这是一篇来自已证抗体库的有关人类 C-kit (C-kit) 的综述,是根据165篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合C-kit 抗体。
C-kit 同义词: C-Kit; CD117; MASTC; PBT; SCFR

赛默飞世尔
大鼠 单克隆(ACK2)
  • 流式细胞仪; 小鼠
赛默飞世尔C-kit抗体(eBioscience, ACK2)被用于被用于流式细胞仪在小鼠样本上. elife (2020) ncbi
小鼠 单克隆(104D2)
  • 免疫组化; 人类; 1:100; 图 s1d
赛默飞世尔C-kit抗体(Invitrogen-Thermo Fisher Scientific, CD11705)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s1d). J Cell Biol (2020) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 1:50; 图 2a
赛默飞世尔C-kit抗体(eBioscience/Thermo, 17-1178-42)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2a). Stem Cells (2019) ncbi
小鼠 单克隆(104D2)
  • 免疫细胞化学; 人类; 图 s1a
赛默飞世尔C-kit抗体(生活技术, CD11704)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Cell (2019) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 s1b
赛默飞世尔C-kit抗体(Invitrogen, CD11705)被用于被用于流式细胞仪在人类样本上 (图 s1b). J Exp Med (2019) ncbi
小鼠 单克隆(K45)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔C-kit抗体(Thermo Scientific, K45)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 小鼠; 图 2i
赛默飞世尔C-kit抗体(eBioscience, 17-1178-42)被用于被用于流式细胞仪在小鼠样本上 (图 2i). J Exp Med (2018) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 e1a
赛默飞世尔C-kit抗体(eBioscience, 104D2)被用于被用于流式细胞仪在人类样本上 (图 e1a). J Allergy Clin Immunol (2018) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔C-kit抗体(eBioscience, ACK2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cell Res (2018) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 5b
赛默飞世尔C-kit抗体(ebioscience, 25-1178-42)被用于被用于流式细胞仪在人类样本上 (图 5b). Nat Commun (2017) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 s1a
赛默飞世尔C-kit抗体(eBiosciences, 12-1178)被用于被用于流式细胞仪在人类样本上 (图 s1a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 人类; 图 3c
赛默飞世尔C-kit抗体(eBioscience, ACK2)被用于被用于流式细胞仪在人类样本上 (图 3c). Stem Cell Reports (2017) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 1:100; 表 1
赛默飞世尔C-kit抗体(生活技术, CD11705)被用于被用于流式细胞仪在人类样本上浓度为1:100 (表 1). J Vis Exp (2017) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类
赛默飞世尔C-kit抗体(eBioscience, 104D2)被用于被用于流式细胞仪在人类样本上. Stem Cells (2017) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 小鼠
赛默飞世尔C-kit抗体(eBioscience, ACK2)被用于被用于流式细胞仪在小鼠样本上. Cell Death Dis (2016) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 1:20; 表 1
赛默飞世尔C-kit抗体(Thermo Fisher, CD11705)被用于被用于流式细胞仪在人类样本上浓度为1:20 (表 1). PLoS ONE (2016) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔C-kit抗体(eBiosciences, 14-1172-81)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Oncotarget (2016) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 人类
  • 流式细胞仪; 小鼠
赛默飞世尔C-kit抗体(eBioscience, ACK2)被用于被用于流式细胞仪在人类样本上 和 被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 小鼠
赛默飞世尔C-kit抗体(eBioscience, ACK2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2016) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔C-kit抗体(eBiosciencs, 17-1,178)被用于被用于流式细胞仪在人类样本上 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔C-kit抗体(BD Pharmingen or eBioscience, ACK2)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Mol Cell Biol (2016) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 小鼠; 图 ex5f
赛默飞世尔C-kit抗体(eBioscience, ACK2)被用于被用于流式细胞仪在小鼠样本上 (图 ex5f). Nature (2016) ncbi
小鼠 单克隆(1C5)
  • 免疫组化; 人类; 图 3e
赛默飞世尔C-kit抗体(Thermo Fisher, 1C5)被用于被用于免疫组化在人类样本上 (图 3e). Acta Histochem Cytochem (2016) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔C-kit抗体(Invitrogen, CD11704-RPE)被用于被用于流式细胞仪在人类样本上 (表 1). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔C-kit抗体(ebioscience, 104D2)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 小鼠
赛默飞世尔C-kit抗体(生活技术, ACK2)被用于被用于流式细胞仪在小鼠样本上. Aging (Albany NY) (2016) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 1:100; 图 3
赛默飞世尔C-kit抗体(生活技术, CD11705)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3). Methods (2016) ncbi
小鼠 单克隆(K45)
  • 免疫组化; 小鼠; 1:100; 图 2e
赛默飞世尔C-kit抗体(Thermo Scientific, MA5-12944)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2e). Gastroenterology (2015) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 人类; 表 5
赛默飞世尔C-kit抗体(eBioscience, ACK2)被用于被用于流式细胞仪在人类样本上 (表 5). Gastroenterology (2015) ncbi
小鼠 单克隆(K45)
  • 免疫印迹; 小鼠; 1:100
赛默飞世尔C-kit抗体(Thermo Scientific, MA5-12944)被用于被用于免疫印迹在小鼠样本上浓度为1:100. Am J Pathol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔C-kit抗体(Lab Vision, RB- 9038-R7)被用于. Neuro Oncol (2015) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔C-kit抗体(eBioscience, ACK2)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2015) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔C-kit抗体(eBioscience, ACK2)被用于被用于流式细胞仪在小鼠样本上 (图 2). Exp Hematol (2015) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类
赛默飞世尔C-kit抗体(分子探针, CD11705)被用于被用于流式细胞仪在人类样本上. Cell (2015) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类
赛默飞世尔C-kit抗体(eBioscience, 17-1178)被用于被用于流式细胞仪在人类样本上. J Pediatr Surg (2014) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 图 6
赛默飞世尔C-kit抗体(eBioscience, YB5.B8)被用于被用于流式细胞仪在人类样本上 (图 6). J Immunol (2014) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类
赛默飞世尔C-kit抗体(eBioscience, 104D2)被用于被用于流式细胞仪在人类样本上. FASEB J (2014) ncbi
小鼠 单克隆(K45)
  • 免疫细胞化学; 人类; 1:25
  • 免疫组化; 人类; 1:25
赛默飞世尔C-kit抗体(NeoMarkers, K45)被用于被用于免疫细胞化学在人类样本上浓度为1:25 和 被用于免疫组化在人类样本上浓度为1:25. Am J Pathol (2014) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔C-kit抗体(eBioscience, 104D2)被用于被用于流式细胞仪在人类样本上 (表 1). Nat Immunol (2014) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔C-kit抗体(eBioscience, ACK2)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 图 S1
赛默飞世尔C-kit抗体(eBioscience, 12-1179-42)被用于被用于流式细胞仪在人类样本上 (图 S1). Proc Natl Acad Sci U S A (2012) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 小鼠
赛默飞世尔C-kit抗体(eBioscience, ACK2)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 小鼠
赛默飞世尔C-kit抗体(eBioscience, ack2)被用于被用于流式细胞仪在小鼠样本上. Cell Res (2008) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 小鼠
赛默飞世尔C-kit抗体(eBioscience, ACK2)被用于被用于流式细胞仪在小鼠样本上. Blood (2008) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 小鼠; 1 ug/ml
赛默飞世尔C-kit抗体(eBioscience, ACK2)被用于被用于流式细胞仪在小鼠样本上浓度为1 ug/ml. Physiol Genomics (2007) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔C-kit抗体(Caltag, 104D2)被用于被用于流式细胞仪在人类样本上 (图 1). J Cell Physiol (2008) ncbi
大鼠 单克隆(ACK2)
  • 流式细胞仪; 小鼠; 1 ug/ml
赛默飞世尔C-kit抗体(eBioscience, ACK2)被用于被用于流式细胞仪在小鼠样本上浓度为1 ug/ml. Am J Physiol Cell Physiol (2007) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔C-kit抗体(Caltag-Medsystems, 104D2)被用于被用于流式细胞仪在人类样本上 (图 3). Leuk Res (2007) ncbi
BioLegend
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 1:100; 图 1s1f
BioLegendC-kit抗体(Biolegend, 313204)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1s1f). elife (2020) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 1b, 1d
BioLegendC-kit抗体(Biolegend, 104D2)被用于被用于流式细胞仪在人类样本上 (图 1b, 1d). Arthritis Res Ther (2020) ncbi
小鼠 单克隆(104D2)
  • mass cytometry; 人类; 图 1b, 1d, s2
BioLegendC-kit抗体(Biolegend, 104D2)被用于被用于mass cytometry在人类样本上 (图 1b, 1d, s2). Cell Rep (2019) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 ex1
BioLegendC-kit抗体(BioLegend, 104D2)被用于被用于流式细胞仪在人类样本上 (图 ex1). Nature (2019) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 1 ug/ml; 图 6a
BioLegendC-kit抗体(Biolegend, 104D2)被用于被用于流式细胞仪在人类样本上浓度为1 ug/ml (图 6a). J Clin Invest (2019) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 s2b
BioLegendC-kit抗体(Biolegend, 313219)被用于被用于流式细胞仪在人类样本上 (图 s2b). Cell (2019) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 1a
