4B in primary hepatocellular carcinoma. Mol Carcinog. 2016;55:64-76 pubmed 出版商
  364. Gurzu S, Kádár Z, Sugimura H, Bara T, Hălmaciu I, Jung I. Gastric cancer in young vs old Romanian patients: immunoprofile with emphasis on maspin and mena protein reactivity. APMIS. 2015;123:223-33 pubmed 出版商
  365. Gültiken N, Guvenc T, Kaya D, Agaoglu A, Ay S, Kücükaslan I, et al. Tarantula cubensis extract alters the degree of apoptosis and mitosis in canine mammary adenocarcinomas. J Vet Sci. 2015;16:213-9 pubmed
  366. Papanikolaou V, Stefanou N, Dubos S, Papathanasiou I, Palianopoulou M, Valiakou V, et al. Synergy of leptin/STAT3 with HER2 receptor induces tamoxifen resistance in breast cancer cells through regulation of apoptosis-related genes. Cell Oncol (Dordr). 2015;38:155-64 pubmed 出版商
  367. Green A, Caracappa D, Benhasouna A, Alshareeda A, Nolan C, Macmillan R, et al. Biological and clinical significance of PARP1 protein expression in breast cancer. Breast Cancer Res Treat. 2015;149:353-62 pubmed 出版商
  368. Gomez Bougie P, Halliez M, Maïga S, Godon C, Kervoëlen C, Pellat Deceunynck C, et al. Curcumin induces cell death of the main molecular myeloma subtypes, particularly the poor prognosis subgroups. Cancer Biol Ther. 2015;16:60-5 pubmed 出版商
  369. Song M, Chung J, Lee J, Yang D, Kim I, Shin D, et al. High Ki-67 expression in involved bone marrow predicts worse clinical outcome in diffuse large B cell lymphoma patients treated with R-CHOP therapy. Int J Hematol. 2015;101:140-7 pubmed 出版商
  370. Huang C, Sheng S, Li R, Sun X, Liu J, Huang G. Lactate promotes resistance to glucose starvation via upregulation of Bcl-2 mediated by mTOR activation. Oncol Rep. 2015;33:875-84 pubmed 出版商
  371. Chow L. Primary intraosseous hybrid nerve sheath tumor of femur: a hitherto undescribed occurrence in bone with secondary aneurysmal bone cyst formation resulting in pathological fracture. Pathol Res Pract. 2015;211:409-14 pubmed 出版商
  372. Kim T, Kim H, Kang Y, Yoon S, Lee J, Choi W, et al. Psammaplin A induces Sirtuin 1-dependent autophagic cell death in doxorubicin-resistant MCF-7/adr human breast cancer cells and xenografts. Biochim Biophys Acta. 2015;1850:401-10 pubmed 出版商
  373. Vogels R, Vlenterie M, Versleijen Jonkers Y, Ruijter E, Bekers E, Verdijk M, et al. Solitary fibrous tumor - clinicopathologic, immunohistochemical and molecular analysis of 28 cases. Diagn Pathol. 2014;9:224 pubmed 出版商
  374. Stacchini A, Pacchioni D, Demurtas A, Aliberti S, Cassenti A, Isolato G, et al. Utilility of flow cytometry as ancillary study to improve the cytologic diagnosis of thyroid lymphomas. Cytometry B Clin Cytom. 2015;88:320-9 pubmed 出版商
  375. Guo L, Shen Y, Zhao X, Guo L, Yu Z, Wang D, et al. Curcumin combined with oxaliplatin effectively suppress colorectal carcinoma in vivo through inducing apoptosis. Phytother Res. 2015;29:357-65 pubmed 出版商
  376. Cho S, Cho M, Kim J, Kaeberlein M, Lee S, Suh Y. Syringaresinol protects against hypoxia/reoxygenation-induced cardiomyocytes injury and death by destabilization of HIF-1α in a FOXO3-dependent mechanism. Oncotarget. 2015;6:43-55 pubmed
  377. Tao W, Moore R, Smith E, Xu X. Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS ONE. 2014;9:e110737 pubmed 出版商
