这是一篇来自已证抗体库的有关人类 CCNE2的综述,是根据58篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CCNE2 抗体。
CCNE2 同义词: CYCE2

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP454Y)
  • 免疫印迹; 人类; 1:2000; 图 6a
艾博抗(上海)贸易有限公司 CCNE2抗体(Abcam, ab40890)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(E142)
  • 免疫印迹; 人类; 图 2j
艾博抗(上海)贸易有限公司 CCNE2抗体(Abcam, ab32103)被用于被用于免疫印迹在人类样本上 (图 2j). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(E142)
  • 流式细胞仪; 小鼠; 图 3e
艾博抗(上海)贸易有限公司 CCNE2抗体(Abcam, E142)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Immunol (2016) ncbi
domestic rabbit 单克隆(E142)
  • 免疫印迹; 人类; 图 s2a
艾博抗(上海)贸易有限公司 CCNE2抗体(Abcam, ab32103)被用于被用于免疫印迹在人类样本上 (图 s2a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(E142)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 CCNE2抗体(Abcam, ab32103)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Hematol Oncol (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 CCNE2抗体(CST, 4132)被用于被用于免疫印迹在人类样本上 (图 2f). Mol Cancer (2021) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signal, 4129)被用于被用于免疫印迹在人类样本上 (图 3e). Clin Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling Technology, 4132)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Clin Transl Med (2021) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling Technology, 4129)被用于被用于免疫印迹在人类样本上 (图 5e). Oncogene (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling Technology, 4132)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 CCNE2抗体(CST, 4132)被用于被用于免疫印迹在人类样本上 (图 5a). Breast Cancer Res (2021) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 CCNE2抗体(CST, 4129)被用于被用于免疫印迹在人类样本上 (图 5a). Breast Cancer Res (2021) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, HE12)被用于被用于免疫印迹在小鼠样本上 (图 4b). PLoS ONE (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4132)被用于被用于免疫印迹在人类样本上 (图 1a). Breast Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling Technology, 4132)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Res (2019) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 小鼠; 1:1000; 图 s12f
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling Technology, 4129)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s12f). Science (2019) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:1000; 图 s1f
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4129S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1f). EMBO J (2018) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 小鼠; 图 2h
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4129)被用于被用于免疫印迹在小鼠样本上 (图 2h). Cancer Res (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 5). Exp Neurol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 CCNE2抗体(cell signalling, 4132)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Int J Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling Technology, 4132)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Am J Cancer Res (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling Technology, 4129s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Am J Cancer Res (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 2c). J Biol Chem (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 S1A
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, HE12)被用于被用于免疫印迹在人类样本上 (图 S1A). Mol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4A
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell signaling, 4132)被用于被用于免疫印迹在人类样本上 (图 4A). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling Technology, 4132)被用于被用于免疫印迹在人类样本上. Neoplasia (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 s3b
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 s3b). Nat Commun (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 1d). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4132)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3c). Mol Pharmacol (2017) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling Tech, 4129)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:1000; 图 s3b
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3b). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell signaling, 4132)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4132)被用于被用于免疫印迹在人类样本上 (图 5a). Oncol Rep (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signal, 4129)被用于被用于免疫印迹在小鼠样本上 (图 s1). Cell Rep (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell signaling, 4129S)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3e
