这是一篇来自已证抗体库的有关人类 Bip的综述,是根据208篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Bip 抗体。
Bip 同义词: BIP; GRP78; HEL-S-89n; MIF2

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7a
  • 免疫印迹; 人类; 1:5000; 图 5d
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7a) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 5d). Int J Oncol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 6a
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫组化在人类样本上 (图 6a). Cell Death Dis (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 10a
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 10a). Dis Model Mech (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5d
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5d). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2a
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(EPR4041(2))
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, Ab108615)被用于被用于免疫印迹在人类样本上 (图 4a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a, 6d
  • 免疫组化-冰冻切片; 小鼠; 图 1d
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a, 6d) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(EPR4041(2))
  • 流式细胞仪; 小鼠; 1:20; 图 s6b
  • 免疫印迹; 小鼠; 1:1000; 图 s8a, s9a, s9b, s9c
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, EPR4041)被用于被用于流式细胞仪在小鼠样本上浓度为1:20 (图 s6b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s8a, s9a, s9b, s9c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 6a
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6a). J Clin Invest (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2-1i, 2-1k
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2-1i, 2-1k). J Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Kaohsiung J Med Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 6d
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫细胞化学在人类样本上 (图 6d). Biomolecules (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3f
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫组化在小鼠样本上 (图 3f). Front Cardiovasc Med (2020) ncbi
domestic rabbit 单克隆(EPR4041(2))
  • 免疫组化-石蜡切片; 小鼠; 1:10,000; 图 4a
  • 免疫组化; 小鼠; 1:1000; 图 1n
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab108615)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10,000 (图 4a) 和 被用于免疫组化在小鼠样本上浓度为1:1000 (图 1n). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 4h
  • 免疫印迹; 大鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 4h) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Mol Med Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3d
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3d). Eneuro (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s8b
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s8b). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2a
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2a). J Biomed Sci (2020) ncbi
domestic rabbit 单克隆(EPR4040(2))
  • 免疫印迹; 小鼠; 图 s7a
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab108613)被用于被用于免疫印迹在小鼠样本上 (图 s7a). Aging Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫印迹在小鼠样本上 (图 5b). Toxicol Sci (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7j
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7j). Biol Reprod (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司 Bip抗体(Abacm, ab21685)被用于被用于免疫印迹在人类样本上 (图 2b). Cancer Sci (2018) ncbi
domestic rabbit 单克隆(EPR4041(2))
  • 免疫印迹; 人类; 1:3000; 图 3c
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab108615)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3c). Biosci Rep (2017) ncbi
domestic rabbit 单克隆(EPR4041(2))
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2c
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab108615)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2c). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2j
  • 免疫细胞化学; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫细胞化学在人类样本上 (图 2j) 和 被用于免疫细胞化学在小鼠样本上 (图 2c). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 5e
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, 21685)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). Am J Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 7b
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab191023)被用于被用于免疫细胞化学在人类样本上 (图 7b). Oncotarget (2017) ncbi
domestic rabbit 单克隆(EPR4041(2))
  • 免疫印迹; 小鼠; 图 4b
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab108615)被用于被用于免疫印迹在小鼠样本上 (图 4b). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR4041(2))
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司 Bip抗体(abcam, ab108615)被用于被用于免疫细胞化学在人类样本上 (图 1). Cancer Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab32618)被用于被用于免疫印迹在人类样本上. PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 8
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab191023)被用于被用于免疫细胞化学在人类样本上 (图 8). Front Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab-21685)被用于被用于免疫印迹在人类样本上. Orphanet J Rare Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Drug Des Devel Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫印迹在小鼠样本上 (图 4). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 1
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab32618)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1). Development (2016) ncbi
domestic rabbit 单克隆(EPR4040(2))
  • 免疫印迹; 大鼠; 1:2000
艾博抗(上海)贸易有限公司 Bip抗体(Epitomics, Ab108613)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫印迹在人类样本上 (图 2b). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 8
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 8). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2b
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab191023)被用于被用于免疫细胞化学在人类样本上 (图 2b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 1
  • 免疫印迹; 人类; 1:5000; 图 4
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab21685)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 4). FASEB J (2016) ncbi
domestic rabbit 单克隆(EPR4040(2))
  • 免疫印迹; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司 Bip抗体(Abcam, ab108613)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). J Cell Mol Med (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-10)
  • 免疫组化; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 Bip抗体(Santa-Cruz Biotechnology, sc-376768)被用于被用于免疫组化在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 3a). Redox Biol (2021) ncbi
大鼠 单克隆(76-E6)
  • 免疫印迹; 小鼠; 图 5b
圣克鲁斯生物技术 Bip抗体(Santa Cruz Biotechnology, sc-13539)被用于被用于免疫印迹在小鼠样本上 (图 5b). Aging (Albany NY) (2021) ncbi
大鼠 单克隆(76-E6)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
圣克鲁斯生物技术 Bip抗体(Santa Cruz, sc-13539)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). J Inflamm Res (2021) ncbi
大鼠 单克隆(76-E6)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
  • 免疫印迹; 小鼠; 图 1k
圣克鲁斯生物技术 Bip抗体(Santa Cruz, sc-13539)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 1k). Br J Pharmacol (2020) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Bip抗体(Santa Cruz, sc-376768)被用于被用于免疫印迹在人类样本上 (图 2a). Oncogene (2019) ncbi
大鼠 单克隆(76-E6)
  • 免疫印迹; 人类; 1:1000; 图 5A
圣克鲁斯生物技术 Bip抗体(Santa Cruz, sc-13539)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5A). Int J Mol Sci (2017) ncbi
大鼠 单克隆(76-E6)
  • 免疫印迹; 小鼠; 图 10a
圣克鲁斯生物技术 Bip抗体(Santa Cruz, 13539)被用于被用于免疫印迹在小鼠样本上 (图 10a). J Biol Chem (2016) ncbi
小鼠 单克隆(A-10)
  • 免疫细胞化学; 人类; 1:50; 图 4
圣克鲁斯生物技术 Bip抗体(Santa Cruz, sc-376768)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4). Oncol Lett (2016) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 小鼠; 1:200; 图 7
圣克鲁斯生物技术 Bip抗体(Santa Cruz Biotechnology, sc-376768)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 7). FEBS Open Bio (2015) ncbi
小鼠 单克隆(A-10)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 Bip抗体(Santa Cruz Biotechnology, SC-376768)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 人类; 1:200; 图 1e
圣克鲁斯生物技术 Bip抗体(Santa Cruz, sc-376768)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1e). Mol Med Rep (2015) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bip抗体(Santa Cruz Biotechnology, sc-376768)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
大鼠 单克隆(76-E6)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Bip抗体(Santa Cruz Biotechnology, sc-13539)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bip抗体(Santa Cruz, SC-376768)被用于被用于免疫印迹在人类样本上. elife (2013) ncbi
赛默飞世尔
小鼠 单克隆(6H4-2G7)
  • 免疫印迹; fruit fly ; 1:1000; 图 s4c
赛默飞世尔 Bip抗体(Invitrogen, MA5-27687)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 s4c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 7h
赛默飞世尔 Bip抗体(ThermoFisher, PA1-014A)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 7h). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; African green monkey; 图 5d
  • 免疫印迹; African green monkey; 图 4c
赛默飞世尔 Bip抗体(Pierce, PA5-11418)被用于被用于免疫细胞化学在African green monkey样本上 (图 5d) 和 被用于免疫印迹在African green monkey样本上 (图 4c). Viruses (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:100; 表 1
