这是一篇来自已证抗体库的有关人类 CAMK2B的综述,是根据38篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CAMK2B 抗体。
CAMK2B 同义词: CAM2; CAMK2; CAMKB; CaMKIIbeta; MRD54

赛默飞世尔
小鼠 单克隆(CB-beta-1)
  • 免疫细胞化学; 小鼠; 图 5e
  • 免疫印迹; 小鼠; 图 5b
赛默飞世尔 CAMK2B抗体(Thermo Fisher, 13-9800)被用于被用于免疫细胞化学在小鼠样本上 (图 5e) 和 被用于免疫印迹在小鼠样本上 (图 5b). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1
赛默飞世尔 CAMK2B抗体(Thermo Fischer Scientific, PA5-38239)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). Nat Commun (2017) ncbi
小鼠 单克隆(CB-beta-1)
  • 免疫印迹; 人类; 1:4000; 图 2c
赛默飞世尔 CAMK2B抗体(Thermo Fisher Scientific, 13-9800)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 2c). J Neurosci (2017) ncbi
小鼠 单克隆(CB-beta-1)
  • 免疫印迹基因敲除验证; 小鼠; 1:10,000; 图 2
赛默飞世尔 CAMK2B抗体(Invitrogen, CB-betha1)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:10,000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(CB-beta-1)
  • 免疫印迹; 大鼠; 1:100
赛默飞世尔 CAMK2B抗体(Invitrogen Life Technologies, 13-9800)被用于被用于免疫印迹在大鼠样本上浓度为1:100. Neuroscience (2015) ncbi
小鼠 单克隆(CB-beta-1)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 CAMK2B抗体(生活技术, 13-9800)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(CB-beta-1)
  • 免疫细胞化学; 大鼠; 1:100; 图 3
赛默飞世尔 CAMK2B抗体(Invitrogen, 13-9800)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3). Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(CB-beta-1)
  • 免疫印迹; 人类; 1:3000; 图 1
赛默飞世尔 CAMK2B抗体(Invitrogen, 13-9800)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1). Nat Neurosci (2013) ncbi
小鼠 单克隆(CB-beta-1)
  • 免疫组化; 大鼠; 1:100; 图 2
赛默飞世尔 CAMK2B抗体(Invitrogen, 13-9800)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2). Neuroscience (2012) ncbi
小鼠 单克隆(CB-beta-1)
  • 免疫细胞化学; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 CAMK2B抗体(Invitrogen, 13-9800)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:1000. J Comp Neurol (2010) ncbi
小鼠 单克隆(CB-beta-1)
  • 免疫印迹; 小鼠; 1:4000; 图 1
赛默飞世尔 CAMK2B抗体(Zymed, 13-9800)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 1). J Neurosci (2010) ncbi
小鼠 单克隆(CB-beta-1)
  • 免疫印迹; 小鼠
赛默飞世尔 CAMK2B抗体(Zymed Laboratories Inc./Invitrogen, 13-9800)被用于被用于免疫印迹在小鼠样本上. Mol Cell Proteomics (2010) ncbi
小鼠 单克隆(CB-beta-1)
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 CAMK2B抗体(Zymed, 13-9800)被用于被用于免疫印迹在大鼠样本上 (图 5). Proteomics (2009) ncbi
圣克鲁斯生物技术
小鼠 单克隆(G-1)
  • 免疫组化; 小鼠; 1:200
圣克鲁斯生物技术 CAMK2B抗体(Santa Cruz Biotechnology, sc-5306)被用于被用于免疫组化在小鼠样本上浓度为1:200. elife (2020) ncbi
小鼠 单克隆(G-1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1b
圣克鲁斯生物技术 CAMK2B抗体(Santa Cruz Biotechnology, sc-5306)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1b). elife (2020) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 图 3g
圣克鲁斯生物技术 CAMK2B抗体(Santa Cruz, sc-32289)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
小鼠 单克隆(G-1)
  • 免疫印迹; 小鼠; 图 3g
圣克鲁斯生物技术 CAMK2B抗体(Santa Cruz, sc-5306)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
小鼠 单克隆(K-19)
  • 免疫细胞化学; 小鼠; 1:500
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术 CAMK2B抗体(Santa Cruz Biotechnology, sc-100366)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 和 被用于免疫印迹在小鼠样本上浓度为1:500. J Neurosci (2015) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 图 1f
圣克鲁斯生物技术 CAMK2B抗体(Santa Cruz Biotechnology, sc-32289)被用于被用于免疫印迹在小鼠样本上 (图 1f). Neuron (2015) ncbi
小鼠 单克隆(22B1)
  • 免疫细胞化学; 鼩鼱科; 1:100
圣克鲁斯生物技术 CAMK2B抗体(Santa Cruz, sc-32289)被用于被用于免疫细胞化学在鼩鼱科样本上浓度为1:100. PLoS ONE (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 CAMK2B抗体(Abcam, ab34703)被用于被用于免疫组化在小鼠样本上 (图 3a). Front Cell Neurosci (2021) ncbi
