这是一篇来自已证抗体库的有关人类 CAMK2A的综述,是根据87篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CAMK2A 抗体。
CAMK2A 同义词: CAMKA; CaMKIINalpha; CaMKIIalpha; MRD53; MRT63

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP1829Y)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s1c
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab52476)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s1c). Front Cell Neurosci (2020) ncbi
小鼠 单克隆(22B1)
  • 免疫细胞化学; 人类; 1:500; 图 2b
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab171095)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2b). elife (2020) ncbi
小鼠 单克隆(6G9)
  • 免疫组化; 小鼠; 1:500; 图 1e
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab22609)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1e). Nat Commun (2020) ncbi
domestic rabbit 单克隆(EP1829Y)
  • 免疫印迹; 小鼠; 1:1000; 图 ev2a, 5b
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab52476)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 ev2a, 5b). EMBO Mol Med (2020) ncbi
小鼠 单克隆(6G9)
  • 免疫组化; 小鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab22609)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6a). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1d
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab134041)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1d). Brain (2019) ncbi
小鼠 单克隆(6G9)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, AB22609)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆
  • 免疫组化; 小鼠; 1:500; 图 4b
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab134041)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4b). J Neurosci (2018) ncbi
domestic rabbit 单克隆(EP1829Y)
  • 免疫印迹; 大鼠; 1:5000; 图 5c
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab52476)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 5c). Stroke (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:250; 图 4b
  • 免疫印迹; 大鼠; 1:2000; 图 5c
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab32678)被用于被用于免疫组化在大鼠样本上浓度为1:250 (图 4b) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5c). Stroke (2018) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab171095)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Sci Rep (2017) ncbi
domestic rabbit 单克隆(EP1829Y)
  • 免疫细胞化学; 小鼠; 1:250; 图 6
  • 免疫印迹; 小鼠; 1:5000; 图 5
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab52476)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). Front Neurosci (2016) ncbi
domestic rabbit 单克隆(EP1829Y)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s1h
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, AB52476)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s1h). Cell (2016) ncbi
小鼠 单克隆(6G9)
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab22609)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(EP1829Y)
  • 免疫组化-自由浮动切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab52476)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 1). elife (2016) ncbi
小鼠 单克隆(6G9)
  • 免疫组化; 小鼠; 1:50; 图 1
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab22609)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 s1
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab32678)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s1). PLoS ONE (2016) ncbi
小鼠 单克隆(6G9)
  • 免疫组化-自由浮动切片; African green monkey; 1:15,000; 图 6
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, AB22609)被用于被用于免疫组化-自由浮动切片在African green monkey样本上浓度为1:15,000 (图 6). J Neurosci (2016) ncbi
小鼠 单克隆(6G9)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 6
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab22609)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR1828)
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab92332)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 1). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s8
  • 免疫印迹; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab5683)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s8) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Brain (2016) ncbi
domestic rabbit 单克隆(EP1829Y)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 2