赛默飞世尔 Bip抗体(Thermo, PA1-37805)被用于被用于免疫组化在大鼠样本上浓度为1:100 (表 1). Front Cell Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 5a
赛默飞世尔 Bip抗体(Thermo Fisher Scientific, pa511418)被用于被用于流式细胞仪在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 2
赛默飞世尔 Bip抗体(Thermo Fisher, PA1-013)被用于被用于免疫细胞化学在大鼠样本上 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:50; 图 4
赛默飞世尔 Bip抗体(ThermoFisher, PA5-22967)被用于被用于免疫组化在fruit fly 样本上浓度为1:50 (图 4). Hum Mol Genet (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Bip抗体(Pierce antibodies, PA1-014A)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Bip抗体(Thermofisher, PA1-37805)被用于. Neuroscience (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Bip抗体(Thermofisher, PA1-37805)被用于. Brain Res (2015) ncbi
亚诺法生技股份有限公司
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000
亚诺法生技股份有限公司 Bip抗体(Abnova, MAB8736)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2015) ncbi
Novus Biologicals
domestic rabbit 多克隆(3B10E7)
  • 免疫印迹; 人类; 图 3e
Novus Biologicals Bip抗体(Novus, NBP2-16749)被用于被用于免疫印迹在人类样本上 (图 3e). J Exp Clin Cancer Res (2022) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(C50B12)
  • 免疫组化; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, C50B12)被用于被用于免疫组化在小鼠样本上浓度为1:200. Int J Mol Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3c, 3d
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3183)被用于被用于免疫印迹在小鼠样本上 (图 3c, 3d). Leukemia (2022) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 1:500; 图 s17c
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s17c). Nat Commun (2022) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:1000; 图 s6c
赛信通(上海)生物试剂有限公司 Bip抗体(CST, 3177)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6c). Nat Commun (2022) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在小鼠样本上 (图 2c). J Exp Med (2022) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6s2b
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6s2b). elife (2021) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫组化-冰冻切片; 牛; 1:300; 图 3d
  • 免疫印迹; 牛; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫组化-冰冻切片在牛样本上浓度为1:300 (图 3d) 和 被用于免疫印迹在牛样本上浓度为1:1000 (图 3c). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 图 s1a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在小鼠样本上 (图 s1a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 Bip抗体(CST, 3177)被用于被用于免疫印迹在人类样本上 (图 2f). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Bip抗体(CST, 3177S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). J Genet Genomics (2021) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nucleic Acids Res (2021) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Bip抗体(CST, 3177)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). J Nanobiotechnology (2021) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:500; 图 5b
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, C50B12)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5b). Oncogene (2021) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:500; 图 5a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫组化; 小鼠; 图 1b
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technology, 3,177)被用于被用于免疫组化在小鼠样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Aging Cell (2021) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫组化-石蜡切片; 家羊; 图 6a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell signaling, C50B12)被用于被用于免疫组化-石蜡切片在家羊样本上 (图 6a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:50; 图 4h
赛信通(上海)生物试剂有限公司 Bip抗体(CST, 3177T)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 4h). Stem Cell Reports (2021) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫组化; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫组化在小鼠样本上 (图 5c). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3a, 5e
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3a, 5e). Diabetes (2021) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:1000; 图 3a
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2c
  • 免疫印迹; 小鼠; 1:1000; 图 1a, s2a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a, s2a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technology, 3177)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). J Clin Invest (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5b
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technology, 3183)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 3c
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technology, 3183)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3c). Oncogene (2020) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在小鼠样本上 (图 4a). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:1000; 图 s6
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Nat Commun (2020) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Bip抗体(cell signalling, 3177)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Metabolism (2020) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 图 s1c
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在人类样本上 (图 s1c). Sci Adv (2020) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 大鼠; 1:1000; 图 1d
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signalling Technology, C50B12)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). J Cachexia Sarcopenia Muscle (2020) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 仓鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在仓鼠样本上浓度为1:1000 (图 4a). elife (2019) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:1000; 图 4s1b
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4s1b). elife (2019) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell signaling technology, 3177s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Biol Res (2019) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3183)被用于被用于免疫印迹在小鼠样本上 (图 s2a). EMBO J (2019) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 图 e5h
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在小鼠样本上 (图 e5h). Nature (2019) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technology, 3177P)被用于被用于免疫印迹在小鼠样本上 (图 4d). Immunity (2019) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technology, 3177)被用于被用于免疫印迹在小鼠样本上 (图 1h). Cancer Cell (2019) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫组化-石蜡切片; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). Cell Discov (2019) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f). Cell (2018) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在人类样本上 (图 6e). Oncogene (2018) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 图 1k
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在小鼠样本上 (图 1k). J Cell Biol (2018) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technologies, 3177S)被用于被用于免疫印迹在小鼠样本上 (图 6e). Dev Cell (2018) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Bip抗体(CST, 3177S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 1:2000; 图 9c
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177P)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 9c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 1:500; 图 2a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2a). Endocrinology (2018) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 大鼠; 图 6
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在大鼠样本上 (图 6). Toxicology (2017) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在小鼠样本上 (图 1a). Biochem Pharmacol (2017) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177P)被用于被用于免疫印迹在人类样本上 (图 3d). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:5000; 图 1e
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, C50B12)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1e). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:1000; 图 s4b
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Bip抗体(Adipogen, 3177)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell signaling, C50B12)被用于被用于免疫印迹在小鼠样本上 (图 3a). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫组化; 人类; 图 5e
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫组化在人类样本上 (图 5e) 和 被用于免疫印迹在人类样本上 (图 4a). Oncogene (2017) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1b
  • 免疫印迹; 小鼠; 1:1000; 图 8c
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8c). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在小鼠样本上 (图 1e). FASEB J (2017) ncbi
domestic rabbit 单克隆(C50B12)
  • 流式细胞仪; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, C50B12)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 大鼠; 图 4a
  • 免疫印迹; 小鼠; 图 3b
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在大鼠样本上 (图 4a), 被用于免疫印迹在小鼠样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 8a). J Neurosci (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). elife (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Int J Biochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3183)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Mol Cell Endocrinol (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 抑制或激活实验; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Tech, 3177)被用于被用于抑制或激活实验在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1). Cancer Gene Ther (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Tech, 3177S)被用于被用于免疫印迹在人类样本上 (图 6). J Virol (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technology, 3177)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Dis Model Mech (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫细胞化学; 人类; 1:400; 图 5C