小鼠 单克隆(22B1)
  • 免疫细胞化学; 人类; 1:500; 图 2b
艾博抗(上海)贸易有限公司 CAMK2B抗体(Abcam, ab171095)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2b). elife (2020) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
艾博抗(上海)贸易有限公司 CAMK2B抗体(Abcam, ab171095)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:2000; 图 3
艾博抗(上海)贸易有限公司 CAMK2B抗体(abcam, ab34703)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:2000 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 1:2000; 图 6
艾博抗(上海)贸易有限公司 CAMK2B抗体(Abcam, ab171095)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6). Mol Neurodegener (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 CAMK2B抗体(Cell Signaling Technology, 12716)被用于被用于免疫印迹在小鼠样本上 (图 6c). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 人类; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 CAMK2B抗体(Cell signaling, 12716)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1f). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 1:1000; 图 3a, 4c
赛信通(上海)生物试剂有限公司 CAMK2B抗体(Cell Signaling, 12716T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a, 4c). Nature (2019) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 1:1000; 图 2k
赛信通(上海)生物试剂有限公司 CAMK2B抗体(CST, 12716 s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2k). elife (2019) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 CAMK2B抗体(CST, 12716)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). Transl Psychiatry (2019) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 人类; 图 s3c
赛信通(上海)生物试剂有限公司 CAMK2B抗体(Cell Signaling, 12716)被用于被用于免疫印迹在人类样本上 (图 s3c). J Exp Med (2019) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 图 4c, 4d, 4e
赛信通(上海)生物试剂有限公司 CAMK2B抗体(Cell Signaling Technology, 12716)被用于被用于免疫印迹在小鼠样本上 (图 4c, 4d, 4e). Cell Metab (2019) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 CAMK2B抗体(Cell Signaling, 12716)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2017) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 CAMK2B抗体(Cell Signaling, 12716)被用于被用于免疫印迹在小鼠样本上 (图 1c). Vascul Pharmacol (2016) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 CAMK2B抗体(Cell Signaling, 12716)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 1:1000; 图 s4c
赛信通(上海)生物试剂有限公司 CAMK2B抗体(Cell Signaling, 12716)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 CAMK2B抗体(Cell Signaling Technology, 12716)被用于被用于免疫印迹在大鼠样本上 (图 5). Physiol Rep (2015) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CAMK2B抗体(Cell signaling, 12716)被用于被用于免疫印迹在人类样本上. Eur J Appl Physiol (2015) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 CAMK2B抗体(Cell Signaling, 12716)被用于被用于免疫印迹在小鼠样本上 (图 5). J Biol Chem (2014) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1c
西格玛奥德里奇 CAMK2B抗体(Sigma, SAB4504607)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). Nat Commun (2016) ncbi
文章列表
  1. Cheng J, Dong Y, Ma J, Pan R, Liao Y, Kong X, et al. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer's disease pathology. Sci Adv. 2021;7: pubmed 出版商
  2. Swarnkar S, Avchalumov Y, Espadas I, Grinman E, Liu X, Raveendra B, et al. Molecular motor protein KIF5C mediates structural plasticity and long-term memory by constraining local translation. Cell Rep. 2021;36:109369 pubmed 出版商
  3. Zhang J, Li S, Miao W, Zhang X, Zheng J, Wang C, et al. Oxytocin Regulates Synaptic Transmission in the Sensory Cortices in a Developmentally Dynamic Manner. Front Cell Neurosci. 2021;15:673439 pubmed 出版商