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab52476)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 2). Front Mol Neurosci (2015) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 1:2000; 图 6
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab171095)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6). Mol Neurodegener (2015) ncbi
domestic rabbit 单克隆(EP1829Y)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 s1d
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, 52476)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 s1d). Nat Commun (2015) ncbi
小鼠 单克隆(6G9)
  • 免疫印迹; 人类; 图 s7
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab22609)被用于被用于免疫印迹在人类样本上 (图 s7). Nat Neurosci (2015) ncbi
小鼠 单克隆(6G9)
  • 免疫组化-冰冻切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab22609)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. J Clin Invest (2014) ncbi
小鼠 单克隆(6G9)
  • 免疫印迹; 鼩鼱科; 1:1000
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab22609)被用于被用于免疫印迹在鼩鼱科样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(EP1829Y)
  • 免疫组化; 小鼠; 1:75
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab52476)被用于被用于免疫组化在小鼠样本上浓度为1:75. PLoS ONE (2013) ncbi
小鼠 单克隆(6G9)
  • 免疫组化; 大鼠
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, AB22609)被用于被用于免疫组化在大鼠样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆(6G9)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, 6G9)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2012) ncbi
小鼠 单克隆(6G9)
  • 免疫组化-石蜡切片; Apteronotus leptorhynchus; 1:1,000
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab22609)被用于被用于免疫组化-石蜡切片在Apteronotus leptorhynchus样本上浓度为1:1,000. J Comp Neurol (2012) ncbi
小鼠 单克隆(6G9)
艾博抗(上海)贸易有限公司 CAMK2A抗体(Abcam, ab22609)被用于. J Comp Neurol (2011) ncbi
赛默飞世尔
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 1:1000; 图 ev2a, 5b
赛默飞世尔 CAMK2A抗体(Thermo Fisher, MA1-047)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 ev2a, 5b). EMBO Mol Med (2020) ncbi
小鼠 单克隆(Cba-2)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛默飞世尔 CAMK2A抗体(ThermoFisher, 13-7300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1
赛默飞世尔 CAMK2A抗体(Thermo Fischer Scientific, PA5-38239)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). Nat Commun (2017) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 大鼠; 图 3a
赛默飞世尔 CAMK2A抗体(Thermo Scientific, MA1-047)被用于被用于免疫印迹在大鼠样本上 (图 3a). Circ Res (2016) ncbi
小鼠 单克隆(Cba-2)
  • 免疫组化; 小鼠; 1:1000; 图 4b
赛默飞世尔 CAMK2A抗体(Invitrogen, 13-7300)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4b). Neurobiol Learn Mem (2017) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛默飞世尔 CAMK2A抗体(Thermo Scientific, MA1-047)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Development (2016) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 图 5f
赛默飞世尔 CAMK2A抗体(Thermo, MA1-047)被用于被用于免疫印迹在小鼠样本上 (图 5f). Cell Calcium (2015) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 1:1000-4000
赛默飞世尔 CAMK2A抗体(Thermo, MA1-0147)被用于被用于免疫印迹在小鼠样本上浓度为1:1000-4000. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(Cba-2)
  • 免疫细胞化学; 大鼠; 1:1000; 图 3
赛默飞世尔 CAMK2A抗体(Invitrogen, 13-7300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 3). Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(Cba-2)
  • 免疫细胞化学; 大鼠; 1:200; 图 s4
赛默飞世尔 CAMK2A抗体(生活技术, 13-7300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 s4). Nat Commun (2015) ncbi
小鼠 单克隆(Cba-2)
  • 免疫印迹; 大鼠
赛默飞世尔 CAMK2A抗体(Invitrogen, 13-7300)被用于被用于免疫印迹在大鼠样本上. Int J Mol Sci (2015) ncbi
小鼠 单克隆(Cba-2)
  • 免疫细胞化学; 大鼠
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 CAMK2A抗体(Invitrogen, 13-7300)被用于被用于免疫细胞化学在大鼠样本上, 被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(22B1)
  • 免疫组化; 小鼠; 1:2000
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 CAMK2A抗体(Affinity BioReagents, MA1-047)被用于被用于免疫组化在小鼠样本上浓度为1:2000 和 被用于免疫印迹在小鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠
赛默飞世尔 CAMK2A抗体(Pierce, MA1-047)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(Cba-2)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 CAMK2A抗体(Zymed, 13-7300)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell (2012) ncbi