BioLegendC-kit抗体(BioLegend, 104D2)被用于被用于流式细胞仪在人类样本上 (图 1a). PLoS ONE (2017) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 3a
BioLegendC-kit抗体(Biolegend, 104D2)被用于被用于流式细胞仪在人类样本上 (图 3a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 2
BioLegendC-kit抗体(biolegend, 104D2)被用于被用于流式细胞仪在人类样本上 (图 2). J Immunol (2017) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 5b
BioLegendC-kit抗体(biolegend, 313217)被用于被用于流式细胞仪在人类样本上 (图 5b). Nat Commun (2017) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 2b
BioLegendC-kit抗体(BioLegend, 104D2)被用于被用于流式细胞仪在人类样本上 (图 2b). Sci Rep (2017) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 s6d
BioLegendC-kit抗体(BioLegend, 104D2)被用于被用于流式细胞仪在人类样本上 (图 s6d). Science (2017) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 小鼠; 图 4c
  • 流式细胞仪; 人类; 图 s1a
BioLegendC-kit抗体(Biolegend, 313218)被用于被用于流式细胞仪在小鼠样本上 (图 4c) 和 被用于流式细胞仪在人类样本上 (图 s1a). Cell (2017) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 1:20; 图 ED7c
BioLegendC-kit抗体(BioLegend, 104D2)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 ED7c). Nature (2017) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; African green monkey; 1:100; 图 1
BioLegendC-kit抗体(BioLegend, 104D2)被用于被用于流式细胞仪在African green monkey样本上浓度为1:100 (图 1). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 1a
BioLegendC-kit抗体(biolegend, 104D2)被用于被用于流式细胞仪在人类样本上 (图 1a). J Immunol (2016) ncbi
小鼠 单克隆(104D2)
BioLegendC-kit抗体(BioLegend, 313212)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 s1
BioLegendC-kit抗体(Biolegend, 104D2)被用于被用于流式细胞仪在人类样本上 (图 s1). Analyst (2016) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 小鼠; 图 s2d
BioLegendC-kit抗体(Biolegend, 104D2)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Nat Chem Biol (2015) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 2c
BioLegendC-kit抗体(BioLegend, 104D2)被用于被用于流式细胞仪在人类样本上 (图 2c). J Cell Physiol (2016) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类
BioLegendC-kit抗体(Biolegend, 313206)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类
BioLegendC-kit抗体(Biolegend, 313206)被用于被用于流式细胞仪在人类样本上. Cancer Lett (2015) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 1
BioLegendC-kit抗体(BioLegend, 104D2)被用于被用于流式细胞仪在人类样本上 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类
BioLegendC-kit抗体(Biolegend, Clone 104D2)被用于被用于流式细胞仪在人类样本上. Int J Infect Dis (2015) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类
BioLegendC-kit抗体(Biolegend, 104D2)被用于被用于流式细胞仪在人类样本上. Mol Biol Cell (2015) ncbi
小鼠 单克隆(104D2)
  • 免疫组化; 人类; 表 4
BioLegendC-kit抗体(BioLegend, 313206)被用于被用于免疫组化在人类样本上 (表 4). Methods Mol Biol (2016) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类
BioLegendC-kit抗体(Biolegend, 104D2)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(Ab 81)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术C-kit抗体(Santa Cruz Biotechnology, sc13508)被用于被用于免疫印迹在人类样本上 (图 1b). Int J Mol Sci (2022) ncbi
小鼠 单克隆(E-3)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 1b
  • 免疫印迹; 大鼠; 图 s5a
圣克鲁斯生物技术C-kit抗体(Santa Cruz, sc-365504)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 1b) 和 被用于免疫印迹在大鼠样本上 (图 s5a). Theranostics (2020) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 1:500
圣克鲁斯生物技术C-kit抗体(Santa Cruz, sc-393910)被用于被用于免疫组化在人类样本上浓度为1:500. Oncol Lett (2016) ncbi
小鼠 单克隆(Ab 81)
  • 免疫印迹; 人类; 表 1
圣克鲁斯生物技术C-kit抗体(Santa Cruz, sc-13508)被用于被用于免疫印迹在人类样本上 (表 1). Sci Rep (2016) ncbi
小鼠 单克隆(104D2)
  • 免疫细胞化学; 人类; 图 3
圣克鲁斯生物技术C-kit抗体(Santa, sc-19983)被用于被用于免疫细胞化学在人类样本上 (图 3). Mol Reprod Dev (2016) ncbi
小鼠 单克隆(E-3)
  • 免疫组化-石蜡切片; 小鼠; 1:20; 图 3
圣克鲁斯生物技术C-kit抗体(Santa Cruz, sc-365504)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20 (图 3). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术C-kit抗体(Santa Cruz, sc-17806)被用于被用于免疫印迹在人类样本上 (图 8). Respir Res (2015) ncbi
小鼠 单克隆(Ab 81)
  • 流式细胞仪; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术C-kit抗体(Santa Cruz Biotechnology, Ab81)被用于被用于流式细胞仪在人类样本上 和 被用于免疫印迹在人类样本上. J Immunol (2015) ncbi
小鼠 单克隆(E-3)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术C-kit抗体(Santa Cruz Biotechnology, sc-365504)被用于被用于免疫印迹在大鼠样本上. Redox Biol (2014) ncbi
小鼠 单克隆(E-3)
  • 免疫细胞化学; 斑马鱼
圣克鲁斯生物技术C-kit抗体(Santa Cruz, sc-365504)被用于被用于免疫细胞化学在斑马鱼样本上. Br J Haematol (2014) ncbi
小鼠 单克隆(E-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术C-kit抗体(Santa Cruz Biotechnology, E1)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(YR145)
  • 免疫组化; 人类; 1:200; 图 2a
艾博抗(上海)贸易有限公司C-kit抗体(Abcam, ab32363)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2a). Int J Med Sci (2020) ncbi
domestic rabbit 单克隆(YR145)
  • 免疫印迹; 鸡; 图 4b
  • 流式细胞仪; 小鼠; 图 3f
艾博抗(上海)贸易有限公司C-kit抗体(Abcam, ab32363)被用于被用于免疫印迹在鸡样本上 (图 4b) 和 被用于流式细胞仪在小鼠样本上 (图 3f). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(YR145)
  • 其他; 人类; 图 4c
艾博抗(上海)贸易有限公司C-kit抗体(Abcam, ab32363)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(YR145)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司C-kit抗体(Abcam, ab32363)被用于被用于免疫印迹在人类样本上 (图 1c). Oncol Lett (2018) ncbi
domestic rabbit 单克隆(YR145)
  • 免疫印迹; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司C-kit抗体(abcam, 32363)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(YR145)
  • 免疫组化-石蜡切片; common marmoset; 1:100
艾博抗(上海)贸易有限公司C-kit抗体(Abcam, ab32363)被用于被用于免疫组化-石蜡切片在common marmoset样本上浓度为1:100. Dev Biol (2015) ncbi
安迪生物R&D
domestic goat 多克隆
  • 流式细胞仪; 人类; 图 s3
安迪生物R&DC-kit抗体(R&D, AF1356)被用于被用于流式细胞仪在人类样本上 (图 s3). BMC Cancer (2022) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5b
安迪生物R&DC-kit抗体(R&D, AF1356)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Front Cell Dev Biol (2021) ncbi
Aviva Systems Biology
单克隆(104D2)
  • 免疫组化-石蜡切片; 人类; 图 1
Aviva Systems BiologyC-kit抗体(Aviva Systems, 104D2)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). J Histochem Cytochem (2018) ncbi
美天旎
小鼠 单克隆(AC126)
  • 流式细胞仪; 人类; 图 4d
美天旎C-kit抗体(Miltenyi Biotec, AC126)被用于被用于流式细胞仪在人类样本上 (图 4d). Int J Mol Sci (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司C-kit抗体(CST, 3391S)被用于被用于免疫印迹在人类样本上 (图 5c). JCI Insight (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 5c
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司C-kit抗体(CST, 3392S)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 5c) 和 被用于免疫印迹在人类样本上 (图 5c). JCI Insight (2021) ncbi
domestic rabbit 单克隆(D13A2)
  • 免疫印迹; 人类; 1:1000; 图 1c, 4e, s4a, s4b
赛信通(上海)生物试剂有限公司C-kit抗体(CST, 3074)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c, 4e, s4a, s4b). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1e, 4e
赛信通(上海)生物试剂有限公司C-kit抗体(CST, 3391)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e, 4e). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D13A2)
  • 免疫组化-冰冻切片; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling, 3074S)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2c). elife (2019) ncbi
domestic rabbit 单克隆(D13A2)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 3j
赛信通(上海)生物试剂有限公司C-kit抗体(Cell signaling technology, 3074S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 3j). Asian J Androl (2020) ncbi
domestic rabbit 单克隆(D13A2)
  • 免疫组化-冰冻切片; 小鼠; 图 4
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling, D13A2)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Neurogastroenterol Motil (2019) ncbi
