这是一篇来自已证抗体库的有关人类 趋化因子受体2 (CCR2) 的综述,是根据46篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合趋化因子受体2 抗体。
趋化因子受体2 同义词: CC-CKR-2; CCR-2; CCR2A; CCR2B; CD192; CKR2; CKR2A; CKR2B; CMKBR2; MCP-1-R

安迪生物R&D
大鼠 单克隆(475301)
  • 流式细胞仪; 小鼠; ; 图 1d
安迪生物R&D趋化因子受体2抗体(R&D Systems, 475301)被用于被用于流式细胞仪在小鼠样本上浓度为 (图 1d). Commun Biol (2020) ncbi
大鼠 单克隆(475301)
  • 流式细胞仪; 小鼠; 1:100; 图 s6d, e
安迪生物R&D趋化因子受体2抗体(R&D, FAB5538A-025)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6d, e). Nat Commun (2020) ncbi
大鼠 单克隆(475301)
  • 流式细胞仪; 小鼠; 1:100; 图 s4h
安迪生物R&D趋化因子受体2抗体(R&D Systems, FAB5538R-025)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4h). Nat Commun (2020) ncbi
大鼠 单克隆(475301)
  • mass cytometry; 小鼠; 图 1a, 1c, s1
安迪生物R&D趋化因子受体2抗体(R&D Systems, 475301)被用于被用于mass cytometry在小鼠样本上 (图 1a, 1c, s1). Cell Rep (2019) ncbi
小鼠 单克隆(48607)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 e10g
安迪生物R&D趋化因子受体2抗体(R&D, MAB150-SP)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 e10g). Nature (2019) ncbi
小鼠 单克隆(48607)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 s4b
安迪生物R&D趋化因子受体2抗体(R&D Systems, MAB150)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 s4b). Cancer Cell (2019) ncbi
大鼠 单克隆(475301)
  • 流式细胞仪; 小鼠; 图 s19b
安迪生物R&D趋化因子受体2抗体(R&D, 475301)被用于被用于流式细胞仪在小鼠样本上 (图 s19b). Nat Commun (2018) ncbi
大鼠 单克隆(475301)
  • 流式细胞仪; 小鼠; 图 s2
安迪生物R&D趋化因子受体2抗体(R&D systems, 475301)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(475301)
  • 流式细胞仪; 小鼠; 图 3a
安迪生物R&D趋化因子受体2抗体(R&D Systems, FAB5538A)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Cell (2018) ncbi
小鼠 单克隆(48607)
  • 流式细胞仪; 人类; 图 4c
安迪生物R&D趋化因子受体2抗体(R&D Systems, 48607)被用于被用于流式细胞仪在人类样本上 (图 4c). EMBO J (2018) ncbi
小鼠 单克隆(48607)
  • 流式细胞仪; 人类; 图 1a
安迪生物R&D趋化因子受体2抗体(R&D, 48607)被用于被用于流式细胞仪在人类样本上 (图 1a). Arthritis Res Ther (2018) ncbi
大鼠 单克隆(475301)
  • 流式细胞仪; 小鼠; 图 3b
安迪生物R&D趋化因子受体2抗体(R&D, 475301)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Exp Med (2018) ncbi
大鼠 单克隆(475301)
  • 流式细胞仪; 小鼠; 图 s1b
安迪生物R&D趋化因子受体2抗体(r&D Systems, 475301)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). J Exp Med (2018) ncbi
大鼠 单克隆(475301)
  • 流式细胞仪; 小鼠; 1:20; 图 s2
安迪生物R&D趋化因子受体2抗体(R&D System, FAB5538A)被用于被用于流式细胞仪在小鼠样本上浓度为1:20 (图 s2). Nat Commun (2018) ncbi
大鼠 单克隆(475301)
  • 流式细胞仪; 小鼠; 图 4b
安迪生物R&D趋化因子受体2抗体(R&D Systems, 475301)被用于被用于流式细胞仪在小鼠样本上 (图 4b). PLoS ONE (2017) ncbi
大鼠 单克隆(475301)
  • 流式细胞仪; 小鼠; 1:1; 图 s5
安迪生物R&D趋化因子受体2抗体(R&D Systems, FAB5538A)被用于被用于流式细胞仪在小鼠样本上浓度为1:1 (图 s5). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(48607)
  • 流式细胞仪; 人类; 图 4
安迪生物R&D趋化因子受体2抗体(R&D Systems, 48607)被用于被用于流式细胞仪在人类样本上 (图 4). J Allergy Clin Immunol (2018) ncbi
小鼠 单克隆(48607)
  • 流式细胞仪; 人类; 表 1
安迪生物R&D趋化因子受体2抗体(R&D Systems, 48607)被用于被用于流式细胞仪在人类样本上 (表 1). PLoS ONE (2016) ncbi
小鼠 单克隆(48607)
  • 流式细胞仪; 人类; 图 3a
安迪生物R&D趋化因子受体2抗体(R&D Systems, 48607)被用于被用于流式细胞仪在人类样本上 (图 3a). PLoS ONE (2016) ncbi
大鼠 单克隆(475301)
  • 流式细胞仪; 小鼠; 图 4a
安迪生物R&D趋化因子受体2抗体(R&D Systems, 475301)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Infect Immun (2017) ncbi
大鼠 单克隆(475301)
  • 流式细胞仪; 小鼠; 1:50
