这是一篇来自已证抗体库的有关人类 CCR7的综述,是根据180篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CCR7 抗体。
CCR7 同义词: BLR2; CC-CKR-7; CCR-7; CD197; CDw197; CMKBR7; EBI1

其他
  • 免疫组化-石蜡切片; 人类; 1:5000; 图 1b, 2, 5, 6
CCR7抗体(R&D Systems, 150503)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000 (图 1b, 2, 5, 6). Invest Ophthalmol Vis Sci (2019) ncbi
BioLegend
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 1:40
BioLegend CCR7抗体(Biolegend, 353204)被用于被用于流式细胞仪在人类样本上浓度为1:40. elife (2021) ncbi
小鼠 单克隆(G043H7)
  • 免疫细胞化学; 人类
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于免疫细胞化学在人类样本上. Aging Cell (2021) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 s2a
BioLegend CCR7抗体(BioLegend, 353207)被用于被用于流式细胞仪在人类样本上 (图 s2a). Cell Rep Med (2021) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 s3a
BioLegend CCR7抗体(BioLegend, 353208)被用于被用于流式细胞仪在人类样本上 (图 s3a). Immunity (2021) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 1:100
BioLegend CCR7抗体(Biolegend, 353218)被用于被用于流式细胞仪在人类样本上浓度为1:100. Science (2021) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 3a
BioLegend CCR7抗体(BioLegend, 353224)被用于被用于流式细胞仪在人类样本上 (图 3a). Cell (2021) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类
BioLegend CCR7抗体(Biolegend, 353236)被用于被用于流式细胞仪在人类样本上. elife (2020) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 3a-3b
BioLegend CCR7抗体(BioLegend, 353220)被用于被用于流式细胞仪在人类样本上 (图 3a-3b). elife (2020) ncbi
小鼠 单克隆(G043H7)
  • 免疫印迹; 人类; 1:100; 图 3a
BioLegend CCR7抗体(Biolegend, 353216)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3a). Science (2020) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 2s5a
BioLegend CCR7抗体(Biolegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 2s5a). elife (2020) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 3:50; 图 1c
BioLegend CCR7抗体(Biolegend, G043H7)被用于被用于流式细胞仪在人类样本上浓度为3:50 (图 1c). Science (2020) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 1:100; 图 s20c
BioLegend CCR7抗体(Biolegend, 353204)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s20c). Nat Commun (2020) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 7c
BioLegend CCR7抗体(BioLegend, 353220)被用于被用于流式细胞仪在人类样本上 (图 7c). Cell Rep (2019) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 4d
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 4d). J Exp Med (2020) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 s5e
BioLegend CCR7抗体(Biolegend, 353225)被用于被用于流式细胞仪在人类样本上 (图 s5e). Cell (2019) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 6h
BioLegend CCR7抗体(Biolegend, 353207)被用于被用于流式细胞仪在人类样本上 (图 6h). Oncoimmunology (2019) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 1d
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 1d). J Immunol (2019) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 1a
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 1a). Clin Exp Immunol (2019) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 1:50; 图 3f
BioLegend CCR7抗体(Biolegend, 353220)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 3f). elife (2019) ncbi
小鼠 单克隆(G043H7)
  • 其他; 人类; 图 4a
BioLegend CCR7抗体(BioLegend, 353247)被用于被用于其他在人类样本上 (图 4a). Cell (2019) ncbi
小鼠 单克隆(G043H7)
  • mass cytometry; 人类; 图 2b
BioLegend CCR7抗体(Biolegend, 353202)被用于被用于mass cytometry在人类样本上 (图 2b). Cell (2019) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 s1a-b
BioLegend CCR7抗体(BioLegend, 353204)被用于被用于流式细胞仪在人类样本上 (图 s1a-b). Immunity (2019) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 1:33; 图 6c
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上浓度为1:33 (图 6c). Gastroenterology (2019) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 1f
BioLegend CCR7抗体(BioLegend, 353226)被用于被用于流式细胞仪在人类样本上 (图 1f). Cell (2019) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 3a
BioLegend CCR7抗体(Biolegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 3a). Cell Stem Cell (2019) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 9a
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 9a). J Exp Med (2019) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 s2b
BioLegend CCR7抗体(Biolegend, 353204)被用于被用于流式细胞仪在人类样本上 (图 s2b). Cell (2019) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 2a
BioLegend CCR7抗体(BioLegend, 353212)被用于被用于流式细胞仪在人类样本上 (图 2a). Cell Rep (2018) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 s5a
BioLegend CCR7抗体(Biolegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 s5a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 s2d
BioLegend CCR7抗体(BioLegend, 353226)被用于被用于流式细胞仪在人类样本上 (图 s2d). Nat Immunol (2018) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 s1d
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 s1d). J Clin Invest (2018) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 5a
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 5a). Mol Ther Nucleic Acids (2018) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 5a
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 5a). J Exp Med (2018) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 s2e
BioLegend CCR7抗体(BioLegend, 353233)被用于被用于流式细胞仪在人类样本上 (图 s2e). Cell (2018) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 1d
BioLegend CCR7抗体(Biolegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 1d). J Immunol (2018) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 3a
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 3a). J Virol (2018) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 4b
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 4b). J Clin Invest (2017) ncbi
小鼠 单克隆(G043H7)
  • mass cytometry; 人类; 图 2a
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于mass cytometry在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; African green monkey; 图 s4
BioLegend CCR7抗体(biolegend, G043H7)被用于被用于流式细胞仪在African green monkey样本上 (图 s4). Nature (2017) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 1:50; 图 s1d
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 s1d). Nat Commun (2017) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 1:100; 图 s2
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s2). JCI Insight (2017) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类
BioLegend CCR7抗体(Biolegend, G043H7)被用于被用于流式细胞仪在人类样本上. Sci Rep (2017) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 猕猴; 图 s8a
BioLegend CCR7抗体(Biolegend, G043H7)被用于被用于流式细胞仪在猕猴样本上 (图 s8a). PLoS Pathog (2016) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 s1a
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 s1a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类
BioLegend CCR7抗体(Biolegend, G043H7)被用于被用于流式细胞仪在人类样本上. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 2a
BioLegend CCR7抗体(Biolegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 s8
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 s8). Science (2016) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 1h
BioLegend CCR7抗体(BioLegend, G043 H7)被用于被用于流式细胞仪在人类样本上 (图 1h). J Clin Invest (2016) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 2c
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 2c). J Clin Invest (2016) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 2a
BioLegend CCR7抗体(Biolegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 2a). PLoS Pathog (2016) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 猕猴
BioLegend CCR7抗体(BioLegend, 353208)被用于被用于流式细胞仪在猕猴样本上. Nat Med (2016) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 表 1
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (表 1). J Immunol (2016) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 1
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 1). Int Immunol (2016) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 s4
BioLegend CCR7抗体(biolegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 s4). J Immunol (2016) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 3a