domestic rabbit 单克隆(D13A2)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling Technology, D13A2)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(D12E12)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling Technology, D12E12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3h
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling, 3391)被用于被用于免疫印迹在人类样本上 (图 3h). J Exp Med (2018) ncbi
小鼠 单克隆(Ab81)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling, 3308)被用于被用于免疫印迹在人类样本上 (图 1e). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D12E12)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling, 3073)被用于被用于免疫印迹在人类样本上 (图 1e). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D13A2)
  • 免疫组化; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling, 3074)被用于被用于免疫组化在小鼠样本上 (图 6e). Genes Dev (2017) ncbi
domestic rabbit 单克隆(D13A2)
  • 免疫组化; 小鼠; 图 s3i
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling, 3074)被用于被用于免疫组化在小鼠样本上 (图 s3i). Cell Stem Cell (2017) ncbi
domestic rabbit 单克隆(D13A2)
  • 免疫组化-石蜡切片; 小鼠; 1:750; 图 4
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling Tech, 3074S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:750 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D13A2)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling, 3074)被用于被用于免疫印迹在人类样本上 (图 3e). Nat Genet (2016) ncbi
小鼠 单克隆(Ab81)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling, C33E10)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). J Physiol Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司C-kit抗体(Cell signaling, 3391)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D12E12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司C-kit抗体(Cell signaling, 3073)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D13A2)
  • 免疫组化; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling, 3074)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1a). Mol Cell Endocrinol (2016) ncbi
domestic rabbit 单克隆(D13A2)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 8
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling, 3074S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 8). PLoS Genet (2015) ncbi
domestic rabbit 单克隆(D12E12)
  • 免疫印迹; 人类; 1:500; 图 1
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling, 3073P)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D13A2)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling Tech, 3074)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). PLoS Genet (2015) ncbi
domestic rabbit 单克隆(D13A2)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司C-kit抗体(Cell signaling, 3074)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D12E12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling, D12E12)被用于被用于免疫印迹在人类样本上. J Immunol (2015) ncbi
domestic rabbit 单克隆(D13A2)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 3
  • 免疫印迹; 小鼠; 1:300; 图 4
赛信通(上海)生物试剂有限公司C-kit抗体(CST, 3074)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:300 (图 4). Cell Death Dis (2015) ncbi
小鼠 单克隆(Ab81)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling, C33E10)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D13A2)
  • 免疫沉淀; 小鼠
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling Technology, D13A2)被用于被用于免疫沉淀在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D13A2)
  • 免疫组化-冰冻切片; 小鼠; 1:50
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling Technology, 3074)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. J Comp Neurol (2015) ncbi
小鼠 单克隆(Ab81)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司C-kit抗体(Cell signaling, C33E10)被用于被用于免疫印迹在人类样本上 (图 4). Mol Carcinog (2015) ncbi
domestic rabbit 单克隆(D13A2)
  • 免疫组化-冰冻切片; 小鼠; 1:400
赛信通(上海)生物试剂有限公司C-kit抗体(Cell Signaling, 3074)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. Neurogastroenterol Motil (2014) ncbi
丹科医疗器械技术服务(上海)有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2b
丹科医疗器械技术服务(上海)有限公司C-kit抗体(Agilent, A4502)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2b). J Clin Invest (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 3a
丹科医疗器械技术服务(上海)有限公司C-kit抗体(Dako, A4502)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 犬; 图 71
丹科医疗器械技术服务(上海)有限公司C-kit抗体(Dako, A4502)被用于被用于免疫组化在犬样本上 (图 71). J Toxicol Pathol (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; domestic rabbit; 1:100; 图 2
丹科医疗器械技术服务(上海)有限公司C-kit抗体(Dako, A4502)被用于被用于流式细胞仪在domestic rabbit样本上浓度为1:100 (图 2). Stem Cell Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1e
丹科医疗器械技术服务(上海)有限公司C-kit抗体(DAKO, A4502)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1e). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 猫; 1:400; 图 3e
  • 免疫印迹; 猫; 1:400; 图 2
  • 免疫组化-石蜡切片; 犬; 1:400; 图 3d
  • 免疫印迹; 犬; 1:400; 图 2
丹科医疗器械技术服务(上海)有限公司C-kit抗体(Dako, A4502)被用于被用于免疫组化-石蜡切片在猫样本上浓度为1:400 (图 3e), 被用于免疫印迹在猫样本上浓度为1:400 (图 2), 被用于免疫组化-石蜡切片在犬样本上浓度为1:400 (图 3d) 和 被用于免疫印迹在犬样本上浓度为1:400 (图 2). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 4g
丹科医疗器械技术服务(上海)有限公司C-kit抗体(Dako, A4502)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 4g). Acta Histochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 表 3
丹科医疗器械技术服务(上海)有限公司C-kit抗体(Dako, A4502)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 3). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 8
丹科医疗器械技术服务(上海)有限公司C-kit抗体(Dako, A4502)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 8). Eur J Histochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:400; 表 4
丹科医疗器械技术服务(上海)有限公司C-kit抗体(Dako, A4502)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (表 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
丹科医疗器械技术服务(上海)有限公司C-kit抗体(Dako, A4502)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:250; 图 4
丹科医疗器械技术服务(上海)有限公司C-kit抗体(Dako, A4502)被用于被用于免疫组化在人类样本上浓度为1:250 (图 4). Nat Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200
丹科医疗器械技术服务(上海)有限公司C-kit抗体(Dako, A4502)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. PLoS ONE (2016) ncbi
贝克曼库尔特实验系统(苏州)有限公司
小鼠 单克隆(104D2D1)
  • 流式细胞仪; 人类; 1:20; 图 2
贝克曼库尔特实验系统(苏州)有限公司C-kit抗体(Beckman Coulter, 104D2D1)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 2). elife (2020) ncbi
小鼠 单克隆(95C3)
  • 流式细胞仪; 人类; 图 6c
贝克曼库尔特实验系统(苏州)有限公司C-kit抗体(Beckman Coulter, 95C3)被用于被用于流式细胞仪在人类样本上 (图 6c). BMC Immunol (2019) ncbi
小鼠 单克隆(104D2D1)
  • 流式细胞仪; 人类; 图 1a
贝克曼库尔特实验系统(苏州)有限公司C-kit抗体(Beckman Coulter, 104D2D1)被用于被用于流式细胞仪在人类样本上 (图 1a). J Allergy Clin Immunol (2018) ncbi
小鼠 单克隆(95C3)
  • 流式细胞仪; 人类; 表 3
贝克曼库尔特实验系统(苏州)有限公司C-kit抗体(Beckman Coulter (Immunotech), 95C3)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
小鼠 单克隆(104D2D1)
  • 流式细胞仪; 人类; 图 2b
贝克曼库尔特实验系统(苏州)有限公司C-kit抗体(Beckman Coulter, 104D2D1)被用于被用于流式细胞仪在人类样本上 (图 2b). Nat Immunol (2016) ncbi
小鼠 单克隆(104D2D1)
  • 流式细胞仪; 人类; 表 1
贝克曼库尔特实验系统(苏州)有限公司C-kit抗体(Beckman Coulter, 104D2D1)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry B Clin Cytom (2016) ncbi
小鼠 单克隆(104D2D1)
  • 流式细胞仪; 人类; 表 4
贝克曼库尔特实验系统(苏州)有限公司C-kit抗体(Beckman Coulter, 104D2D1)被用于被用于流式细胞仪在人类样本上 (表 4). Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(104D2D1)
  • 流式细胞仪; 人类; 图 1b
贝克曼库尔特实验系统(苏州)有限公司C-kit抗体(Beckman Coulter, 104D2D1)被用于被用于流式细胞仪在人类样本上 (图 1b). Am J Physiol Cell Physiol (2015) ncbi
小鼠 单克隆(104D2D1)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司C-kit抗体(Beckman Coulter, PN A66333)被用于被用于流式细胞仪在人类样本上. Curr Protoc Cytom (2015) ncbi
小鼠 单克隆(104D2D1)
  • 流式细胞仪; 人类
贝克曼库尔特实验系统(苏州)有限公司C-kit抗体(Beckman Coulter, 104D2D1)被用于被用于流式细胞仪在人类样本上. Cancer Res (2013) ncbi
Cell Marque
单克隆(YR145)
  • 免疫组化; 人类; 1:50; 图 6