  4. Chang N, Yeh C, Lin Y, Kuo K, Fong I, Kounis N, et al. Garcinol Attenuates Lipoprotein(a)-Induced Oxidative Stress and Inflammatory Cytokine Production in Ventricular Cardiomyocyte through α7-Nicotinic Acetylcholine Receptor-Mediated Inhibition of the p38 MAPK and NF-κB Signaling Pathways. Antioxidants (Basel). 2021;10: pubmed 出版商
  5. Echagarruga C, Gheres K, Norwood J, Drew P. nNOS-expressing interneurons control basal and behaviorally evoked arterial dilation in somatosensory cortex of mice. elife. 2020;9: pubmed 出版商
  6. Scheckel C, Imeri M, Schwarz P, Aguzzi A. Ribosomal profiling during prion disease uncovers progressive translational derangement in glia but not in neurons. elife. 2020;9: pubmed 出版商
  7. Bhattacharyya M, Lee Y, Muratcioglu S, Qiu B, Nyayapati P, Schulman H, et al. Flexible linkers in CaMKII control the balance between activating and inhibitory autophosphorylation. elife. 2020;9: pubmed 出版商
  8. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt S, Vieira Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;: pubmed 出版商
  9. Sun W, Chi S, Li Y, Ling S, Tan Y, Xu Y, et al. The mechanosensitive Piezo1 channel is required for bone formation. elife. 2019;8: pubmed 出版商
  10. Amal H, Gong G, Gjoneska E, Lewis S, Wishnok J, Tsai L, et al. S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl Psychiatry. 2019;9:44 pubmed 出版商
  11. Ren D, Dai Y, Yang Q, Zhang X, Guo W, Ye L, et al. Wnt5a induces and maintains prostate cancer cells dormancy in bone. J Exp Med. 2019;216:428-449 pubmed 出版商
  12. Zhong X, Cui P, Cai Y, Wang L, He X, Long P, et al. Mitochondrial Dynamics Is Critical for the Full Pluripotency and Embryonic Developmental Potential of Pluripotent Stem Cells. Cell Metab. 2019;29:979-992.e4 pubmed 出版商
  13. Pchitskaya E, Kraskovskaya N, Chernyuk D, Popugaeva E, Zhang H, Vlasova O, et al. Stim2-Eb3 Association and Morphology of Dendritic Spines in Hippocampal Neurons. Sci Rep. 2017;7:17625 pubmed 出版商
  14. Li Q, Ye L, Zhang X, Wang M, Lin C, Huang S, et al. FZD8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical Wnt/β-catenin signaling. Cancer Lett. 2017;402:166-176 pubmed 出版商
  15. Tsuda T, Takefuji M, Wettschureck N, Kotani K, Morimoto R, Okumura T, et al. Corticotropin releasing hormone receptor 2 exacerbates chronic cardiac dysfunction. J Exp Med. 2017;214:1877-1888 pubmed 出版商
  16. Bitzenhofer S, Ahlbeck J, Wolff A, Wiegert J, Gee C, Oertner T, et al. Layer-specific optogenetic activation of pyramidal neurons causes beta-gamma entrainment of neonatal networks. Nat Commun. 2017;8:14563 pubmed 出版商
  17. Stephenson J, Wang X, Perfitt T, Parrish W, Shonesy B, Marks C, et al. A Novel Human CAMK2A Mutation Disrupts Dendritic Morphology and Synaptic Transmission, and Causes ASD-Related Behaviors. J Neurosci. 2017;37:2216-2233 pubmed 出版商
  18. Scotcher J, Prysyazhna O, Boguslavskyi A, Kistamás K, Hadgraft N, Martin E, et al. Disulfide-activated protein kinase G I? regulates cardiac diastolic relaxation and fine-tunes the Frank-Starling response. Nat Commun. 2016;7:13187 pubmed 出版商
  19. Prasad A, Ketsawatsomkron P, Nuno D, Koval O, Dibbern M, Venema A, et al. Role of CaMKII in Ang-II-dependent small artery remodeling. Vascul Pharmacol. 2016;87:172-179 pubmed 出版商
  20. Kool M, van de Bree J, Bodde H, Elgersma Y, van Woerden G. The molecular, temporal and region-specific requirements of the beta isoform of Calcium/Calmodulin-dependent protein kinase type 2 (CAMK2B) in mouse locomotion. Sci Rep. 2016;6:26989 pubmed 出版商
