这是一篇来自已证抗体库的有关人类 CAMK2G的综述,是根据25篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CAMK2G 抗体。
CAMK2G 同义词: CAMK; CAMK-II; CAMKG; MRD59

艾博抗(上海)贸易有限公司
小鼠 单克隆(22B1)
  • 免疫细胞化学; 人类; 1:500; 图 2b
艾博抗(上海)贸易有限公司 CAMK2G抗体(Abcam, ab171095)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2b). elife (2020) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
艾博抗(上海)贸易有限公司 CAMK2G抗体(Abcam, ab171095)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Sci Rep (2017) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 1:2000; 图 6
艾博抗(上海)贸易有限公司 CAMK2G抗体(Abcam, ab171095)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6). Mol Neurodegener (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(G-1)
  • 免疫印迹; 小鼠; 图 3g
圣克鲁斯生物技术 CAMK2G抗体(Santa Cruz, sc-5306)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 图 3g
圣克鲁斯生物技术 CAMK2G抗体(Santa Cruz, sc-32289)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 图 1f
圣克鲁斯生物技术 CAMK2G抗体(Santa Cruz Biotechnology, sc-32289)被用于被用于免疫印迹在小鼠样本上 (图 1f). Neuron (2015) ncbi
小鼠 单克隆(22B1)
  • 免疫细胞化学; 鼩鼱科; 1:100
圣克鲁斯生物技术 CAMK2G抗体(Santa Cruz, sc-32289)被用于被用于免疫细胞化学在鼩鼱科样本上浓度为1:100. PLoS ONE (2014) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1c
西格玛奥德里奇 CAMK2G抗体(Sigma, SAB4504607)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1c). Nat Commun (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 1:1000; 图 3a, 4c
赛信通(上海)生物试剂有限公司 CAMK2G抗体(Cell Signaling, 12716T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a, 4c). Nature (2019) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 1:1000; 图 2k
赛信通(上海)生物试剂有限公司 CAMK2G抗体(CST, 12716 s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2k). elife (2019) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 CAMK2G抗体(CST, 12716)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). Transl Psychiatry (2019) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 人类; 图 s3c
赛信通(上海)生物试剂有限公司 CAMK2G抗体(Cell Signaling, 12716)被用于被用于免疫印迹在人类样本上 (图 s3c). J Exp Med (2019) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 图 4c, 4d, 4e
赛信通(上海)生物试剂有限公司 CAMK2G抗体(Cell Signaling Technology, 12716)被用于被用于免疫印迹在小鼠样本上 (图 4c, 4d, 4e). Cell Metab (2019) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 CAMK2G抗体(Cell Signaling, 12716)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2017) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 CAMK2G抗体(Cell Signaling, 12716)被用于被用于免疫印迹在小鼠样本上 (图 1c). Vascul Pharmacol (2016) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 CAMK2G抗体(Cell Signaling, 12716)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 1:1000; 图 s4c
赛信通(上海)生物试剂有限公司 CAMK2G抗体(Cell Signaling, 12716)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 CAMK2G抗体(Cell Signaling Technology, 12716)被用于被用于免疫印迹在大鼠样本上 (图 5). Physiol Rep (2015) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CAMK2G抗体(Cell signaling, 12716)被用于被用于免疫印迹在人类样本上. Eur J Appl Physiol (2015) ncbi
domestic rabbit 单克隆(D21E4)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 CAMK2G抗体(Cell Signaling, 12716)被用于被用于免疫印迹在小鼠样本上 (图 5). J Biol Chem (2014) ncbi
碧迪BD
小鼠 单克隆(45/CaM Kinase II)
  • 免疫组化; 人类; 图 1b
  • 免疫印迹; 人类; 图 1e
碧迪BD CAMK2G抗体(BD Biosciences, 611293)被用于被用于免疫组化在人类样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1e). J Clin Invest (2018) ncbi
小鼠 单克隆(45/CaM Kinase II)
  • 免疫印迹; 人类; 图 4
碧迪BD CAMK2G抗体(BD Transduction Laboratories, 611293)被用于被用于免疫印迹在人类样本上 (图 4). J Appl Physiol (1985) (2017) ncbi
小鼠 单克隆(45/CaM Kinase II)
  • 免疫印迹; 人类; 图 2
碧迪BD CAMK2G抗体(BD Transduction Laboratories, 611293)被用于被用于免疫印迹在人类样本上 (图 2). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
小鼠 单克隆(45/CaM Kinase II)
  • 免疫组化; 大鼠; 1:2500; 图 4
  • 免疫印迹; 大鼠; 1:2500; 图 6
碧迪BD CAMK2G抗体(BD Bioscience, 611292)被用于被用于免疫组化在大鼠样本上浓度为1:2500 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:2500 (图 6). BMC Physiol (2014) ncbi
小鼠 单克隆(45/CaM Kinase II)
  • 免疫印迹; 大鼠
碧迪BD CAMK2G抗体(BD, 611292)被用于被用于免疫印迹在大鼠样本上. Diabetes (2013) ncbi
小鼠 单克隆(45/CaM Kinase II)
  • 免疫印迹; 非洲爪蛙
碧迪BD CAMK2G抗体(BD Biosciences, 611292)被用于被用于免疫印迹在非洲爪蛙样本上. J Biol Chem (2013) ncbi
文章列表
  1. Bhattacharyya M, Lee Y, Muratcioglu S, Qiu B, Nyayapati P, Schulman H, et al. Flexible linkers in CaMKII control the balance between activating and inhibitory autophosphorylation. elife. 2020;9: pubmed 出版商
  2. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt S, Vieira Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;: pubmed 出版商
  3. Sun W, Chi S, Li Y, Ling S, Tan Y, Xu Y, et al. The mechanosensitive Piezo1 channel is required for bone formation. elife. 2019;8: pubmed 出版商