Cell MarqueC-kit抗体(Cell Marque, 117R-16)被用于被用于免疫组化在人类样本上浓度为1:50 (图 6). Histopathology (2015) ncbi
Biocare Medical
domestic rabbit 单克隆(Y145)
  • 免疫组化; 人类
Biocare MedicalC-kit抗体(Biocare Medica, CME 296 AK)被用于被用于免疫组化在人类样本上. Urol J (2015) ncbi
碧迪BD
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 1:50; 图 4d
碧迪BDC-kit抗体(BD Bioscience, YB5.B8)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 4d). Nat Commun (2021) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 图 1b
碧迪BDC-kit抗体(BD Bioscience, 561118)被用于被用于流式细胞仪在人类样本上 (图 1b). World J Stem Cells (2020) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 1:50; 图 1a
碧迪BDC-kit抗体(BD Biosciences, YB5, B8)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1a). Nat Commun (2019) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 图 3a
碧迪BDC-kit抗体(BD, YB5.B8)被用于被用于流式细胞仪在人类样本上 (图 3a). J Exp Med (2018) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 st12
碧迪BDC-kit抗体(BD, 104D2)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 图 st12
碧迪BDC-kit抗体(BD, YB5.B8)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 图 1d
碧迪BDC-kit抗体(BD Pharmingen, YB5.B8)被用于被用于流式细胞仪在人类样本上 (图 1d). J Clin Invest (2017) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 犬
碧迪BDC-kit抗体(BD Biosciences, 555714)被用于被用于流式细胞仪在犬样本上. F1000Res (2015) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 图 1b
碧迪BDC-kit抗体(Pharmingen, 104D2)被用于被用于流式细胞仪在人类样本上 (图 1b). Blood (2017) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 图 s4f
碧迪BDC-kit抗体(BD, 550412)被用于被用于流式细胞仪在人类样本上 (图 s4f). Nat Commun (2017) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 1:1000
碧迪BDC-kit抗体(BD Biosciences, 555714)被用于被用于流式细胞仪在人类样本上浓度为1:1000. Oncol Lett (2016) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 表 1
碧迪BDC-kit抗体(Becton-Dickinson, 555713)被用于被用于流式细胞仪在人类样本上 (表 1). Int J Oncol (2016) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 图 2
碧迪BDC-kit抗体(BD Pharmingen, 550412)被用于被用于流式细胞仪在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类
碧迪BDC-kit抗体(BD Biosciences, 340867)被用于被用于流式细胞仪在人类样本上. Oncol Lett (2016) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 图 2a
碧迪BDC-kit抗体(BD Biosciences, YB5.B8)被用于被用于流式细胞仪在人类样本上 (图 2a). Clin Transl Gastroenterol (2016) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 图 3a
碧迪BDC-kit抗体(BD, YB5.B8)被用于被用于流式细胞仪在人类样本上 (图 3a). Angiogenesis (2016) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 1:25; 图 s2c
碧迪BDC-kit抗体(BD, YB5.B8)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 s2c). Nat Med (2016) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 图 st1
碧迪BDC-kit抗体(BD, 555714)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(104D2)
  • 其他; 人类; 图 st1
  • 流式细胞仪; 人类; 图 st3
碧迪BDC-kit抗体(BD Biosciences, 104D2)被用于被用于其他在人类样本上 (图 st1) 和 被用于流式细胞仪在人类样本上 (图 st3). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 图 5e
碧迪BDC-kit抗体(BD Biosciences, 555714)被用于被用于流式细胞仪在人类样本上 (图 5e). Oncotarget (2015) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 1:25; 图 1
碧迪BDC-kit抗体(BD, 340529)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 1). Development (2015) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类; 1:100; 图 2g
碧迪BDC-kit抗体(BD Bioscience, 550412)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2g). Nat Biotechnol (2015) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类; 表 4
碧迪BDC-kit抗体(BD Bioscience, 104D2)被用于被用于流式细胞仪在人类样本上 (表 4). Cytometry B Clin Cytom (2015) ncbi
小鼠 单克隆(YB5.B8)
  • 免疫细胞化学; 小鼠
碧迪BDC-kit抗体(PharMingen, YB5.B8)被用于被用于免疫细胞化学在小鼠样本上. Hum Pathol (2014) ncbi
小鼠 单克隆(104D2)
  • 流式细胞仪; 人类
碧迪BDC-kit抗体(BD, 340867)被用于被用于流式细胞仪在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(YB5.B8)
  • 流式细胞仪; 人类
碧迪BDC-kit抗体(BD Pharmingen, YB5.B8)被用于被用于流式细胞仪在人类样本上. Genes Dev (2009) ncbi
徕卡显微系统(上海)贸易有限公司
小鼠 单克隆(T595)
  • 免疫组化; 人类; 1:10
徕卡显微系统(上海)贸易有限公司C-kit抗体(NOVOCASTRA, T595)被用于被用于免疫组化在人类样本上浓度为1:10. BMC Clin Pathol (2014) ncbi
文章列表
  1. Chen Y, Lu C, Cheng W, Kuo K, Yu C, Ho H, et al. An experimental model for ovarian cancer: propagation of ovarian cancer initiating cells and generation of ovarian cancer organoids. BMC Cancer. 2022;22:967 pubmed 出版商
  2. L xf3 pez Mej xed a J, Tallabs Utrilla L, Salazar Sojo P, Mantilla Ollarves J, S xe1 nchez Carballido M, Rocha Zavaleta L. c-Kit Induces Migration of Triple-Negative Breast Cancer Cells and Is a Promising Target for Tyrosine Kinase Inhibitor Treatment. Int J Mol Sci. 2022;23: pubmed 出版商
  3. Dong F, Chen M, Jiang L, Shen Z, Ma L, Han C, et al. PRMT5 Is Involved in Spermatogonial Stem Cells Maintenance by Regulating Plzf Expression via Modulation of Lysine Histone Modifications. Front Cell Dev Biol. 2021;9:673258 pubmed 出版商
  4. Ercolano G, Gomez Cadena A, Dumauthioz N, Vanoni G, Kreutzfeldt M, Wyss T, et al. PPARɣ drives IL-33-dependent ILC2 pro-tumoral functions. Nat Commun. 2021;12:2538 pubmed 出版商
  5. Le T, Galmiche L, Levy J, Suwannarat P, Hellebrekers D, Morarach K, et al. Dysregulation of the NRG1/ERBB pathway causes a developmental disorder with gastrointestinal dysmotility in humans. J Clin Invest. 2021;131: pubmed 出版商
  6. Ye S, Sharipova D, Kozinova M, Klug L, D Souza J, Belinsky M, et al. Identification of Wee1 as a target in combination with avapritinib for gastrointestinal stromal tumor treatment. JCI Insight. 2021;6: pubmed 出版商
  7. Noz M, Bekkering S, Groh L, Nielen T, Lamfers E, Schlitzer A, et al. Reprogramming of bone marrow myeloid progenitor cells in patients with severe coronary artery disease. elife. 2020;9: pubmed 出版商
  8. Yan W, Li T, Yin T, Hou Z, Qu K, Wang N, et al. M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation. Theranostics. 2020;10:10712-10728 pubmed 出版商
  9. Ricci B, Tycksen E, Celik H, Belle J, Fontana F, Civitelli R, et al. Osterix-Cre marks distinct subsets of CD45- and CD45+ stromal populations in extra-skeletal tumors with pro-tumorigenic characteristics. elife. 2020;9: pubmed 出版商
  10. Bennstein S, Weinhold S, Manser A, Scherenschlich N, Noll A, Raba K, et al. Umbilical cord blood-derived ILC1-like cells constitute a novel precursor for mature KIR+NKG2A- NK cells. elife. 2020;9: pubmed 出版商
  11. Ryu S, Lee E, Kim D, Kim Y, Chung D, Kim J, et al. Reduction of circulating innate lymphoid cell progenitors results in impaired cytokine production by innate lymphoid cells in patients with lupus nephritis. Arthritis Res Ther. 2020;22:63 pubmed 出版商
  12. Gao K, He S, Kumar P, Farmer D, Zhou J, Wang A. Clonal isolation of endothelial colony-forming cells from early gestation chorionic villi of human placenta for fetal tissue regeneration. World J Stem Cells. 2020;12:123-138 pubmed 出版商
  13. Mahameed M, Boukeileh S, Obiedat A, Darawshi O, Dipta P, Rimon A, et al. Pharmacological induction of selective endoplasmic reticulum retention as a strategy for cancer therapy. Nat Commun. 2020;11:1304 pubmed 出版商
  14. Che X, Wang J, He J, Guo X, Li T, Zhang X. The new application of mifepristone in the relief of adenomyosis-caused dysmenorrhea. Int J Med Sci. 2020;17:224-233 pubmed 出版商
  15. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  16. Belote R, Simon S. Ca2+ transients in melanocyte dendrites and dendritic spine-like structures evoked by cell-to-cell signaling. J Cell Biol. 2020;219: pubmed 出版商
  17. Varuzhanyan G, Rojansky R, Sweredoski M, Graham R, Hess S, Ladinsky M, et al. Mitochondrial fusion is required for spermatogonial differentiation and meiosis. elife. 2019;8: pubmed 出版商
