这是一篇来自已证抗体库的有关人类 CD105的综述,是根据150篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合CD105 抗体。
CD105 同义词: END; HHT1; ORW1

赛默飞世尔
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD105抗体(eBioscience, 12-1057-42)被用于被用于流式细胞仪在人类样本上 (图 1a). World J Stem Cells (2022) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD105抗体(Invitrogen, 17-1057-41)被用于被用于流式细胞仪在人类样本上 (图 1b). Stem Cell Res Ther (2021) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 s3
赛默飞世尔 CD105抗体(eBioscience, 12-1057-42)被用于被用于流式细胞仪在人类样本上 (图 s3). Signal Transduct Target Ther (2021) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 1f
赛默飞世尔 CD105抗体(BD Biosciences, 17-1057-42)被用于被用于流式细胞仪在人类样本上 (图 1f). Nucleic Acids Res (2020) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 1:500; 图 2e
赛默飞世尔 CD105抗体(eBioscience, SN6)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 2e). Biomolecules (2019) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 1:50; 图 1d
赛默飞世尔 CD105抗体(eBioscience, 12-1057-41)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 1d). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:10; 图 5a
赛默飞世尔 CD105抗体(Thermo Fisher Scientific, PA5-12511)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10 (图 5a). Exp Mol Pathol (2017) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 1a
赛默飞世尔 CD105抗体(eBioscience, SN6)被用于被用于流式细胞仪在人类样本上 (图 1a). Blood (2017) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 猫; 图 1e
  • 流式细胞仪; 人类; 图 1f
赛默飞世尔 CD105抗体(eBioscience, SN6)被用于被用于流式细胞仪在猫样本上 (图 1e) 和 被用于流式细胞仪在人类样本上 (图 1f). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 2a
赛默飞世尔 CD105抗体(eBioscience, 25-1057-41)被用于被用于流式细胞仪在人类样本上 (图 2a). Int J Mol Med (2017) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 s1a
赛默飞世尔 CD105抗体(Invitrogen, SN6)被用于被用于流式细胞仪在人类样本上 (图 s1a). Int J Mol Sci (2017) ncbi
小鼠 单克隆(SN6)
  • 免疫细胞化学; 人类; 1:100; 图 1c
赛默飞世尔 CD105抗体(Invitrogen, MHCD10500)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1c). Stem Cell Rev (2017) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD105抗体(生活技术, MHCD10520)被用于被用于流式细胞仪在人类样本上 (图 1b). Cell Cycle (2017) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 1:50; 图 2c
赛默飞世尔 CD105抗体(Thermo Fisher Scientific, MA1-80944)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 2c). Mol Med Rep (2017) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD105抗体(Pierce, MA1-80944)被用于被用于流式细胞仪在人类样本上 (图 2). Acta Histochem (2017) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD105抗体(Invitrogen, SN6)被用于被用于流式细胞仪在人类样本上 (表 1). PLoS ONE (2016) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 家羊
赛默飞世尔 CD105抗体(生活技术, SN6)被用于被用于流式细胞仪在家羊样本上. J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD105抗体(eBioscience, 12-1057-41)被用于被用于流式细胞仪在人类样本上 (图 2). Stem Cell Reports (2016) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD105抗体(Invitrogen, MHCD10504RPE)被用于被用于流式细胞仪在人类样本上 (表 1). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 3
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 CD105抗体(Pierce Biotechnology, MA1-80944)被用于被用于流式细胞仪在人类样本上 (图 3) 和 被用于免疫细胞化学在人类样本上 (图 2). Acta Histochem (2016) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD105抗体(eBioscience, 17-1057)被用于被用于流式细胞仪在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 st1
赛默飞世尔 CD105抗体(e- Bioscienc e, 12-1057-42)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 CD105抗体(eBioscience, 12-1057-42)被用于被用于流式细胞仪在人类样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(3A9)
  • 免疫印迹; domestic rabbit; 1:1000; 图 7
赛默飞世尔 CD105抗体(Thermo Scientific, MA5-17041)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 7). Cytotechnology (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 7d
赛默飞世尔 CD105抗体(ThermoFisher Scientific, PA5-12511)被用于被用于免疫细胞化学在小鼠样本上 (图 7d). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 1b
赛默飞世尔 CD105抗体(eBioscience, 12-1057)被用于被用于流式细胞仪在人类样本上 (图 1b). Stem Cells Int (2016) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD105抗体(eBioscience, 17-1057-42)被用于被用于流式细胞仪在人类样本上 (图 1). Cell Res (2016) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 猫; 图 2