安迪生物R&D趋化因子受体2抗体(R&D Systems, 475301)被用于被用于流式细胞仪在小鼠样本上浓度为1:50. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(475301)
  • 流式细胞仪; 小鼠; 图 s2e
安迪生物R&D趋化因子受体2抗体(R&D Systems, 475301)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Nature (2016) ncbi
大鼠 单克隆(475301)
  • 抑制或激活实验; 小鼠; 图 2b
安迪生物R&D趋化因子受体2抗体(R&D Systems, 475301)被用于被用于抑制或激活实验在小鼠样本上 (图 2b). J Immunol (2016) ncbi
小鼠 单克隆(48607)
  • 流式细胞仪; 人类; 图 2b
安迪生物R&D趋化因子受体2抗体(R&D Systems, 48607)被用于被用于流式细胞仪在人类样本上 (图 2b). PLoS ONE (2016) ncbi
大鼠 单克隆(475301)
  • 流式细胞仪; 小鼠; 图 6a
安迪生物R&D趋化因子受体2抗体(R&D Systems, 475301)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cancer Res (2016) ncbi
BioLegend
小鼠 单克隆(K036C2)
  • 免疫组化; 人类; 图 2c
BioLegend趋化因子受体2抗体(Biolegend, K036C2)被用于被用于免疫组化在人类样本上 (图 2c). Bone Rep (2020) ncbi
小鼠 单克隆(K036C2)
  • mass cytometry; 人类; 图 2j
BioLegend趋化因子受体2抗体(Biolegend, 357202)被用于被用于mass cytometry在人类样本上 (图 2j). Cell (2019) ncbi
小鼠 单克隆(K036C2)
  • 流式细胞仪; 人类; 1:100; 图 3s1
BioLegend趋化因子受体2抗体(Biolegend, 357207)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3s1). elife (2019) ncbi
小鼠 单克隆(K036C2)
  • 流式细胞仪; 人类; 1:100; 图 1h, s5g
BioLegend趋化因子受体2抗体(Biolegend, 357212)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1h, s5g). Cancer Cell (2019) ncbi
小鼠 单克隆(K036C2)
  • 流式细胞仪; 人类; 图 4c
BioLegend趋化因子受体2抗体(BioLegend, 357206)被用于被用于流式细胞仪在人类样本上 (图 4c). J Exp Med (2018) ncbi
小鼠 单克隆(K036C2)
  • mass cytometry; 人类; 图 s3b
BioLegend趋化因子受体2抗体(BioLegend, KO36C2)被用于被用于mass cytometry在人类样本上 (图 s3b). Science (2017) ncbi
小鼠 单克隆(K036C2)
  • 流式细胞仪; 人类; 图 st12
BioLegend趋化因子受体2抗体(Biolegend, K036C2)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
小鼠 单克隆(K036C2)
  • 流式细胞仪; 人类; 图 4d
BioLegend趋化因子受体2抗体(Biolegend, K036C2)被用于被用于流式细胞仪在人类样本上 (图 4d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(K036C2)
  • 流式细胞仪; 人类; 表 1
BioLegend趋化因子受体2抗体(Biolegend, K036C2)被用于被用于流式细胞仪在人类样本上 (表 1). Cytometry A (2017) ncbi
小鼠 单克隆(K036C2)
  • 流式细胞仪; 人类; 图 5
BioLegend趋化因子受体2抗体(Biolegend, 357203)被用于被用于流式细胞仪在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(K036C2)
  • 流式细胞仪; 人类; 图 3
BioLegend趋化因子受体2抗体(Biolegend, K036C2)被用于被用于流式细胞仪在人类样本上 (图 3). Mucosal Immunol (2016) ncbi
小鼠 单克隆(K036C2)
  • 流式细胞仪; 人类
BioLegend趋化因子受体2抗体(Biolegend, K036C2)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(K036C2)
  • 流式细胞仪; 人类; 图 6
BioLegend趋化因子受体2抗体(BioLegend, K036C2)被用于被用于流式细胞仪在人类样本上 (图 6). J Immunol (2014) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 s3c
赛默飞世尔趋化因子受体2抗体(Thermo scientific, PA5-23037)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s3c). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s1
赛默飞世尔趋化因子受体2抗体(Thermo Fisher, PA5-23044)被用于被用于免疫组化在小鼠样本上 (图 s1). Sci Rep (2016) ncbi
LifeSpan Biosciences
大鼠 单克隆(475301)
  • 流式细胞仪; 小鼠; 图 2c
LifeSpan Biosciences趋化因子受体2抗体(LifeSpan BioSciences, LS-C127284-100)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Mol Med Rep (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-11)
  • 免疫细胞化学; 人类; 图 6d
圣克鲁斯生物技术趋化因子受体2抗体(Santa Cruz, SC-74490)被用于被用于免疫细胞化学在人类样本上 (图 6d). Toxins (Basel) (2017) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1c