  18. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  19. Wang H, Shen L, Sun X, Liu F, Feng W, Jiang C, et al. Adipose group 1 innate lymphoid cells promote adipose tissue fibrosis and diabetes in obesity. Nat Commun. 2019;10:3254 pubmed 出版商
  20. Ardain A, Domingo Gonzalez R, Das S, Kazer S, Howard N, Singh A, et al. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature. 2019;: pubmed 出版商
  21. Cao J, Lin Z, Tong M, Zhang Y, Li Y, Zhou Y. Mechanistic target of rapamycin kinase (Mtor) is required for spermatogonial proliferation and differentiation in mice. Asian J Androl. 2020;22:169-176 pubmed 出版商
  22. Nakanishi M, Mitchell R, Benoit Y, Orlando L, Reid J, Shimada K, et al. Human Pluripotency Is Initiated and Preserved by a Unique Subset of Founder Cells. Cell. 2019;177:910-924.e22 pubmed 出版商
  23. Chen H, Poran A, Unni A, Huang S, Elemento O, Snoeck H, et al. Generation of pulmonary neuroendocrine cells and SCLC-like tumors from human embryonic stem cells. J Exp Med. 2019;216:674-687 pubmed 出版商
  24. Duan S, Koziol White C, Jester W, Nycholat C, Macauley M, Panettieri R, et al. CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J Clin Invest. 2019;129:1387-1401 pubmed 出版商
  25. Dagur R, Branch Woods A, Mathews S, Joshi P, Quadros R, Harms D, et al. Human-like NSG mouse glycoproteins sialylation pattern changes the phenotype of human lymphocytes and sensitivity to HIV-1 infection. BMC Immunol. 2019;20:2 pubmed 出版商
  26. Collins P, Cella M, Porter S, Li S, Gurewitz G, Hong H, et al. Gene Regulatory Programs Conferring Phenotypic Identities to Human NK Cells. Cell. 2019;176:348-360.e12 pubmed 出版商
  27. HERRING B, Hoggatt A, Gupta A, Wo J. Gastroparesis is associated with decreased FOXF1 and FOXF2 in humans, and loss of FOXF1 and FOXF2 results in gastroparesis in mice. Neurogastroenterol Motil. 2019;31:e13528 pubmed 出版商
  28. Kim J, Villadsen R. Expression of Luminal Progenitor Marker CD117 in the Human Breast Gland. J Histochem Cytochem. 2018;66:879-888 pubmed 出版商
  29. Hemming M, Lawlor M, Zeid R, Lesluyes T, Fletcher J, Raut C, et al. Gastrointestinal stromal tumor enhancers support a transcription factor network predictive of clinical outcome. Proc Natl Acad Sci U S A. 2018;115:E5746-E5755 pubmed 出版商
  30. Mitchell K, Barreyro L, Todorova T, Taylor S, Antony Debré I, Narayanagari S, et al. IL1RAP potentiates multiple oncogenic signaling pathways in AML. J Exp Med. 2018;215:1709-1727 pubmed 出版商
  31. Zuo Q, Jin K, Song J, Zhang Y, Chen G, Li B. Interaction of the primordial germ cell-specific protein C2EIP with PTCH2 directs differentiation of embryonic stem cells via HH signaling activation. Cell Death Dis. 2018;9:497 pubmed 出版商
  32. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  33. Bahri R, Custovic A, Korosec P, Tsoumani M, Barron M, Wu J, et al. Mast cell activation test in the diagnosis of allergic disease and anaphylaxis. J Allergy Clin Immunol. 2018;142:485-496.e16 pubmed 出版商
  34. Li N, van Unen V, Höllt T, Thompson A, van Bergen J, Pezzotti N, et al. Mass cytometry reveals innate lymphoid cell differentiation pathways in the human fetal intestine. J Exp Med. 2018;215:1383-1396 pubmed 出版商
  35. Sato M, Kawana K, Adachi K, Fujimoto A, Yoshida M, Nakamura H, et al. Detachment from the primary site and suspension in ascites as the initial step in metabolic reprogramming and metastasis to the omentum in ovarian cancer. Oncol Lett. 2018;15:1357-1361 pubmed 出版商
  36. Zhang C, Yi W, Li F, Du X, Wang H, Wu P, et al. Eosinophil-derived CCL-6 impairs hematopoietic stem cell homeostasis. Cell Res. 2018;28:323-335 pubmed 出版商
  37. Jeffery H, McDowell P, Lutz P, Wawman R, Roberts S, Bagnall C, et al. Human intrahepatic ILC2 are IL-13positive amphiregulinpositive and their frequency correlates with model of end stage liver disease score. PLoS ONE. 2017;12:e0188649 pubmed 出版商
  38. Maric J, Ravindran A, Mazzurana L, Björklund Ã, Van Acker A, Rao A, et al. Prostaglandin E2 suppresses human group 2 innate lymphoid cell function. J Allergy Clin Immunol. 2018;141:1761-1773.e6 pubmed 出版商
  39. Herndler Brandstetter D, Shan L, Yao Y, Stecher C, Plajer V, Lietzenmayer M, et al. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc Natl Acad Sci U S A. 2017;114:E9626-E9634 pubmed 出版商
  40. Zhan Y, Guo J, Yang W, Goncalves C, Rzymski T, Dreas A, et al. MNK1/2 inhibition limits oncogenicity and metastasis of KIT-mutant melanoma. J Clin Invest. 2017;127:4179-4192 pubmed 出版商
  41. Kyoizumi S, Kubo Y, Kajimura J, Yoshida K, Hayashi T, Nakachi K, et al. Fate Decision Between Group 3 Innate Lymphoid and Conventional NK Cell Lineages by Notch Signaling in Human Circulating Hematopoietic Progenitors. J Immunol. 2017;199:2777-2793 pubmed 出版商
  42. Huang N, Pishesha N, Mukherjee J, Zhang S, Deshycka R, Sudaryo V, et al. Genetically engineered red cells expressing single domain camelid antibodies confer long-term protection against botulinum neurotoxin. Nat Commun. 2017;8:423 pubmed 出版商
  43. Gao X, Lee H, Li W, Platt R, Barrasa M, Ma Q, et al. Thyroid hormone receptor beta and NCOA4 regulate terminal erythrocyte differentiation. Proc Natl Acad Sci U S A. 2017;114:10107-10112 pubmed 出版商
  44. Freire A, Waghray A, Soares da Silva F, Resende T, Lee D, Pereira C, et al. Transient HES5 Activity Instructs Mesodermal Cells toward a Cardiac Fate. Stem Cell Reports. 2017;9:136-148 pubmed 出版商
  45. Allan D, Cerdeira A, Ranjan A, Kirkham C, Aguilar O, Tanaka M, et al. Transcriptome analysis reveals similarities between human blood CD3- CD56bright cells and mouse CD127+ innate lymphoid cells. Sci Rep. 2017;7:3501 pubmed 出版商
  46. See P, Dutertre C, Chen J, Günther P, McGovern N, Irac S, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356: pubmed 出版商
  47. Liao C, Booker R, Morrison S, Le L. Identification of hair shaft progenitors that create a niche for hair pigmentation. Genes Dev. 2017;31:744-756 pubmed 出版商
  48. Villani A, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356: pubmed 出版商
  49. Cottineau J, Kottemann M, Lach F, Kang Y, Vély F, Deenick E, et al. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest. 2017;127:1991-2006 pubmed 出版商
  50. McGaugh E, Nostro M. Efficient Differentiation of Pluripotent Stem Cells to NKX6-1+ Pancreatic Progenitors. J Vis Exp. 2017;: pubmed 出版商
  51. Ito D, Childress M, Mason N, Winter A, O BRIEN T, Henson M, et al. A double blinded, placebo-controlled pilot study to examine reduction of CD34 +/CD117 +/CD133 + lymphoma progenitor cells and duration of remission induced by neoadjuvant valspodar in dogs with large B-cell lymphoma. F1000Res. 2015;4:42 pubmed 出版商
  52. Dourado K, Baik J, Oliveira V, Beltrame M, Yamamoto A, Theuer C, et al. Endoglin: a novel target for therapeutic intervention in acute leukemias revealed in xenograft mouse models. Blood. 2017;129:2526-2536 pubmed 出版商
  53. Egashira A, Morita M, Kumagai R, Taguchi K, Ueda M, Yamaguchi S, et al. Neuroendocrine carcinoma of the esophagus: Clinicopathological and immunohistochemical features of 14 cases. PLoS ONE. 2017;12:e0173501 pubmed 出版商
  54. Lim A, Li Y, Lopez Lastra S, Stadhouders R, Paul F, Casrouge A, et al. Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation. Cell. 2017;168:1086-1100.e10 pubmed 出版商
  55. Vernot J, Bonilla X, Rodriguez Pardo V, Vanegas N. Phenotypic and Functional Alterations of Hematopoietic Stem and Progenitor Cells in an In Vitro Leukemia-Induced Microenvironment. Int J Mol Sci. 2017;18: pubmed 出版商