小鼠 单克隆(22B1)
  • 免疫组化-冰冻切片; 小鼠; 1:100
  • 免疫组化; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 CAMK2A抗体(Affinity BioReagents, MA1-047)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100, 被用于免疫组化在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(Cba-2)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛默飞世尔 CAMK2A抗体(Zymed, 13-7300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Neuroscience (2011) ncbi
小鼠 单克隆(Cba-2)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 CAMK2A抗体(Zymed/Invitrogen, #137300)被用于被用于免疫印迹在人类样本上 (图 4). J Neurochem (2011) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-1)
  • 免疫印迹; 小鼠; 图 11d
  • 免疫印迹; 大鼠; 图 10d
圣克鲁斯生物技术 CAMK2A抗体(Santa Cruz, sc-13141)被用于被用于免疫印迹在小鼠样本上 (图 11d) 和 被用于免疫印迹在大鼠样本上 (图 10d). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(A-1)
  • 免疫印迹; 小鼠; 图 3j
圣克鲁斯生物技术 CAMK2A抗体(Santa Cruz Biotechnology, sc-13141)被用于被用于免疫印迹在小鼠样本上 (图 3j). Transl Psychiatry (2019) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 图 3g
圣克鲁斯生物技术 CAMK2A抗体(Santa Cruz, sc-32289)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
小鼠 单克隆(G-1)
  • 免疫印迹; 小鼠; 图 3g
圣克鲁斯生物技术 CAMK2A抗体(Santa Cruz, sc-5306)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
小鼠 单克隆(A-1)
  • 免疫印迹; 小鼠; 图 4a
圣克鲁斯生物技术 CAMK2A抗体(Santa Cruz, sc-13141)被用于被用于免疫印迹在小鼠样本上 (图 4a). Oncotarget (2017) ncbi
小鼠 单克隆(A-1)
  • 免疫印迹; 大鼠; 1:200; 图 6
圣克鲁斯生物技术 CAMK2A抗体(Santa Cruz, sc-13141)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(6G9)
  • 免疫组化; 小鼠; 1:1000; 图 1
圣克鲁斯生物技术 CAMK2A抗体(Santa Cruz, sc-32288)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Front Mol Neurosci (2016) ncbi
小鼠 单克隆(6G9)
  • 免疫印迹; 小鼠; 1:1000; 图 2,4
圣克鲁斯生物技术 CAMK2A抗体(Santa Cruz Biotechnology, sc-32288)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2,4). Cell Death Dis (2015) ncbi
小鼠 单克隆(A-1)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 CAMK2A抗体(Santa Cruz Biotechnology, sc13141)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 图 1f
圣克鲁斯生物技术 CAMK2A抗体(Santa Cruz Biotechnology, sc-32289)被用于被用于免疫印迹在小鼠样本上 (图 1f). Neuron (2015) ncbi
小鼠 单克隆(45)
  • 免疫印迹; 人类; 1:10000
圣克鲁斯生物技术 CAMK2A抗体(Santa Cruz, sc-136212)被用于被用于免疫印迹在人类样本上浓度为1:10000. F1000Res (2014) ncbi
小鼠 单克隆(A-1)
  • 免疫印迹; 小鼠; 图 10
圣克鲁斯生物技术 CAMK2A抗体(Santa Cruz Biotechnology, sc-13141)被用于被用于免疫印迹在小鼠样本上 (图 10). J Neurosci (2015) ncbi
小鼠 单克隆(22B1)
  • 免疫细胞化学; 鼩鼱科; 1:100
圣克鲁斯生物技术 CAMK2A抗体(Santa Cruz, sc-32289)被用于被用于免疫细胞化学在鼩鼱科样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(A-1)
  • 免疫印迹; pigs ; 图 5
圣克鲁斯生物技术 CAMK2A抗体(Santa Cruz Biotechnology, sc-13141)被用于被用于免疫印迹在pigs 样本上 (图 5). Mol Cell Proteomics (2011) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 CAMK2A抗体(CST, 3362)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Aging Cell (2020) ncbi
domestic rabbit 单克隆(D10C11)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
赛信通(上海)生物试剂有限公司 CAMK2A抗体(CST, 11945)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 1:1000; 图 3a, 4c
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 12716T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a, 4c). Nature (2019) ncbi
domestic rabbit 单克隆(D11A10)
  • 免疫印迹; 小鼠; 1:1000; 图 2k
赛信通(上海)生物试剂有限公司 CAMK2A抗体(CST, 4436 s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2k). elife (2019) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 1:1000; 图 2k
赛信通(上海)生物试剂有限公司 CAMK2A抗体(CST, 12716 s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2k). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 3362)被用于被用于免疫印迹在人类样本上 (图 6b). Cell (2019) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 CAMK2A抗体(CST, 12716)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). Transl Psychiatry (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 CAMK2A抗体(CST, 3362)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). Transl Psychiatry (2019) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 人类; 图 s3c
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 12716)被用于被用于免疫印迹在人类样本上 (图 s3c). J Exp Med (2019) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 图 4c, 4d, 4e