  4. Amal H, Gong G, Gjoneska E, Lewis S, Wishnok J, Tsai L, et al. S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl Psychiatry. 2019;9:44 pubmed 出版商
  5. Ren D, Dai Y, Yang Q, Zhang X, Guo W, Ye L, et al. Wnt5a induces and maintains prostate cancer cells dormancy in bone. J Exp Med. 2019;216:428-449 pubmed 出版商
  6. Zhong X, Cui P, Cai Y, Wang L, He X, Long P, et al. Mitochondrial Dynamics Is Critical for the Full Pluripotency and Embryonic Developmental Potential of Pluripotent Stem Cells. Cell Metab. 2019;29:979-992.e4 pubmed 出版商
  7. Maeda K, Otomo K, Yoshida N, Abu Asab M, Ichinose K, Nishino T, et al. CaMK4 compromises podocyte function in autoimmune and nonautoimmune kidney disease. J Clin Invest. 2018;128:3445-3459 pubmed 出版商
  8. Pchitskaya E, Kraskovskaya N, Chernyuk D, Popugaeva E, Zhang H, Vlasova O, et al. Stim2-Eb3 Association and Morphology of Dendritic Spines in Hippocampal Neurons. Sci Rep. 2017;7:17625 pubmed 出版商
  9. Li Q, Ye L, Zhang X, Wang M, Lin C, Huang S, et al. FZD8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical Wnt/β-catenin signaling. Cancer Lett. 2017;402:166-176 pubmed 出版商
  10. Tsuda T, Takefuji M, Wettschureck N, Kotani K, Morimoto R, Okumura T, et al. Corticotropin releasing hormone receptor 2 exacerbates chronic cardiac dysfunction. J Exp Med. 2017;214:1877-1888 pubmed 出版商
  11. Skovgaard C, Almquist N, Bangsbo J. Effect of increased and maintained frequency of speed endurance training on performance and muscle adaptations in runners. J Appl Physiol (1985). 2017;122:48-59 pubmed 出版商
  12. Scotcher J, Prysyazhna O, Boguslavskyi A, Kistamás K, Hadgraft N, Martin E, et al. Disulfide-activated protein kinase G I? regulates cardiac diastolic relaxation and fine-tunes the Frank-Starling response. Nat Commun. 2016;7:13187 pubmed 出版商
  13. Prasad A, Ketsawatsomkron P, Nuno D, Koval O, Dibbern M, Venema A, et al. Role of CaMKII in Ang-II-dependent small artery remodeling. Vascul Pharmacol. 2016;87:172-179 pubmed 出版商
  14. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  15. Thomassen M, Gunnarsson T, Christensen P, Pavlovic D, Shattock M, Bangsbo J. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes. Am J Physiol Regul Integr Comp Physiol. 2016;310:R659-69 pubmed 出版商
  16. Avgustinova A, Iravani M, Robertson D, Fearns A, Gao Q, Klingbeil P, et al. Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat Commun. 2016;7:10305 pubmed 出版商
  17. Goto A, Egawa T, Sakon I, Oshima R, Ito K, Serizawa Y, et al. Heat stress acutely activates insulin-independent glucose transport and 5'-AMP-activated protein kinase prior to an increase in HSP72 protein in rat skeletal muscle. Physiol Rep. 2015;3: pubmed 出版商
  18. Popugaeva E, Pchitskaya E, Speshilova A, Alexandrov S, Zhang H, Vlasova O, et al. STIM2 protects hippocampal mushroom spines from amyloid synaptotoxicity. Mol Neurodegener. 2015;10:37 pubmed 出版商
  19. Telese F, Ma Q, Perez P, Notani D, Oh S, Li W, et al. LRP8-Reelin-Regulated Neuronal Enhancer Signature Underlying Learning and Memory Formation. Neuron. 2015;86:696-710 pubmed 出版商
  20. D Hulst G, Sylow L, Hespel P, Deldicque L. Acute systemic insulin intolerance does not alter the response of the Akt/GSK-3 pathway to environmental hypoxia in human skeletal muscle. Eur J Appl Physiol. 2015;115:1219-31 pubmed 出版商
  21. Eilers W, Jaspers R, de Haan A, Ferrié C, Valdivieso P, Flück M. CaMKII content affects contractile, but not mitochondrial, characteristics in regenerating skeletal muscle. BMC Physiol. 2014;14:7 pubmed 出版商
  22. Matsuyama M, Nomori A, Nakakuni K, Shimono A, Fukushima M. Secreted Frizzled-related protein 1 (Sfrp1) regulates the progression of renal fibrosis in a mouse model of obstructive nephropathy. J Biol Chem. 2014;289:31526-33 pubmed 出版商
  23. Zhong W, Hutchinson T, Chebolu S, Darmani N. Serotonin 5-HT3 receptor-mediated vomiting occurs via the activation of Ca2+/CaMKII-dependent ERK1/2 signaling in the least shrew (Cryptotis parva). PLoS ONE. 2014;9:e104718 pubmed 出版商
  24. Lessard S, Rivas D, Alves Wagner A, Hirshman M, Gallagher I, Constantin Teodosiu D, et al. Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks. Diabetes. 2013;62:2717-27 pubmed 出版商
  25. McCoy F, Darbandi R, Chen S, Eckard L, Dodd K, Jones K, et al. Metabolic regulation of CaMKII protein and caspases in Xenopus laevis egg extracts. J Biol Chem. 2013;288:8838-48 pubmed 出版商