  56. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  57. Borghesi J, Mario L, Carreira A, Miglino M, Favaron P. Phenotype and multipotency of rabbit (Oryctolagus cuniculus) amniotic stem cells. Stem Cell Res Ther. 2017;8:27 pubmed 出版商
  58. Guimarães Camboa N, Cattaneo P, Sun Y, Moore Morris T, Gu Y, Dalton N, et al. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. Cell Stem Cell. 2017;20:345-359.e5 pubmed 出版商
  59. Sontag S, Förster M, Qin J, Wanek P, Mitzka S, Schüler H, et al. Modelling IRF8 Deficient Human Hematopoiesis and Dendritic Cell Development with Engineered iPS Cells. Stem Cells. 2017;35:898-908 pubmed 出版商
  60. Britschgi A, Duss S, Kim S, Couto J, Brinkhaus H, Koren S, et al. The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature. 2017;541:541-545 pubmed 出版商
  61. Williams J, Dean A, Lankford S, Criswell T, Badlani G, Andersson K. Determinates of muscle precursor cell therapy efficacy in a nonhuman primate model of intrinsic urinary sphincter deficiency. Stem Cell Res Ther. 2017;8:1 pubmed 出版商
  62. Tang J, Shen D, Caranasos T, Wang Z, Vandergriff A, Allen T, et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun. 2017;8:13724 pubmed 出版商
  63. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  64. Le Q, Yao W, Chen Y, Yan B, Liu C, Yuan M, et al. GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis. 2016;7:e2478 pubmed 出版商
  65. Mallarino R, Henegar C, Mirasierra M, Manceau M, Schradin C, Vallejo M, et al. Developmental mechanisms of stripe patterns in rodents. Nature. 2016;539:518-523 pubmed 出版商
  66. Massumi M, Pourasgari F, Nalla A, Batchuluun B, Nagy K, Neely E, et al. An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells. PLoS ONE. 2016;11:e0164457 pubmed 出版商
  67. Sun K, Xu S, Chen J, Liu G, Shen X, Wu X. Atypical presentation of a gastric stromal tumor masquerading as a giant intraabdominal cyst: A case report. Oncol Lett. 2016;12:3018-3020 pubmed
  68. Wolfesberger B, Fuchs Baumgartinger A, Hlavaty J, Meyer F, Hofer M, Steinborn R, et al. Stem cell growth factor receptor in canine vs. feline osteosarcomas. Oncol Lett. 2016;12:2485-2492 pubmed
  69. Adachi E, Sakai K, Nishiuchi T, Imamura R, Sato H, Matsumoto K. Different growth and metastatic phenotypes associated with a cell-intrinsic change of Met in metastatic melanoma. Oncotarget. 2016;7:70779-70793 pubmed 出版商
  70. Zahran A, Aly S, Altayeb H, Ali A. Circulating endothelial cells and their progenitors in acute myeloid leukemia. Oncol Lett. 2016;12:1965-1970 pubmed
  71. Puvanenthiran S, Essapen S, Seddon A, Modjtahedi H. Impact of the putative cancer stem cell markers and growth factor receptor expression on the sensitivity of ovarian cancer cells to treatment with various forms of small molecule tyrosine kinase inhibitors and cytotoxic drugs. Int J Oncol. 2016;49:1825-1838 pubmed 出版商
  72. Henry E, Sy C, Inclan Rico J, Espinosa V, Ghanny S, Dwyer D, et al. Carbonic anhydrase enzymes regulate mast cell-mediated inflammation. J Exp Med. 2016;213:1663-73 pubmed 出版商
  73. Saatcioglu H, Cuevas I, Castrillon D. Control of Oocyte Reawakening by Kit. PLoS Genet. 2016;12:e1006215 pubmed 出版商
  74. Biton J, Khaleghparast Athari S, Thiolat A, Santinon F, Lemeiter D, Hervé R, et al. In Vivo Expansion of Activated Foxp3+ Regulatory T Cells and Establishment of a Type 2 Immune Response upon IL-33 Treatment Protect against Experimental Arthritis. J Immunol. 2016;197:1708-19 pubmed 出版商
  75. Jacoby E, Nguyen S, Fountaine T, Welp K, Gryder B, Qin H, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun. 2016;7:12320 pubmed 出版商
  76. Kirshenbaum A, Cruse G, Desai A, Bandara G, Leerkes M, Lee C, et al. Immunophenotypic and Ultrastructural Analysis of Mast Cells in Hermansky-Pudlak Syndrome Type-1: A Possible Connection to Pulmonary Fibrosis. PLoS ONE. 2016;11:e0159177 pubmed 出版商
  77. Chen S, Miyazaki M, Chandra V, Fisch K, Chang A, Murre C. Id3 Orchestrates Germinal Center B Cell Development. Mol Cell Biol. 2016;36:2543-52 pubmed 出版商
  78. Coccaro N, Tota G, Anelli L, Zagaria A, Casieri P, Cellamare A, et al. MYEOV gene overexpression in primary plasma cell leukemia with t(11;14)(q13;q32). Oncol Lett. 2016;12:1460-1464 pubmed
  79. Hoppe P, Schwarzfischer M, Loeffler D, Kokkaliaris K, Hilsenbeck O, Moritz N, et al. Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature. 2016;535:299-302 pubmed 出版商
  80. Di Liberto D, Mansueto P, D Alcamo A, Lo Pizzo M, Lo Presti E, Geraci G, et al. Predominance of Type 1 Innate Lymphoid Cells in the Rectal Mucosa of Patients With Non-Celiac Wheat Sensitivity: Reversal After a Wheat-Free Diet. Clin Transl Gastroenterol. 2016;7:e178 pubmed 出版商
  81. Nooh H, Nour Eldien N. The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis. Acta Histochem. 2016;118:588-595 pubmed 出版商
  82. Frohwitter G, Buerger H, van Diest P, Korsching E, Kleinheinz J, Fillies T. Cytokeratin and protein expression patterns in squamous cell carcinoma of the oral cavity provide evidence for two distinct pathogenetic pathways. Oncol Lett. 2016;12:107-113 pubmed
  83. Ebert L, Tan L, Johan M, Min K, Cockshell M, Parham K, et al. A non-canonical role for desmoglein-2 in endothelial cells: implications for neoangiogenesis. Angiogenesis. 2016;19:463-86 pubmed 出版商
  84. Zhan M, Hori Y, Wada N, Ikeda J, Hata Y, Osuga K, et al. Angiogenic Factor with G-patch and FHA Domain 1 (AGGF1) Expression in Human Vascular Lesions. Acta Histochem Cytochem. 2016;49:75-81 pubmed 出版商
  85. Reinisch A, Thomas D, Corces M, Zhang X, Gratzinger D, Hong W, et al. A humanized bone marrow ossicle xenotransplantation model enables improved engraftment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22:812-21 pubmed 出版商
  86. Lombardo G, Dentelli P, Togliatto G, Rosso A, Gili M, Gallo S, et al. Activated Stat5 trafficking Via Endothelial Cell-derived Extracellular Vesicles Controls IL-3 Pro-angiogenic Paracrine Action. Sci Rep. 2016;6:25689 pubmed 出版商
  87. Silva S, Levy D, Ruiz J, de Melo T, Isaac C, Fidelis M, et al. Oxysterols in adipose tissue-derived mesenchymal stem cell proliferation and death. J Steroid Biochem Mol Biol. 2017;169:164-175 pubmed 出版商
  88. Bal S, Bernink J, Nagasawa M, Groot J, Shikhagaie M, Golebski K, et al. IL-1?, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat Immunol. 2016;17:636-45 pubmed 出版商
  89. Moore A, Ceraudo E, Sher J, Guan Y, Shoushtari A, Chang M, et al. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat Genet. 2016;48:675-80 pubmed 出版商
  90. Sadeghian Nodoushan F, Aflatoonian R, Borzouie Z, Akyash F, Fesahat F, Soleimani M, et al. Pluripotency and differentiation of cells from human testicular sperm extraction: An investigation of cell stemness. Mol Reprod Dev. 2016;83:312-23 pubmed 出版商
  91. Soeda J, Mouralidarane A, Cordero P, Li J, Nguyen V, Carter R, et al. Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas. J Physiol Biochem. 2016;72:281-91 pubmed 出版商
  92. Vinci L, Ravarino A, Fanos V, Naccarato A, Senes G, Gerosa C, et al. Immunohistochemical markers of neural progenitor cells in the early embryonic human cerebral cortex. Eur J Histochem. 2016;60:2563 pubmed 出版商
  93. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  94. Helbig D, Ihle M, Pütz K, Tantcheva Poor I, Mauch C, Büttner R, et al. Oncogene and therapeutic target analyses in atypical fibroxanthomas and pleomorphic dermal sarcomas. Oncotarget. 2016;7:21763-74 pubmed 出版商