  • 免疫印迹; 人类; 1:1000; 图 5A
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 5C) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5A). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, C50B12)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1). Virchows Arch (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 1:1000; 图 5h
  • 免疫印迹; 人类; 1:1000; 图 5h
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, C50B12)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5h). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3183S)被用于被用于免疫印迹在小鼠样本上. Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3183)被用于被用于免疫印迹在小鼠样本上 (图 1b). Oncol Rep (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 大鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Tech, 3177)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3183S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Physiol Biochem (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫组化-石蜡切片; 小鼠; 图 2g
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 Bip抗体(Cell signalling technology, 3177)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2g) 和 被用于免疫印迹在小鼠样本上 (图 2e). elife (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Bip抗体(Cell signaling, 3177)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在人类样本上 (图 1). Mol Cell Proteomics (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technology, 3177)被用于被用于免疫印迹在小鼠样本上 (图 5). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1F
赛信通(上海)生物试剂有限公司 Bip抗体(CST, 3183)被用于被用于免疫印迹在小鼠样本上 (图 1F). Cell Stem Cell (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 1:1000; 图 3
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technology, 3177)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). FASEB J (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Bip抗体(Cell signaling, 3177)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technology, 3177)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在人类样本上 (图 4). FEBS Lett (2015) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫组化; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technology, 3177)被用于被用于免疫组化在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Otol Neurotol (2015) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technology, 3177)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Cell Biol (2015) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫组化; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signalling, C50B12)被用于被用于免疫组化在小鼠样本上 (图 7). J Bone Miner Res (2015) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫组化在小鼠样本上. J Clin Invest (2015) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫细胞化学; 小鼠; 1:800
  • 免疫细胞化学; 人类; 1:800
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, C50B12)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 和 被用于免疫细胞化学在人类样本上浓度为1:800. J Gastroenterol (2015) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 仓鼠
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, C50B12)被用于被用于免疫印迹在仓鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technology, 3177)被用于被用于免疫印迹在人类样本上 (图 2). Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling, 3177)被用于被用于免疫印迹在小鼠样本上 (图 2c). Hum Mol Genet (2014) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technology, 3177)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2013) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technology, 3177)被用于被用于免疫印迹在大鼠样本上. Apoptosis (2013) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technology, 3177)被用于被用于免疫印迹在人类样本上. Cell Stress Chaperones (2013) ncbi
domestic rabbit 单克隆(C50B12)
  • 免疫组化; 人类; 1:200
赛信通(上海)生物试剂有限公司 Bip抗体(Cell Signaling Technology, 3177)被用于被用于免疫组化在人类样本上浓度为1:200. BMC Cancer (2008) ncbi
碧迪BD
小鼠 单克隆(40/BiP)
  • 免疫印迹; 小鼠; 1:1000; 图 s6b
碧迪BD Bip抗体(BD Transduction Labs, 610979)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6b). Mol Neurodegener (2022) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 小鼠; 1:1000; 图 5f
  • 免疫印迹; 人类; 1:1000; 图 4f
碧迪BD Bip抗体(BD Biosciences, 610979)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Nat Commun (2022) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 小鼠; 图 6f
碧迪BD Bip抗体(BD Transduction Labs, 610979)被用于被用于免疫印迹在小鼠样本上 (图 6f). Cell Rep (2021) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 人类; 图 2f
碧迪BD Bip抗体(Transduction Laboratories, 610978)被用于被用于免疫印迹在人类样本上 (图 2f). Biol Open (2021) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 人类; 1:1000; 图 1g
碧迪BD Bip抗体(BD Biosciences, 610978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). Cell Death Dis (2021) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
碧迪BD Bip抗体(BD Biosciences, 610979)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). elife (2019) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 人类; 图 3e
碧迪BD Bip抗体(BD, 610978)被用于被用于免疫印迹在人类样本上 (图 3e). Cell Death Differ (2019) ncbi
小鼠 单克隆(40/BiP)
  • 其他; 人类; 图 4c
碧迪BD Bip抗体(BD Biosciences, 610978)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 人类; 图 5a
  • 免疫印迹; 小鼠; 图 1m
碧迪BD Bip抗体(BD Biosciences, 610979)被用于被用于免疫印迹在人类样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 1m). Mol Cell (2017) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
碧迪BD Bip抗体(BD Biosciences, 610978)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). EMBO J (2017) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 小鼠; 图 s10
碧迪BD Bip抗体(BD Transduction lab, 610978)被用于被用于免疫印迹在小鼠样本上 (图 s10). Cell Death Dis (2017) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 人类; 图 s6a
碧迪BD Bip抗体(BD Transduction Lab, 610978)被用于被用于免疫印迹在人类样本上 (图 s6a). Autophagy (2017) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 小鼠; 1:5000
碧迪BD Bip抗体(BD Biosciences, 610979)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Nature (2016) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
碧迪BD Bip抗体(BD, 610978)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). J Cell Biol (2016) ncbi
小鼠 单克隆(40/BiP)
  • 免疫组化; 小鼠; 图 2
碧迪BD Bip抗体(BD (Transduction, 610978)被用于被用于免疫组化在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 人类; 图 1a
碧迪BD Bip抗体(BD Biosciences, 610978)被用于被用于免疫印迹在人类样本上 (图 1a). Sci Rep (2016) ncbi
小鼠 单克隆(40/BiP)
  • 流式细胞仪; 人类; 1:100; 图 3
碧迪BD Bip抗体(BD Biosciences, 610979)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3). J Clin Invest (2016) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 大鼠; 1:1000; 图 6
碧迪BD Bip抗体(BD Bioscience, 610978)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 人类; 图 3
碧迪BD Bip抗体(BD Biosciences, 610978)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 小鼠; 1:10,000; 图 6
碧迪BD Bip抗体(BD, 610979)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 6). Dis Model Mech (2016) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 小鼠; 图 2c
碧迪BD Bip抗体(BD Transduction Laboratories, 610979)被用于被用于免疫印迹在小鼠样本上 (图 2c). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 小鼠; 图 3
碧迪BD Bip抗体(BD, 610979)被用于被用于免疫印迹在小鼠样本上 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 人类
碧迪BD Bip抗体(BD Transduction Laboratories, 610978)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 大鼠; 1:1000; 图 3
碧迪BD Bip抗体(BD, 610978)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(40/BiP)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
碧迪BD Bip抗体(BD Bioscience, 610979)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). BMC Cancer (2015) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 小鼠; 1:2000
碧迪BD Bip抗体(BD Biosciences, 610978)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. PLoS ONE (2015) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 人类; 1:2000; 图 s2b
  • 免疫印迹; 小鼠; 图 3g
碧迪BD Bip抗体(BD, 610978)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s2b) 和 被用于免疫印迹在小鼠样本上 (图 3g). Science (2015) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 小鼠
碧迪BD Bip抗体(BD, 610979)被用于被用于免疫印迹在小鼠样本上. FEBS Lett (2015) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BD Bip抗体(BD Biosciences, 610978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2015) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 人类; 1:1000; 图 7
碧迪BD Bip抗体(BD Transduction Laboratories, 610979)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). PLoS Pathog (2015) ncbi
小鼠 单克隆(40/BiP)
  • 免疫沉淀; pigs ; 图 3
  • 免疫印迹; pigs ; 图 1d,3
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 1c
碧迪BD Bip抗体(BD Transduction Laboratories, 610979)被用于被用于免疫沉淀在pigs 样本上 (图 3), 被用于免疫印迹在pigs 样本上 (图 1d,3), 被用于免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1c). PLoS ONE (2015) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 小鼠; 图 s1