赛信通(上海)生物试剂有限公司 CCNE2抗体(CST, 4132)被用于被用于免疫印迹在人类样本上 (图 s3e). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 1b). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 小鼠; 1:1000; 图 s2d
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, HE12)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2d). Nat Commun (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫组化-石蜡切片; 人类; 图 1a
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, HE12)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). BMC Cancer (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling Technology, 4132)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Cell Biol (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Sci (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 5). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling Technology, 4129)被用于被用于免疫印迹在人类样本上 (图 3b). PLoS ONE (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, HE12)被用于被用于免疫印迹在人类样本上 (图 4c). J Cell Sci (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling Tech, 4129)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:750; 图 2
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上浓度为1:750 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 5). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:60000
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上浓度为1:60000. Oncotarget (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling Technology, 4129S)被用于被用于免疫印迹在人类样本上浓度为1:500. Br J Pharmacol (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling Technology, 4129)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 5). Int J Mol Sci (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, HE12)被用于被用于免疫印迹在人类样本上. Leukemia (2015) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling Technologies, 4129)被用于被用于免疫印迹在人类样本上 (图 6e). Mol Cell (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上. J Natl Cancer Inst (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上. Pigment Cell Melanoma Res (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上 (图 6e). Mol Endocrinol (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling Technology, 4129)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling Technology, 4129)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
小鼠 单克隆(HE12)
  • 免疫印迹; 人类; 1:3000
赛信通(上海)生物试剂有限公司 CCNE2抗体(Cell Signaling, 4129)被用于被用于免疫印迹在人类样本上浓度为1:3000. Exp Hematol (2012) ncbi
文章列表
  1. Liu X, Liu Y, Liu Z, Lin C, Meng F, Xu L, et al. CircMYH9 drives colorectal cancer growth by regulating serine metabolism and redox homeostasis in a p53-dependent manner. Mol Cancer. 2021;20:114 pubmed 出版商
  2. Zhang Y, He L, Huang L, Yao S, Lin N, Li P, et al. Oncogenic PAX6 elicits CDK4/6 inhibitor resistance by epigenetically inactivating the LATS2-Hippo signaling pathway. Clin Transl Med. 2021;11:e503 pubmed 出版商
  3. Sakai H, Kawakami H, Teramura T, Onodera Y, Somers E, Furuuchi K, et al. Folate receptor α increases chemotherapy resistance through stabilizing MDM2 in cooperation with PHB2 that is overcome by MORAb-202 in gastric cancer. Clin Transl Med. 2021;11:e454 pubmed 出版商
  4. Fischietti M, Eckerdt F, Blyth G, Arslan A, Mati W, Oku C, et al. Schlafen 5 as a novel therapeutic target in pancreatic ductal adenocarcinoma. Oncogene. 2021;40:3273-3286 pubmed 出版商
  5. Dong C, Jiang T, Yin H, Song H, Zhang Y, Geng H, et al. LMNB2 promotes the progression of colorectal cancer by silencing p21 expression. Cell Death Dis. 2021;12:331 pubmed 出版商
  6. Kaminska K, Akrap N, Staaf J, Alves C, Ehinger A, Ebbesson A, et al. Distinct mechanisms of resistance to fulvestrant treatment dictate level of ER independence and selective response to CDK inhibitors in metastatic breast cancer. Breast Cancer Res. 2021;23:26 pubmed 出版商
  7. Chen A, Santana A, Doudican N, Roudiani N, Laursen K, Therrien J, et al. MAGE-A3 is a prognostic biomarker for poor clinical outcome in cutaneous squamous cell carcinoma with perineural invasion via modulation of cell proliferation. PLoS ONE. 2020;15:e0241551 pubmed 出版商
  8. Huang S, Zhang C, Sun C, Hou Y, Zhang Y, Tam N, et al. Obg-like ATPase 1 (OLA1) overexpression predicts poor prognosis and promotes tumor progression by regulating P21/CDK2 in hepatocellular carcinoma. Aging (Albany NY). 2020;12:3025-3041 pubmed 出版商
  9. Patel H, Tao N, Lee K, Huerta M, Arlt H, Mullarkey T, et al. Elacestrant (RAD1901) exhibits anti-tumor activity in multiple ER+ breast cancer models resistant to CDK4/6 inhibitors. Breast Cancer Res. 2019;21:146 pubmed 出版商