  378. Nie C, Luo Y, Zhao X, Luo N, Tong A, Liu X, et al. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis. Cell Death Dis. 2014;5:e1495 pubmed 出版商
  379. Raap M, Antonopoulos W, Dämmrich M, Christgen H, Steinmann D, Länger F, et al. High frequency of lobular breast cancer in distant metastases to the orbit. Cancer Med. 2015;4:104-11 pubmed 出版商
  380. Wang T, Guo S, Liu Z, Wu L, Li M, Yang J, et al. CAMK2N1 inhibits prostate cancer progression through androgen receptor-dependent signaling. Oncotarget. 2014;5:10293-306 pubmed
  381. Waisberg J, de Souza Viana L, Affonso Junior R, Silva S, Denadai M, Margeotto F, et al. Overexpression of the ITGAV gene is associated with progression and spread of colorectal cancer. Anticancer Res. 2014;34:5599-607 pubmed
  382. Mylvaganam G, Velu V, Hong J, Sadagopal S, Kwa S, Basu R, et al. Diminished viral control during simian immunodeficiency virus infection is associated with aberrant PD-1hi CD4 T cell enrichment in the lymphoid follicles of the rectal mucosa. J Immunol. 2014;193:4527-36 pubmed 出版商
  383. Zebboudj A, Maroui M, Dutrieux J, Touil Boukoffa C, Bourouba M, Chelbi Alix M, et al. Sodium arsenite induces apoptosis and Epstein-Barr virus reactivation in lymphoblastoid cells. Biochimie. 2014;107 Pt B:247-56 pubmed 出版商
  384. Kudernatsch R, Letsch A, Guerreiro M, Löbel M, Bauer S, Volk H, et al. Human bone marrow contains a subset of quiescent early memory CD8(+) T cells characterized by high CD127 expression and efflux capacity. Eur J Immunol. 2014;44:3532-42 pubmed 出版商
  385. Shi R, Zhu S, Li V, Gibson S, Xu X, Kong J. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci Ther. 2014;20:1045-55 pubmed 出版商
  386. Yang Y, Zhou W, Xia J, Gu Z, Wendlandt E, Zhan X, et al. NEK2 mediates ALDH1A1-dependent drug resistance in multiple myeloma. Oncotarget. 2014;5:11986-97 pubmed
  387. Merabova N, Sariyer I, Saribas A, Knezevic T, Gordon J, Turco M, et al. WW domain of BAG3 is required for the induction of autophagy in glioma cells. J Cell Physiol. 2015;230:831-41 pubmed 出版商
  388. Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P. Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol. 2015;35:23-31 pubmed 出版商
  389. Choi J, Kang S, Lee S, Bae Y. Prognostic significance of Bcl-2 expression in non-basal triple-negative breast cancer patients treated with anthracycline-based chemotherapy. Tumour Biol. 2014;35:12255-63 pubmed 出版商
  390. Liu Y, Wan S, Zhang P, Zhang W, Zheng J, Lin J, et al. Expression levels of autophagy related proteins and their prognostic significance in retinocytoma and retinoblastoma. Int J Ophthalmol. 2014;7:594-601 pubmed 出版商
  391. Thompson L, Bauer J, Chiosea S, McHugh J, Seethala R, Miettinen M, et al. Canalicular adenoma: a clinicopathologic and immunohistochemical analysis of 67 cases with a review of the literature. Head Neck Pathol. 2015;9:181-95 pubmed 出版商
  392. Nicholson A, Guo X, Sullivan C, Cha C. Automated quantitative analysis of tissue microarray of 443 patients with colorectal adenocarcinoma: low expression of Bcl-2 predicts poor survival. J Am Coll Surg. 2014;219:977-87 pubmed 出版商
  393. Park S, Park J, Kim Y, Song S, Kwon H, Lee Y. Suberoylanilide hydroxamic acid induces ROS-mediated cleavage of HSP90 in leukemia cells. Cell Stress Chaperones. 2015;20:149-57 pubmed 出版商