  • 免疫印迹; 大鼠; 图 1
碧迪BD Bip抗体(BD, 610979)被用于被用于免疫印迹在小鼠样本上 (图 s1) 和 被用于免疫印迹在大鼠样本上 (图 1). Mol Biol Cell (2015) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 大鼠
碧迪BD Bip抗体(BD Biosciences, 610978)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 小鼠; 1:1000; 图 3
碧迪BD Bip抗体(BD Biosciences, 610978)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Acta Neuropathol (2014) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 人类; 图 1,2,3,4,5,6
碧迪BD Bip抗体(BD, 610978)被用于被用于免疫印迹在人类样本上 (图 1,2,3,4,5,6). J Cell Biol (2014) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; African green monkey
碧迪BD Bip抗体(BD biosciences, 610978)被用于被用于免疫印迹在African green monkey样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(40/BiP)
  • 流式细胞仪; 人类
  • 免疫印迹; 人类
碧迪BD Bip抗体(BD Bioscience, 610978)被用于被用于流式细胞仪在人类样本上 和 被用于免疫印迹在人类样本上. Evid Based Complement Alternat Med (2013) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; pigs
碧迪BD Bip抗体(BD Biosciences, 610978)被用于被用于免疫印迹在pigs 样本上. Physiol Genomics (2013) ncbi
小鼠 单克隆(40/BiP)
  • 免疫印迹; 人类; 图 1
碧迪BD Bip抗体(BD, 610978)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2012) ncbi
小鼠 单克隆(40/BiP)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠; 图 2e
碧迪BD Bip抗体(BD Biosciences, 610978)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 2e). Biochem Biophys Res Commun (2010) ncbi
文章列表
  1. Hyde L, Kong Y, Zhao L, Rao S, Wang J, Stone L, et al. A Dpagt1 Missense Variant Causes Degenerative Retinopathy without Myasthenic Syndrome in Mice. Int J Mol Sci. 2022;23: pubmed 出版商
  2. Zhang Q, Ali M, Wang Y, Sun Q, Zhu X, Tang D, et al. Galectin‑1 binds GRP78 to promote the proliferation and metastasis of gastric cancer. Int J Oncol. 2022;61: pubmed 出版商
  3. Lee A, Pingali S, Pinilla Ibarz J, Atchison M, Koumenis C, Argon Y, et al. Loss of AID exacerbates the malignant progression of CLL. Leukemia. 2022;36:2430-2442 pubmed 出版商
  4. El Chehadeh S, Han K, Kim D, Jang G, Bakhtiari S, Lim D, et al. SLITRK2 variants associated with neurodevelopmental disorders impair excitatory synaptic function and cognition in mice. Nat Commun. 2022;13:4112 pubmed 出版商
  5. Lei X, Lin H, Wang J, Ou Z, Ruan Y, Sadagopan A, et al. Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression. Nat Commun. 2022;13:3882 pubmed 出版商
  6. Chen J, Chen K, Wang L, Luo J, Zheng Q, He Y. Decoy receptor 2 mediates the apoptosis-resistant phenotype of senescent renal tubular cells and accelerates renal fibrosis in diabetic nephropathy. Cell Death Dis. 2022;13:522 pubmed 出版商
  7. Zhu J, Pittman S, Dhavale D, French R, Patterson J, Kaleelurrrahuman M, et al. VCP suppresses proteopathic seeding in neurons. Mol Neurodegener. 2022;17:30 pubmed 出版商
  8. Robichaux M, Nguyen V, Chan F, Kailasam L, He F, Wilson J, et al. Subcellular localization of mutant P23H rhodopsin in an RFP fusion knock-in mouse model of retinitis pigmentosa. Dis Model Mech. 2022;15: pubmed 出版商
  9. Liu M, Wu C, Luo S, Hua Q, Chen H, Weng Y, et al. PERK reprograms hematopoietic progenitor cells to direct tumor-promoting myelopoiesis in the spleen. J Exp Med. 2022;219: pubmed 出版商
  10. Salaroglio I, Belisario D, Bironzo P, Ananthanarayanan P, Ricci L, Digiovanni S, et al. SKP2 drives the sensitivity to neddylation inhibitors and cisplatin in malignant pleural mesothelioma. J Exp Clin Cancer Res. 2022;41:75 pubmed 出版商
  11. Lebeau P, Byun J, Platko K, Saliba P, Sguazzin M, Macdonald M, et al. Caffeine blocks SREBP2-induced hepatic PCSK9 expression to enhance LDLR-mediated cholesterol clearance. Nat Commun. 2022;13:770 pubmed 出版商
  12. Sasson E, Anzi S, Bell B, Yakovian O, Zorsky M, Deutsch U, et al. Nano-scale architecture of blood-brain barrier tight-junctions. elife. 2021;10: pubmed 出版商
  13. Bhattarai K, Kim H, Chaudhary M, Ur Rashid M, Kim J, Kim H, et al. TMBIM6 regulates redox-associated posttranslational modifications of IRE1α and ER stress response failure in aging mice and humans. Redox Biol. 2021;47:102128 pubmed 出版商
  14. Chen F, Sheng L, Xu C, Li J, Ali I, Li H, et al. Ufbp1, a Key Player of Ufm1 Conjugation System, Protects Against Ketosis-Induced Liver Injury via Suppressing Smad3 Activation. Front Cell Dev Biol. 2021;9:676789 pubmed 出版商
  15. Wei Y, Chen J, Xu X, Li F, Wu K, Jiang Y, et al. Restoration of H3k27me3 Modification Epigenetically Silences Cry1 Expression and Sensitizes Leptin Signaling to Reduce Obesity-Related Properties. Adv Sci (Weinh). 2021;8:2004319 pubmed 出版商
  16. Wani A, Zhu J, ULRICH J, Eteleeb A, Sauerbeck A, Reitz S, et al. Neuronal VCP loss of function recapitulates FTLD-TDP pathology. Cell Rep. 2021;36:109399 pubmed 出版商
  17. Ko P, Choi J, Song S, Keum S, Jeong J, Hwang Y, et al. Microtubule Acetylation Controls MDA-MB-231 Breast Cancer Cell Invasion through the Modulation of Endoplasmic Reticulum Stress. Int J Mol Sci. 2021;22: pubmed 出版商
  18. Zhou Y, Ye X, Zhang C, Wang J, Guan Z, Yan J, et al. Ufl1 deficiency causes kidney atrophy associated with disruption of endoplasmic reticulum homeostasis. J Genet Genomics. 2021;48:403-410 pubmed 出版商
  19. Torres A, Rodríguez Escribà M, Marcet Houben M, Santos Vieira H, Camacho N, Catena H, et al. Human tRNAs with inosine 34 are essential to efficiently translate eukarya-specific low-complexity proteins. Nucleic Acids Res. 2021;49:7011-7034 pubmed 出版商
  20. Prater M, Hamilton R, Wa Yung H, Sharkey A, Robson P, Abd Hamid N, et al. RNA-Seq reveals changes in human placental metabolism, transport and endocrinology across the first-second trimester transition. Biol Open. 2021;10: pubmed 出版商
  21. Baik S, Selvaraji S, Fann D, Poh L, Jo D, Herr D, et al. Hippocampal transcriptome profiling reveals common disease pathways in chronic hypoperfusion and aging. Aging (Albany NY). 2021;13:14651-14674 pubmed 出版商
  22. Xiao J, Tu B, Zhou X, Jiang X, Xu G, Zhang J, et al. Autophagy deficiency exacerbates acute lung injury induced by copper oxide nanoparticles. J Nanobiotechnology. 2021;19:162 pubmed 出版商
  23. Goswami S, Balasubramanian I, D Agostino L, Bandyopadhyay S, Patel R, Avasthi S, et al. RAB11A-mediated YAP localization to adherens and tight junctions is essential for colonic epithelial integrity. J Biol Chem. 2021;297:100848 pubmed 出版商
  24. Li L, Yang L, Yang F, Zhao X, Xue S, Gong F. Ginkgo biloba Extract 50 (GBE50) Ameliorates Insulin Resistance, Hepatic Steatosis and Liver Injury in High Fat Diet-Fed Mice. J Inflamm Res. 2021;14:1959-1971 pubmed 出版商
  25. Prokakis E, Dyas A, Grün R, Fritzsche S, Bedi U, Kazerouni Z, et al. USP22 promotes HER2-driven mammary carcinoma aggressiveness by suppressing the unfolded protein response. Oncogene. 2021;40:4004-4018 pubmed 出版商
  26. Tripathi P, Guo H, Dreser A, Yamoah A, Sechi A, Jesse C, et al. Pathomechanisms of ALS8: altered autophagy and defective RNA binding protein (RBP) homeostasis due to the VAPB P56S mutation. Cell Death Dis. 2021;12:466 pubmed 出版商
  27. Martínez Gutiérrez A, Fernández Duran I, Marazuela Duque A, Simonet N, Yousef I, Martínez Rovira I, et al. Shikimic acid protects skin cells from UV-induced senescence through activation of the NAD+-dependent deacetylase SIRT1. Aging (Albany NY). 2021;13:12308-12333 pubmed 出版商
  28. Hua Y, Zhang K, Sheng J, Ning Z, Li Y, Shi W, et al. NUCB1 Suppresses Growth and Shows Additive Effects With Gemcitabine in Pancreatic Ductal Adenocarcinoma via the Unfolded Protein Response. Front Cell Dev Biol. 2021;9:641836 pubmed 出版商
  29. Yin S, Li L, Tao Y, Yu J, Wei S, Liu M, et al. The Inhibitory Effect of Artesunate on Excessive Endoplasmic Reticulum Stress Alleviates Experimental Colitis in Mice. Front Pharmacol. 2021;12:629798 pubmed 出版商
  30. Jiang S, Xu W, Chen Z, Cui C, Fan X, Cai J, et al. Hydrogen sulphide reduces hyperhomocysteinaemia-induced endothelial ER stress by sulfhydrating protein disulphide isomerase to attenuate atherosclerosis. J Cell Mol Med. 2021;25:3437-3448 pubmed 出版商
  31. Wallace M, Aguirre N, Marcotte G, Marshall A, Baehr L, Hughes D, et al. The ketogenic diet preserves skeletal muscle with aging in mice. Aging Cell. 2021;20:e13322 pubmed 出版商
  32. van Gorp C, de Lange I, Massy K, Kessels L, Jobe A, Cleutjens J, et al. Intestinal Goblet Cell Loss during Chorioamnionitis in Fetal Lambs: Mechanistic Insights and Postnatal Implications. Int J Mol Sci. 2021;22: pubmed 出版商
  33. Pretemer Y, Kawai S, Nagata S, Nishio M, Watanabe M, Tamaki S, et al. Differentiation of Hypertrophic Chondrocytes from Human iPSCs for the In Vitro Modeling of Chondrodysplasias. Stem Cell Reports. 2021;16:610-625 pubmed 出版商
  34. Persaud A, Nair S, Rahman M, Raj R, Weadick B, Nayak D, et al. Facilitative lysosomal transport of bile acids alleviates ER stress in mouse hematopoietic precursors. Nat Commun. 2021;12:1248 pubmed 出版商
  35. Yoshida S, Wei X, Zhang G, O Connor C, Torres M, Zhou Z, et al. Endoplasmic reticulum-associated degradation is required for nephrin maturation and kidney glomerular filtration function. J Clin Invest. 2021;131: pubmed 出版商