  10. Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY). 2019;11:7830-7846 pubmed 出版商
  11. Wang Z, Feng X, Molinolo A, Martin D, Vitale Cross L, Nohata N, et al. 4E-BP1 Is a Tumor Suppressor Protein Reactivated by mTOR Inhibition in Head and Neck Cancer. Cancer Res. 2019;: pubmed 出版商
  12. Chakraborty A, Laukka T, Myllykoski M, Ringel A, Booker M, Tolstorukov M, et al. Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate. Science. 2019;363:1217-1222 pubmed 出版商
  13. Allan L, Skowyra A, Rogers K, Zeller D, Clarke P. Atypical APC/C-dependent degradation of Mcl-1 provides an apoptotic timer during mitotic arrest. EMBO J. 2018;37: pubmed 出版商
  14. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  15. Oblinger J, Burns S, Huang J, Pan L, Ren Y, Shen R, et al. Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation. Exp Neurol. 2018;299:299-307 pubmed 出版商
  16. Li X, Liu F, Lin B, Luo H, Liu M, Wu J, et al. miR?150 inhibits proliferation and tumorigenicity via retarding G1/S phase transition in nasopharyngeal carcinoma. Int J Oncol. 2017;: pubmed 出版商
  17. Jiang J, Chen X, Liu H, Shao J, Xie R, Gu P, et al. Polypyrimidine Tract-Binding Protein 1 promotes proliferation, migration and invasion in clear-cell renal cell carcinoma by regulating alternative splicing of PKM. Am J Cancer Res. 2017;7:245-259 pubmed
  18. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  19. Wyatt H, Laister R, Martin S, Arrowsmith C, West S. The SMX DNA Repair Tri-nuclease. Mol Cell. 2017;65:848-860.e11 pubmed 出版商
  20. Zhu Y, Kawaguchi K, Kiyama R. Differential and directional estrogenic signaling pathways induced by enterolignans and their precursors. PLoS ONE. 2017;12:e0171390 pubmed 出版商
  21. Zhai S, Liu C, Zhang L, Zhu J, Guo J, Zhang J, et al. PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail. Neoplasia. 2017;19:154-164 pubmed 出版商
  22. Cayrol F, Praditsuktavorn P, Fernando T, Kwiatkowski N, Marullo R, Calvo Vidal M, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:14290 pubmed 出版商
  23. Ruf S, Heberle A, Langelaar Makkinje M, Gelino S, Wilkinson D, Gerbeth C, et al. PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy. Autophagy. 2017;13:486-505 pubmed 出版商
  24. Choiniere J, Wu J, Wang L. Pyruvate Dehydrogenase Kinase 4 Deficiency Results in Expedited Cellular Proliferation through E2F1-Mediated Increase of Cyclins. Mol Pharmacol. 2017;91:189-196 pubmed 出版商
  25. Zhang Y, Zhang Y, Zhong C, Xiao F. Cr(VI) induces premature senescence through ROS-mediated p53 pathway in L-02 hepatocytes. Sci Rep. 2016;6:34578 pubmed 出版商
  26. Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, et al. Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene. 2017;36:1573-1584 pubmed 出版商
  27. Vogel K, Bell L, Galloway A, Ahlfors H, Turner M. The RNA-Binding Proteins Zfp36l1 and Zfp36l2 Enforce the Thymic ?-Selection Checkpoint by Limiting DNA Damage Response Signaling and Cell Cycle Progression. J Immunol. 2016;197:2673-2685 pubmed 出版商
  28. Duffy S, Fam H, Wang Y, Styles E, Kim J, Ang J, et al. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer. Proc Natl Acad Sci U S A. 2016;113:9967-76 pubmed 出版商
  29. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed 出版商
  30. Yang Y, Lu Y, Wang L, Mizokami A, Keller E, Zhang J, et al. Skp2 is associated with paclitaxel resistance in prostate cancer cells. Oncol Rep. 2016;36:559-66 pubmed 出版商
  31. Ho T, Guilbaud G, Blow J, Sale J, Watson C. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Rep. 2016;15:724-734 pubmed 出版商
  32. Mitxelena J, Apraiz A, Vallejo Rodríguez J, Malumbres M, Zubiaga A. E2F7 regulates transcription and maturation of multiple microRNAs to restrain cell proliferation. Nucleic Acids Res. 2016;: pubmed
  33. Tang Y, Huang L, Lin W, Wang L, Tian Y, Shi D, et al. Butein inhibits cell proliferation and induces cell cycle arrest in acute lymphoblastic leukemia via FOXO3a/p27kip1 pathway. Oncotarget. 2016;7:18651-64 pubmed 出版商
  34. Cott C, Thuenauer R, Landi A, Kühn K, Juillot S, Imberty A, et al. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation. Biochim Biophys Acta. 2016;1863:1106-18 pubmed 出版商
  35. Preet R, Siddharth S, Satapathy S, Das S, Nayak A, Das D, et al. Chk1 inhibitor synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochem Pharmacol. 2016;105:23-33 pubmed 出版商
  36. Guo Z, Kong Q, Liu C, Zhang S, Zou L, Yan F, et al. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms. Nat Commun. 2016;7:10307 pubmed 出版商