  95. Nakayama R, Zhang Y, Czaplinski J, Anatone A, Sicinska E, Fletcher J, et al. Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma. Oncotarget. 2016;7:16581-92 pubmed 出版商
  96. Drier Y, Cotton M, Williamson K, Gillespie S, Ryan R, Kluk M, et al. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma. Nat Genet. 2016;48:265-72 pubmed 出版商
  97. Roan F, Stoklasek T, Whalen E, Molitor J, Bluestone J, Buckner J, et al. CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis. J Immunol. 2016;196:2051-2062 pubmed 出版商
  98. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  99. Zhang C, Huang X, Lu H, Meng X, Liu D, Kim Y, et al. Up-regulation of the Ang II/AT1 receptor may compensate for the loss of gastric antrum ICC via the PI3k/Akt signaling pathway in STZ-induced diabetic mice. Mol Cell Endocrinol. 2016;423:77-86 pubmed 出版商
  100. Lasigliè D, Boero S, Bauer I, Morando S, Damonte P, Cea M, et al. Sirt6 regulates dendritic cell differentiation, maturation, and function. Aging (Albany NY). 2016;8:34-49 pubmed
  101. Nalwoga H, Ahmed L, Arnes J, Wabinga H, Akslen L. Strong Expression of Hypoxia-Inducible Factor-1α (HIF-1α) Is Associated with Axl Expression and Features of Aggressive Tumors in African Breast Cancer. PLoS ONE. 2016;11:e0146823 pubmed 出版商
  102. SINGLA D, Wang J. Fibroblast Growth Factor-9 Activates c-Kit Progenitor Cells and Enhances Angiogenesis in the Infarcted Diabetic Heart. Oxid Med Cell Longev. 2016;2016:5810908 pubmed 出版商
  103. Ogaki S, Morooka M, Otera K, Kume S. A cost-effective system for differentiation of intestinal epithelium from human induced pluripotent stem cells. Sci Rep. 2015;5:17297 pubmed 出版商
  104. Jackson J, Taylor J, Witek M, Hunsucker S, Waugh J, Fedoriw Y, et al. Microfluidics for the detection of minimal residual disease in acute myeloid leukemia patients using circulating leukemic cells selected from blood. Analyst. 2016;141:640-51 pubmed 出版商
  105. Korytnikov R, Nostro M. Generation of polyhormonal and multipotent pancreatic progenitor lineages from human pluripotent stem cells. Methods. 2016;101:56-64 pubmed 出版商
  106. Rohnalter V, Roth K, Finkernagel F, Adhikary T, Obert J, Dorzweiler K, et al. A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype. Oncotarget. 2015;6:40005-25 pubmed 出版商
  107. Geister K, Brinkmeier M, Cheung L, Wendt J, Oatley M, Burgess D, et al. LINE-1 Mediated Insertion into Poc1a (Protein of Centriole 1 A) Causes Growth Insufficiency and Male Infertility in Mice. PLoS Genet. 2015;11:e1005569 pubmed 出版商
  108. Holtzinger A, Streeter P, Sarangi F, Hillborn S, Niapour M, Ogawa S, et al. New markers for tracking endoderm induction and hepatocyte differentiation from human pluripotent stem cells. Development. 2015;142:4253-65 pubmed 出版商
  109. Vajravelu B, Hong K, Al Maqtari T, Cao P, Keith M, Wysoczynski M, et al. C-Kit Promotes Growth and Migration of Human Cardiac Progenitor Cells via the PI3K-AKT and MEK-ERK Pathways. PLoS ONE. 2015;10:e0140798 pubmed 出版商
  110. Okoye Okafor U, Bartholdy B, Cartier J, Gao E, Pietrak B, Rendina A, et al. New IDH1 mutant inhibitors for treatment of acute myeloid leukemia. Nat Chem Biol. 2015;11:878-86 pubmed 出版商
  111. Gely Pernot A, Raverdeau M, Teletin M, Vernet N, Féret B, Klopfenstein M, et al. Retinoic Acid Receptors Control Spermatogonia Cell-Fate and Induce Expression of the SALL4A Transcription Factor. PLoS Genet. 2015;11:e1005501 pubmed 出版商
  112. Bai H, Liu Y, Xie Y, Hoyle D, Brodsky R, Cheng L, et al. Definitive Hematopoietic Multipotent Progenitor Cells Are Transiently Generated From Hemogenic Endothelial Cells in Human Pluripotent Stem Cells. J Cell Physiol. 2016;231:1065-76 pubmed 出版商
  113. Denkovskij J, Rudys R, Bernotiene E, Minderis M, Bagdonas S, Kirdaite G. Cell surface markers and exogenously induced PpIX in synovial mesenchymal stem cells. Cytometry A. 2015;87:1001-11 pubmed 出版商
  114. Mizuno S, Takami K, Daitoku Y, Tanimoto Y, Dinh T, Mizuno Iijima S, et al. Peri-implantation lethality in mice carrying megabase-scale deletion on 5qc3.3 is caused by Exoc1 null mutation. Sci Rep. 2015;5:13632 pubmed 出版商
  115. Fernandez L, Valentin J, Zalacain M, Leung W, Patino Garcia A, Perez Martinez A. Activated and expanded natural killer cells target osteosarcoma tumor initiating cells in an NKG2D-NKG2DL dependent manner. Cancer Lett. 2015;368:54-63 pubmed 出版商
  116. Birket M, Ribeiro M, Verkerk A, Ward D, Leitoguinho A, Den Hartogh S, et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol. 2015;33:970-9 pubmed 出版商
  117. Gough K, Maddison B, Shikotra A, Moiseeva E, Yang W, Jarvis S, et al. Evidence for a novel Kit adhesion domain mediating human mast cell adhesion to structural airway cells. Respir Res. 2015;16:86 pubmed 出版商
  118. Pojero F, Flores Montero J, Sanoja L, Pérez J, Puig N, Paiva B, et al. Utility of CD54, CD229, and CD319 for the identification of plasma cells in patients with clonal plasma cell diseases. Cytometry B Clin Cytom. 2016;90:91-100 pubmed 出版商
  119. Kondo J, Powell A, Wang Y, Musser M, Southard Smith E, Franklin J, et al. LRIG1 Regulates Ontogeny of Smooth Muscle-Derived Subsets of Interstitial Cells of Cajal in Mice. Gastroenterology. 2015;149:407-19.e8 pubmed 出版商
  120. Fromm J, Tagliente D, Shaver A, Neppalli V, Craig F. Case study interpretation: Report from the ICCS Annual Meeting, Seattle, 2014. Cytometry B Clin Cytom. 2015;88:413-24 pubmed 出版商
  121. Hines W, Yaswen P, Bissell M. Modelling breast cancer requires identification and correction of a critical cell lineage-dependent transduction bias. Nat Commun. 2015;6:6927 pubmed 出版商
  122. Hayashi Y, Bardsley M, Toyomasu Y, Milosavljevic S, Gajdos G, Choi K, et al. Platelet-Derived Growth Factor Receptor-α Regulates Proliferation of Gastrointestinal Stromal Tumor Cells With Mutations in KIT by Stabilizing ETV1. Gastroenterology. 2015;149:420-32.e16 pubmed 出版商
  123. Ainsua Enrich E, Serrano Candelas E, Álvarez Errico D, Picado C, Sayós J, Rivera J, et al. The adaptor 3BP2 is required for KIT receptor expression and human mast cell survival. J Immunol. 2015;194:4309-18 pubmed 出版商
  124. Axelsson Robertson R, Ju J, Kim H, Zumla A, Maeurer M. Mycobacterium tuberculosis-specific and MHC class I-restricted CD8+ T-cells exhibit a stem cell precursor-like phenotype in patients with active pulmonary tuberculosis. Int J Infect Dis. 2015;32:13-22 pubmed 出版商
  125. Wang Y, Shi C, Lu Y, Poulin E, Franklin J, Coffey R. Loss of Lrig1 leads to expansion of Brunner glands followed by duodenal adenomas with gastric metaplasia. Am J Pathol. 2015;185:1123-34 pubmed 出版商
  126. Hänggi P, Telezhkin V, Kemp P, Schmugge M, Gassmann M, Goede J, et al. Functional plasticity of the N-methyl-d-aspartate receptor in differentiating human erythroid precursor cells. Am J Physiol Cell Physiol. 2015;308:C993-C1007 pubmed 出版商
  127. Lassman A, Pugh S, Gilbert M, Aldape K, Geinoz S, Beumer J, et al. Phase 2 trial of dasatinib in target-selected patients with recurrent glioblastoma (RTOG 0627). Neuro Oncol. 2015;17:992-8 pubmed 出版商
  128. Wensveen F, Jelenčić V, Valentić S, Å estan M, Wensveen T, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376-85 pubmed 出版商