  36. Ryan B, Bengoa Vergniory N, Williamson M, Kirkiz E, Roberts R, Corda G, et al. REST protects dopaminergic neurons from mitochondrial and α-synuclein oligomer pathology in an alpha synuclein overexpressing BAC-transgenic mouse model. J Neurosci. 2021;: pubmed 出版商
  37. Quintero M, Liu S, Xia Y, Huang Y, Zou Y, Li G, et al. Cdk5rap3 is essential for intestinal Paneth cell development and maintenance. Cell Death Dis. 2021;12:131 pubmed 出版商
  38. Montaser H, Patel K, Balboa D, Ibrahim H, Lithovius V, Näätänen A, et al. Loss of MANF Causes Childhood-Onset Syndromic Diabetes Due to Increased Endoplasmic Reticulum Stress. Diabetes. 2021;70:1006-1018 pubmed 出版商
  39. Johnson A, Orr B, Fetter R, Moughamian A, Primeaux L, Geier E, et al. SVIP is a molecular determinant of lysosomal dynamic stability, neurodegeneration and lifespan. Nat Commun. 2021;12:513 pubmed 出版商
  40. Kong Y, Zhao X, Qiu M, Lin Y, Feng P, Li S, et al. Tubular Mas receptor mediates lipid-induced kidney injury. Cell Death Dis. 2021;12:110 pubmed 出版商
  41. Chen Y, Jhao P, Hung C, Wu Y, Lin S, Chiang W, et al. Endoplasmic reticulum protein TXNDC5 promotes renal fibrosis by enforcing TGF-β signaling in kidney fibroblasts. J Clin Invest. 2021;131: pubmed 出版商
  42. Lei Z, Wang J, Li K, Liu P. Herp knockout protects against nonalcoholic fatty liver disease in mice on a high fat diet. Kaohsiung J Med Sci. 2021;37:487-496 pubmed 出版商
  43. Wanschel A, Guizoni D, Lorza Gil E, Salerno A, Paiva A, Dorighello G, et al. The Presence of Cholesteryl Ester Transfer Protein (CETP) in Endothelial Cells Generates Vascular Oxidative Stress and Endothelial Dysfunction. Biomolecules. 2021;11: pubmed 出版商
  44. Liang X, Yan Z, Ma W, Qian Y, Zou X, Cui Y, et al. Peroxiredoxin 4 protects against ovarian ageing by ameliorating D-galactose-induced oxidative damage in mice. Cell Death Dis. 2020;11:1053 pubmed 出版商
  45. Wu P, Hong S, Starenki D, Oshima K, Shao H, Gestwicki J, et al. Mortalin/HSPA9 targeting selectively induces KRAS tumor cell death by perturbing mitochondrial membrane permeability. Oncogene. 2020;39:4257-4270 pubmed 出版商
  46. el Azzouzi H, Vilaça A, Feyen D, Gommans W, de Weger R, Doevendans P, et al. Cardiomyocyte Specific Deletion of ADAR1 Causes Severe Cardiac Dysfunction and Increased Lethality. Front Cardiovasc Med. 2020;7:30 pubmed 出版商
  47. Lee D, Kam M, Lee S, Lee H, Lee D. Peroxiredoxin 5 deficiency exacerbates iron overload-induced neuronal death via ER-mediated mitochondrial fission in mouse hippocampus. Cell Death Dis. 2020;11:204 pubmed 出版商
  48. von Roemeling C, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11:1508 pubmed 出版商
  49. Sozen E, Yazgan B, Tok O, Demirel T, Ercan F, Proto J, et al. Cholesterol induced autophagy via IRE1/JNK pathway promotes autophagic cell death in heart tissue. Metabolism. 2020;106:154205 pubmed 出版商
  50. Park H, Shin D, Sim J, Aum S, Lee M. IRE1α kinase-mediated unconventional protein secretion rescues misfolded CFTR and pendrin. Sci Adv. 2020;6:eaax9914 pubmed 出版商
  51. Shah D, Nisr R, Stretton C, Krasteva Christ G, Hundal H. Caveolin-3 deficiency associated with the dystrophy P104L mutation impairs skeletal muscle mitochondrial form and function. J Cachexia Sarcopenia Muscle. 2020;11:838-858 pubmed 出版商
  52. Herranen A, Ikäheimo K, Lankinen T, Pakarinen E, Fritzsch B, Saarma M, et al. Deficiency of the ER-stress-regulator MANF triggers progressive outer hair cell death and hearing loss. Cell Death Dis. 2020;11:100 pubmed 出版商
  53. Chai Y, Zhu K, Li C, Wang X, Shen J, Yong F, et al. Dexmedetomidine alleviates cisplatin‑induced acute kidney injury by attenuating endoplasmic reticulum stress‑induced apoptosis via the α2AR/PI3K/AKT pathway. Mol Med Rep. 2020;21:1597-1605 pubmed 出版商
  54. Pakarinen E, Danilova T, Voikar V, Chmielarz P, Piepponen P, Airavaara M, et al. MANF Ablation Causes Prolonged Activation of the UPR without Neurodegeneration in the Mouse Midbrain Dopamine System. Eneuro. 2020;7: pubmed 出版商
  55. Kielkowski P, Buchsbaum I, Kirsch V, Bach N, Drukker M, Cappello S, et al. FICD activity and AMPylation remodelling modulate human neurogenesis. Nat Commun. 2020;11:517 pubmed 出版商
  56. Santos M, Anderson C, Neschen S, Zumbrennen Bullough K, Romney S, Kahle Stephan M, et al. Irp2 regulates insulin production through iron-mediated Cdkal1-catalyzed tRNA modification. Nat Commun. 2020;11:296 pubmed 出版商
  57. Modi J, Menzie Suderam J, Xu H, Trujillo P, Medley K, Marshall M, et al. Mode of action of granulocyte-colony stimulating factor (G-CSF) as a novel therapy for stroke in a mouse model. J Biomed Sci. 2020;27:19 pubmed 出版商
  58. Wang W, Wang J, Lin W, Kao C, Hung M, Teng Y, et al. Progerin in muscle leads to thermogenic and metabolic defects via impaired calcium homeostasis. Aging Cell. 2020;19:e13090 pubmed 出版商
  59. Lee H, Lee G, Kim H, Lee Y, Chae H. Phosphatidylinositol 3-kinase-δ controls endoplasmic reticulum membrane fluidity and permeability in fungus-induced allergic inflammation in mice. Br J Pharmacol. 2020;177:1556-1567 pubmed 出版商
  60. Yong J, Bischof H, Burgstaller S, Siirin M, Murphy A, Malli R, et al. Mitochondria supply ATP to the ER through a mechanism antagonized by cytosolic Ca2. elife. 2019;8: pubmed 出版商
  61. Shemorry A, Harnoss J, Guttman O, Marsters S, Komuves L, Lawrence D, et al. Caspase-mediated cleavage of IRE1 controls apoptotic cell commitment during endoplasmic reticulum stress. elife. 2019;8: pubmed 出版商
  62. Wang X, Peng P, Pan Z, Fang Z, Lu W, Liu X. Psoralen inhibits malignant proliferation and induces apoptosis through triggering endoplasmic reticulum stress in human SMMC7721 hepatoma cells. Biol Res. 2019;52:34 pubmed 出版商
  63. Jang I, Pottekat A, Poothong J, Yong J, Lagunas Acosta J, Charbono A, et al. PDIA1/P4HB is required for efficient proinsulin maturation and ß cell health in response to diet induced obesity. elife. 2019;8: pubmed 出版商
  64. Hernández Alvarez M, Sebastian D, Vives S, Ivanova S, Bartoccioni P, Kakimoto P, et al. Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease. Cell. 2019;177:881-895.e17 pubmed 出版商
  65. Mogilenko D, Haas J, L homme L, Fleury S, Quemener S, Levavasseur M, et al. Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell. 2019;177:1201-1216.e19 pubmed 出版商
  66. Guo M, Hartlova A, Gierlinski M, Prescott A, Castellvi J, Losa J, et al. Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J. 2019;38: pubmed 出版商
  67. Schiattarella G, Altamirano F, Tong D, French K, Villalobos E, Kim S, et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature. 2019;568:351-356 pubmed 出版商
  68. Wu J, Ma S, Sandhoff R, Ming Y, Hotz Wagenblatt A, Timmerman V, et al. Loss of Neurological Disease HSAN-I-Associated Gene SPTLC2 Impairs CD8+ T Cell Responses to Infection by Inhibiting T Cell Metabolic Fitness. Immunity. 2019;50:1218-1231.e5 pubmed 出版商
  69. Carugo A, Minelli R, Sapio L, Soeung M, Carbone F, Robinson F, et al. p53 Is a Master Regulator of Proteostasis in SMARCB1-Deficient Malignant Rhabdoid Tumors. Cancer Cell. 2019;35:204-220.e9 pubmed 出版商
  70. Cai Y, Zhu G, Liu S, Pan Z, Quintero M, Poole C, et al. Indispensable role of the Ubiquitin-fold modifier 1-specific E3 ligase in maintaining intestinal homeostasis and controlling gut inflammation. Cell Discov. 2019;5:7 pubmed 出版商
  71. Wang D, Xu Q, Yuan Q, Jia M, Niu H, Liu X, et al. Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab. Oncogene. 2019;38:3458-3474 pubmed 出版商
  72. Tiwarekar V, Fehrholz M, Schneider Schaulies J. KDELR2 Competes with Measles Virus Envelope Proteins for Cellular Chaperones Reducing Their Chaperone-Mediated Cell Surface Transport. Viruses. 2019;11: pubmed 出版商
  73. Jeon Y, Kim T, Park D, Nuovo G, Rhee S, Joshi P, et al. miRNA-mediated TUSC3 deficiency enhances UPR and ERAD to promote metastatic potential of NSCLC. Nat Commun. 2018;9:5110 pubmed 出版商
  74. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  75. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  76. Veith A, Bou Aram B, Jiang W, Wang L, Zhou G, Jefcoate C, et al. Mice Lacking the Cytochrome P450 1B1 Gene Are Less Susceptible to Hyperoxic Lung Injury Than Wild Type. Toxicol Sci. 2018;165:462-474 pubmed 出版商
  77. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  78. Liang H, Xiao J, Zhou Z, Wu J, Ge F, Li Z, et al. Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis. Oncogene. 2018;37:1961-1975 pubmed 出版商
  79. Xu D, Li Y, Wu L, Li Y, Zhao D, Yu J, et al. Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J Cell Biol. 2018;217:975-995 pubmed 出版商
  80. Smith M, Harley M, Kemp A, Wills J, Lee M, Arends M, et al. CCPG1 Is a Non-canonical Autophagy Cargo Receptor Essential for ER-Phagy and Pancreatic ER Proteostasis. Dev Cell. 2018;44:217-232.e11 pubmed 出版商