艾博抗(上海)贸易有限公司趋化因子受体2抗体(Abcam, ab202391)被用于被用于免疫印迹在人类样本上 (图 s1c). Gene (2016) ncbi
Novus Biologicals
domestic rabbit 多克隆
Novus Biologicals趋化因子受体2抗体(Novus, NBP1-48338)被用于. Nature (2015) ncbi
碧迪BD
小鼠 单克隆(48607)
  • 流式细胞仪; 人类; 图 1d
碧迪BD趋化因子受体2抗体(BD Biosciences, 561744)被用于被用于流式细胞仪在人类样本上 (图 1d). PLoS ONE (2016) ncbi
小鼠 单克隆(48607)
  • 流式细胞仪; 人类; 图 st1
碧迪BD趋化因子受体2抗体(BD, 558406)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(48607)
  • 流式细胞仪; 人类; 图 3
碧迪BD趋化因子受体2抗体(BD Biosciences, 48 607)被用于被用于流式细胞仪在人类样本上 (图 3). Nephrol Dial Transplant (2015) ncbi
文章列表
  1. Wuggenig P, Kaya B, Melhem H, Ayata C, Hruz P, Sayan A, et al. Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice. Commun Biol. 2020;3:130 pubmed 出版商
  2. Reventun P, Sanchez Esteban S, Cook A, Cuadrado I, Roza C, Moreno Gómez Toledano R, et al. Bisphenol A induces coronary endothelial cell necroptosis by activating RIP3/CamKII dependent pathway. Sci Rep. 2020;10:4190 pubmed 出版商
  3. Aslan K, Turco V, Blobner J, Sonner J, Liuzzi A, Núñez N, et al. Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat Commun. 2020;11:931 pubmed 出版商
  4. Terashima Y, Toda E, Itakura M, Otsuji M, Yoshinaga S, Okumura K, et al. Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nat Commun. 2020;11:609 pubmed 出版商
  5. Zhang Z, Le K, La Placa D, Armstrong B, Miller M, Shively J. CXCR2 specific endocytosis of immunomodulatory peptide LL-37 in human monocytes and formation of LL-37 positive large vesicles in differentiated monoosteophils. Bone Rep. 2020;12:100237 pubmed 出版商
  6. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  7. Ramachandran P, Dobie R, Wilson Kanamori J, Dora E, Henderson B, Luu N, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575:512-518 pubmed 出版商
  8. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  9. Gonzalo Gil E, Rapuano P, Ikediobi U, Leibowitz R, Mehta S, Coskun A, et al. Transcriptional down-regulation of ccr5 in a subset of HIV+ controllers and their family members. elife. 2019;8: pubmed 出版商
  10. Cassetta L, Fragkogianni S, Sims A, Swierczak A, Forrester L, Zhang H, et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019;35:588-602.e10 pubmed 出版商
  11. Normand S, Waldschmitt N, Neerincx A, Martinez Torres R, Chauvin C, Couturier Maillard A, et al. Proteasomal degradation of NOD2 by NLRP12 in monocytes promotes bacterial tolerance and colonization by enteropathogens. Nat Commun. 2018;9:5338 pubmed 出版商
  12. Kaplanov I, Carmi Y, Kornetsky R, Shemesh A, Shurin G, Shurin M, et al. Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation. Proc Natl Acad Sci U S A. 2019;116:1361-1369 pubmed 出版商
  13. Kelly A, Günaltay S, McEntee C, Shuttleworth E, Smedley C, Houston S, et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 2018;215:2725-2736 pubmed 出版商
  14. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell. 2018;175:1336-1351.e17 pubmed 出版商
  15. Viau A, Bienaime F, Lukas K, Todkar A, Knoll M, Yakulov T, et al. Cilia-localized LKB1 regulates chemokine signaling, macrophage recruitment, and tissue homeostasis in the kidney. EMBO J. 2018;37: pubmed 出版商