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling Technology, 12716)被用于被用于免疫印迹在小鼠样本上 (图 4c, 4d, 4e). Cell Metab (2019) ncbi
domestic rabbit 单克隆(D10C11)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 11945)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Exp Neurol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5f
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 CAMK2A抗体(cell signalling, 3362)被用于被用于免疫印迹在小鼠样本上 (图 5f) 和 被用于免疫印迹在人类样本上 (图 6a). Genes Dev (2017) ncbi
domestic rabbit 单克隆(D10C11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 11945)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2017) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 12716)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 1c
  • 染色质免疫沉淀 ; 人类; 图 2a
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 3356S)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1c) 和 被用于染色质免疫沉淀 在人类样本上 (图 2a). MBio (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 st2
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 3362)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 st2). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 12716)被用于被用于免疫印迹在小鼠样本上 (图 1c). Vascul Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 3362)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Mol Nutr Food Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s1
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 3362)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 3362)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 7
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 3362)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell signaling, 3362)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 12716)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D10C11)
  • 免疫印迹; 小鼠; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 11945)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 1:1000; 图 s4c
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 12716)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling Technology, 12716)被用于被用于免疫印迹在大鼠样本上 (图 5). Physiol Rep (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling Technology, 3362)被用于被用于免疫印迹在小鼠样本上 (图 1h). Diabetes (2016) ncbi
domestic rabbit 单克隆(D11A10)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 4436S)被用于被用于免疫印迹在小鼠样本上 (图 7). Cardiovasc Res (2015) ncbi
domestic rabbit 单克隆(D11A10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell signaling, 4436)被用于被用于免疫印迹在人类样本上 (图 5). Eur J Appl Physiol (2015) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell signaling, 12716)被用于被用于免疫印迹在人类样本上. Eur J Appl Physiol (2015) ncbi
domestic rabbit 单克隆(D11A10)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling Technology, 4436)被用于被用于免疫印迹在大鼠样本上. FEBS Open Bio (2014) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling, 12716)被用于被用于免疫印迹在小鼠样本上 (图 5). J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D11A10)
  • 免疫印迹; 非洲爪蛙
赛信通(上海)生物试剂有限公司 CAMK2A抗体(Cell Signaling Technology, D11A10)被用于被用于免疫印迹在非洲爪蛙样本上. J Biol Chem (2013) ncbi
文章列表
  1. Xing Z, Zhang L, Zhang Y, Sun X, Sun X, Yu H, et al. DIP2B Interacts With α-Tubulin to Regulate Axon Outgrowth. Front Cell Neurosci. 2020;14:29 pubmed 出版商
  2. Bhattacharyya M, Lee Y, Muratcioglu S, Qiu B, Nyayapati P, Schulman H, et al. Flexible linkers in CaMKII control the balance between activating and inhibitory autophosphorylation. elife. 2020;9: pubmed 出版商
  3. Rodriguez Ortiz C, Prieto G, Martini A, Forner S, Trujillo Estrada L, LaFerla F, et al. miR-181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer's disease. Aging Cell. 2020;19:e13118 pubmed 出版商
  4. Wu Y, Chen C, Chen M, Qian K, Lv X, Wang H, et al. The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice. Nat Commun. 2020;11:640 pubmed 出版商
  5. Yang F, Yang L, Wataya Kaneda M, Teng L, Katayama I. Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. PLoS ONE. 2020;15:e0228204 pubmed 出版商
  6. Wang X, Deng Y, Gao Y, Dong Y, Wang F, Guan Z, et al. Activation of α7 nAChR by PNU-282987 improves synaptic and cognitive functions through restoring the expression of synaptic-associated proteins and the CaM-CaMKII-CREB signaling pathway. Aging (Albany NY). 2020;12:543-570 pubmed 出版商