  81. El Zowalaty A, Li R, Chen W, Ye X. Seipin deficiency leads to increased endoplasmic reticulum stress and apoptosis in mammary gland alveolar epithelial cells during lactation. Biol Reprod. 2018;98:570-578 pubmed 出版商
  82. Green K, Glineburg M, Kearse M, Flores B, Linsalata A, Fedak S, et al. RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat Commun. 2017;8:2005 pubmed 出版商
  83. Moriya C, Taniguchi H, Nagatoishi S, Igarashi H, Tsumoto K, Imai K. PRDM14 directly interacts with heat shock proteins HSP90α and glucose-regulated protein 78. Cancer Sci. 2018;109:373-383 pubmed 出版商
  84. Lüningschrör P, Binotti B, Dombert B, Heimann P, Pérez Lara A, Slotta C, et al. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun. 2017;8:678 pubmed 出版商
  85. Viana Huete V, Guillen C, García G, Fernandez S, García Aguilar A, Kahn C, et al. Male Brown Fat-Specific Double Knockout of IGFIR/IR: Atrophy, Mitochondrial Fission Failure, Impaired Thermogenesis, and Obesity. Endocrinology. 2018;159:323-340 pubmed 出版商
  86. Zhao Y, Chen Y, Miao G, Zhao H, Qu W, Li D, et al. The ER-Localized Transmembrane Protein EPG-3/VMP1 Regulates SERCA Activity to Control ER-Isolation Membrane Contacts for Autophagosome Formation. Mol Cell. 2017;67:974-989.e6 pubmed 出版商
  87. Pereira R, Tadinada S, Zasadny F, Oliveira K, Pires K, Olvera A, et al. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J. 2017;36:2126-2145 pubmed 出版商
  88. Wassermann Dozorets R, Rubinstein M. C/EBPβ LIP augments cell death by inducing osteoglycin. Cell Death Dis. 2017;8:e2733 pubmed 出版商
  89. Lee C, Hanna A, Wang H, Dagnino Acosta A, Joshi A, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659 pubmed 出版商
  90. Chambers T, Santiesteban L, Gomez D, Chambers J. Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology. 2017;382:24-35 pubmed 出版商
  91. Kim J, Hyun H, Min S, Kang T. Sustained HSP25 Expression Induces Clasmatodendrosis via ER Stress in the Rat Hippocampus. Front Cell Neurosci. 2017;11:47 pubmed 出版商
  92. Samuel S, Ghosh S, Majeed Y, Arunachalam G, Emara M, Ding H, et al. Metformin represses glucose starvation induced autophagic response in microvascular endothelial cells and promotes cell death. Biochem Pharmacol. 2017;132:118-132 pubmed 出版商
  93. Deying W, Feng G, Shumei L, Hui Z, Ming L, Hongqing W. CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells. Biosci Rep. 2017;37: pubmed 出版商
  94. Li J, Yakushi T, Parlati F, MacKinnon A, Pérez C, Ma Y, et al. Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat Chem Biol. 2017;13:486-493 pubmed 出版商
  95. Déry M, LeBlanc A. Luman contributes to brefeldin A-induced prion protein gene expression by interacting with the ERSE26 element. Sci Rep. 2017;7:42285 pubmed 出版商
  96. Zhang H, Yue Y, Sun T, Wu X, Xiong S. Transmissible endoplasmic reticulum stress from myocardiocytes to macrophages is pivotal for the pathogenesis of CVB3-induced viral myocarditis. Sci Rep. 2017;7:42162 pubmed 出版商
  97. Lovric S, Gonçalves S, Gee H, Oskouian B, Srinivas H, Choi W, et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J Clin Invest. 2017;127:912-928 pubmed 出版商
  98. Bahar E, Lee G, Bhattarai K, Lee H, Choi M, Rashid H, et al. Polyphenolic Extract of Euphorbia supina Attenuates Manganese-Induced Neurotoxicity by Enhancing Antioxidant Activity through Regulation of ER Stress and ER Stress-Mediated Apoptosis. Int J Mol Sci. 2017;18: pubmed 出版商
  99. Liu J, Wang Y, Song L, Zeng L, Yi W, Liu T, et al. A critical role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1α stability. Nat Commun. 2017;8:14186 pubmed 出版商
  100. Guiraud S, Migeon T, Ferry A, Chen Z, Ouchelouche S, Verpont M, et al. HANAC Col4a1 Mutation in Mice Leads to Skeletal Muscle Alterations due to a Primary Vascular Defect. Am J Pathol. 2017;187:505-516 pubmed 出版商
  101. Dufour F, Rattier T, Constantinescu A, Zischler L, Morlé A, Ben Mabrouk H, et al. TRAIL receptor gene editing unveils TRAIL-R1 as a master player of apoptosis induced by TRAIL and ER stress. Oncotarget. 2017;8:9974-9985 pubmed 出版商
  102. Shi B, Huang Q, Birkett R, Doyle R, Dorfleutner A, Stehlik C, et al. SNAPIN is critical for lysosomal acidification and autophagosome maturation in macrophages. Autophagy. 2017;13:285-301 pubmed 出版商
  103. Tripathi M, Zhang C, Singh B, Sinha R, Moe K, DeSilva D, et al. Hyperhomocysteinemia causes ER stress and impaired autophagy that is reversed by Vitamin B supplementation. Cell Death Dis. 2016;7:e2513 pubmed 出版商
  104. Booth L, Roberts J, Poklepovic A, Gordon S, Dent P. PDE5 inhibitors enhance the lethality of pemetrexed through inhibition of multiple chaperone proteins and via the actions of cyclic GMP and nitric oxide. Oncotarget. 2017;8:1449-1468 pubmed 出版商
  105. Sareddy G, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A, Vadlamudi R. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene. 2017;36:2423-2434 pubmed 出版商
  106. Hu J, Li B, Apisa L, Yu H, Entenman S, Xu M, et al. ER stress inhibitor attenuates hearing loss and hair cell death in Cdh23erl/erl mutant mice. Cell Death Dis. 2016;7:e2485 pubmed 出版商
  107. Liu Z, Gan L, Wu T, Feng F, Luo D, Gu H, et al. Adiponectin reduces ER stress-induced apoptosis through PPARα transcriptional regulation of ATF2 in mouse adipose. Cell Death Dis. 2016;7:e2487 pubmed 出版商
  108. Fernández Verdejo R, Vanwynsberghe A, Essaghir A, Demoulin J, Hai T, Deldicque L, et al. Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training. FASEB J. 2017;31:840-851 pubmed 出版商
  109. Cao L, Riascos Bernal D, Chinnasamy P, Dunaway C, Hou R, Pujato M, et al. Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature. 2016;539:575-578 pubmed 出版商
  110. Cai Y, Yang L, Hu G, Chen X, Niu F, Yuan L, et al. Regulation of morphine-induced synaptic alterations: Role of oxidative stress, ER stress, and autophagy. J Cell Biol. 2016;215:245-258 pubmed
  111. Jones D, Gaudette B, Wilmore J, Chernova I, Bortnick A, Weiss B, et al. mTOR has distinct functions in generating versus sustaining humoral immunity. J Clin Invest. 2016;126:4250-4261 pubmed 出版商
  112. Beauvais G, Bode N, Watson J, Wen H, Glenn K, Kawano H, et al. Disruption of Protein Processing in the Endoplasmic Reticulum of DYT1 Knock-in Mice Implicates Novel Pathways in Dystonia Pathogenesis. J Neurosci. 2016;36:10245-10256 pubmed
  113. Yamanaka T, Tosaki A, Miyazaki H, Kurosawa M, Koike M, Uchiyama Y, et al. Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS. Sci Rep. 2016;6:34575 pubmed 出版商
  114. Wang C, Zhang F, Cao Y, Zhang M, Wang A, Xu M, et al. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress. Sci Rep. 2016;6:34330 pubmed 出版商
  115. Vanhoutte D, Schips T, Kwong J, Davis J, Tjondrokoesoemo A, Brody M, et al. Thrombospondin expression in myofibers stabilizes muscle membranes. elife. 2016;5: pubmed 出版商
  116. Bettaieb A, Cremonini E, Kang H, Kang J, Haj F, Oteiza P. Anti-inflammatory actions of (-)-epicatechin in the adipose tissue of obese mice. Int J Biochem Cell Biol. 2016;81:383-392 pubmed 出版商
  117. Mihailidou C, Panagiotou C, Kiaris H, Kassi E, Moutsatsou P. Crosstalk between C/EBP homologous protein (CHOP) and glucocorticoid receptor in lung cancer. Mol Cell Endocrinol. 2016;436:211-23 pubmed 出版商
  118. Ramakrishnan V, Gomez M, Prasad V, Kimlinger T, Painuly U, Mukhopadhyay B, et al. Smac mimetic LCL161 overcomes protective ER stress induced by obatoclax, synergistically causing cell death in multiple myeloma. Oncotarget. 2016;7:56253-56265 pubmed 出版商
  119. Kaliberov S, Kaliberova L, Yan H, Kapoor V, Hallahan D. Retargeted adenoviruses for radiation-guided gene delivery. Cancer Gene Ther. 2016;23:303-14 pubmed 出版商
  120. Wong M, Chen S. Human Choline Kinase-? Promotes Hepatitis C Virus RNA Replication through Modulation of Membranous Viral Replication Complex Formation. J Virol. 2016;90:9075-95 pubmed 出版商
  121. Zhang L, Ren F, Zhang X, Wang X, Shi H, Zhou L, et al. Peroxisome proliferator-activated receptor alpha acts as a mediator of endoplasmic reticulum stress-induced hepatocyte apoptosis in acute liver failure. Dis Model Mech. 2016;9:799-809 pubmed 出版商
  122. Cabral W, Ishikawa M, Garten M, Makareeva E, Sargent B, Weis M, et al. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta. PLoS Genet. 2016;12:e1006156 pubmed 出版商
  123. Tavallai M, Booth L, Roberts J, Poklepovic A, Dent P. Rationally Repurposing Ruxolitinib (Jakafi (®)) as a Solid Tumor Therapeutic. Front Oncol. 2016;6:142 pubmed 出版商
  124. Sabry S, Vuillaumier Barrot S, Mintet E, Fasseu M, Valayannopoulos V, Heron D, et al. A case of fatal Type I congenital disorders of glycosylation (CDG I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity. Orphanet J Rare Dis. 2016;11:84 pubmed 出版商
  125. Davis M, Delaney J, Patel C, Storgard R, Stupack D. Nelfinavir is effective against human cervical cancer cells in vivo: a potential treatment modality in resource-limited settings. Drug Des Devel Ther. 2016;10:1837-46 pubmed 出版商