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 3a). PLoS ONE (2015) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 3a
BioLegend CCR7抗体(Biolegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 3a). J Immunol (2015) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 4c
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 4c). J Allergy Clin Immunol (2016) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 4
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 4). J Hematol Oncol (2015) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 1
BioLegend CCR7抗体(Biolegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 1). J Neuroimmunol (2015) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 1
BioLegend CCR7抗体(Biolegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 1). J Infect Dis (2015) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 2c
BioLegend CCR7抗体(BioLegend, G04H7)被用于被用于流式细胞仪在人类样本上 (图 2c). Blood (2014) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类
BioLegend CCR7抗体(Biolegend, G043H7)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类
BioLegend CCR7抗体(Biolegend, G043H7)被用于被用于流式细胞仪在人类样本上. J Virol (2015) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 表 1
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (表 1). J Gen Virol (2015) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 s1
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 s1). J Immunol (2014) ncbi
小鼠 单克隆(G043H7)
  • 流式细胞仪; 人类; 图 2b
BioLegend CCR7抗体(BioLegend, G043H7)被用于被用于流式细胞仪在人类样本上 (图 2b). J Leukoc Biol (2014) ncbi
赛默飞世尔
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 2e
赛默飞世尔 CCR7抗体(eBioscience, 3D12)被用于被用于流式细胞仪在人类样本上 (图 2e). Cell (2020) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 4b
赛默飞世尔 CCR7抗体(eBioscience, 3D12)被用于被用于流式细胞仪在人类样本上 (图 4b). BMC Immunol (2020) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 小鼠; 1:500; 图 4f, 5e, 5g
赛默飞世尔 CCR7抗体(Thermo Fisher Scientific, 47-1979-42)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 4f, 5e, 5g). elife (2020) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 2b
赛默飞世尔 CCR7抗体(eBioscience, 3D12)被用于被用于流式细胞仪在人类样本上 (图 2b). Front Immunol (2019) ncbi
大鼠 单克隆(3D12)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3c, 3d
赛默飞世尔 CCR7抗体(eBioscience, 14-1979)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3c, 3d). J Histochem Cytochem (2019) ncbi
大鼠 单克隆(4B12)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 CCR7抗体(eBioscience, 4B12)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Front Immunol (2018) ncbi
大鼠 单克隆(4B12)
  • 流式细胞仪; 小鼠; 1:200; 图 s5a
赛默飞世尔 CCR7抗体(Affymetrix/eBioscience, 4B12)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5a). J Clin Invest (2018) ncbi
大鼠 单克隆(4B12)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 CCR7抗体(eBiosciences, 4B12)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Cell Biol (2017) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 3a
赛默飞世尔 CCR7抗体(eBioscience, 3D12)被用于被用于流式细胞仪在人类样本上 (图 3a). J Virol (2017) ncbi
大鼠 单克隆(4B12)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 CCR7抗体(eBioscience, 4B12)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Immunol (2017) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔 CCR7抗体(eBiosciences, 3D12)被用于被用于流式细胞仪在人类样本上 (图 3b). J Immunol (2017) ncbi
大鼠 单克隆(4B12)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 CCR7抗体(eBioscience, 4B12)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 s7
赛默飞世尔 CCR7抗体(eBiosciences, 3D12)被用于被用于流式细胞仪在人类样本上 (图 s7). PLoS Pathog (2016) ncbi
大鼠 单克隆(4B12)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 CCR7抗体(eBiosciences, 4B12)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Sci Rep (2016) ncbi
大鼠 单克隆(4B12)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔 CCR7抗体(eBiosciences, 4B12)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(4B12)
  • 流式细胞仪; 小鼠; 1:100; 图 5b
赛默飞世尔 CCR7抗体(eBiosciences, 4B12)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5b). Nat Commun (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 4b
赛默飞世尔 CCR7抗体(eBioscience, 3D12)被用于被用于流式细胞仪在人类样本上 (图 4b). PLoS Pathog (2016) ncbi
大鼠 单克隆(4B12)
  • 抑制或激活实验; 小鼠; 图 6b
赛默飞世尔 CCR7抗体(eBiosciences, 4B12)被用于被用于抑制或激活实验在小鼠样本上 (图 6b). Diabetes (2016) ncbi
大鼠 单克隆(4B12)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 CCR7抗体(eBioscience, 4B12)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Immunol (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; African green monkey; 图 1
赛默飞世尔 CCR7抗体(eBioscience, 3D12)被用于被用于流式细胞仪在African green monkey样本上 (图 1). J Immunol (2016) ncbi
大鼠 单克隆(4B12)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔 CCR7抗体(eBioscience, 4B12)被用于被用于免疫印迹在人类样本上 (图 3a). Science (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 2.b,c
赛默飞世尔 CCR7抗体(eBioscience, 3D12)被用于被用于流式细胞仪在人类样本上 (图 2.b,c). Vaccine (2015) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CCR7抗体(eBioscience, 3D12)被用于被用于流式细胞仪在人类样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 CCR7抗体(eBioscience, 3D12)被用于被用于流式细胞仪在人类样本上 (图 4). Cancer Immunol Res (2015) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 6
赛默飞世尔 CCR7抗体(eBioscience, 11-1979-71)被用于被用于流式细胞仪在人类样本上 (图 6). Biomed Res Int (2015) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类
赛默飞世尔 CCR7抗体(eBioscience, 3D12)被用于被用于流式细胞仪在人类样本上. AIDS (2015) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类
赛默飞世尔 CCR7抗体(eBioscience, 3D12)被用于被用于流式细胞仪在人类样本上. J Allergy Clin Immunol (2015) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类
赛默飞世尔 CCR7抗体(eBioscience, 3D12)被用于被用于流式细胞仪在人类样本上. Leukemia (2015) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; African green monkey; 图 2
赛默飞世尔 CCR7抗体(ebioscience, 3D12)被用于被用于流式细胞仪在African green monkey样本上 (图 2). PLoS Pathog (2014) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类
赛默飞世尔 CCR7抗体(eBioscience, 3D12)被用于被用于流式细胞仪在人类样本上. Mol Immunol (2014) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CCR7抗体(eBioscience, 3D12)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS Pathog (2014) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; African green monkey; 1:50; 图 s6
赛默飞世尔 CCR7抗体(eBioscience, 3D12)被用于被用于流式细胞仪在African green monkey样本上浓度为1:50 (图 s6). Nat Med (2013) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 猕猴
赛默飞世尔 CCR7抗体(eBioscience, 3D12)被用于被用于流式细胞仪在猕猴样本上. PLoS Pathog (2013) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CCR7抗体(eBioscience, 3D12)被用于被用于流式细胞仪在人类样本上 (图 2). Immunobiology (2011) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(Y59)
  • 免疫组化-石蜡切片; 人类; 图 6a
艾博抗(上海)贸易有限公司 CCR7抗体(Abcam, 32527)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a). Sci Rep (2018) ncbi
domestic rabbit 单克隆(Y59)
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司 CCR7抗体(Abcam, Y59)被用于被用于免疫印迹在人类样本上 (图 6a). Clin Transl Immunology (2016) ncbi
domestic rabbit 单克隆(Y59)
  • 免疫细胞化学; 大鼠; 1:250; 图 1
艾博抗(上海)贸易有限公司 CCR7抗体(Abcam, ab32527)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250 (图 1). J Neurosci Res (2015) ncbi
domestic rabbit 单克隆(Y59)
  • 免疫组化-石蜡切片; 人类; 1:200
艾博抗(上海)贸易有限公司 CCR7抗体(Abcam, ab32527)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Oncol Lett (2013) ncbi
domestic rabbit 单克隆(Y59)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 CCR7抗体(Abcam, ab32527)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000. J Tissue Eng Regen Med (2014) ncbi
Novus Biologicals
domestic rabbit 单克隆(SR36-04)
  • 免疫组化-石蜡切片; 小鼠; 图 5d
Novus Biologicals CCR7抗体(Novus Biologicals, NBP2-67324)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5d). Nutrients (2019) ncbi
domestic goat 多克隆(2443B)
  • 免疫组化-冰冻切片; 小鼠; 图 5b
Novus Biologicals CCR7抗体(Novusbio, NB100-712)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5b). EMBO Mol Med (2017) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D3A1)