  7. Bella P, Farini A, Banfi S, Parolini D, Tonna N, Meregalli M, et al. Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy. EMBO Mol Med. 2020;12:e11019 pubmed 出版商
  8. Carceller H, Guirado R, Nacher J. Dark exposure affects plasticity-related molecules and interneurons throughout the visual system during adulthood. J Comp Neurol. 2019;: pubmed 出版商
  9. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt S, Vieira Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;: pubmed 出版商
  10. Sun W, Chi S, Li Y, Ling S, Tan Y, Xu Y, et al. The mechanosensitive Piezo1 channel is required for bone formation. elife. 2019;8: pubmed 出版商
  11. Nakanishi M, Mitchell R, Benoit Y, Orlando L, Reid J, Shimada K, et al. Human Pluripotency Is Initiated and Preserved by a Unique Subset of Founder Cells. Cell. 2019;177:910-924.e22 pubmed 出版商
  12. Huang C, Muszynski K, Bolshakov V, Balu D. Deletion of Dtnbp1 in mice impairs threat memory consolidation and is associated with enhanced inhibitory drive in the amygdala. Transl Psychiatry. 2019;9:132 pubmed 出版商
  13. Amal H, Gong G, Gjoneska E, Lewis S, Wishnok J, Tsai L, et al. S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl Psychiatry. 2019;9:44 pubmed 出版商
  14. Zheng Y, Liu A, Wang Z, Cao Q, Wang W, Lin L, et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain. 2019;142:787-807 pubmed 出版商
  15. Ren D, Dai Y, Yang Q, Zhang X, Guo W, Ye L, et al. Wnt5a induces and maintains prostate cancer cells dormancy in bone. J Exp Med. 2019;216:428-449 pubmed 出版商
  16. Zhong X, Cui P, Cai Y, Wang L, He X, Long P, et al. Mitochondrial Dynamics Is Critical for the Full Pluripotency and Embryonic Developmental Potential of Pluripotent Stem Cells. Cell Metab. 2019;29:979-992.e4 pubmed 出版商
  17. Amir A, Par J, Smith Y, Par D. Midline thalamic inputs to the amygdala: Ultrastructure and synaptic targets. J Comp Neurol. 2019;527:942-956 pubmed 出版商
  18. Wang W, Rein B, Zhang F, Tan T, Zhong P, Qin L, et al. Chemogenetic Activation of Prefrontal Cortex Rescues Synaptic and Behavioral Deficits in a Mouse Model of 16p11.2 Deletion Syndrome. J Neurosci. 2018;38:5939-5948 pubmed 出版商
  19. Zhou K, Enkhjargal B, Xie Z, Sun C, Wu L, Malaguit J, et al. Dihydrolipoic Acid Inhibits Lysosomal Rupture and NLRP3 Through Lysosome-Associated Membrane Protein-1/Calcium/Calmodulin-Dependent Protein Kinase II/TAK1 Pathways After Subarachnoid Hemorrhage in Rat. Stroke. 2018;49:175-183 pubmed 出版商
  20. Pchitskaya E, Kraskovskaya N, Chernyuk D, Popugaeva E, Zhang H, Vlasova O, et al. Stim2-Eb3 Association and Morphology of Dendritic Spines in Hippocampal Neurons. Sci Rep. 2017;7:17625 pubmed 出版商
  21. Lu F, Shao G, Wang Y, Guan S, Burlingame A, Liu X, et al. Hypoxia-ischemia modifies postsynaptic GluN2B-containing NMDA receptor complexes in the neonatal mouse brain. Exp Neurol. 2018;299:65-74 pubmed 出版商
  22. Ruan H, Ma Y, Torres S, Zhang B, Feriod C, Heck R, et al. Calcium-dependent O-GlcNAc signaling drives liver autophagy in adaptation to starvation. Genes Dev. 2017;31:1655-1665 pubmed 出版商
  23. Wilkinson B, Li J, Coba M. Synaptic GAP and GEF Complexes Cluster Proteins Essential for GTP Signaling. Sci Rep. 2017;7:5272 pubmed 出版商
  24. Li Q, Ye L, Zhang X, Wang M, Lin C, Huang S, et al. FZD8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical Wnt/β-catenin signaling. Cancer Lett. 2017;402:166-176 pubmed 出版商
  25. Tsuda T, Takefuji M, Wettschureck N, Kotani K, Morimoto R, Okumura T, et al. Corticotropin releasing hormone receptor 2 exacerbates chronic cardiac dysfunction. J Exp Med. 2017;214:1877-1888 pubmed 出版商
  26. Nguyen K, Das B, Dobrowolski C, Karn J. Multiple Histone Lysine Methyltransferases Are Required for the Establishment and Maintenance of HIV-1 Latency. MBio. 2017;8: pubmed 出版商
  27. Bitzenhofer S, Ahlbeck J, Wolff A, Wiegert J, Gee C, Oertner T, et al. Layer-specific optogenetic activation of pyramidal neurons causes beta-gamma entrainment of neonatal networks. Nat Commun. 2017;8:14563 pubmed 出版商