  16. Armas González E, Domínguez Luis M, Díaz Martín A, Arce Franco M, Castro Hernandez J, Danelon G, et al. Role of CXCL13 and CCL20 in the recruitment of B cells to inflammatory foci in chronic arthritis. Arthritis Res Ther. 2018;20:114 pubmed 出版商
  17. Baranska A, Shawket A, Jouve M, Baratin M, Malosse C, Voluzan O, et al. Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal. J Exp Med. 2018;215:1115-1133 pubmed 出版商
  18. Perry C, Muñoz Rojas A, Meeth K, Kellman L, Amezquita R, Thakral D, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 2018;215:877-893 pubmed 出版商
  19. Soncin I, Sheng J, Chen Q, Foo S, Duan K, Lum J, et al. The tumour microenvironment creates a niche for the self-renewal of tumour-promoting macrophages in colon adenoma. Nat Commun. 2018;9:582 pubmed 出版商
  20. Sasaki F, Koga T, Saeki K, Okuno T, Kazuno S, Fujimura T, et al. Biochemical and immunological characterization of a novel monoclonal antibody against mouse leukotriene B4 receptor 1. PLoS ONE. 2017;12:e0185133 pubmed 出版商
  21. Gillman A, Breshears L, Kistler C, Finnegan P, Torres V, Schlievert P, et al. Epidermal Growth Factor Receptor Signaling Enhances the Proinflammatory Effects of Staphylococcus aureus Gamma-Toxin on the Mucosa. Toxins (Basel). 2017;9: pubmed 出版商
  22. Hara T, Nakaoka H, Hayashi T, Mimura K, Hoshino D, Inoue M, et al. Control of metastatic niche formation by targeting APBA3/Mint3 in inflammatory monocytes. Proc Natl Acad Sci U S A. 2017;114:E4416-E4424 pubmed 出版商
  23. See P, Dutertre C, Chen J, Günther P, McGovern N, Irac S, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356: pubmed 出版商
  24. Villani A, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356: pubmed 出版商
  25. Sullivan A, Wang E, Farrell J, Whitaker P, Faulkner L, Peckham D, et al. ?-Lactam hypersensitivity involves expansion of circulating and skin-resident TH22 cells. J Allergy Clin Immunol. 2018;141:235-249.e8 pubmed 出版商
  26. Ryan P, Sumaria N, Holland C, Bradford C, Izotova N, Grandjean C, et al. Heterogeneous yet stable Vδ2(+) T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals. Proc Natl Acad Sci U S A. 2016;113:14378-14383 pubmed
  27. Monsuur H, Weijers E, Niessen F, Gefen A, Koolwijk P, Gibbs S, et al. Extensive Characterization and Comparison of Endothelial Cells Derived from Dermis and Adipose Tissue: Potential Use in Tissue Engineering. PLoS ONE. 2016;11:e0167056 pubmed 出版商
  28. Faivre V, Lukaszewicz A, Payen D. Downregulation of Blood Monocyte HLA-DR in ICU Patients Is Also Present in Bone Marrow Cells. PLoS ONE. 2016;11:e0164489 pubmed 出版商
  29. Sumatoh H, Teng K, Cheng Y, Newell E. Optimization of mass cytometry sample cryopreservation after staining. Cytometry A. 2017;91:48-61 pubmed 出版商
  30. Herbert B, Steinkamp H, Gaestel M, Kirkwood K. Mitogen-Activated Protein Kinase 2 Signaling Shapes Macrophage Plasticity in Aggregatibacter actinomycetemcomitans-Induced Bone Loss. Infect Immun. 2017;85: pubmed 出版商