  • 免疫印迹; 小鼠; 1:1000; 图 s13e
赛信通(上海)生物试剂有限公司 CCR7抗体(Cell Signaling, 11888)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s13e). Mol Psychiatry (2018) ncbi
domestic rabbit 单克隆(D3A1)
  • 免疫印迹; 人类; 图 2k
赛信通(上海)生物试剂有限公司 CCR7抗体(Cell Signaling, 11888)被用于被用于免疫印迹在人类样本上 (图 2k). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D3A1)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 CCR7抗体(ell Signaling Technology, 11888)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D3A1)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 CCR7抗体(Cell Signalling, 11888)被用于被用于免疫印迹在人类样本上 (图 6). Int J Mol Med (2015) ncbi
碧迪BD
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 1:100; 图 2i
碧迪BD CCR7抗体(BD Biosciences, 561271)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2i). Nat Med (2021) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CCR7抗体(BD Biosciences, 3D12)被用于被用于流式细胞仪在人类样本上 (图 s1). elife (2020) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类
碧迪BD CCR7抗体(BD Biosciences, 557648)被用于被用于流式细胞仪在人类样本上. J Clin Invest (2020) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 1:20; 图 2b
碧迪BD CCR7抗体(BD Bioscience, 562381)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 2b). elife (2020) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 e4d
碧迪BD CCR7抗体(BD, 150503)被用于被用于流式细胞仪在人类样本上 (图 e4d). Nature (2019) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 2b
碧迪BD CCR7抗体(BD Biosciences, 150503)被用于被用于流式细胞仪在人类样本上 (图 2b). JCI Insight (2019) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CCR7抗体(BD Biosciences, 150503)被用于被用于流式细胞仪在人类样本上 (图 1b). Eur J Immunol (2019) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CCR7抗体(BD Biosciences, 552176)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Clin Invest (2019) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 1c
碧迪BD CCR7抗体(BD Biosciences, 150503)被用于被用于流式细胞仪在人类样本上 (图 1c). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 4a
碧迪BD CCR7抗体(BD, 3D12)被用于被用于流式细胞仪在人类样本上 (图 4a). J Virol (2019) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 猕猴; 图 1f
碧迪BD CCR7抗体(BD Biosciences, 3D12)被用于被用于流式细胞仪在猕猴样本上 (图 1f). J Virol (2019) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 表 1
碧迪BD CCR7抗体(BD Biosciences, 557648)被用于被用于流式细胞仪在人类样本上 (表 1). J Clin Invest (2018) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CCR7抗体(BD, 150513)被用于被用于流式细胞仪在人类样本上 (图 5a). Cancer Res (2018) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 1a
碧迪BD CCR7抗体(BD Bioscience, 150503)被用于被用于流式细胞仪在人类样本上 (图 1a). Biol Blood Marrow Transplant (2018) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 1e
碧迪BD CCR7抗体(BD Pharmingen, 3D12)被用于被用于流式细胞仪在人类样本上 (图 1e). Int Immunopharmacol (2017) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 s1b
碧迪BD CCR7抗体(BD Biosciences, 3D12)被用于被用于流式细胞仪在人类样本上 (图 s1b). PLoS ONE (2017) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 st12
碧迪BD CCR7抗体(BD, 1050503)被用于被用于流式细胞仪在人类样本上 (图 st12). Science (2017) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 1
碧迪BD CCR7抗体(BD Biosciences, 552176)被用于被用于流式细胞仪在人类样本上 (图 1). J Cell Physiol (2017) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 s1b
碧迪BD CCR7抗体(BD Biosciences, 3D12)被用于被用于流式细胞仪在人类样本上 (图 s1b). Immun Ageing (2017) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 3e
碧迪BD CCR7抗体(BD Biosciences, 561271)被用于被用于流式细胞仪在人类样本上 (图 3e). Oncoimmunology (2016) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 5b
碧迪BD CCR7抗体(BD Biosciences, 150503)被用于被用于流式细胞仪在人类样本上 (图 5b). Clin Exp Immunol (2017) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类
碧迪BD CCR7抗体(BD Bioscience, 3D12)被用于被用于流式细胞仪在人类样本上. Sci Rep (2017) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 表 3
碧迪BD CCR7抗体(BD Pharmingen, 3D12)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 1
碧迪BD CCR7抗体(BD Biosciences, 3D12)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol Res (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 s1c
碧迪BD CCR7抗体(BD Pharmingen, 3D12)被用于被用于流式细胞仪在人类样本上 (图 s1c). J Immunol (2017) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 3g
碧迪BD CCR7抗体(BD Pharmingen, 150503)被用于被用于流式细胞仪在人类样本上 (图 3g). J Virol (2017) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 表 3
碧迪BD CCR7抗体(BD Pharmingen, 150503)被用于被用于流式细胞仪在人类样本上 (表 3). Brain Behav (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 2b
  • 流式细胞仪; 猕猴; 图 7b
碧迪BD CCR7抗体(BD, 557648)被用于被用于流式细胞仪在人类样本上 (图 2b) 和 被用于流式细胞仪在猕猴样本上 (图 7b). PLoS Pathog (2016) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 s3b
碧迪BD CCR7抗体(BD Biosciences, 150503)被用于被用于流式细胞仪在人类样本上 (图 s3b). Oncotarget (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 猕猴; 图 4b
碧迪BD CCR7抗体(BD Biosciences, 3D12)被用于被用于流式细胞仪在猕猴样本上 (图 4b). J Virol (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 e2d
碧迪BD CCR7抗体(BD, 3D12)被用于被用于流式细胞仪在人类样本上 (图 e2d). J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 表 1
碧迪BD CCR7抗体(BD Pharmigen, 557648)被用于被用于流式细胞仪在人类样本上 (表 1). Oncoimmunology (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 3
碧迪BD CCR7抗体(BD, 557648)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS Pathog (2016) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 8
碧迪BD CCR7抗体(BD Biosciences, 562555)被用于被用于流式细胞仪在人类样本上 (图 8). Nat Immunol (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 2
碧迪BD CCR7抗体(BD Bioscience, 3D12)被用于被用于流式细胞仪在人类样本上 (图 2). J Clin Invest (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 小鼠; 图 st1
碧迪BD CCR7抗体(BD Pharmingen, 3D12)被用于被用于流式细胞仪在小鼠样本上 (图 st1). J Clin Invest (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 3d
碧迪BD CCR7抗体(BD Biosciences, 3D12)被用于被用于流式细胞仪在人类样本上 (图 3d). Cytotherapy (2016) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 1
碧迪BD CCR7抗体(BD Biosciences, 150503)被用于被用于流式细胞仪在人类样本上 (图 1). Sci Rep (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; African green monkey; 图 s1
碧迪BD CCR7抗体(BD, 3D12)被用于被用于流式细胞仪在African green monkey样本上 (图 s1). J Med Primatol (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 s10
碧迪BD CCR7抗体(BD Biosciences, 3D12)被用于被用于流式细胞仪在人类样本上 (图 s10). JCI Insight (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类
碧迪BD CCR7抗体(BD Biosciences, 3D12)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CCR7抗体(BD Pharmingen, 3D12)被用于被用于流式细胞仪在人类样本上 (图 s1). Cell Rep (2016) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 5
碧迪BD CCR7抗体(BD Biosciences, 150503)被用于被用于流式细胞仪在人类样本上 (图 5). PLoS ONE (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 st1
碧迪BD CCR7抗体(BD, 552176)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 2
碧迪BD CCR7抗体(BD Biosciences, 3D12)被用于被用于流式细胞仪在人类样本上 (图 2). J Leukoc Biol (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 7c
碧迪BD CCR7抗体(BD Bioscience, 3D12)被用于被用于流式细胞仪在人类样本上 (图 7c). PLoS ONE (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 1d
碧迪BD CCR7抗体(BD, 3D12)被用于被用于流式细胞仪在人类样本上 (图 1d). PLoS Pathog (2016) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 5a
碧迪BD CCR7抗体(BD Pharmingen, 3D12)被用于被用于流式细胞仪在人类样本上 (图 5a). PLoS ONE (2016) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CCR7抗体(BD Biosciences, 150503)被用于被用于流式细胞仪在人类样本上 (图 3a). PLoS ONE (2015) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 猕猴; 图 s3
碧迪BD CCR7抗体(BD Biosciences, 3D12)被用于被用于流式细胞仪在猕猴样本上 (图 s3). PLoS ONE (2015) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 s3
碧迪BD CCR7抗体(BD Biosciences, 150503)被用于被用于流式细胞仪在人类样本上 (图 s3). Sci Transl Med (2015) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 1:20
碧迪BD CCR7抗体(BD Biosciences, 557648)被用于被用于流式细胞仪在人类样本上浓度为1:20. Nat Commun (2015) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类
碧迪BD CCR7抗体(Becton Dickinson, 3D12)被用于被用于流式细胞仪在人类样本上. Biol Blood Marrow Transplant (2015) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 猕猴; 图 4