  28. He X, Li Z, Rizak J, Wu S, Wang Z, He R, et al. Resveratrol Attenuates Formaldehyde Induced Hyperphosphorylation of Tau Protein and Cytotoxicity in N2a Cells. Front Neurosci. 2016;10:598 pubmed 出版商
  29. Zhu L, Almaca J, Dadi P, Hong H, Sakamoto W, Rossi M, et al. β-arrestin-2 is an essential regulator of pancreatic β-cell function under physiological and pathophysiological conditions. Nat Commun. 2017;8:14295 pubmed 出版商
  30. Raffeiner P, Schraffl A, Schwarz T, Röck R, Ledolter K, Hartl M, et al. Calcium-dependent binding of Myc to calmodulin. Oncotarget. 2017;8:3327-3343 pubmed 出版商
  31. Xu C, Krabbe S, Gründemann J, Botta P, Fadok J, Osakada F, et al. Distinct Hippocampal Pathways Mediate Dissociable Roles of Context in Memory Retrieval. Cell. 2016;167:961-972.e16 pubmed 出版商
  32. Prasad A, Ketsawatsomkron P, Nuno D, Koval O, Dibbern M, Venema A, et al. Role of CaMKII in Ang-II-dependent small artery remodeling. Vascul Pharmacol. 2016;87:172-179 pubmed 出版商
  33. Yan X, Liu J, Ye Z, Huang J, He F, Xiao W, et al. CaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Electrical Stimulation. PLoS ONE. 2016;11:e0162784 pubmed 出版商
  34. De Los Santos S, García Pérez V, Hernández Reséndiz S, Palma Flores C, González Gutiérrez C, Zazueta C, et al. (-)-Epicatechin induces physiological cardiac growth by activation of the PI3K/Akt pathway in mice. Mol Nutr Food Res. 2017;61: pubmed 出版商
  35. Sanchez Alonso J, Bhargava A, O HARA T, Glukhov A, Schobesberger S, Bhogal N, et al. Microdomain-Specific Modulation of L-Type Calcium Channels Leads to Triggered Ventricular Arrhythmia in Heart Failure. Circ Res. 2016;119:944-55 pubmed 出版商
  36. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  37. Zagrebelsky M, Lonnemann N, Fricke S, Kellner Y, Preuß E, Michaelsen Preusse K, et al. Nogo-A regulates spatial learning as well as memory formation and modulates structural plasticity in the adult mouse hippocampus. Neurobiol Learn Mem. 2017;138:154-163 pubmed 出版商
  38. Meng X, Wang W, Lu H, He L, Chen W, Chao E, et al. Manipulations of MeCP2 in glutamatergic neurons highlight their contributions to Rett and other neurological disorders. elife. 2016;5: pubmed 出版商
  39. Ure K, Lu H, Wang W, Ito Ishida A, Wu Z, He L, et al. Restoration of Mecp2 expression in GABAergic neurons is sufficient to rescue multiple disease features in a mouse model of Rett syndrome. elife. 2016;5: pubmed 出版商
  40. Yin Y, Gao D, Wang Y, Wang Z, Wang X, Ye J, et al. Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling. Proc Natl Acad Sci U S A. 2016;113:E3773-81 pubmed 出版商
  41. Liu L, Wang C, Lin Y, Xi Y, Li H, Shi S, et al. Suppression of calcium?sensing receptor ameliorates cardiac hypertrophy through inhibition of autophagy. Mol Med Rep. 2016;14:111-20 pubmed 出版商
  42. Sadredini M, Danielsen T, Aronsen J, Manotheepan R, Hougen K, Sjaastad I, et al. Beta-Adrenoceptor Stimulation Reveals Ca2+ Waves and Sarcoplasmic Reticulum Ca2+ Depletion in Left Ventricular Cardiomyocytes from Post-Infarction Rats with and without Heart Failure. PLoS ONE. 2016;11:e0153887 pubmed 出版商
  43. Galvan A, Hu X, Smith Y, Wichmann T. Effects of Optogenetic Activation of Corticothalamic Terminals in the Motor Thalamus of Awake Monkeys. J Neurosci. 2016;36:3519-30 pubmed 出版商
  44. McNally A, Poplawski S, Mayweather B, White K, Abel T. Characterization of a Novel Chromatin Sorting Tool Reveals Importance of Histone Variant H3.3 in Contextual Fear Memory and Motor Learning. Front Mol Neurosci. 2016;9:11 pubmed 出版商
  45. Farini A, Sitzia C, Cassinelli L, Colleoni F, Parolini D, Giovanella U, et al. Inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling mediates delayed myogenesis in Duchenne muscular dystrophy fetal muscle. Development. 2016;143:658-69 pubmed 出版商
  46. Kinjo E, Higa G, Santos B, de Sousa E, Damico M, Walter L, et al. Pilocarpine-induced seizures trigger differential regulation of microRNA-stability related genes in rat hippocampal neurons. Sci Rep. 2016;6:20969 pubmed 出版商