  126. Berthoud V, Minogue P, Lambert P, Snabb J, Beyer E. The Cataract-linked Mutant Connexin50D47A Causes Endoplasmic Reticulum Stress in Mouse Lenses. J Biol Chem. 2016;291:17569-78 pubmed 出版商
  127. Zhou X, Wei Y, Qiu S, Xu Y, Zhang T, Zhang S. Propofol Decreases Endoplasmic Reticulum Stress-Mediated Apoptosis in Retinal Pigment Epithelial Cells. PLoS ONE. 2016;11:e0157590 pubmed 出版商
  128. Ansari M, Haqqi T. Interleukin-1β induced Stress Granules Sequester COX-2 mRNA and Regulates its Stability and Translation in Human OA Chondrocytes. Sci Rep. 2016;6:27611 pubmed 出版商
  129. Chaveroux C, Sarcinelli C, Barbet V, Belfeki S, Barthelaix A, Ferraro Peyret C, et al. Nutrient shortage triggers the hexosamine biosynthetic pathway via the GCN2-ATF4 signalling pathway. Sci Rep. 2016;6:27278 pubmed 出版商
  130. Elimam H, Papillon J, Kaufman D, Guillemette J, Aoudjit L, Gross R, et al. Genetic Ablation of Calcium-independent Phospholipase A2? Induces Glomerular Injury in Mice. J Biol Chem. 2016;291:14468-82 pubmed 出版商
  131. Hudish L, Galati D, Ravanelli A, Pearson C, Huang P, Appel B. miR-219 regulates neural progenitors by dampening apical Par protein-dependent Hedgehog signaling. Development. 2016;143:2292-304 pubmed 出版商
  132. Li F, Luo J, Wu Z, Xiao T, Zeng O, Li L, et al. Hydrogen sulfide exhibits cardioprotective effects by decreasing endoplasmic reticulum stress in a diabetic cardiomyopathy rat model. Mol Med Rep. 2016;14:865-73 pubmed 出版商
  133. Piton N, Wason J, Colasse É, Cornic M, Lemoine F, Le Pessot F, et al. Endoplasmic reticulum stress, unfolded protein response and development of colon adenocarcinoma. Virchows Arch. 2016;469:145-54 pubmed 出版商
  134. Diaz Hidalgo L, Altuntas S, Rossin F, D Eletto M, Marsella C, Farrace M, et al. Transglutaminase type 2-dependent selective recruitment of proteins into exosomes under stressful cellular conditions. Biochim Biophys Acta. 2016;1863:2084-92 pubmed 出版商
  135. Gebremariam T, Lin L, Liu M, Kontoyiannis D, French S, Edwards J, et al. Bicarbonate correction of ketoacidosis alters host-pathogen interactions and alleviates mucormycosis. J Clin Invest. 2016;126:2280-94 pubmed 出版商
  136. Seref Ferlengez Z, Maung S, Schaffler M, Spray D, Suadicani S, Thi M. P2X7R-Panx1 Complex Impairs Bone Mechanosignaling under High Glucose Levels Associated with Type-1 Diabetes. PLoS ONE. 2016;11:e0155107 pubmed 出版商
  137. Zanotto Filho A, Dashnamoorthy R, Loranc E, de Souza L, Moreira J, Suresh U, et al. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human. PLoS ONE. 2016;11:e0153970 pubmed 出版商
  138. Shen L, Wen N, Xia M, Zhang Y, Liu W, Xu Y, et al. Calcium efflux from the endoplasmic reticulum regulates cisplatin-induced apoptosis in human cervical cancer HeLa cells. Oncol Lett. 2016;11:2411-2419 pubmed
  139. Aaes T, Kaczmarek A, Delvaeye T, De Craene B, De Koker S, Heyndrickx L, et al. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity. Cell Rep. 2016;15:274-87 pubmed 出版商
  140. Gabrysiak M, Wachowska M, Barankiewicz J, Pilch Z, Ratajska A, Skrzypek E, et al. Low dose of GRP78-targeting subtilase cytotoxin improves the efficacy of photodynamic therapy in vivo. Oncol Rep. 2016;35:3151-8 pubmed 出版商
  141. Jia W, Jian Z, Li J, Luo L, Zhao L, Zhou Y, et al. Upregulated ATF6 contributes to chronic intermittent hypoxia-afforded protection against myocardial ischemia/reperfusion injury. Int J Mol Med. 2016;37:1199-208 pubmed 出版商
  142. Smagris E, Gilyard S, BasuRay S, Cohen J, Hobbs H. Inactivation of Tm6sf2, a Gene Defective in Fatty Liver Disease, Impairs Lipidation but Not Secretion of Very Low Density Lipoproteins. J Biol Chem. 2016;291:10659-76 pubmed 出版商
  143. Soeda J, Mouralidarane A, Cordero P, Li J, Nguyen V, Carter R, et al. Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas. J Physiol Biochem. 2016;72:281-91 pubmed 出版商
  144. Marek I, Lichtneger T, Cordasic N, Hilgers K, Volkert G, Fahlbusch F, et al. Alpha8 Integrin (Itga8) Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover. PLoS ONE. 2016;11:e0150471 pubmed 出版商
  145. Tibullo D, Barbagallo I, Giallongo C, Vanella L, Conticello C, Romano A, et al. Heme oxygenase-1 nuclear translocation regulates bortezomibinduced cytotoxicity and mediates genomic instability in myeloma cells. Oncotarget. 2016;7:28868-80 pubmed 出版商
  146. Ro S, Xue X, Ramakrishnan S, Cho C, Namkoong S, Jang I, et al. Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. elife. 2016;5:e12204 pubmed 出版商
  147. Talarico C, Dattilo V, D Antona L, Barone A, Amodio N, Belviso S, et al. SI113, a SGK1 inhibitor, potentiates the effects of radiotherapy, modulates the response to oxidative stress and induces cytotoxic autophagy in human glioblastoma multiforme cells. Oncotarget. 2016;7:15868-84 pubmed 出版商
  148. Sieber J, Hauer C, Bhuvanagiri M, Leicht S, Krijgsveld J, Neu Yilik G, et al. Proteomic Analysis Reveals Branch-specific Regulation of the Unfolded Protein Response by Nonsense-mediated mRNA Decay. Mol Cell Proteomics. 2016;15:1584-97 pubmed 出版商
  149. Booth L, Shuch B, Albers T, Roberts J, Tavallai M, Proniuk S, et al. Multi-kinase inhibitors can associate with heat shock proteins through their NH2-termini by which they suppress chaperone function. Oncotarget. 2016;7:12975-96 pubmed 出版商
  150. Nosak C, Silva P, Sollazzo P, Moon K, Odisho T, Foster L, et al. Jagn1 Is Induced in Response to ER Stress and Regulates Proinsulin Biosynthesis. PLoS ONE. 2016;11:e0149177 pubmed 出版商
  151. Cherepanova N, Gilmore R. Mammalian cells lacking either the cotranslational or posttranslocational oligosaccharyltransferase complex display substrate-dependent defects in asparagine linked glycosylation. Sci Rep. 2016;6:20946 pubmed 出版商
  152. González C, Cánovas J, Fresno J, Couve E, Court F, Couve A. Axons provide the secretory machinery for trafficking of voltage-gated sodium channels in peripheral nerve. Proc Natl Acad Sci U S A. 2016;113:1823-8 pubmed 出版商
  153. Jones F, Bailey M, Murray L, Lu Y, McNeilly S, Schlötzer Schrehardt U, et al. ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from Col4a1 mutations in mice. Dis Model Mech. 2016;9:165-76 pubmed 出版商
  154. Park W, Kim S, Kim Y, Park J. Bortezomib alleviates drug-induced liver injury by regulating CYP2E1 gene transcription. Int J Mol Med. 2016;37:613-22 pubmed 出版商
  155. Julien C, Lissouba A, Madabattula S, Fardghassemi Y, Rosenfelt C, Androschuk A, et al. Conserved pharmacological rescue of hereditary spastic paraplegia-related phenotypes across model organisms. Hum Mol Genet. 2016;25:1088-99 pubmed 出版商
  156. Ito S, Nagata K. Mutants of collagen-specific molecular chaperone Hsp47 causing osteogenesis imperfecta are structurally unstable with weak binding affinity to collagen. Biochem Biophys Res Commun. 2016;469:437-42 pubmed 出版商
  157. Gupta A, Hossain M, Read D, Hetz C, Samali A, Gupta S. PERK regulated miR-424(322)-503 cluster fine-tunes activation of IRE1 and ATF6 during Unfolded Protein Response. Sci Rep. 2015;5:18304 pubmed 出版商
  158. Lyu L, Whitcomb E, Jiang S, Chang M, Gu Y, Duncan M, et al. Unfolded-protein response-associated stabilization of p27(Cdkn1b) interferes with lens fiber cell denucleation, leading to cataract. FASEB J. 2016;30:1087-95 pubmed 出版商
  159. Wang J, Lu R, Yang J, Li H, He Z, Jing N, et al. TRPC6 specifically interacts with APP to inhibit its cleavage by γ-secretase and reduce Aβ production. Nat Commun. 2015;6:8876 pubmed 出版商
  160. El Khattouti A, Selimovic D, Hannig M, Taylor E, Abd Elmageed Z, Hassan S, et al. Imiquimod-induced apoptosis of melanoma cells is mediated by ER stress-dependent Noxa induction and enhanced by NF-κB inhibition. J Cell Mol Med. 2016;20:266-86 pubmed 出版商
  161. Zismanov V, Chichkov V, Colangelo V, Jamet S, Wang S, Syme A, et al. Phosphorylation of eIF2α Is a Translational Control Mechanism Regulating Muscle Stem Cell Quiescence and Self-Renewal. Cell Stem Cell. 2016;18:79-90 pubmed 出版商
  162. Kyathanahalli C, Organ K, Moreci R, Anamthathmakula P, Hassan S, Caritis S, et al. Uterine endoplasmic reticulum stress-unfolded protein response regulation of gestational length is caspase-3 and -7-dependent. Proc Natl Acad Sci U S A. 2015;112:14090-5 pubmed 出版商
  163. Zhu X, Zelmer A, Kapfhammer J, Wellmann S. Cold-inducible RBM3 inhibits PERK phosphorylation through cooperation with NF90 to protect cells from endoplasmic reticulum stress. FASEB J. 2016;30:624-34 pubmed 出版商
  164. Lisak D, Schacht T, Gawlitza A, Albrecht P, Aktas O, Koop B, et al. BAX inhibitor-1 is a Ca(2+) channel critically important for immune cell function and survival. Cell Death Differ. 2016;23:358-68 pubmed 出版商
  165. Patel M, Jacobson B, Ji Y, Drees J, Tang S, Xiong K, et al. Vesicular stomatitis virus expressing interferon-β is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget. 2015;6:33165-77 pubmed 出版商