  37. Lee E, Jin D, Lee B, Kim Y, Han J, Shim Y, et al. Negative effect of cyclin D1 overexpression on recurrence-free survival in stage II-IIIA lung adenocarcinoma and its expression modulation by vorinostat in vitro. BMC Cancer. 2015;15:982 pubmed 出版商
  38. Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol. 2016;18:202-12 pubmed 出版商
  39. Ortmann B, Bensaddek D, Carvalhal S, Moser S, Mudie S, Griffis E, et al. CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells. J Cell Sci. 2016;129:191-205 pubmed 出版商
  40. Seidel C, Schnekenburger M, Mazumder A, Teiten M, Kirsch G, Dicato M, et al. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol. 2016;99:31-52 pubmed 出版商
  41. Yu D, Makkar G, Dong T, Strickland D, Sarkar R, Monahan T. MARCKS Signaling Differentially Regulates Vascular Smooth Muscle and Endothelial Cell Proliferation through a KIS-, p27kip1- Dependent Mechanism. PLoS ONE. 2015;10:e0141397 pubmed 出版商
  42. Suwei D, Liang Z, Zhimin L, Ruilei L, Yingying Z, Zhen L, et al. NLK functions to maintain proliferation and stemness of NSCLC and is a target of metformin. J Hematol Oncol. 2015;8:120 pubmed 出版商
  43. Moniz S, Bandarra D, Biddlestone J, Campbell K, Komander D, Bremm A, et al. Cezanne regulates E2F1-dependent HIF2α expression. J Cell Sci. 2015;128:3082-93 pubmed 出版商
  44. Cardona M, López J, Serafín A, Rongvaux A, Inserte J, García Dorado D, et al. Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart. PLoS ONE. 2015;10:e0131411 pubmed 出版商
  45. Boros G, Miko E, Muramatsu H, Weissman D, Emri E, van der Horst G, et al. Identification of Cyclobutane Pyrimidine Dimer-Responsive Genes Using UVB-Irradiated Human Keratinocytes Transfected with In Vitro-Synthesized Photolyase mRNA. PLoS ONE. 2015;10:e0131141 pubmed 出版商
  46. Ahn J, Kim S, Na W, Baek S, Kim J, Min K, et al. SERBP1 affects homologous recombination-mediated DNA repair by regulation of CtIP translation during S phase. Nucleic Acids Res. 2015;43:6321-33 pubmed 出版商
  47. Ishihara S, Yasuda M, Ishizu A, Ishikawa M, Shirato H, Haga H. Activating transcription factor 5 enhances radioresistance and malignancy in cancer cells. Oncotarget. 2015;6:4602-14 pubmed
  48. Barrichon M, Hadi T, Wendremaire M, Ptasinski C, Seigneuric R, Marcion G, et al. Dose-dependent biphasic leptin-induced proliferation is caused by non-specific IL-6/NF-κB pathway activation in human myometrial cells. Br J Pharmacol. 2015;172:2974-90 pubmed 出版商
  49. Su C, Zhang C, Tecle A, Fu X, He J, Song J, et al. Tudor staphylococcal nuclease (Tudor-SN), a novel regulator facilitating G1/S phase transition, acting as a co-activator of E2F-1 in cell cycle regulation. J Biol Chem. 2015;290:7208-20 pubmed 出版商
  50. Li Z, Xiao J, Hu K, Wang G, Li M, Zhang J, et al. FBXW7 acts as an independent prognostic marker and inhibits tumor growth in human osteosarcoma. Int J Mol Sci. 2015;16:2294-306 pubmed 出版商
  51. Chae H, Mitton B, Lacayo N, Sakamoto K. Replication factor C3 is a CREB target gene that regulates cell cycle progression through the modulation of chromatin loading of PCNA. Leukemia. 2015;29:1379-89 pubmed 出版商
  52. Gasser J, Inuzuka H, Lau A, Wei W, Beroukhim R, Toker A. SGK3 mediates INPP4B-dependent PI3K signaling in breast cancer. Mol Cell. 2014;56:595-607 pubmed 出版商
  53. Aydin I, Melamed R, Adams S, Castillo Martin M, Demir A, Bryk D, et al. FBXW7 mutations in melanoma and a new therapeutic paradigm. J Natl Cancer Inst. 2014;106:dju107 pubmed 出版商
  54. Kardos G, Dai M, Robertson G. Growth inhibitory effects of large subunit ribosomal proteins in melanoma. Pigment Cell Melanoma Res. 2014;27:801-12 pubmed 出版商
  55. Wang Y, Zhou D, Chen S. SGK3 is an androgen-inducible kinase promoting prostate cancer cell proliferation through activation of p70 S6 kinase and up-regulation of cyclin D1. Mol Endocrinol. 2014;28:935-48 pubmed 出版商
  56. Ram R, Mendiratta S, Bodemann B, Torres M, Eskiocak U, White M. RASSF1A inactivation unleashes a tumor suppressor/oncogene cascade with context-dependent consequences on cell cycle progression. Mol Cell Biol. 2014;34:2350-8 pubmed 出版商
  57. Sengupta S, Jana S, Bhattacharyya A. TGF-?-Smad2 dependent activation of CDC 25A plays an important role in cell proliferation through NFAT activation in metastatic breast cancer cells. Cell Signal. 2014;26:240-52 pubmed 出版商
  58. Valdez B, Nieto Y, Murray D, Li Y, Wang G, Champlin R, et al. Epigenetic modifiers enhance the synergistic cytotoxicity of combined nucleoside analog-DNA alkylating agents in lymphoma cell lines. Exp Hematol. 2012;40:800-10 pubmed 出版商