这是一篇来自已证抗体库的有关人类 CACNA1D的综述,是根据8篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CACNA1D 抗体。
CACNA1D 同义词: CACH3; CACN4; CACNL1A2; CCHL1A2; Cav1.3; PASNA; SANDD; voltage-dependent L-type calcium channel subunit alpha-1D; calcium channel, L type, alpha-1 polypeptide; calcium channel, neuroendocrine/brain-type, alpha 1 subunit; calcium channel, voltage-dependent, L type, alpha 1D subunit; voltage-gated calcium channel alpha 1 subunit; voltage-gated calcium channel alpha subunit Cav1.3

Alomone Labs
兔 多克隆
  • 免疫组化; 小鼠; 1:75; 图 3c
Alomone Labs CACNA1D抗体(Alomone Labs, ACC-005)被用于被用于免疫组化在小鼠样品上浓度为1:75 (图 3c). elife (2018) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:100; 图 4a
Alomone Labs CACNA1D抗体(Alomone Labs, ACC 005)被用于被用于免疫组化在小鼠样品上浓度为1:100 (图 4a). elife (2018) ncbi
兔 多克隆
  • 免疫印迹; 大鼠; 1:400; 图 s5b
Alomone Labs CACNA1D抗体(Alomone Labs, ACC-311)被用于被用于免疫印迹在大鼠样品上浓度为1:400 (图 s5b). Nat Commun (2017) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; Domestic guinea pig; 1:50; 图 7
Alomone Labs CACNA1D抗体(Alomone, ACC-311)被用于被用于免疫组化-石蜡切片在Domestic guinea pig样品上浓度为1:50 (图 7). Mediators Inflamm (2016) ncbi
兔 多克隆
  • 免疫组化; 小鼠; 1:200
Alomone Labs CACNA1D抗体(Alomone Labs, ACC-005)被用于被用于免疫组化在小鼠样品上浓度为1:200. J Neurosci (2014) ncbi
兔 多克隆
  • 免疫细胞化学; 大鼠; 1:100
Alomone Labs CACNA1D抗体(Alomone Lab, ACC-005)被用于被用于免疫细胞化学在大鼠样品上浓度为1:100. Am J Physiol Cell Physiol (2014) ncbi
兔 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100
Alomone Labs CACNA1D抗体(Alomone, ACC-005)被用于被用于免疫组化-石蜡切片在大鼠样品上浓度为1:100. J Comp Neurol (2012) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(L48A/9)
  • 免疫印迹; 人类; 1:500; 图 3c
艾博抗(上海)贸易有限公司 CACNA1D抗体(Abcam, ab85491)被用于被用于免疫印迹在人类样品上浓度为1:500 (图 3c). Acta Pharmacol Sin (2017) ncbi
文章列表
  1. Becker L, Schnee M, Niwa M, Sun W, Maxeiner S, Talaei S, et al. The presynaptic ribbon maintains vesicle populations at the hair cell afferent fiber synapse. elife. 2018;7: pubmed 出版商
  2. Jean P, Lopez de la Morena D, Michanski S, Jaime Tobón L, Chakrabarti R, Picher M, et al. The synaptic ribbon is critical for sound encoding at high rates and with temporal precision. elife. 2018;7: pubmed 出版商
  3. Huang J, Wang Y, Zhang M, Zhang P, Liang H, Bai H, et al. Functional expression of the Ca2+ signaling machinery in human embryonic stem cells. Acta Pharmacol Sin. 2017;38:1663-1672 pubmed 出版商
  4. Axelsson A, Mahdi T, Nenonen H, Singh T, Hänzelmann S, Wendt A, et al. Sox5 regulates beta-cell phenotype and is reduced in type 2 diabetes. Nat Commun. 2017;8:15652 pubmed 出版商
  5. Reyes García J, Flores Soto E, Solís Chagoyán H, Sommer B, Díaz Hernández V, García Hernández L, et al. Tumor Necrosis Factor Alpha Inhibits L-Type Ca(2+) Channels in Sensitized Guinea Pig Airway Smooth Muscle through ERK 1/2 Pathway. Mediators Inflamm. 2016;2016:5972302 pubmed 出版商
  6. Vincent P, Bouleau Y, Safieddine S, Petit C, Dulon D. Exocytotic machineries of vestibular type I and cochlear ribbon synapses display similar intrinsic otoferlin-dependent Ca2+ sensitivity but a different coupling to Ca2+ channels. J Neurosci. 2014;34:10853-69 pubmed 出版商
  7. Mizutani H, Yamamura H, Muramatsu M, Kiyota K, Nishimura K, Suzuki Y, et al. Spontaneous and nicotine-induced Ca2+ oscillations mediated by Ca2+ influx in rat pinealocytes. Am J Physiol Cell Physiol. 2014;306:C1008-16 pubmed 出版商
  8. Huang C, Chu D, Hwang W, Tsaur M. Coexpression of high-voltage-activated ion channels Kv3.4 and Cav1.2 in pioneer axons during pathfinding in the developing rat forebrain. J Comp Neurol. 2012;520:3650-72 pubmed 出版商