  166. Anderson K, Russell A, Foletta V. NDRG2 promotes myoblast proliferation and caspase 3/7 activities during differentiation, and attenuates hydrogen peroxide - But not palmitate-induced toxicity. FEBS Open Bio. 2015;5:668-81 pubmed 出版商
  167. Ko A, Kim J, Hyun H, Kim J. Endoplasmic reticulum (ER) stress protein responses in relation to spatio-temporal dynamics of astroglial responses to status epilepticus in rats. Neuroscience. 2015;307:199-214 pubmed 出版商
  168. Cavieres V, González A, Muñoz V, Yefi C, Bustamante H, Barraza R, et al. Tetrahydrohyperforin Inhibits the Proteolytic Processing of Amyloid Precursor Protein and Enhances Its Degradation by Atg5-Dependent Autophagy. PLoS ONE. 2015;10:e0136313 pubmed 出版商
  169. Love J, Suzuki T, Robinson D, Harris C, Johnson J, Mohler P, et al. Microsomal Triglyceride Transfer Protein (MTP) Associates with Cytosolic Lipid Droplets in 3T3-L1 Adipocytes. PLoS ONE. 2015;10:e0135598 pubmed 出版商
  170. Ko A, Kim J, Hyun H, Kim J. Endothelial NOS activation induces the blood-brain barrier disruption via ER stress following status epilepticus. Brain Res. 2015;1622:163-73 pubmed 出版商
  171. Song L, Ma L, Cong F, Shen X, Jing P, Ying X, et al. Radioprotective effects of genistein on HL-7702 cells via the inhibition of apoptosis and DNA damage. Cancer Lett. 2015;366:100-11 pubmed 出版商
  172. Wu P, Yen J, Kou M, Wu M. Luteolin and Apigenin Attenuate 4-Hydroxy-2-Nonenal-Mediated Cell Death through Modulation of UPR, Nrf2-ARE and MAPK Pathways in PC12 Cells. PLoS ONE. 2015;10:e0130599 pubmed 出版商
  173. Cha Molstad H, Sung K, Hwang J, Kim K, Yu J, Yoo Y, et al. Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat Cell Biol. 2015;17:917-29 pubmed 出版商
  174. Adomako A, Calvo V, Biran N, Osman K, Chari A, Paton J, et al. Identification of markers that functionally define a quiescent multiple myeloma cell sub-population surviving bortezomib treatment. BMC Cancer. 2015;15:444 pubmed 出版商
  175. Kuballa P, Baumann A, Mayer K, Bär U, Burtscher H, Brinkmann U. Induction of heat shock protein HSPA6 (HSP70B') upon HSP90 inhibition in cancer cell lines. FEBS Lett. 2015;589:1450-8 pubmed 出版商
  176. Hou Y, Ernst S, Stuenkel E, Lentz S, Williams J. Rab27A Is Present in Mouse Pancreatic Acinar Cells and Is Required for Digestive Enzyme Secretion. PLoS ONE. 2015;10:e0125596 pubmed 出版商
  177. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  178. Das I, Krzyzosiak A, Schneider K, Wrabetz L, D Antonio M, Barry N, et al. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science. 2015;348:239-42 pubmed 出版商
  179. Zhang R, Wang R, Chen Q, Chang H. Inhibition of autophagy using 3-methyladenine increases cisplatin-induced apoptosis by increasing endoplasmic reticulum stress in U251 human glioma cells. Mol Med Rep. 2015;12:1727-32 pubmed 出版商
  180. Van B, Nishi M, Komazaki S, Ichimura A, Kakizawa S, Nakanaga K, et al. Mitsugumin 56 (hedgehog acyltransferase-like) is a sarcoplasmic reticulum-resident protein essential for postnatal muscle maturation. FEBS Lett. 2015;589:1095-104 pubmed 出版商
  181. Maeda Y, Fukushima K, Kariya S, Orita Y, Nishizaki K. Dexamethasone Regulates Cochlear Expression of Deafness-associated Proteins Myelin Protein Zero and Heat Shock Protein 70, as Revealed by iTRAQ Proteomics. Otol Neurotol. 2015;36:1255-65 pubmed 出版商
  182. Gomez Cavazos J, Hetzer M. The nucleoporin gp210/Nup210 controls muscle differentiation by regulating nuclear envelope/ER homeostasis. J Cell Biol. 2015;208:671-81 pubmed 出版商
  183. Yang S, Yang X, Cao G. Acetyl-l-carnitine prevents homocysteine-induced suppression of Nrf2/Keap1 mediated antioxidation in human lens epithelial cells. Mol Med Rep. 2015;12:1145-50 pubmed 出版商
  184. Honegger A, Schilling D, Bastian S, Sponagel J, Kuryshev V, Sultmann H, et al. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog. 2015;11:e1004712 pubmed 出版商
  185. Linz A, Knieper Y, Gronau T, Hansen U, Aszodi A, Garbi N, et al. ER Stress During the Pubertal Growth Spurt Results in Impaired Long-Bone Growth in Chondrocyte-Specific ERp57 Knockout Mice. J Bone Miner Res. 2015;30:1481-93 pubmed 出版商
  186. Betzer C, Movius A, Shi M, Gai W, Zhang J, Jensen P. Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein. PLoS ONE. 2015;10:e0116473 pubmed 出版商
  187. Liu S, Sarkar C, Dinizo M, Faden A, Koh E, Lipinski M, et al. Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis. 2015;6:e1582 pubmed 出版商
  188. Bueno M, Lai Y, Romero Y, Brands J, St Croix C, Kamga C, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest. 2015;125:521-38 pubmed 出版商
  189. Sasaki M, Yoshimura Miyakoshi M, Sato Y, Nakanuma Y. A possible involvement of endoplasmic reticulum stress in biliary epithelial autophagy and senescence in primary biliary cirrhosis. J Gastroenterol. 2015;50:984-95 pubmed 出版商
  190. Wang S, Park S, Kodali V, Han J, Yip T, Chen Z, et al. Identification of protein disulfide isomerase 1 as a key isomerase for disulfide bond formation in apolipoprotein B100. Mol Biol Cell. 2015;26:594-604 pubmed 出版商
  191. Matsuo R, Morihara H, Mohri T, Murasawa S, Takewaki K, Nakayama H, et al. The inhibition of N-glycosylation of glycoprotein 130 molecule abolishes STAT3 activation by IL-6 family cytokines in cultured cardiac myocytes. PLoS ONE. 2014;9:e111097 pubmed 出版商
  192. Ding Y, Dellisanti C, Ko M, Czajkowski C, Puglielli L. The endoplasmic reticulum-based acetyltransferases, ATase1 and ATase2, associate with the oligosaccharyltransferase to acetylate correctly folded polypeptides. J Biol Chem. 2014;289:32044-55 pubmed 出版商
  193. Lin Y, Zhang H, Liang J, Li K, Zhu W, Fu L, et al. Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proc Natl Acad Sci U S A. 2014;111:E4504-12 pubmed 出版商
  194. Zhang Y, Jansen West K, Xu Y, Gendron T, Bieniek K, Lin W, et al. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol. 2014;128:505-24 pubmed 出版商
  195. Cherepanova N, Shrimal S, Gilmore R. Oxidoreductase activity is necessary for N-glycosylation of cysteine-proximal acceptor sites in glycoproteins. J Cell Biol. 2014;206:525-39 pubmed 出版商
  196. Nuss J, Kehn Hall K, Benedict A, Costantino J, Ward M, Peyser B, et al. Multi-faceted proteomic characterization of host protein complement of Rift Valley fever virus virions and identification of specific heat shock proteins, including HSP90, as important viral host factors. PLoS ONE. 2014;9:e93483 pubmed 出版商
  197. Gonzalez Rodriguez A, Mayoral R, Agra N, Valdecantos M, Pardo V, Miquilena Colina M, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014;5:e1179 pubmed 出版商
  198. Safren N, El Ayadi A, Chang L, Terrillion C, Gould T, BOEHNING D, et al. Ubiquilin-1 overexpression increases the lifespan and delays accumulation of Huntingtin aggregates in the R6/2 mouse model of Huntington's disease. PLoS ONE. 2014;9:e87513 pubmed 出版商
  199. Tucker B, Mullins R, Streb L, Anfinson K, Eyestone M, Kaalberg E, et al. Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. elife. 2013;2:e00824 pubmed 出版商
  200. Zhang Y, Seo S, Bhattarai S, Bugge K, Searby C, Zhang Q, et al. BBS mutations modify phenotypic expression of CEP290-related ciliopathies. Hum Mol Genet. 2014;23:40-51 pubmed 出版商
  201. Huang M, Sivagurunathan S, Ting S, Jansson P, Austin C, Kelly M, et al. Molecular and functional alterations in a mouse cardiac model of Friedreich ataxia: activation of the integrated stress response, eIF2? phosphorylation, and the induction of downstream targets. Am J Pathol. 2013;183:745-57 pubmed 出版商
  202. Chang C, Chen C, Wu M, Chen Y, Chen C, Sheu S, et al. Active Component of Antrodia cinnamomea Mycelia Targeting Head and Neck Cancer Initiating Cells through Exaggerated Autophagic Cell Death. Evid Based Complement Alternat Med. 2013;2013:946451 pubmed 出版商
  203. Zhuo X, Wu Y, Ni Y, Liu J, Gong M, Wang X, et al. Isoproterenol instigates cardiomyocyte apoptosis and heart failure via AMPK inactivation-mediated endoplasmic reticulum stress. Apoptosis. 2013;18:800-10 pubmed 出版商
  204. Banduseela V, Chen Y, Kultima H, Norman H, Aare S, Radell P, et al. Impaired autophagy, chaperone expression, and protein synthesis in response to critical illness interventions in porcine skeletal muscle. Physiol Genomics. 2013;45:477-86 pubmed 出版商
  205. Takayanagi S, Fukuda R, Takeuchi Y, Tsukada S, Yoshida K. Gene regulatory network of unfolded protein response genes in endoplasmic reticulum stress. Cell Stress Chaperones. 2013;18:11-23 pubmed 出版商
  206. Wei P, Lo W, Su M, Shew J, Lee W. Non-targeting siRNA induces NPGPx expression to cooperate with exoribonuclease XRN2 for releasing the stress. Nucleic Acids Res. 2012;40:323-32 pubmed 出版商
  207. Watson G, Andley U. Activation of the unfolded protein response by a cataract-associated ?A-crystallin mutation. Biochem Biophys Res Commun. 2010;401:192-6 pubmed 出版商
  208. Jorgensen E, Stinson A, Shan L, Yang J, Gietl D, Albino A. Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer. 2008;8:229 pubmed 出版商