  31. Ippagunta S, Gangwar R, Finkelstein D, Vogel P, Pelletier S, Gingras S, et al. Keratinocytes contribute intrinsically to psoriasis upon loss of Tnip1 function. Proc Natl Acad Sci U S A. 2016;113:E6162-E6171 pubmed
  32. Kaneda M, Messer K, Ralainirina N, Li H, Leem C, Gorjestani S, et al. PI3Kγ is a molecular switch that controls immune suppression. Nature. 2016;539:437-442 pubmed 出版商
  33. Mulder P, Morrison M, Verschuren L, Liang W, van Bockel J, Kooistra T, et al. Reduction of obesity-associated white adipose tissue inflammation by rosiglitazone is associated with reduced non-alcoholic fatty liver disease in LDLr-deficient mice. Sci Rep. 2016;6:31542 pubmed 出版商
  34. Chow K, Delconte R, Huntington N, Tarlinton D, Sutherland R, Zhan Y, et al. Innate Allorecognition Results in Rapid Accumulation of Monocyte-Derived Dendritic Cells. J Immunol. 2016;197:2000-8 pubmed 出版商
  35. Pinilla Vera M, Xiong Z, Zhao Y, Zhao J, Donahoe M, Barge S, et al. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling. PLoS ONE. 2016;11:e0159329 pubmed 出版商
  36. Gadd V, Patel P, Jose S, Horsfall L, Powell E, Irvine K. Altered Peripheral Blood Monocyte Phenotype and Function in Chronic Liver Disease: Implications for Hepatic Recruitment and Systemic Inflammation. PLoS ONE. 2016;11:e0157771 pubmed 出版商
  37. Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, et al. FAP Promotes Immunosuppression by Cancer-Associated Fibroblasts in the Tumor Microenvironment via STAT3-CCL2 Signaling. Cancer Res. 2016;76:4124-35 pubmed 出版商
  38. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  39. Wang X, Dai Z, Wu X, Wang K, Wang X. Distinct RNA transcriptome patterns are potentially associated with angiogenesis in Tie2-expressing monocytes. Gene. 2016;580:1-7 pubmed 出版商
  40. Wei L, Wang H, Yang F, Ding Q, Zhao J. Interleukin-17 potently increases non-small cell lung cancer growth. Mol Med Rep. 2016;13:1673-80 pubmed 出版商
  41. Zhang L, Zhang S, Yao J, Lowery F, Zhang Q, Huang W, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100-104 pubmed 出版商
  42. McCausland M, Juchnowski S, Zidar D, Kuritzkes D, Andrade A, Sieg S, et al. Altered Monocyte Phenotype in HIV-1 Infection Tends to Normalize with Integrase-Inhibitor-Based Antiretroviral Therapy. PLoS ONE. 2015;10:e0139474 pubmed 出版商
  43. Yawata N, Selva K, Liu Y, Tan K, Lee A, Siak J, et al. Dynamic change in natural killer cell type in the human ocular mucosa in situ as means of immune evasion by adenovirus infection. Mucosal Immunol. 2016;9:159-70 pubmed 出版商
  44. Mandl M, Schmitz S, Weber C, Hristov M. Characterization of the CD14++CD16+ monocyte population in human bone marrow. PLoS ONE. 2014;9:e112140 pubmed 出版商
  45. Rogacev K, Zawada A, Hundsdorfer J, Achenbach M, Held G, Fliser D, et al. Immunosuppression and monocyte subsets. Nephrol Dial Transplant. 2015;30:143-53 pubmed 出版商
  46. Arlehamn C, Seumois G, Gerasimova A, Huang C, Fu Z, Yue X, et al. Transcriptional profile of tuberculosis antigen-specific T cells reveals novel multifunctional features. J Immunol. 2014;193:2931-40 pubmed 出版商