碧迪BD CCR7抗体(BD Biosciences, 3D12)被用于被用于流式细胞仪在猕猴样本上 (图 4). J Virol (2015) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 2a
碧迪BD CCR7抗体(BD Pharmingen, 3D12)被用于被用于流式细胞仪在人类样本上 (图 2a). Retrovirology (2015) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 1:7700; 图 1
碧迪BD CCR7抗体(BD, 560765)被用于被用于流式细胞仪在人类样本上浓度为1:7700 (图 1). Clin Vaccine Immunol (2015) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 1b
碧迪BD CCR7抗体(BD Pharmingen, 150503)被用于被用于流式细胞仪在人类样本上 (图 1b). J Immunol Res (2015) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类
碧迪BD CCR7抗体(BD Biosciences, 150503)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 3
碧迪BD CCR7抗体(BD Biosciences, 3D12)被用于被用于流式细胞仪在人类样本上 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 表 s4
碧迪BD CCR7抗体(BD Biosciences, 3D12)被用于被用于流式细胞仪在人类样本上 (表 s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 3
碧迪BD CCR7抗体(BD Pharmingen, 150503)被用于被用于流式细胞仪在人类样本上 (图 3). J Immunol (2015) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; pigs
碧迪BD CCR7抗体(BD Biosciences, 3D12)被用于被用于流式细胞仪在pigs 样本上. Mol Immunol (2015) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类
碧迪BD CCR7抗体(BD, 150503)被用于被用于流式细胞仪在人类样本上. Nat Commun (2014) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类
碧迪BD CCR7抗体(BD Biosciences, 3D12)被用于被用于流式细胞仪在人类样本上. Cytotherapy (2015) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类
碧迪BD CCR7抗体(BD Biosciences, 3D12)被用于被用于流式细胞仪在人类样本上. J Immunol (2014) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类
碧迪BD CCR7抗体(BD Biosciences, 150503)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类
碧迪BD CCR7抗体(BD Bioscience, 150503)被用于被用于流式细胞仪在人类样本上. Immunology (2015) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类
碧迪BD CCR7抗体(BD Bioscience, 3D12)被用于被用于流式细胞仪在人类样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类; 图 5
碧迪BD CCR7抗体(Pharmingen, 3D12)被用于被用于流式细胞仪在人类样本上 (图 5). Immunology (2015) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类
碧迪BD CCR7抗体(BD Pharmingen, 150503)被用于被用于流式细胞仪在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类
碧迪BD CCR7抗体(BD Bioscience, clone 150503)被用于被用于流式细胞仪在人类样本上. Mol Ther (2014) ncbi
小鼠 单克隆(150503)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CCR7抗体(BD Biosciences, 150 503)被用于被用于流式细胞仪在人类样本上 (图 3a). J Infect Dis (2014) ncbi
大鼠 单克隆(3D12)
  • 流式细胞仪; 人类
碧迪BD CCR7抗体(BD Pharmingen, 552176)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
文章列表
  1. Spiegel J, Patel S, Muffly L, Hossain N, Oak J, Baird J, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 2021;27:1419-1431 pubmed 出版商
  2. Ramos M, Tian L, de Ruiter E, Song C, Paucarmayta A, Singh A, et al. Cancer immunotherapy by NC410, a LAIR-2 Fc protein blocking human LAIR-collagen interaction. elife. 2021;10: pubmed 出版商
  3. Martínez Zamudio R, Dewald H, Vasilopoulos T, Gittens Williams L, Fitzgerald Bocarsly P, Herbig U. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell. 2021;20:e13344 pubmed 出版商
  4. Mandolesi M, Sheward D, Hanke L, Ma J, Pushparaj P, Perez Vidakovics L, et al. SARS-CoV-2 protein subunit vaccination of mice and rhesus macaques elicits potent and durable neutralizing antibody responses. Cell Rep Med. 2021;2:100252 pubmed 出版商
  5. Szabo P, Dogra P, Gray J, Wells S, Connors T, Weisberg S, et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity. 2021;54:797-814.e6 pubmed 出版商
  6. Wang Q, Gao H, Clark K, Mugisha C, Davis K, Tang J, et al. CARD8 is an inflammasome sensor for HIV-1 protease activity. Science. 2021;371: pubmed 出版商
  7. Rodda L, Netland J, Shehata L, Pruner K, Morawski P, Thouvenel C, et al. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021;184:169-183.e17 pubmed 出版商
  8. Kasatskaya S, Ladell K, Egorov E, Miners K, Davydov A, Metsger M, et al. Functionally specialized human CD4+ T-cell subsets express physicochemically distinct TCRs. elife. 2020;9: pubmed 出版商
  9. Neidleman J, Luo X, Frouard J, Xie G, Hsiao F, Ma T, et al. Phenotypic analysis of the unstimulated in vivo HIV CD4 T cell reservoir. elife. 2020;9: pubmed 出版商
  10. Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita A, et al. Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells. elife. 2020;9: pubmed 出版商
  11. Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez S, Dan J, et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science. 2020;370:89-94 pubmed 出版商
  12. Tan E, Hopkins R, Lim C, Jamuar S, Ong C, Thoon K, et al. Dominant-negative NFKBIA mutation promotes IL-1β production causing hepatic disease with severe immunodeficiency. J Clin Invest. 2020;130:5817-5832 pubmed 出版商
  13. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  14. Bennstein S, Weinhold S, Manser A, Scherenschlich N, Noll A, Raba K, et al. Umbilical cord blood-derived ILC1-like cells constitute a novel precursor for mature KIR+NKG2A- NK cells. elife. 2020;9: pubmed 出版商
  15. Ma T, Luo X, George A, Mukherjee G, Sen N, Spitzer T, et al. HIV efficiently infects T cells from the endometrium and remodels them to promote systemic viral spread. elife. 2020;9: pubmed 出版商
  16. Liu G, Yu Y, Feng F, Zhu P, Zhang H, Zhang D, et al. Human CD8+CD28- T suppressor cells expanded by common gamma chain (γc) cytokines retain steady allospecific suppressive capacity in vivo. BMC Immunol. 2020;21:23 pubmed 出版商
  17. Wei J, Mattapallil M, Horai R, Jittayasothorn Y, Modi A, Sen H, et al. A novel role for lipoxin A4 in driving a lymph node-eye axis that controls autoimmunity to the neuroretina. elife. 2020;9: pubmed 出版商
  18. Park J, Botting R, Domínguez Conde C, Popescu D, Lavaert M, Kunz D, et al. A cell atlas of human thymic development defines T cell repertoire formation. Science. 2020;367: pubmed 出版商
  19. Mosaheb M, Dobrikova E, Brown M, Yang Y, Cable J, Okada H, et al. Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nat Commun. 2020;11:524 pubmed 出版商
  20. Tian Y, Seumois G, De Oliveira Pinto L, Mateus J, Herrera de la Mata S, Kim C, et al. Molecular Signatures of Dengue Virus-Specific IL-10/IFN-γ Co-producing CD4 T Cells and Their Association with Dengue Disease. Cell Rep. 2019;29:4482-4495.e4 pubmed 出版商
  21. Chen Y, Gomes T, Hardman C, Vieira Braga F, Gutowska Owsiak D, Salimi M, et al. Re-evaluation of human BDCA-2+ DC during acute sterile skin inflammation. J Exp Med. 2020;217: pubmed 出版商
  22. Lynn R, Weber E, Sotillo E, Gennert D, Xu P, Good Z, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019;576:293-300 pubmed 出版商
  23. Zhang Q, He Y, Luo N, Patel S, Han Y, Gao R, et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell. 2019;179:829-845.e20 pubmed 出版商
  24. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  25. van Ipenburg J, de Waard N, Naus N, Jager M, Paridaens D, Verdijk R. Chemokine Receptor Expression Pattern Correlates to Progression of Conjunctival Melanocytic Lesions. Invest Ophthalmol Vis Sci. 2019;60:2950-2957 pubmed 出版商
  26. Kim A, Han C, Driver I, Olow A, Sewell A, Zhang Z, et al. LILRB1 Blockade Enhances Bispecific T Cell Engager Antibody-Induced Tumor Cell Killing by Effector CD8+ T Cells. J Immunol. 2019;203:1076-1087 pubmed 出版商
  27. Lau E, Carroll E, Callender L, Hood G, Berryman V, Pattrick M, et al. Type 2 diabetes is associated with the accumulation of senescent T cells. Clin Exp Immunol. 2019;197:205-213 pubmed 出版商
  28. Burel J, Pomaznoy M, Lindestam Arlehamn C, Weiskopf D, da Silva Antunes R, Jung Y, et al. Circulating T cell-monocyte complexes are markers of immune perturbations. elife. 2019;8: pubmed 出版商
  29. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck W, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;: pubmed 出版商
  30. Swaims Kohlmeier A, Haddad L, Li Z, Brookmeyer K, Baker J, Widom C, et al. Chronic immune barrier dysregulation among women with a history of violence victimization. JCI Insight. 2019;4: pubmed 出版商