  47. Klumpp D, Misovic M, Szteyn K, Shumilina E, Rudner J, Huber S. Targeting TRPM2 Channels Impairs Radiation-Induced Cell Cycle Arrest and Fosters Cell Death of T Cell Leukemia Cells in a Bcl-2-Dependent Manner. Oxid Med Cell Longev. 2016;2016:8026702 pubmed 出版商
  48. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  49. Avgustinova A, Iravani M, Robertson D, Fearns A, Gao Q, Klingbeil P, et al. Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat Commun. 2016;7:10305 pubmed 出版商
  50. Sengupta A, Winters B, Bagley E, McNally G. Disrupted Prediction Error Links Excessive Amygdala Activation to Excessive Fear. J Neurosci. 2016;36:385-95 pubmed 出版商
  51. Haas L, Salazar S, Kostylev M, Um J, Kaufman A, Strittmatter S. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain. 2016;139:526-46 pubmed 出版商
  52. Cook Snyder D, Jones A, Reijmers L. A retrograde adeno-associated virus for collecting ribosome-bound mRNA from anatomically defined projection neurons. Front Mol Neurosci. 2015;8:56 pubmed 出版商
  53. Goto A, Egawa T, Sakon I, Oshima R, Ito K, Serizawa Y, et al. Heat stress acutely activates insulin-independent glucose transport and 5'-AMP-activated protein kinase prior to an increase in HSP72 protein in rat skeletal muscle. Physiol Rep. 2015;3: pubmed 出版商
  54. Hao J, Sun N, Lei L, Li X, Yao B, Sun K, et al. L-Stepholidine rescues memory deficit and synaptic plasticity in models of Alzheimer's disease via activating dopamine D1 receptor/PKA signaling pathway. Cell Death Dis. 2015;6:e1965 pubmed 出版商
  55. Funai K, Lodhi I, Spears L, Yin L, Song H, Klein S, et al. Skeletal Muscle Phospholipid Metabolism Regulates Insulin Sensitivity and Contractile Function. Diabetes. 2016;65:358-70 pubmed 出版商
  56. Davis R, Simon J, Utter M, Mungai P, Alvarez M, Chowdhury S, et al. Knockout of p21-activated kinase-1 attenuates exercise-induced cardiac remodelling through altered calcineurin signalling. Cardiovasc Res. 2015;108:335-47 pubmed 出版商
  57. Guilbert A, Lim H, Cheng J, Wang Y. CaMKII-dependent myofilament Ca2+ desensitization contributes to the frequency-dependent acceleration of relaxation. Cell Calcium. 2015;58:489-99 pubmed 出版商
  58. Popugaeva E, Pchitskaya E, Speshilova A, Alexandrov S, Zhang H, Vlasova O, et al. STIM2 protects hippocampal mushroom spines from amyloid synaptotoxicity. Mol Neurodegener. 2015;10:37 pubmed 出版商
  59. Pasek J, Wang X, Colbran R. Differential CaMKII regulation by voltage-gated calcium channels in the striatum. Mol Cell Neurosci. 2015;68:234-43 pubmed 出版商
  60. Cipolletta E, Rusciano M, Maione A, Santulli G, Sorriento D, Del Giudice C, et al. Targeting the CaMKII/ERK Interaction in the Heart Prevents Cardiac Hypertrophy. PLoS ONE. 2015;10:e0130477 pubmed 出版商
  61. Cohen S, Li B, Tsien R, Ma H. Evolutionary and functional perspectives on signaling from neuronal surface to nucleus. Biochem Biophys Res Commun. 2015;460:88-99 pubmed 出版商
  62. Telese F, Ma Q, Perez P, Notani D, Oh S, Li W, et al. LRP8-Reelin-Regulated Neuronal Enhancer Signature Underlying Learning and Memory Formation. Neuron. 2015;86:696-710 pubmed 出版商
  63. Gu Q, Yu D, Hu Z, Liu X, Yang Y, Luo Y, et al. miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. Nat Commun. 2015;6:6789 pubmed 出版商
  64. Wei P, Liu N, Zhang Z, Liu X, Tang Y, He X, et al. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat Commun. 2015;6:6756 pubmed 出版商
  65. Xie Q, Wu Q, Horbinski C, Flavahan W, Yang K, Zhou W, et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci. 2015;18:501-10 pubmed 出版商
  66. Vallortigara J, Rangarajan S, Whitfield D, Alghamdi A, Howlett D, Hortobágyi T, et al. Dynamin1 concentration in the prefrontal cortex is associated with cognitive impairment in Lewy body dementia. F1000Res. 2014;3:108 pubmed 出版商
  67. Sheng L, Leshchyns ka I, Sytnyk V. Neural cell adhesion molecule 2 promotes the formation of filopodia and neurite branching by inducing submembrane increases in Ca2+ levels. J Neurosci. 2015;35:1739-52 pubmed 出版商
  68. Domínguez Alonso A, Valdés Tovar M, Solís Chagoyán H, Benítez King G. Melatonin stimulates dendrite formation and complexity in the hilar zone of the rat hippocampus: participation of the Ca++/Calmodulin complex. Int J Mol Sci. 2015;16:1907-27 pubmed 出版商