  394. Kivisakk P, Francois K, Mbianda J, Gandhi R, Weiner H, Khoury S. Effect of natalizumab treatment on circulating plasmacytoid dendritic cells: a cross-sectional observational study in patients with multiple sclerosis. PLoS ONE. 2014;9:e103716 pubmed 出版商
  395. Morita A, Ariyasu S, Wang B, Asanuma T, Onoda T, Sawa A, et al. AS-2, a novel inhibitor of p53-dependent apoptosis, prevents apoptotic mitochondrial dysfunction in a transcription-independent manner and protects mice from a lethal dose of ionizing radiation. Biochem Biophys Res Commun. 2014;450:1498-504 pubmed 出版商
  396. Su C, Sun F, Cunningham R, Rybalchenko N, Singh M. ERK5/KLF4 signaling as a common mediator of the neuroprotective effects of both nerve growth factor and hydrogen peroxide preconditioning. Age (Dordr). 2014;36:9685 pubmed 出版商
  397. Syed B, Green A, Nolan C, Morgan D, Ellis I, Cheung K. Biological characteristics and clinical outcome of triple negative primary breast cancer in older women - comparison with their younger counterparts. PLoS ONE. 2014;9:e100573 pubmed 出版商
  398. Rizvi S, Mertens J, Bronk S, Hirsova P, Dai H, Roberts L, et al. Platelet-derived growth factor primes cancer-associated fibroblasts for apoptosis. J Biol Chem. 2014;289:22835-49 pubmed 出版商
  399. Sezgin Alikanoglu A, Yildirim M, Suren D, Yildiz M, Kaya V, Donem Dilli U, et al. Expression of cyclooxygenase-2 and Bcl-2 in breast cancer and their relationship with triple-negative disease. J BUON. 2014;19:430-4 pubmed
  400. Bai L, Chen J, McEachern D, Liu L, Zhou H, Aguilar A, et al. BM-1197: a novel and specific Bcl-2/Bcl-xL inhibitor inducing complete and long-lasting tumor regression in vivo. PLoS ONE. 2014;9:e99404 pubmed 出版商
  401. Bellas C, Garcia D, Vicente Y, Kilany L, Abraira V, Navarro B, et al. Immunohistochemical and molecular characteristics with prognostic significance in diffuse large B-cell lymphoma. PLoS ONE. 2014;9:e98169 pubmed 出版商
  402. Neher M, Rich M, Keene C, Weckbach S, Bolden A, Losacco J, et al. Deficiency of complement receptors CR2/CR1 in Cr2?/? mice reduces the extent of secondary brain damage after closed head injury. J Neuroinflammation. 2014;11:95 pubmed 出版商
  403. Raimondi L, Amodio N, Di Martino M, Altomare E, Leotta M, Caracciolo D, et al. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget. 2014;5:3039-54 pubmed
  404. Zhang S, Li Y, He X, Dong S, Huang Y, Li X, et al. Photothermolysis mediated by gold nanorods modified with EGFR monoclonal antibody induces Hep-2 cells apoptosis in vitro and in vivo. Int J Nanomedicine. 2014;9:1931-46 pubmed 出版商
  405. Cen B, Xiong Y, Song J, Mahajan S, DuPont R, McEachern K, et al. The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling. Mol Cell Biol. 2014;34:2517-32 pubmed 出版商
  406. Klaus C, Kaemmerer E, Reinartz A, Schneider U, Plum P, Jeon M, et al. TP53 status regulates ACSL5-induced expression of mitochondrial mortalin in enterocytes and colorectal adenocarcinomas. Cell Tissue Res. 2014;357:267-78 pubmed 出版商
  407. Ding K, Banerjee A, Tan S, Zhao J, Zhuang Q, Li R, et al. Artemin, a member of the glial cell line-derived neurotrophic factor family of ligands, is HER2-regulated and mediates acquired trastuzumab resistance by promoting cancer stem cell-like behavior in mammary carcinoma cells. J Biol Chem. 2014;289:16057-71 pubmed 出版商