  31. Lim S, Kim J, Jeon S, Shin M, Kwon J, Kim T, et al. Defective Localization With Impaired Tumor Cytotoxicity Contributes to the Immune Escape of NK Cells in Pancreatic Cancer Patients. Front Immunol. 2019;10:496 pubmed 出版商
  32. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  33. Wu J, Ma S, Sandhoff R, Ming Y, Hotz Wagenblatt A, Timmerman V, et al. Loss of Neurological Disease HSAN-I-Associated Gene SPTLC2 Impairs CD8+ T Cell Responses to Infection by Inhibiting T Cell Metabolic Fitness. Immunity. 2019;50:1218-1231.e5 pubmed 出版商
  34. Remmerswaal E, Hombrink P, Nota B, Pircher H, ten Berge I, van Lier R, et al. Expression of IL-7Rα and KLRG1 defines functionally distinct CD8+ T-cell populations in humans. Eur J Immunol. 2019;49:694-708 pubmed 出版商
  35. Finney O, Brakke H, Rawlings Rhea S, Hicks R, Doolittle D, López M, et al. CD19 CAR T cell product and disease attributes predict leukemia remission durability. J Clin Invest. 2019;129:2123-2132 pubmed 出版商
  36. Kaya P, Lee S, Lee Y, Kwon S, Yang H, Lee H, et al. Curcumae Radix Extract Decreases Mammary Tumor-Derived Lung Metastasis via Suppression of C-C Chemokine Receptor Type 7 Expression. Nutrients. 2019;11: pubmed 出版商
  37. Karimzadeh H, Kiraithe M, Oberhardt V, Salimi Alizei E, Bockmann J, Schulze zur Wiesch J, et al. Mutations in Hepatitis D Virus Allow It to Escape Detection by CD8+ T Cells and Evolve at the Population Level. Gastroenterology. 2019;156:1820-1833 pubmed 出版商
  38. Mayassi T, Ladell K, Gudjonson H, McLaren J, Shaw D, Tran M, et al. Chronic Inflammation Permanently Reshapes Tissue-Resident Immunity in Celiac Disease. Cell. 2019;176:967-981.e19 pubmed 出版商
  39. Montel Hagen A, Seet C, Li S, Chick B, Zhu Y, Chang P, et al. Organoid-Induced Differentiation of Conventional T Cells from Human Pluripotent Stem Cells. Cell Stem Cell. 2019;24:376-389.e8 pubmed 出版商
  40. Faliti C, Gualtierotti R, Rottoli E, Gerosa M, Perruzza L, Romagnani A, et al. P2X7 receptor restrains pathogenic Tfh cell generation in systemic lupus erythematosus. J Exp Med. 2019;216:317-336 pubmed 出版商
  41. Jiao X, Shu G, Liu H, Zhang Q, Ma Z, Ren C, et al. The Diagnostic Value of Chemokine/Chemokine Receptor Pairs in Hepatocellular Carcinoma and Colorectal Liver Metastasis. J Histochem Cytochem. 2019;67:299-308 pubmed 出版商
  42. Collins P, Cella M, Porter S, Li S, Gurewitz G, Hong H, et al. Gene Regulatory Programs Conferring Phenotypic Identities to Human NK Cells. Cell. 2019;176:348-360.e12 pubmed 出版商
  43. Ha D, Tanaka A, Kibayashi T, Tanemura A, Sugiyama D, Wing J, et al. Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. Proc Natl Acad Sci U S A. 2019;116:609-618 pubmed 出版商
  44. Amelio P, Portevin D, Hella J, Reither K, Kamwela L, Lweno O, et al. HIV Infection Functionally Impairs Mycobacterium tuberculosis-Specific CD4 and CD8 T-Cell Responses. J Virol. 2019;93: pubmed 出版商
  45. Wang M, Tang C, Xing R, Liu X, Han X, Liu Y, et al. WDR81 regulates adult hippocampal neurogenesis through endosomal SARA-TGFβ signaling. Mol Psychiatry. 2018;: pubmed 出版商
  46. Kim C, Hu B, Jadhav R, Jin J, Zhang H, Cavanagh M, et al. Activation of miR-21-Regulated Pathways in Immune Aging Selects against Signatures Characteristic of Memory T Cells. Cell Rep. 2018;25:2148-2162.e5 pubmed 出版商
  47. Dias J, Boulouis C, Gorin J, van den Biggelaar R, Lal K, Gibbs A, et al. The CD4-CD8- MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8+ MAIT cell pool. Proc Natl Acad Sci U S A. 2018;115:E11513-E11522 pubmed 出版商
  48. Hoang T, Harper J, Pino M, Wang H, Micci L, King C, et al. Bone Marrow-Derived CD4+ T Cells Are Depleted in Simian Immunodeficiency Virus-Infected Macaques and Contribute to the Size of the Replication-Competent Reservoir. J Virol. 2019;93: pubmed 出版商
  49. Kong X, Martinez Barricarte R, Kennedy J, Mele F, Lazarov T, Deenick E, et al. Disruption of an antimycobacterial circuit between dendritic and helper T cells in human SPPL2a deficiency. Nat Immunol. 2018;19:973-985 pubmed 出版商
  50. D Addio F, Vergani A, Potena L, Maestroni A, Usuelli V, Ben Nasr M, et al. P2X7R mutation disrupts the NLRP3-mediated Th program and predicts poor cardiac allograft outcomes. J Clin Invest. 2018;128:3490-3503 pubmed 出版商
  51. Jung I, Kim Y, Yu H, Lee M, Kim S, Lee J. CRISPR/Cas9-Mediated Knockout of DGK Improves Antitumor Activities of Human T Cells. Cancer Res. 2018;78:4692-4703 pubmed 出版商
  52. Moysi E, Pallikkuth S, de Armas L, Gonzalez L, Ambrozak D, George V, et al. Altered immune cell follicular dynamics in HIV infection following influenza vaccination. J Clin Invest. 2018;128:3171-3185 pubmed 出版商
  53. Wang B, Zuo J, Kang W, Wei Q, Li J, Wang C, et al. Generation of Hutat2:Fc Knockin Primary Human Monocytes Using CRISPR/Cas9. Mol Ther Nucleic Acids. 2018;11:130-141 pubmed 出版商
  54. Georgiev H, Ravens I, Papadogianni G, Halle S, Malissen B, Loots G, et al. Shared and Unique Features Distinguishing Follicular T Helper and Regulatory Cells of Peripheral Lymph Node and Peyer's Patches. Front Immunol. 2018;9:714 pubmed 出版商
  55. Basu A, Munir S, Mulaw M, Singh K, Crisan D, Sindrilaru A, et al. A Novel S100A8/A9 Induced Fingerprint of Mesenchymal Stem Cells associated with Enhanced Wound Healing. Sci Rep. 2018;8:6205 pubmed 出版商
  56. Hailemichael Y, Woods A, Fu T, He Q, Nielsen M, Hasan F, et al. Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. J Clin Invest. 2018;128:1338-1354 pubmed 出版商
  57. Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. 2018;215:985-997 pubmed 出版商
  58. Gee M, Han A, Lofgren S, Beausang J, Mendoza J, Birnbaum M, et al. Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell. 2018;172:549-563.e16 pubmed 出版商
  59. Amodio D, Cotugno N, Macchiarulo G, Rocca S, Dimopoulos Y, Castrucci M, et al. Quantitative Multiplexed Imaging Analysis Reveals a Strong Association between Immunogen-Specific B Cell Responses and Tonsillar Germinal Center Immune Dynamics in Children after Influenza Vaccination. J Immunol. 2018;200:538-550 pubmed 出版商
  60. Hutten T, Norde W, Woestenenk R, Wang R, Maas F, Kester M, et al. Increased Coexpression of PD-1, TIGIT, and KLRG-1 on Tumor-Reactive CD8+ T Cells During Relapse after Allogeneic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2018;24:666-677 pubmed 出版商
  61. Moreno Cubero E, Subira D, Sanz de Villalobos E, Parra Cid T, Madejon A, Miquel J, et al. According to Hepatitis C Virus (HCV) Infection Stage, Interleukin-7 Plus 4-1BB Triggering Alone or Combined with PD-1 Blockade Increases TRAF1low HCV-Specific CD8+ Cell Reactivity. J Virol. 2018;92: pubmed 出版商
  62. Capece T, Walling B, Lim K, Kim K, Bae S, Chung H, et al. A novel intracellular pool of LFA-1 is critical for asymmetric CD8+ T cell activation and differentiation. J Cell Biol. 2017;216:3817-3829 pubmed 出版商
  63. Matos T, O Malley J, Lowry E, Hamm D, Kirsch I, Robins H, et al. Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing ?? T cell clones. J Clin Invest. 2017;127:4031-4041 pubmed 出版商
  64. Hensel M, Peng T, Cheng A, De Rosa S, Wald A, Laing K, et al. Selective Expression of CCR10 and CXCR3 by Circulating Human Herpes Simplex Virus-Specific CD8 T Cells. J Virol. 2017;91: pubmed 出版商
  65. Chew V, Lai L, Pan L, Lim C, Li J, Ong R, et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A. 2017;114:E5900-E5909 pubmed 出版商
  66. Meniailo M, Malashchenko V, Shmarov V, Gazatova N, Melashchenko O, Goncharov A, et al. Direct effects of interleukin-8 on growth and functional activity of T lymphocytes. Int Immunopharmacol. 2017;50:178-185 pubmed 出版商
  67. de Wolf A, van Aalst S, Ludwig I, Bodinham C, Lewis D, van der Zee R, et al. Regulatory T cell frequencies and phenotypes following anti-viral vaccination. PLoS ONE. 2017;12:e0179942 pubmed 出版商