  69. D Hulst G, Sylow L, Hespel P, Deldicque L. Acute systemic insulin intolerance does not alter the response of the Akt/GSK-3 pathway to environmental hypoxia in human skeletal muscle. Eur J Appl Physiol. 2015;115:1219-31 pubmed 出版商
  70. Soga M, Ohashi A, Taniguchi M, Matsui T, Tsuda T. The di-peptide Trp-His activates AMP-activated protein kinase and enhances glucose uptake independently of insulin in L6 myotubes. FEBS Open Bio. 2014;4:898-904 pubmed 出版商
  71. Jia J, Hu Z, Nordman J, Li Z. The schizophrenia susceptibility gene dysbindin regulates dendritic spine dynamics. J Neurosci. 2014;34:13725-36 pubmed 出版商
  72. Kim E, Shekhar A, Lu J, Lin X, Liu F, Zhang J, et al. PCP4 regulates Purkinje cell excitability and cardiac rhythmicity. J Clin Invest. 2014;124:5027-36 pubmed 出版商
  73. Matsuyama M, Nomori A, Nakakuni K, Shimono A, Fukushima M. Secreted Frizzled-related protein 1 (Sfrp1) regulates the progression of renal fibrosis in a mouse model of obstructive nephropathy. J Biol Chem. 2014;289:31526-33 pubmed 出版商
  74. Zhong W, Hutchinson T, Chebolu S, Darmani N. Serotonin 5-HT3 receptor-mediated vomiting occurs via the activation of Ca2+/CaMKII-dependent ERK1/2 signaling in the least shrew (Cryptotis parva). PLoS ONE. 2014;9:e104718 pubmed 出版商
  75. Prévilon M, Pezet M, Vinet L, Mercadier J, Rouet Benzineb P. Gender-specific potential inhibitory role of Ca2+/calmodulin dependent protein kinase phosphatase (CaMKP) in pressure-overloaded mouse heart. PLoS ONE. 2014;9:e90822 pubmed 出版商
  76. Chang A, Huang J, Battiprolu P, Hill J, Kamm K, Stull J. The effects of neuregulin on cardiac Myosin light chain kinase gene-ablated hearts. PLoS ONE. 2013;8:e66720 pubmed 出版商
  77. Peter M, Bathellier B, Fontinha B, Pliota P, Haubensak W, Rumpel S. Transgenic mouse models enabling photolabeling of individual neurons in vivo. PLoS ONE. 2013;8:e62132 pubmed 出版商
  78. McCoy F, Darbandi R, Chen S, Eckard L, Dodd K, Jones K, et al. Metabolic regulation of CaMKII protein and caspases in Xenopus laevis egg extracts. J Biol Chem. 2013;288:8838-48 pubmed 出版商
  79. Unal G, Pare J, Smith Y, PARE D. Differential connectivity of short- vs. long-range extrinsic and intrinsic cortical inputs to perirhinal neurons. J Comp Neurol. 2013;521:2538-50 pubmed 出版商
  80. Djakovic S, Marquez Lona E, Jakawich S, Wright R, Chu C, Sutton M, et al. Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons. J Neurosci. 2012;32:5126-31 pubmed 出版商
  81. Giassi A, Harvey Girard E, Valsamis B, Maler L. Organization of the gymnotiform fish pallium in relation to learning and memory: I. Cytoarchitectonics and cellular morphology. J Comp Neurol. 2012;520:3314-37 pubmed 出版商
  82. Huang Y, Ruiz C, Eyler E, Lin K, Meffert M. Dual regulation of miRNA biogenesis generates target specificity in neurotrophin-induced protein synthesis. Cell. 2012;148:933-46 pubmed 出版商
  83. Yun Hong Y, Chih Fan C, Chia Wei C, Yen Chung C. A study of the spatial protein organization of the postsynaptic density isolated from porcine cerebral cortex and cerebellum. Mol Cell Proteomics. 2011;10:M110.007138 pubmed 出版商
  84. Mouton Liger F, Thomas S, Rattenbach R, Magnol L, Larigaldie V, Ledru A, et al. PCP4 (PEP19) overexpression induces premature neuronal differentiation associated with Ca(2+) /calmodulin-dependent kinase II-? activation in mouse models of Down syndrome. J Comp Neurol. 2011;519:2779-802 pubmed 出版商
  85. Giassi A, Maler L, Moreira J, Hoffmann A. Glomerular nucleus of the weakly electric fish, Gymnotus sp.: cytoarchitecture, histochemistry, and fiber connections--inisights from neuroanatomy to evolution and behavior. J Comp Neurol. 2011;519:1658-76 pubmed 出版商
  86. Huang K, Huang F, Shetty P. Stimulation-mediated translocation of calmodulin and neurogranin from soma to dendrites of mouse hippocampal CA1 pyramidal neurons. Neuroscience. 2011;178:1-12 pubmed 出版商
  87. Lapchak P, SCHUBERT D, Maher P. Delayed treatment with a novel neurotrophic compound reduces behavioral deficits in rabbit ischemic stroke. J Neurochem. 2011;116:122-31 pubmed 出版商