  408. Capella C, Marando A, Longhi E, Bernasconi B, Finzi G, Parravicini C, et al. Primary gastric Merkel cell carcinoma harboring DNA polyomavirus: first description of an unusual high-grade neuroendocrine carcinoma. Hum Pathol. 2014;45:1310-4 pubmed 出版商
  409. Baspinar S, Bircan S, Orhan H, Kapucuoglu N, Bozkurt K. The relation of beclin 1 and bcl-2 expressions in high grade prostatic intraepithelial neoplasia and prostate adenocarcinoma: a tissue microarray study. Pathol Res Pract. 2014;210:412-8 pubmed 出版商
  410. Biaggio V, Alvarez Olmedo D, Pérez Chaca M, Salvetti N, Valdez S, Fanelli M, et al. Cytoprotective mechanisms in rats lung parenchyma with zinc deprivation. Biometals. 2014;27:305-15 pubmed 出版商
  411. Yoon H, Choi Y, Song J, Do I, Kang S, Ko Y, et al. Targeted inhibition of FAK, PYK2 and BCL-XL synergistically enhances apoptosis in ovarian clear cell carcinoma cell lines. PLoS ONE. 2014;9:e88587 pubmed 出版商
  412. Yurube T, Hirata H, Kakutani K, Maeno K, Takada T, Zhang Z, et al. Notochordal cell disappearance and modes of apoptotic cell death in a rat tail static compression-induced disc degeneration model. Arthritis Res Ther. 2014;16:R31 pubmed 出版商
  413. Wang C, Wang J, Liu Z, Ma X, Wang X, Jin H, et al. Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis. 2014;35:1500-9 pubmed 出版商
  414. Hollevoet K, Antignani A, FitzGerald D, Pastan I. Combining the antimesothelin immunotoxin SS1P with the BH3-mimetic ABT-737 induces cell death in SS1P-resistant pancreatic cancer cells. J Immunother. 2014;37:8-15 pubmed 出版商
  415. Crowther A, Gama V, Bevilacqua A, Chang S, Yuan H, Deshmukh M, et al. Tonic activation of Bax primes neural progenitors for rapid apoptosis through a mechanism preserved in medulloblastoma. J Neurosci. 2013;33:18098-108 pubmed 出版商
  416. Tao L, Zhou X, Shen C, Liang C, Liu B, Tao Y, et al. Tetrandrine induces apoptosis and triggers a caspase cascade in U2-OS and MG-63 cells through the intrinsic and extrinsic pathways. Mol Med Rep. 2014;9:345-9 pubmed 出版商
  417. Hou J, Xia Y, Jiang R, Chen D, Xu J, Deng L, et al. PTPRO plays a dual role in hepatic ischemia reperfusion injury through feedback activation of NF-?B. J Hepatol. 2014;60:306-12 pubmed 出版商
  418. Caramuta S, Lee L, Ozata D, Akçakaya P, Georgii Hemming P, Xie H, et al. Role of microRNAs and microRNA machinery in the pathogenesis of diffuse large B-cell lymphoma. Blood Cancer J. 2013;3:e152 pubmed 出版商
  419. Tan A, Hoang L, Chin D, Rasmussen E, Lopatin U, Hart S, et al. Reduction of HBV replication prolongs the early immunological response to IFN? therapy. J Hepatol. 2014;60:54-61 pubmed 出版商
  420. Stacchini A, Aliberti S, Pacchioni D, Demurtas A, Isolato G, Gazzera C, et al. Flow cytometry significantly improves the diagnostic value of fine needle aspiration cytology of lymphoproliferative lesions of salivary glands. Cytopathology. 2014;25:231-40 pubmed 出版商
  421. Razavi S, Hasheminia D, Mehdizade M, Movahedian B, Keshani F. The relation of pericoronal third molar follicle dimension and bcl-2/ki-67 expression: An immunohistochemical study. Dent Res J (Isfahan). 2012;9:S26-31 pubmed 出版商