  68. Villani A, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356: pubmed 出版商
  69. Buskermolen J, Roffel S, Gibbs S. Stimulation of oral fibroblast chemokine receptors identifies CCR3 and CCR4 as potential wound healing targets. J Cell Physiol. 2017;232:2996-3005 pubmed 出版商
  70. Nishimura Y, Gautam R, Chun T, Sadjadpour R, Foulds K, Shingai M, et al. Early antibody therapy can induce long-lasting immunity to SHIV. Nature. 2017;543:559-563 pubmed 出版商
  71. van der Geest K, Wang Q, Eijsvogels T, Koenen H, Joosten I, Brouwer E, et al. Changes in peripheral immune cell numbers and functions in octogenarian walkers - an acute exercise study. Immun Ageing. 2017;14:5 pubmed 出版商
  72. Szabo P, Goswami A, Mazzuca D, Kim K, O Gorman D, Hess D, et al. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. J Immunol. 2017;198:2805-2818 pubmed 出版商
  73. Smith N, Pietrancosta N, Davidson S, Dutrieux J, Chauveau L, Cutolo P, et al. Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement. Nat Commun. 2017;8:14253 pubmed 出版商
  74. Watanabe N, Bajgain P, Sukumaran S, Ansari S, Heslop H, Rooney C, et al. Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology. 2016;5:e1253656 pubmed 出版商
  75. Jeffery H, Jeffery L, Lutz P, Corrigan M, Webb G, Hirschfield G, et al. Low-dose interleukin-2 promotes STAT-5 phosphorylation, Treg survival and CTLA-4-dependent function in autoimmune liver diseases. Clin Exp Immunol. 2017;188:394-411 pubmed 出版商
  76. Raposo R, de Mulder Rougvie M, Paquin Proulx D, Brailey P, Cabido V, Zdinak P, et al. IFITM1 targets HIV-1 latently infected cells for antibody-dependent cytolysis. JCI Insight. 2017;2:e85811 pubmed 出版商
  77. Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H, Sonnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354 pubmed 出版商
  78. Roberts E, Carnathan D, Li H, Shaw G, Silvestri G, Betts M. Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathog. 2016;12:e1006135 pubmed 出版商
  79. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  80. Fujiwara Y, Hizukuri Y, Yamashiro K, Makita N, Ohnishi K, Takeya M, et al. Guanylate-binding protein 5 is a marker of interferon-γ-induced classically activated macrophages. Clin Transl Immunology. 2016;5:e111 pubmed
  81. Comunanza V, Cora D, Orso F, Consonni F, Middonti E, Di Nicolantonio F, et al. VEGF blockade enhances the antitumor effect of BRAFV600E inhibition. EMBO Mol Med. 2017;9:219-237 pubmed 出版商
  82. Sairafi D, Stikvoort A, Gertow J, Mattsson J, Uhlin M. Donor Cell Composition and Reactivity Predict Risk of Acute Graft-versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation. J Immunol Res. 2016;2016:5601204 pubmed
  83. Lévy R, Okada S, Béziat V, Moriya K, Liu C, Chai L, et al. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A. 2016;113:E8277-E8285 pubmed 出版商
  84. Nish S, Zens K, Kratchmarov R, Lin W, Adams W, Chen Y, et al. CD4+ T cell effector commitment coupled to self-renewal by asymmetric cell divisions. J Exp Med. 2017;214:39-47 pubmed 出版商
  85. Ryan P, Sumaria N, Holland C, Bradford C, Izotova N, Grandjean C, et al. Heterogeneous yet stable Vδ2(+) T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals. Proc Natl Acad Sci U S A. 2016;113:14378-14383 pubmed
  86. Tomic A, Varanasi P, Golemac M, Malic S, Riese P, Borst E, et al. Activation of Innate and Adaptive Immunity by a Recombinant Human Cytomegalovirus Strain Expressing an NKG2D Ligand. PLoS Pathog. 2016;12:e1006015 pubmed 出版商
  87. Yokota Nakatsuma A, Ohoka Y, Takeuchi H, Song S, Iwata M. Beta 1-integrin ligation and TLR ligation enhance GM-CSF-induced ALDH1A2 expression in dendritic cells, but differentially regulate their anti-inflammatory properties. Sci Rep. 2016;6:37914 pubmed 出版商
  88. Cecchinato V, Bernasconi E, Speck R, Proietti M, Sauermann U, D Agostino G, et al. Impairment of CCR6+ and CXCR3+ Th Cell Migration in HIV-1 Infection Is Rescued by Modulating Actin Polymerization. J Immunol. 2017;198:184-195 pubmed
  89. Srivastava R, Khan A, Garg S, Syed S, Furness J, Vahed H, et al. Human Asymptomatic Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP13/14 (UL47) Preferentially Recall Polyfunctional Effector Memory CD44high CD62Llow CD8+ TEM Cells and Protect Humanized HLA-A*02:01 Transgenic Mice against Ocula. J Virol. 2017;91: pubmed 出版商
  90. Serr I, Fürst R, Ott V, Scherm M, Nikolaev A, Gökmen F, et al. miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6659-E6668 pubmed
  91. Sen D, Kaminski J, Barnitz R, Kurachi M, Gerdemann U, Yates K, et al. The epigenetic landscape of T cell exhaustion. Science. 2016;354:1165-1169 pubmed
  92. Dyer W, Tan J, Day T, Kiers L, Kiernan M, Yiannikas C, et al. Immunomodulation of inflammatory leukocyte markers during intravenous immunoglobulin treatment associated with clinical efficacy in chronic inflammatory demyelinating polyradiculoneuropathy. Brain Behav. 2016;6:e00516 pubmed
  93. Georgiev H, Ravens I, Benarafa C, Forster R, Bernhardt G. Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets. Nat Commun. 2016;7:13116 pubmed 出版商
  94. Miles B, Miller S, Folkvord J, Levy D, Rakasz E, Skinner P, et al. Follicular Regulatory CD8 T Cells Impair the Germinal Center Response in SIV and Ex Vivo HIV Infection. PLoS Pathog. 2016;12:e1005924 pubmed 出版商
  95. Komdeur F, Wouters M, Workel H, Tijans A, Terwindt A, Brunekreeft K, et al. CD103+ intraepithelial T cells in high-grade serous ovarian cancer are phenotypically diverse TCRαβ+ CD8αβ+ T cells that can be targeted for cancer immunotherapy. Oncotarget. 2016;7:75130-75144 pubmed 出版商
  96. Boddupalli C, Nair S, Gray S, Nowyhed H, Verma R, Gibson J, et al. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells. J Clin Invest. 2016;126:3905-3916 pubmed 出版商
  97. Ayala V, Trivett M, Barsov E, Jain S, Piatak M, Trubey C, et al. Adoptive Transfer of Engineered Rhesus Simian Immunodeficiency Virus-Specific CD8+ T Cells Reduces the Number of Transmitted/Founder Viruses Established in Rhesus Macaques. J Virol. 2016;90:9942-9952 pubmed 出版商
  98. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed 出版商
  99. Matkar P, Singh K, Rudenko D, Kim Y, Kuliszewski M, Prud homme G, et al. Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7:69489-69506 pubmed 出版商
  100. Demers K, Makedonas G, Buggert M, Eller M, Ratcliffe S, Goonetilleke N, et al. Temporal Dynamics of CD8+ T Cell Effector Responses during Primary HIV Infection. PLoS Pathog. 2016;12:e1005805 pubmed 出版商
  101. Chen H, Händel N, Ngeow J, Muller J, Huhn M, Yang H, et al. Immune dysregulation in patients with PTEN hamartoma tumor syndrome: Analysis of FOXP3 regulatory T cells. J Allergy Clin Immunol. 2017;139:607-620.e15 pubmed 出版商
  102. Franzese O, Palermo B, Di Donna C, Sperduti I, Ferraresi V, Stabile H, et al. Polyfunctional Melan-A-specific tumor-reactive CD8(+) T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS. Oncoimmunology. 2016;5:e1114203 pubmed 出版商
  103. Fromentin R, Bakeman W, Lawani M, Khoury G, Hartogensis W, DaFonseca S, et al. CD4+ T Cells Expressing PD-1, TIGIT and LAG-3 Contribute to HIV Persistence during ART. PLoS Pathog. 2016;12:e1005761 pubmed 出版商
  104. Stadinski B, Shekhar K, Gomez Tourino I, Jung J, Sasaki K, Sewell A, et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol. 2016;17:946-55 pubmed 出版商
  105. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  106. Ramos C, Savoldo B, Torrano V, Ballard B, Zhang H, Dakhova O, et al. Clinical responses with T lymphocytes targeting malignancy-associated ? light chains. J Clin Invest. 2016;126:2588-96 pubmed 出版商
  107. Ma Q, Garber H, Lu S, He H, Tallis E, Ding X, et al. A novel TCR-like CAR with specificity for PR1/HLA-A2 effectively targets myeloid leukemia in vitro when expressed in human adult peripheral blood and cord blood T cells. Cytotherapy. 2016;18:985-94 pubmed 出版商