  21. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  22. Avgustinova A, Iravani M, Robertson D, Fearns A, Gao Q, Klingbeil P, et al. Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat Commun. 2016;7:10305 pubmed 出版商
  23. Goto A, Egawa T, Sakon I, Oshima R, Ito K, Serizawa Y, et al. Heat stress acutely activates insulin-independent glucose transport and 5'-AMP-activated protein kinase prior to an increase in HSP72 protein in rat skeletal muscle. Physiol Rep. 2015;3: pubmed 出版商
  24. Popugaeva E, Pchitskaya E, Speshilova A, Alexandrov S, Zhang H, Vlasova O, et al. STIM2 protects hippocampal mushroom spines from amyloid synaptotoxicity. Mol Neurodegener. 2015;10:37 pubmed 出版商
  25. Farley M, Swulius M, Waxham M. Electron tomographic structure and protein composition of isolated rat cerebellar, hippocampal and cortical postsynaptic densities. Neuroscience. 2015;304:286-301 pubmed 出版商
  26. Cipolletta E, Rusciano M, Maione A, Santulli G, Sorriento D, Del Giudice C, et al. Targeting the CaMKII/ERK Interaction in the Heart Prevents Cardiac Hypertrophy. PLoS ONE. 2015;10:e0130477 pubmed 出版商
  27. Ferreira J, Schmidt J, Rio P, Águas R, Rooyakkers A, Li K, et al. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome. J Neurosci. 2015;35:8462-79 pubmed 出版商
  28. Cohen S, Li B, Tsien R, Ma H. Evolutionary and functional perspectives on signaling from neuronal surface to nucleus. Biochem Biophys Res Commun. 2015;460:88-99 pubmed 出版商
  29. Telese F, Ma Q, Perez P, Notani D, Oh S, Li W, et al. LRP8-Reelin-Regulated Neuronal Enhancer Signature Underlying Learning and Memory Formation. Neuron. 2015;86:696-710 pubmed 出版商
  30. D Hulst G, Sylow L, Hespel P, Deldicque L. Acute systemic insulin intolerance does not alter the response of the Akt/GSK-3 pathway to environmental hypoxia in human skeletal muscle. Eur J Appl Physiol. 2015;115:1219-31 pubmed 出版商
  31. Matsuyama M, Nomori A, Nakakuni K, Shimono A, Fukushima M. Secreted Frizzled-related protein 1 (Sfrp1) regulates the progression of renal fibrosis in a mouse model of obstructive nephropathy. J Biol Chem. 2014;289:31526-33 pubmed 出版商
  32. Zhong W, Hutchinson T, Chebolu S, Darmani N. Serotonin 5-HT3 receptor-mediated vomiting occurs via the activation of Ca2+/CaMKII-dependent ERK1/2 signaling in the least shrew (Cryptotis parva). PLoS ONE. 2014;9:e104718 pubmed 出版商
  33. Shonesy B, Wang X, Rose K, Ramikie T, Cavener V, Rentz T, et al. CaMKII regulates diacylglycerol lipase-? and striatal endocannabinoid signaling. Nat Neurosci. 2013;16:456-63 pubmed 出版商
  34. Swulius M, Farley M, Bryant M, Waxham M. Electron cryotomography of postsynaptic densities during development reveals a mechanism of assembly. Neuroscience. 2012;212:19-29 pubmed 出版商
  35. Swulius M, Kubota Y, Forest A, Waxham M. Structure and composition of the postsynaptic density during development. J Comp Neurol. 2010;518:4243-60 pubmed 出版商
  36. Brigman J, Wright T, Talani G, Prasad Mulcare S, Jinde S, Seabold G, et al. Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J Neurosci. 2010;30:4590-600 pubmed 出版商
  37. Baucum A, Jalan Sakrikar N, Jiao Y, Gustin R, Carmody L, Tabb D, et al. Identification and validation of novel spinophilin-associated proteins in rodent striatum using an enhanced ex vivo shotgun proteomics approach. Mol Cell Proteomics. 2010;9:1243-59 pubmed 出版商
  38. Guttman M, Betts G, Barnes H, Ghassemian M, van der Geer P, Komives E. Interactions of the NPXY microdomains of the low density lipoprotein receptor-related protein 1. Proteomics. 2009;9:5016-28 pubmed 出版商