这是一篇来自已证抗体库的有关人类 CACNA1C的综述,是根据20篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CACNA1C 抗体。
CACNA1C 同义词: CACH2; CACN2; CACNL1A1; CCHL1A1; CaV1.2; LQT8; voltage-dependent L-type calcium channel subunit alpha-1C; DHPR, alpha-1 subunit; calcium channel, L type, alpha-1 polypeptide, isoform 1, cardiac muscle; calcium channel, cardic dihydropyridine-sensitive, alpha-1 subunit; calcium channel, voltage-dependent, L type, alpha 1C subunit; voltage-dependent L-type Ca2+ channel alpha 1 subunit; voltage-gated L-type calcium channel Cav1.2 alpha 1 subunit, splice variant 10*

Alomone Labs
兔 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 2d
Alomone Labs CACNA1C抗体(Alomone, ACC-003)被用于被用于免疫印迹在小鼠样品上浓度为1:200 (图 2d). elife (2019) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1b
Alomone Labs CACNA1C抗体(Alomone Labs, ACC-003)被用于被用于免疫印迹在小鼠样品上 (图 1b). Science (2018) ncbi
兔 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4a
  • 免疫印迹; 人类; 1:1000; 图 7a
Alomone Labs CACNA1C抗体(Alomone, ACC-003)被用于被用于免疫细胞化学在人类样品上浓度为1:100 (图 4a) 和 被用于免疫印迹在人类样品上浓度为1:1000 (图 7a). Sci Rep (2016) ncbi
兔 多克隆
  • 免疫印迹; 人类; 1:500; 图 2c
Alomone Labs CACNA1C抗体(Alomone Labs, ACC-003)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 2c). Circulation (2016) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; Domestic guinea pig; 1:50; 图 6
Alomone Labs CACNA1C抗体(Alomone, ACC-003)被用于被用于免疫组化-石蜡切片在Domestic guinea pig样品上浓度为1:50 (图 6). Mediators Inflamm (2016) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 2
Alomone Labs CACNA1C抗体(Alomone, ACC-003)被用于被用于免疫印迹在大鼠样品上 (图 2). PLoS ONE (2015) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 图 2c
Alomone Labs CACNA1C抗体(Alomone, ACC-003)被用于被用于免疫印迹在大鼠样品上 (图 2c). J Mol Cell Cardiol (2015) ncbi
兔 多克隆
  • 免疫沉淀; 人类; 1:200; 图 3a
  • 免疫印迹; 人类; 1:200; 图 2a
Alomone Labs CACNA1C抗体(Alomone, ACC003)被用于被用于免疫沉淀在人类样品上浓度为1:200 (图 3a) 和 被用于免疫印迹在人类样品上浓度为1:200 (图 2a). Pflugers Arch (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠
Alomone Labs CACNA1C抗体(Alomone Labs, ACC-003)被用于被用于免疫细胞化学在大鼠样品上. Am J Physiol Heart Circ Physiol (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:100
Alomone Labs CACNA1C抗体(Alomone Lab, ACC-003)被用于被用于免疫细胞化学在大鼠样品上浓度为1:100. Am J Physiol Cell Physiol (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:400
Alomone Labs CACNA1C抗体(Alomone, ACC-003)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:400. J Comp Neurol (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫印迹; 人类; 1:500; 图 3c
圣克鲁斯生物技术 CACNA1C抗体(SantaCruz, sc-398433)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 3c). Acta Pharmacol Sin (2017) ncbi
艾博抗(上海)贸易有限公司
兔 多克隆
  • 免疫印迹; 鸡
艾博抗(上海)贸易有限公司 CACNA1C抗体(Abcam, ab58552)被用于被用于免疫印迹在鸡样品上. Biosci Biotechnol Biochem (2015) ncbi
北京傲锐东源
山羊 多克隆
  • 免疫细胞化学; 人类; 1:100
北京傲锐东源 CACNA1C抗体(Origene, TA305878)被用于被用于免疫细胞化学在人类样品上浓度为1:100. Neurochem Int (2014) ncbi
默克密理博中国
兔 多克隆
  • 免疫组化; 小鼠; 1:100; 表 1
默克密理博中国 CACNA1C抗体(Millipore, AB5156)被用于被用于免疫组化在小鼠样品上浓度为1:100 (表 1). Front Cell Neurosci (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 1
默克密理博中国 CACNA1C抗体(Millipore, AB5156)被用于被用于免疫印迹在小鼠样品上 (图 1). Nat Commun (2015) ncbi
兔 多克隆
  • 免疫细胞化学; 小鼠; 1:200
默克密理博中国 CACNA1C抗体(Millipore, AB5156)被用于被用于免疫细胞化学在小鼠样品上浓度为1:200. Genes Dev (2013) ncbi
兔 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:500
默克密理博中国 CACNA1C抗体(Millipore, ab5156)被用于被用于免疫组化-冰冻切片在大鼠样品上浓度为1:500 和 被用于免疫印迹在大鼠样品上浓度为1:500. Neuroscience (2013) ncbi
西格玛奥德里奇
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:400; 图 s5b
西格玛奥德里奇 CACNA1C抗体(Sigma-Aldrich, C1603)被用于被用于免疫细胞化学在大鼠样品上浓度为1:400 (图 s5b). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇 CACNA1C抗体(Sigma, C1603)被用于被用于免疫印迹在小鼠样品上 (图 5). J Physiol (2012) ncbi
文章列表
  1. Dai W, Laforest B, Tyan L, Shen K, Nadadur R, Alvarado F, et al. A calcium transport mechanism for atrial fibrillation in Tbx5-mutant mice. elife. 2019;8: pubmed 出版商
  2. Guo A, Wang Y, Chen B, Wang Y, Yuan J, Zhang L, et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science. 2018;362: pubmed 出版商