  108. van der Heiden M, van Zelm M, Bartol S, de Rond L, Berbers G, Boots A, et al. Differential effects of Cytomegalovirus carriage on the immune phenotype of middle-aged males and females. Sci Rep. 2016;6:26892 pubmed 出版商
  109. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed 出版商
  110. Neumann B, Shi T, Gan L, Klippert A, Daskalaki M, Stolte Leeb N, et al. Comprehensive panel of cross-reacting monoclonal antibodies for analysis of different immune cells and their distribution in the common marmoset (Callithrix jacchus). J Med Primatol. 2016;45:139-46 pubmed 出版商
  111. Hellmann J, Sansbury B, Holden C, Tang Y, Wong B, Wysoczynski M, et al. CCR7 Maintains Nonresolving Lymph Node and Adipose Inflammation in Obesity. Diabetes. 2016;65:2268-81 pubmed 出版商
  112. Li W, Liu L, Gomez A, Zhang J, Ramadan A, Zhang Q, et al. Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease. JCI Insight. 2016;1: pubmed 出版商
  113. Liu B, Shi Y, Peng W, Zhang Q, Liu J, Chen N, et al. Diosmetin induces apoptosis by upregulating p53 via the TGF-? signal pathway in HepG2 hepatoma cells. Mol Med Rep. 2016;14:159-64 pubmed 出版商
  114. Stikvoort A, Sundin M, Uzunel M, Gertow J, Sundberg B, Schaffer M, et al. Long-Term Stable Mixed Chimerism after Hematopoietic Stem Cell Transplantation in Patients with Non-Malignant Disease, Shall We Be Tolerant?. PLoS ONE. 2016;11:e0154737 pubmed 出版商
  115. Harper I, Ali J, Harper S, Wlodek E, Alsughayyir J, Negus M, et al. Augmentation of Recipient Adaptive Alloimmunity by Donor Passenger Lymphocytes within the Transplant. Cell Rep. 2016;15:1214-27 pubmed 出版商
  116. Qualai J, Li L, Cantero J, Tarrats A, Fernández M, Sumoy L, et al. Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential. PLoS ONE. 2016;11:e0154253 pubmed 出版商
  117. Li H, Borrego F, Nagata S, Tolnay M. Fc Receptor-like 5 Expression Distinguishes Two Distinct Subsets of Human Circulating Tissue-like Memory B Cells. J Immunol. 2016;196:4064-74 pubmed 出版商
  118. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  119. Jost T, Borga C, Radaelli E, Romagnani A, Perruzza L, Omodho L, et al. Role of CXCR4-mediated bone marrow colonization in CNS infiltration by T cell acute lymphoblastic leukemia. J Leukoc Biol. 2016;99:1077-87 pubmed 出版商
  120. Xiong Y, Ahmad S, Iwami D, Brinkman C, Bromberg J. T-bet Regulates Natural Regulatory T Cell Afferent Lymphatic Migration and Suppressive Function. J Immunol. 2016;196:2526-40 pubmed 出版商
  121. Setoguchi R. IL-15 boosts the function and migration of human terminally differentiated CD8+ T cells by inducing a unique gene signature. Int Immunol. 2016;28:293-305 pubmed 出版商
  122. Gupta S, Termini J, Issac B, Guirado E, Stone G. Constitutively Active MAVS Inhibits HIV-1 Replication via Type I Interferon Secretion and Induction of HIV-1 Restriction Factors. PLoS ONE. 2016;11:e0148929 pubmed 出版商
  123. Roan F, Stoklasek T, Whalen E, Molitor J, Bluestone J, Buckner J, et al. CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis. J Immunol. 2016;196:2051-2062 pubmed 出版商
  124. James E, Gates T, LaFond R, Yamamoto S, Ni C, Mai D, et al. Neuroinvasive West Nile Infection Elicits Elevated and Atypically Polarized T Cell Responses That Promote a Pathogenic Outcome. PLoS Pathog. 2016;12:e1005375 pubmed 出版商
  125. Li L, Jiang Y, Lao S, Yang B, Yu S, Zhang Y, et al. Mycobacterium tuberculosis-Specific IL-21+IFN-γ+CD4+ T Cells Are Regulated by IL-12. PLoS ONE. 2016;11:e0147356 pubmed 出版商
  126. Vargas Inchaustegui D, Demers A, Shaw J, Kang G, Ball D, Tuero I, et al. Vaccine Induction of Lymph Node-Resident Simian Immunodeficiency Virus Env-Specific T Follicular Helper Cells in Rhesus Macaques. J Immunol. 2016;196:1700-10 pubmed 出版商
  127. Paris R, Petrovas C, Ferrando Martinez S, Moysi E, Boswell K, Archer E, et al. Selective Loss of Early Differentiated, Highly Functional PD1high CD4 T Cells with HIV Progression. PLoS ONE. 2015;10:e0144767 pubmed 出版商
  128. Kiermaier E, Moussion C, Veldkamp C, Gerardy Schahn R, de Vries I, Williams L, et al. Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science. 2016;351:186-90 pubmed 出版商
  129. Javed A, Leuchte N, Neumann B, Sopper S, Sauermann U. Noncytolytic CD8+ Cell Mediated Antiviral Response Represents a Strong Element in the Immune Response of Simian Immunodeficiency Virus-Infected Long-Term Non-Progressing Rhesus Macaques. PLoS ONE. 2015;10:e0142086 pubmed 出版商
  130. Li R, Rezk A, Miyazaki Y, Hilgenberg E, Touil H, Shen P, et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci Transl Med. 2015;7:310ra166 pubmed 出版商
  131. Schulz A, Mälzer J, Domingo C, Jürchott K, Grützkau A, Babel N, et al. Low Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to Primary Viral Infection in Elderly Humans. J Immunol. 2015;195:4699-711 pubmed 出版商
  132. Mitson Salazar A, Yin Y, Wansley D, Young M, Bolan H, Arceo S, et al. Hematopoietic prostaglandin D synthase defines a proeosinophilic pathogenic effector human T(H)2 cell subpopulation with enhanced function. J Allergy Clin Immunol. 2016;137:907-18.e9 pubmed 出版商
  133. Schnorfeil F, Lichtenegger F, Emmerig K, Schlueter M, Neitz J, Draenert R, et al. T cells are functionally not impaired in AML: increased PD-1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment. J Hematol Oncol. 2015;8:93 pubmed 出版商
  134. Melgaço J, Morgado L, Santiago M, Oliveira J, Lewis Ximenez L, Hasselmann B, et al. A single dose of inactivated hepatitis A vaccine promotes HAV-specific memory cellular response similar to that induced by a natural infection. Vaccine. 2015;33:3813-20 pubmed 出版商
  135. Zhao L, Liu S, Che X, Hou K, Ma Y, Li C, et al. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors. Int J Mol Med. 2015;36:645-52 pubmed 出版商
  136. Mikucki M, Fisher D, Matsuzaki J, Skitzki J, Gaulin N, Muhitch J, et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun. 2015;6:7458 pubmed 出版商
  137. Chen Y, Zhu H, Zhang N, Shen L, Wang R, Zhou J, et al. Temporal kinetics of macrophage polarization in the injured rat spinal cord. J Neurosci Res. 2015;93:1526-33 pubmed 出版商
  138. Stenger E, Chiang K, Haight A, Qayed M, Kean L, Horan J. Use of Alefacept for Preconditioning in Multiply Transfused Pediatric Patients with Nonmalignant Diseases. Biol Blood Marrow Transplant. 2015;21:1845-52 pubmed 出版商
  139. Chowdhury A, Hayes T, Bosinger S, Lawson B, Vanderford T, Schmitz J, et al. Differential Impact of In Vivo CD8+ T Lymphocyte Depletion in Controller versus Progressor Simian Immunodeficiency Virus-Infected Macaques. J Virol. 2015;89:8677-86 pubmed 出版商
  140. DaFonseca S, Niessl J, Pouvreau S, Wacleche V, Gosselin A, Cleret Buhot A, et al. Impaired Th17 polarization of phenotypically naive CD4(+) T-cells during chronic HIV-1 infection and potential restoration with early ART. Retrovirology. 2015;12:38 pubmed 出版商
  141. Lenz N, Schindler T, Kagina B, Zhang J, Lukindo T, Mpina M, et al. Antiviral Innate Immune Activation in HIV-Infected Adults Negatively Affects H1/IC31-Induced Vaccine-Specific Memory CD4+ T Cells. Clin Vaccine Immunol. 2015;22:688-96 pubmed 出版商
  142. Trabanelli S, Lecciso M, Salvestrini V, Cavo M, Očadlíková D, Lemoli R, et al. PGE2-induced IDO1 inhibits the capacity of fully mature DCs to elicit an in vitro antileukemic immune response. J Immunol Res. 2015;2015:253191 pubmed 出版商
  143. Yukl S, Shergill A, Girling V, Li Q, Killian M, Epling L, et al. Site-specific differences in T cell frequencies and phenotypes in the blood and gut of HIV-uninfected and ART-treated HIV+ adults. PLoS ONE. 2015;10:e0121290 pubmed 出版商
  144. Tian X, Zhang A, Qiu C, Wang W, Yang Y, Qiu C, et al. The upregulation of LAG-3 on T cells defines a subpopulation with functional exhaustion and correlates with disease progression in HIV-infected subjects. J Immunol. 2015;194:3873-82 pubmed 出版商