  422. Bradford C, Kumar B, Bellile E, Lee J, Taylor J, D SILVA N, et al. Biomarkers in advanced larynx cancer. Laryngoscope. 2014;124:179-87 pubmed 出版商
  423. Ma T, Galimberti F, Erkmen C, Memoli V, Chinyengetere F, SEMPERE L, et al. Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer. Mol Cancer Ther. 2013;12:1545-55 pubmed 出版商
  424. Goraczniak R, Wall B, Behlke M, Lennox K, Ho E, Zaphiros N, et al. U1 Adaptor Oligonucleotides Targeting BCL2 and GRM1 Suppress Growth of Human Melanoma Xenografts In Vivo. Mol Ther Nucleic Acids. 2013;2:e92 pubmed 出版商
  425. Thompson R, Vardinogiannis I, Gilmore T. The sensitivity of diffuse large B-cell lymphoma cell lines to histone deacetylase inhibitor-induced apoptosis is modulated by BCL-2 family protein activity. PLoS ONE. 2013;8:e62822 pubmed 出版商
  426. Hernandez A, Colvin E, Chen Y, Geiss S, Eller L, Fueger P. Upregulation of p21 activates the intrinsic apoptotic pathway in ?-cells. Am J Physiol Endocrinol Metab. 2013;304:E1281-90 pubmed 出版商
  427. Nakanishi Y, Seno H, Fukuoka A, Ueo T, Yamaga Y, Maruno T, et al. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat Genet. 2013;45:98-103 pubmed 出版商
  428. Verma Y, Raghav P, Raj H, Tripathi R, Gangenahalli G. Enhanced heterodimerization of Bax by Bcl-2 mutants improves irradiated cell survival. Apoptosis. 2013;18:212-25 pubmed 出版商
  429. Viana L, Affonso R, Silva S, Denadai M, Matos D, Salinas de Souza C, et al. Relationship between the expression of the extracellular matrix genes SPARC, SPP1, FN1, ITGA5 and ITGAV and clinicopathological parameters of tumor progression and colorectal cancer dissemination. Oncology. 2013;84:81-91 pubmed 出版商
  430. Giaginis C, Politi E, Alexandrou P, Sfiniadakis J, Kouraklis G, Theocharis S. Expression of peroxisome proliferator activated receptor-gamma (PPAR-?) in human non-small cell lung carcinoma: correlation with clinicopathological parameters, proliferation and apoptosis related molecules and patients' survival. Pathol Oncol Res. 2012;18:875-83 pubmed
  431. Lúcio K, Rocha G, Monção Ribeiro L, Fernandes J, Takiya C, Gattass C. Oleanolic acid initiates apoptosis in non-small cell lung cancer cell lines and reduces metastasis of a B16F10 melanoma model in vivo. PLoS ONE. 2011;6:e28596 pubmed 出版商
  432. Winzler C, Fantinato M, Giordan M, Calore E, Basso G, Messina C. CD4(+) T regulatory cells are more resistant to DNA damage compared to CD4(+) T effector cells as revealed by flow cytometric analysis. Cytometry A. 2011;79:903-11 pubmed 出版商
  433. Xargay Torrent S, Lopez Guerra M, Saborit Villarroya I, Rosich L, Campo E, Roué G, et al. Vorinostat-induced apoptosis in mantle cell lymphoma is mediated by acetylation of proapoptotic BH3-only gene promoters. Clin Cancer Res. 2011;17:3956-68 pubmed 出版商
  434. Donia M, Maksimovic Ivanic D, Mijatovic S, Mojic M, Miljkovic D, Timotijevic G, et al. In vitro and in vivo anticancer action of Saquinavir-NO, a novel nitric oxide-derivative of the protease inhibitor saquinavir, on hormone resistant prostate cancer cells. Cell Cycle. 2011;10:492-9 pubmed
  435. Hailemariam S, Vosbeck J, Cathomas G, Zlobec I, Mattarelli G, Eichenberger T, et al. Can molecular markers stratify the diagnostic value of high-grade prostatic intraepithelial neoplasia?. Hum Pathol. 2011;42:702-9 pubmed 出版商