  3. Huang J, Wang Y, Zhang M, Zhang P, Liang H, Bai H, et al. Functional expression of the Ca2+ signaling machinery in human embryonic stem cells. Acta Pharmacol Sin. 2017;38:1663-1672 pubmed 出版商
  4. Axelsson A, Mahdi T, Nenonen H, Singh T, Hänzelmann S, Wendt A, et al. Sox5 regulates beta-cell phenotype and is reduced in type 2 diabetes. Nat Commun. 2017;8:15652 pubmed 出版商
  5. Hu Z, Wang J, Yu D, Soon J, de Kleijn D, Foo R, et al. Aberrant Splicing Promotes Proteasomal Degradation of L-type CaV1.2 Calcium Channels by Competitive Binding for CaVβ Subunits in Cardiac Hypertrophy. Sci Rep. 2016;6:35247 pubmed 出版商
  6. Helms A, Alvarado F, Yob J, Tang V, Pagani F, Russell M, et al. Genotype-Dependent and -Independent Calcium Signaling Dysregulation in Human Hypertrophic Cardiomyopathy. Circulation. 2016;134:1738-1748 pubmed
  7. Reyes García J, Flores Soto E, Solís Chagoyán H, Sommer B, Díaz Hernández V, García Hernández L, et al. Tumor Necrosis Factor Alpha Inhibits L-Type Ca(2+) Channels in Sensitized Guinea Pig Airway Smooth Muscle through ERK 1/2 Pathway. Mediators Inflamm. 2016;2016:5972302 pubmed 出版商
  8. Barzan R, Pfeiffer F, Kukley M. N- and L-Type Voltage-Gated Calcium Channels Mediate Fast Calcium Transients in Axonal Shafts of Mouse Peripheral Nerve. Front Cell Neurosci. 2016;10:135 pubmed 出版商
  9. Zhang H, Cannell M, Kim S, Watson J, Norman R, Calaghan S, et al. Cellular Hypertrophy and Increased Susceptibility to Spontaneous Calcium-Release of Rat Left Atrial Myocytes Due to Elevated Afterload. PLoS ONE. 2015;10:e0144309 pubmed 出版商
  10. Wang J, Lu R, Yang J, Li H, He Z, Jing N, et al. TRPC6 specifically interacts with APP to inhibit its cleavage by γ-secretase and reduce Aβ production. Nat Commun. 2015;6:8876 pubmed 出版商
  11. Ueda S, Kokaji Y, Simizu S, Honda K, Yoshino K, Kamisoyama H, et al. Chicken heat shock protein HSPB1 increases and interacts with αB-crystallin in aged skeletal muscle. Biosci Biotechnol Biochem. 2015;79:1867-75 pubmed 出版商
  12. Bryant S, Kong C, Watson J, Cannell M, James A, Orchard C. Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts. J Mol Cell Cardiol. 2015;86:23-31 pubmed 出版商
  13. Scola G, Laliberte V, Kim H, Pinguelo A, Salvador M, Young L, et al. Vitis labrusca extract effects on cellular dynamics and redox modulations in a SH-SY5Y neuronal cell model: a similar role to lithium. Neurochem Int. 2014;79:12-9 pubmed 出版商
  14. Rougier J, Albesa M, Syam N, Halet G, Abriel H, Viard P. Ubiquitin-specific protease USP2-45 acts as a molecular switch to promote α2δ-1-induced downregulation of Cav1.2 channels. Pflugers Arch. 2015;467:1919-29 pubmed 出版商
  15. Frisk M, Koivumäki J, Norseng P, Maleckar M, Sejersted O, Louch W. Variable t-tubule organization and Ca2+ homeostasis across the atria. Am J Physiol Heart Circ Physiol. 2014;307:H609-20 pubmed 出版商
  16. Mizutani H, Yamamura H, Muramatsu M, Kiyota K, Nishimura K, Suzuki Y, et al. Spontaneous and nicotine-induced Ca2+ oscillations mediated by Ca2+ influx in rat pinealocytes. Am J Physiol Cell Physiol. 2014;306:C1008-16 pubmed 出版商
  17. Yucel G, Altindag B, Gomez Ospina N, Rana A, Panagiotakos G, Lara M, et al. State-dependent signaling by Cav1.2 regulates hair follicle stem cell function. Genes Dev. 2013;27:1217-22 pubmed 出版商
  18. Morton R, Norlin M, Vollmer C, Valenzuela C. Characterization of L-type voltage-gated Ca(2+) channel expression and function in developing CA3 pyramidal neurons. Neuroscience. 2013;238:59-70 pubmed 出版商
  19. Kato H, Kassai H, Watabe A, Aiba A, Manabe T. Functional coupling of the metabotropic glutamate receptor, InsP3 receptor and L-type Ca2+ channel in mouse CA1 pyramidal cells. J Physiol. 2012;590:3019-34 pubmed 出版商
  20. Huang C, Chu D, Hwang W, Tsaur M. Coexpression of high-voltage-activated ion channels Kv3.4 and Cav1.2 in pioneer axons during pathfinding in the developing rat forebrain. J Comp Neurol. 2012;520:3650-72 pubmed 出版商