  129. Cruse G, Beaven M, Music S, Bradding P, Gilfillan A, Metcalfe D. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling. Mol Biol Cell. 2015;26:1711-27 pubmed 出版商
  130. Issi O, Deliktaş H, Gedik A, Ozekinci S, Bircan M, Sahin H. Does the histopathologic pattern of the ureteropelvic junction affect the outcome of pyeloplasty. Urol J. 2015;12:2028-31 pubmed
  131. Leung A, Murphy G. Multisystemic Disease Modeling of Liver-Derived Protein Folding Disorders Using Induced Pluripotent Stem Cells (iPSCs). Methods Mol Biol. 2016;1353:261-70 pubmed 出版商
  132. Kap M, Lam K, Ewing Graham P, Riegman P. A reference image-based method for optimization of clinical immunohistochemistry. Histopathology. 2015;67:193-205 pubmed 出版商
  133. Lin Z, Hirano T, Shibata S, Seki N, Kitajima R, Sedohara A, et al. Gene expression ontogeny of spermatogenesis in the marmoset uncovers primate characteristics during testicular development. Dev Biol. 2015;400:43-58 pubmed 出版商
  134. Gao X, Ma W, Nie J, Zhang C, Zhang J, Yao G, et al. A G-quadruplex DNA structure resolvase, RHAU, is essential for spermatogonia differentiation. Cell Death Dis. 2015;6:e1610 pubmed 出版商
  135. Watson M, Hedley D. Whole blood measurement of histone modifications linked to the epigenetic regulation of gene expression. Curr Protoc Cytom. 2015;71:6.36.1-9 pubmed 出版商
  136. Krysiak K, Tibbitts J, Shao J, Liu T, Ndonwi M, Walter M. Reduced levels of Hspa9 attenuate Stat5 activation in mouse B cells. Exp Hematol. 2015;43:319-30.e10 pubmed 出版商
  137. Irie N, Weinberger L, Tang W, Kobayashi T, Viukov S, Manor Y, et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell. 2015;160:253-68 pubmed 出版商
  138. Davis A, Qiao S, Lesson J, Rojo de la Vega M, Park S, Seanez C, et al. The quinone methide aurin is a heat shock response inducer that causes proteotoxic stress and Noxa-dependent apoptosis in malignant melanoma cells. J Biol Chem. 2015;290:1623-38 pubmed 出版商
  139. Vadasz S, JENSEN T, Moncada C, Girard E, Zhang F, Blanchette A, et al. Second and third trimester amniotic fluid mesenchymal stem cells can repopulate a de-cellularized lung scaffold and express lung markers. J Pediatr Surg. 2014;49:1554-63 pubmed 出版商
  140. Ndisang J, Tiwari S. Mechanisms by which heme oxygenase rescue renal dysfunction in obesity. Redox Biol. 2014;2:1029-37 pubmed 出版商
  141. Mandl M, Schmitz S, Weber C, Hristov M. Characterization of the CD14++CD16+ monocyte population in human bone marrow. PLoS ONE. 2014;9:e112140 pubmed 出版商
  142. Rai S, Tanaka H, Suzuki M, Ogoh H, Taniguchi Y, Morita Y, et al. Clathrin assembly protein CALM plays a critical role in KIT signaling by regulating its cellular transport from early to late endosomes in hematopoietic cells. PLoS ONE. 2014;9:e109441 pubmed 出版商
  143. Perino G, Ricciardi B, Jerabek S, Martignoni G, Wilner G, Maass D, et al. Implant based differences in adverse local tissue reaction in failed total hip arthroplasties: a morphological and immunohistochemical study. BMC Clin Pathol. 2014;14:39 pubmed 出版商
  144. Yu J, Zuo Z, Zhang W, Yang Q, Zhang Y, Tang Y, et al. Identification of immunophenotypic subtypes with different prognoses in extranodal natural killer/T-cell lymphoma, nasal type. Hum Pathol. 2014;45:2255-62 pubmed 出版商
  145. Arlehamn C, Seumois G, Gerasimova A, Huang C, Fu Z, Yue X, et al. Transcriptional profile of tuberculosis antigen-specific T cells reveals novel multifunctional features. J Immunol. 2014;193:2931-40 pubmed 出版商
  146. Goldstein B, Goss G, Hatzistergos K, Rangel E, Seidler B, Saur D, et al. Adult c-Kit(+) progenitor cells are necessary for maintenance and regeneration of olfactory neurons. J Comp Neurol. 2015;523:15-31 pubmed 出版商
  147. Balci T, Prykhozhij S, Teh E, Da as S, McBride E, Liwski R, et al. A transgenic zebrafish model expressing KIT-D816V recapitulates features of aggressive systemic mastocytosis. Br J Haematol. 2014;167:48-61 pubmed 出版商
  148. Hoermann G, Blatt K, Greiner G, Putz E, Berger A, Herrmann H, et al. CD52 is a molecular target in advanced systemic mastocytosis. FASEB J. 2014;28:3540-51 pubmed 出版商
  149. Pei M, Li J, Zhang Y, Liu G, Wei L, Zhang Y. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res. 2014;356:391-403 pubmed 出版商
  150. Balk Møller E, Kim J, Hopkinson B, Timmermans Wielenga V, Petersen O, Villadsen R. A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. Am J Pathol. 2014;184:1198-208 pubmed 出版商
  151. Magri G, Miyajima M, Bascones S, Mortha A, Puga I, Cassis L, et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol. 2014;15:354-364 pubmed 出版商
  152. Moiseeva E, Straatman K, Leyland M, Bradding P. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells. PLoS ONE. 2014;9:e85980 pubmed 出版商
  153. Colin Cassin C, Yao X, Cerella C, Chbicheb S, Kuntz S, Mazerbourg S, et al. PPAR?-inactive ?2-troglitazone independently triggers ER stress and apoptosis in breast cancer cells. Mol Carcinog. 2015;54:393-404 pubmed 出版商
  154. Zhang Y, Bitner D, Pontes Filho A, Li F, Liu S, Wang H, et al. Expression and function of NIK- and IKK2-binding protein (NIBP) in mouse enteric nervous system. Neurogastroenterol Motil. 2014;26:77-97 pubmed 出版商
  155. Orecchioni S, Gregato G, Martin Padura I, Reggiani F, Braidotti P, Mancuso P, et al. Complementary populations of human adipose CD34+ progenitor cells promote growth, angiogenesis, and metastasis of breast cancer. Cancer Res. 2013;73:5880-91 pubmed 出版商
  156. Wu X, Satpathy A, Kc W, Liu P, Murphy T, Murphy K. Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo. PLoS ONE. 2013;8:e64800 pubmed 出版商
  157. Ruffell B, Au A, Rugo H, Esserman L, Hwang E, Coussens L. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012;109:2796-801 pubmed 出版商
  158. Doulatov S, Notta F, Rice K, Howell L, Zelent A, Licht J, et al. PLZF is a regulator of homeostatic and cytokine-induced myeloid development. Genes Dev. 2009;23:2076-87 pubmed 出版商
  159. Velaga S, Herbrand H, Friedrichsen M, Jiong T, Dorsch M, Hoffmann M, et al. Chemokine receptor CXCR5 supports solitary intestinal lymphoid tissue formation, B cell homing, and induction of intestinal IgA responses. J Immunol. 2009;182:2610-9 pubmed 出版商
  160. Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L, et al. A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res. 2008;18:846-57 pubmed 出版商
  161. Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J, et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood. 2008;111:142-9 pubmed
  162. Chen H, ORDOG T, Chen J, YOUNG D, Bardsley M, Redelman D, et al. Differential gene expression in functional classes of interstitial cells of Cajal in murine small intestine. Physiol Genomics. 2007;31:492-509 pubmed
  163. Suva D, Passweg J, Arnaudeau S, Hoffmeyer P, Kindler V. In vitro activated human T lymphocytes very efficiently attach to allogenic multipotent mesenchymal stromal cells and transmigrate under them. J Cell Physiol. 2008;214:588-94 pubmed
  164. Chen H, Redelman D, Ro S, Ward S, ORDOG T, Sanders K. Selective labeling and isolation of functional classes of interstitial cells of Cajal of human and murine small intestine. Am J Physiol Cell Physiol. 2007;292:C497-507 pubmed
  165. Biedermann B, Gil D, Bowen D, Crocker P. Analysis of the CD33-related siglec family reveals that Siglec-9 is an endocytic receptor expressed on subsets of acute myeloid leukemia cells and absent from normal hematopoietic progenitors. Leuk Res. 2007;31:211-20 pubmed