  436. Correia M, Costa A, Uhrberg M, Cardoso E, Arosa F. IL-15 induces CD8+ T cells to acquire functional NK receptors capable of modulating cytotoxicity and cytokine secretion. Immunobiology. 2011;216:604-12 pubmed 出版商
  437. Cheuk W, Tam F, Chan A, Luk I, Yuen A, Chan W, et al. Idiopathic cervical fibrosis--a new member of IgG4-related sclerosing diseases: report of 4 cases, 1 complicated by composite lymphoma. Am J Surg Pathol. 2010;34:1678-85 pubmed 出版商
  438. Hirata H, Hinoda Y, Nakajima K, Kawamoto K, Kikuno N, Ueno K, et al. Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int J Cancer. 2011;128:1793-803 pubmed 出版商
  439. Yang Z, von Ballmoos M, Faessler D, Voelzmann J, Ortmann J, Diehm N, et al. Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells. Atherosclerosis. 2010;211:103-9 pubmed 出版商
  440. Jung C, Choi Y, Lee K, Bae J, Kim H, Yoon S, et al. The cytological, clinical, and pathological features of the cribriform-morular variant of papillary thyroid carcinoma and mutation analysis of CTNNB1 and BRAF genes. Thyroid. 2009;19:905-13 pubmed 出版商
  441. Snuderl M, Chi S, De Santis S, Stemmer Rachamimov A, Betensky R, De Girolami U, et al. Prognostic value of tumor microinvasion and metalloproteinases expression in intracranial pediatric ependymomas. J Neuropathol Exp Neurol. 2008;67:911-20 pubmed 出版商
  442. Thomson S, Cox A, Cuddihy S, Pullar J, Hampton M. Inhibition of receptor-mediated apoptosis upon Bcl-2 overexpression is not associated with increased antioxidant status. Biochem Biophys Res Commun. 2008;375:145-50 pubmed 出版商
  443. Rieger J, Lemke D, Maurer G, Weiler M, Frank B, Tabatabai G, et al. Enzastaurin-induced apoptosis in glioma cells is caspase-dependent and inhibited by BCL-XL. J Neurochem. 2008;106:2436-48 pubmed 出版商
  444. Strauss G, Westhoff M, Fischer Posovszky P, Fulda S, Schanbacher M, Eckhoff S, et al. 4-hydroperoxy-cyclophosphamide mediates caspase-independent T-cell apoptosis involving oxidative stress-induced nuclear relocation of mitochondrial apoptogenic factors AIF and EndoG. Cell Death Differ. 2008;15:332-43 pubmed
  445. Takei H, Buckleair L, Powell S. Immunohistochemical expression of apoptosis regulating proteins and sex hormone receptors in meningiomas. Neuropathology. 2008;28:62-8 pubmed
  446. Cheuk W, Chan J, Nuovo G, Chan M, Fok M. Regression of gastric large B-Cell lymphoma accompanied by a florid lymphoma-like T-cell reaction: immunomodulatory effect of Ganoderma lucidum (Lingzhi)?. Int J Surg Pathol. 2007;15:180-6 pubmed
  447. Yoo J, Jung J, Lee M, Seo K, Shim B, Kim S, et al. Immunohistochemical analysis of non-small cell lung cancer: correlation with clinical parameters and prognosis. J Korean Med Sci. 2007;22:318-25 pubmed
  448. Martin Latil S, Mousson L, Autret A, Colbere Garapin F, Blondel B. Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway. J Virol. 2007;81:4457-64 pubmed
  449. Lawson J, Tran D. Localised breast cancers may have systemic influences on skin and hair. J Clin Pathol. 2007;60:180-4 pubmed
  450. Luo H, Yu S, Li T. Differential expression of apoptosis-related proteins in various cellular components of ameloblastomas. Int J Oral Maxillofac Surg. 2006;35:750-5 pubmed