  145. Steindor M, Nkwouano V, Mayatepek E, Mackenzie C, Schramm D, Jacobsen M. Rapid detection and immune characterization of Mycobacterium abscessus infection in cystic fibrosis patients. PLoS ONE. 2015;10:e0119737 pubmed 出版商
  146. Claiborne D, Prince J, Scully E, Macharia G, Micci L, Lawson B, et al. Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression. Proc Natl Acad Sci U S A. 2015;112:E1480-9 pubmed 出版商
  147. Severson J, Serracino H, Mateescu V, Raeburn C, McIntyre R, Sams S, et al. PD-1+Tim-3+ CD8+ T Lymphocytes Display Varied Degrees of Functional Exhaustion in Patients with Regionally Metastatic Differentiated Thyroid Cancer. Cancer Immunol Res. 2015;3:620-30 pubmed 出版商
  148. Rizzo A, Vasco C, Girgenti V, Fugnanesi V, Calatozzolo C, Canazza A, et al. Melanoma cells homing to the brain: an in vitro model. Biomed Res Int. 2015;2015:476069 pubmed 出版商
  149. Bhargava P, Gocke A, Calabresi P. 1,25-Dihydroxyvitamin D3 impairs the differentiation of effector memory T cells in vitro in multiple sclerosis patients and healthy controls. J Neuroimmunol. 2015;279:20-4 pubmed 出版商
  150. Boyle M, Jagannathan P, Bowen K, McIntyre T, Vance H, Farrington L, et al. Effector Phenotype of Plasmodium falciparum-Specific CD4+ T Cells Is Influenced by Both Age and Transmission Intensity in Naturally Exposed Populations. J Infect Dis. 2015;212:416-25 pubmed 出版商
  151. Srivastava R, Khan A, Spencer D, Vahed H, Lopes P, Thai N, et al. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic. J Immunol. 2015;194:2232-48 pubmed 出版商
  152. Abdel Mohsen M, Wang C, Strain M, Lada S, Deng X, Cockerham L, et al. Select host restriction factors are associated with HIV persistence during antiretroviral therapy. AIDS. 2015;29:411-20 pubmed 出版商
  153. Gerner W, Talker S, Koinig H, Sedlak C, Mair K, Saalmüller A. Phenotypic and functional differentiation of porcine αβ T cells: current knowledge and available tools. Mol Immunol. 2015;66:3-13 pubmed 出版商
  154. Van Eyck L, Hershfield M, Pombal D, Kelly S, Ganson N, Moens L, et al. Hematopoietic stem cell transplantation rescues the immunologic phenotype and prevents vasculopathy in patients with adenosine deaminase 2 deficiency. J Allergy Clin Immunol. 2015;135:283-7.e5 pubmed 出版商
  155. Willmann K, Klaver S, DoÄŸu F, Santos Valente E, Garncarz W, Bilic I, et al. Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat Commun. 2014;5:5360 pubmed 出版商
  156. van der Waart A, van de Weem N, Maas F, Kramer C, Kester M, Falkenburg J, et al. Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy. Blood. 2014;124:3490-500 pubmed 出版商
  157. Luetke Eversloh M, Hammer Q, Durek P, Nordström K, Gasparoni G, Pink M, et al. Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog. 2014;10:e1004441 pubmed 出版商
  158. Weiskopf D, Angelo M, Bangs D, Sidney J, Paul S, Peters B, et al. The human CD8+ T cell responses induced by a live attenuated tetravalent dengue vaccine are directed against highly conserved epitopes. J Virol. 2015;89:120-8 pubmed 出版商
  159. Gerna G, Lilleri D, Fornara C, Bruno F, Gabanti E, Cane I, et al. Differential kinetics of human cytomegalovirus load and antibody responses in primary infection of the immunocompetent and immunocompromised host. J Gen Virol. 2015;96:360-9 pubmed 出版商
  160. Alnabhan R, Madrigal A, Saudemont A. Differential activation of cord blood and peripheral blood natural killer cells by cytokines. Cytotherapy. 2015;17:73-85 pubmed 出版商
  161. Davey M, Morgan M, Liuzzi A, Tyler C, Khan M, Szakmany T, et al. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol. 2014;193:3704-3716 pubmed 出版商
  162. Arlehamn C, Seumois G, Gerasimova A, Huang C, Fu Z, Yue X, et al. Transcriptional profile of tuberculosis antigen-specific T cells reveals novel multifunctional features. J Immunol. 2014;193:2931-40 pubmed 出版商
  163. Kivisakk P, Francois K, Mbianda J, Gandhi R, Weiner H, Khoury S. Effect of natalizumab treatment on circulating plasmacytoid dendritic cells: a cross-sectional observational study in patients with multiple sclerosis. PLoS ONE. 2014;9:e103716 pubmed 出版商
  164. Said A, Bock S, Müller G, Weindl G. Inflammatory conditions distinctively alter immunological functions of Langerhans-like cells and dendritic cells in vitro. Immunology. 2015;144:218-30 pubmed 出版商
  165. Buggert M, Tauriainen J, Yamamoto T, Frederiksen J, Ivarsson M, Michaelsson J, et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathog. 2014;10:e1004251 pubmed 出版商
  166. Pegram H, Purdon T, van Leeuwen D, Curran K, Giralt S, Barker J, et al. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia. 2015;29:415-22 pubmed 出版商
  167. Jacquelin B, Petitjean G, Kunkel D, Liovat A, Jochems S, Rogers K, et al. Innate immune responses and rapid control of inflammation in African green monkeys treated or not with interferon-alpha during primary SIVagm infection. PLoS Pathog. 2014;10:e1004241 pubmed 出版商
  168. Kim K, Chung B, Kim B, Cho M, Yang C. The effect of mammalian target of rapamycin inhibition on T helper type 17 and regulatory T cell differentiation in vitro and in vivo in kidney transplant recipients. Immunology. 2015;144:68-78 pubmed 出版商
  169. Payne T, Blackinton J, Frisbee A, Pickeral J, Sawant S, Vandergrift N, et al. Transcriptional and posttranscriptional regulation of cytokine gene expression in HIV-1 antigen-specific CD8+ T cells that mediate virus inhibition. J Virol. 2014;88:9514-28 pubmed 出版商
  170. Ito S, Bollard C, Carlsten M, Melenhorst J, Biancotto A, Wang E, et al. Ultra-low dose interleukin-2 promotes immune-modulating function of regulatory T cells and natural killer cells in healthy volunteers. Mol Ther. 2014;22:1388-1395 pubmed 出版商
  171. Søndergaard J, Vinner L, Brix S. Natural mannosylation of HIV-1 gp120 imposes no immunoregulatory effects in primary human plasmacytoid dendritic cells. Mol Immunol. 2014;59:180-7 pubmed 出版商
  172. Sereti I, Estes J, Thompson W, Morcock D, Fischl M, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10:e1003890 pubmed 出版商
  173. Park S, Veerapu N, Shin E, Biancotto A, McCoy J, Capone S, et al. Subinfectious hepatitis C virus exposures suppress T cell responses against subsequent acute infection. Nat Med. 2013;19:1638-42 pubmed 出版商
  174. Lutwama F, Kagina B, Wajja A, Waiswa F, Mansoor N, Kirimunda S, et al. Distinct T-cell responses when BCG vaccination is delayed from birth to 6 weeks of age in Ugandan infants. J Infect Dis. 2014;209:887-97 pubmed 出版商
  175. Wijewardana V, Kristoff J, Xu C, Ma D, Haret Richter G, Stock J, et al. Kinetics of myeloid dendritic cell trafficking and activation: impact on progressive, nonprogressive and controlled SIV infections. PLoS Pathog. 2013;9:e1003600 pubmed 出版商
  176. Svajger U, Obermajer N, Jeras M. IFN-?-rich environment programs dendritic cells toward silencing of cytotoxic immune responses. J Leukoc Biol. 2014;95:33-46 pubmed 出版商
  177. Guo J, Lou W, Ji Y, Zhang S. Effect of CCR7, CXCR4 and VEGF-C on the lymph node metastasis of human pancreatic ductal adenocarcinoma. Oncol Lett. 2013;5:1572-1578 pubmed
  178. de Poorter C, Baertsoen K, Lannoy V, Parmentier M, Springael J. Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7. PLoS ONE. 2013;8:e58075 pubmed 出版商
  179. Tour G, Wendel M, Tcacencu I. Bone marrow stromal cells enhance the osteogenic properties of hydroxyapatite scaffolds by modulating the foreign body reaction. J Tissue Eng Regen Med. 2014;8:841-9 pubmed 出版商
  180. Correia M, Costa A, Uhrberg M, Cardoso E, Arosa F. IL-15 induces CD8+ T cells to acquire functional NK receptors capable of modulating cytotoxicity and cytokine secretion. Immunobiology. 2011;216:604-12 pubmed 出版商