  451. Sun B, Sun Y, Wang J, Zhao X, Wang X, Hao X. Extent, relationship and prognostic significance of apoptosis and cell proliferation in synovial sarcoma. Eur J Cancer Prev. 2006;15:258-65 pubmed
  452. Rivadeneyra Espinoza L, Ruiz Argüelles A. Cell-penetrating anti-native DNA antibodies trigger apoptosis through both the neglect and programmed pathways. J Autoimmun. 2006;26:52-6 pubmed
  453. Damron T, Horton J, Naqvi A, Margulies B, Strauss J, Grant W, et al. Decreased proliferation precedes growth factor changes after physeal irradiation. Clin Orthop Relat Res. 2004;:233-42 pubmed
  454. Sandalova E, Wei C, Masucci M, Levitsky V. Regulation of expression of Bcl-2 protein family member Bim by T cell receptor triggering. Proc Natl Acad Sci U S A. 2004;101:3011-6 pubmed
  455. Damron T, Mathur S, Horton J, Strauss J, Margulies B, Grant W, et al. Temporal changes in PTHrP, Bcl-2, Bax, caspase, TGF-beta, and FGF-2 expression following growth plate irradiation with or without radioprotectant. J Histochem Cytochem. 2004;52:157-67 pubmed
  456. Ng J, Han A, Edelson M, Rosenblum N. Oncoprotein profiles of primary peritoneal malignant mixed müllerian tumors. Int J Gynecol Cancer. 2003;13:870-4 pubmed
  457. Halperin R, Zehavi S, Hadas E, Habler L, Bukovsky I, Schneider D. Simultaneous carcinoma of the endometrium and ovary vs endometrial carcinoma with ovarian metastases: a clinical and immunohistochemical determination. Int J Gynecol Cancer. 2003;13:32-7 pubmed
  458. Zamai L, Canonico B, Gritzapis A, Luchetti F, Felici C, Della Felice M, et al. Intracellular detection of Bcl-2 and p53 proteins by flow cytometry: comparison of monoclonal antibodies and sample preparation protocols. J Biol Regul Homeost Agents. 2002;16:289-302 pubmed
  459. Tran D, Lawson J. Microcysts and breast cancer: a study of biological markers in archival biopsy material. Breast Cancer Res Treat. 2002;75:213-20 pubmed
  460. Solomides C, Miller A, Christman R, Talwar J, Simpkins H. Lymphomas of the oral cavity: histology, immunologic type, and incidence of Epstein-Barr virus infection. Hum Pathol. 2002;33:153-7 pubmed
  461. Desai B, Myers B, Schreiber S. FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc Natl Acad Sci U S A. 2002;99:4319-24 pubmed
  462. Shinoura N, Sakurai S, Asai A, Kirino T, Hamada H. Over-expression of APAF-1 and caspase-9 augments radiation-induced apoptosis in U-373MG glioma cells. Int J Cancer. 2001;93:252-61 pubmed
  463. Tanaka Y, Nomi M, Fujii K, Hubscher S, Maruo A, Matsumoto S, et al. Intercellular adhesion molecule 1 underlies the functional heterogeneity of synovial cells in patients with rheumatoid arthritis: involvement of cell cycle machinery. Arthritis Rheum. 2000;43:2513-22 pubmed
  464. Reis Filho J, Faoro L, Carrilho C, Bleggi Torres L, Schmitt F. Evaluation of cell proliferation, epidermal growth factor receptor, and bcl-2 immunoexpression as prognostic factors for patients with World Health Organization grade 2 oligodendroglioma. Cancer. 2000;88:862-9 pubmed
  465. Ashton Key M, Biddolph S, Stein H, Gatter K, Mason D. Heterogeneity of bcl-2 expression in MALT lymphoma. Histopathology. 1995;26:75-8 pubmed