赛默飞世尔 CD105抗体(eBioscience, SN6)被用于被用于流式细胞仪在猫样本上 (图 2). Stem Cells Transl Med (2016) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 CD105抗体(Caltag Laboratories, SN6)被用于被用于流式细胞仪在人类样本上 (表 1). J Transl Med (2015) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 猫; 图 2
赛默飞世尔 CD105抗体(Invitrogen, SN6)被用于被用于流式细胞仪在猫样本上 (图 2). J Vet Intern Med (2016) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类
赛默飞世尔 CD105抗体(Invitrogen, MHCD10505)被用于被用于流式细胞仪在人类样本上. Cytometry A (2015) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 1:20; 图 s5
赛默飞世尔 CD105抗体(生活技术, MHCD10504)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s5). Nat Biotechnol (2015) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类
赛默飞世尔 CD105抗体(Invitrogen, MHCD10504)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 s4
赛默飞世尔 CD105抗体(eBioscience, 17-1057)被用于被用于流式细胞仪在人类样本上 (图 s4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(SN6)
  • 免疫组化; 人类; 表 2
赛默飞世尔 CD105抗体(Caltac Laboratories, MHCD10500)被用于被用于免疫组化在人类样本上 (表 2). PLoS ONE (2015) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类
赛默飞世尔 CD105抗体(Invitrogen, MHCD10504)被用于被用于流式细胞仪在人类样本上. Nat Genet (2015) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD105抗体(eBioscience, 12-1057-41)被用于被用于流式细胞仪在人类样本上 (图 1). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类
赛默飞世尔 CD105抗体(eBioscience, 12-1057)被用于被用于流式细胞仪在人类样本上. Cell (2015) ncbi
小鼠 单克隆(SN6)
  • 免疫细胞化学; 人类; 图 2
赛默飞世尔 CD105抗体(eBioscience, SN6)被用于被用于免疫细胞化学在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 CD105抗体(eBioscience, 48-1057-42)被用于被用于流式细胞仪在小鼠样本上 (图 4). Dev Biol (2015) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类
赛默飞世尔 CD105抗体(eBioscience, 12-1057)被用于被用于流式细胞仪在人类样本上. J Pediatr Surg (2014) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; baboons
赛默飞世尔 CD105抗体(eBiosciences, SN6)被用于被用于流式细胞仪在baboons样本上. Am J Cardiovasc Dis (2014) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD105抗体(eBioscience, SN6)被用于被用于流式细胞仪在人类样本上 (图 3). Nephrol Dial Transplant (2015) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 1:100; 图 6
赛默飞世尔 CD105抗体(eBioscience, 17-1057-42)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 6). Nat Commun (2014) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 牛
赛默飞世尔 CD105抗体(eBioscience, 12-1057)被用于被用于流式细胞仪在牛样本上. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 1:20
赛默飞世尔 CD105抗体(eBioscience, 25-1057-41)被用于被用于流式细胞仪在人类样本上浓度为1:20. Odontology (2015) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类
赛默飞世尔 CD105抗体(Caltag Laboratories, clone SN6)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类
赛默飞世尔 CD105抗体(Caltag, SN6)被用于被用于流式细胞仪在人类样本上. J Inflamm (Lond) (2012) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 1:20; 表 1
赛默飞世尔 CD105抗体(Invitrogen, MHCD10504)被用于被用于流式细胞仪在人类样本上浓度为1:20 (表 1). Cell Transplant (2011) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 CD105抗体(Invitrogen, SN6)被用于被用于流式细胞仪在人类样本上 (图 3). J Biomed Biotechnol (2010) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 CD105抗体(Invitrogen, MHCD10504)被用于被用于流式细胞仪在人类样本上 (图 1). Artif Organs (2010) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类
赛默飞世尔 CD105抗体(Caltag, SN6)被用于被用于流式细胞仪在人类样本上. Transplantation (2007) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类
赛默飞世尔 CD105抗体(Caltag, SN6)被用于被用于流式细胞仪在人类样本上. Haematologica (2006) ncbi
BioLegend
小鼠 单克隆(43A3)
  • 流式细胞仪; 人类; 图 s1b
BioLegend CD105抗体(Biolegend, 323206)被用于被用于流式细胞仪在人类样本上 (图 s1b). Stem Cell Res Ther (2022) ncbi
小鼠 单克隆(43A3)
  • 流式细胞仪; 人类; 图 4b, s8b
BioLegend CD105抗体(BioLegend, 323205)被用于被用于流式细胞仪在人类样本上 (图 4b, s8b). Mol Ther Nucleic Acids (2022) ncbi
小鼠 单克隆(43A3)
  • 流式细胞仪; 人类; 图 1
BioLegend CD105抗体(BioLegend, 323204)被用于被用于流式细胞仪在人类样本上 (图 1). Bone Joint Res (2021) ncbi
小鼠 单克隆(43A3)
  • 流式细胞仪; 人类; 图 2-5
BioLegend CD105抗体(BioLegend, 43A3)被用于被用于流式细胞仪在人类样本上 (图 2-5). Cells (2020) ncbi
小鼠 单克隆(43A3)
  • 流式细胞仪; 人类; 图 1f
BioLegend CD105抗体(Biolegend, 323206)被用于被用于流式细胞仪在人类样本上 (图 1f). Cell Res (2020) ncbi
小鼠 单克隆(43A3)
  • 流式细胞仪; 人类; 1:100; 图 s3a
BioLegend CD105抗体(Biolegend, 323217)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 s3a). Nat Commun (2020) ncbi
小鼠 单克隆(43A3)
  • 流式细胞仪; 人类; 1:25; 图 s2
BioLegend CD105抗体(Biolegend, 323203)被用于被用于流式细胞仪在人类样本上浓度为1:25 (图 s2). Stem Cell Res Ther (2020) ncbi
小鼠 单克隆(43A3)
  • 流式细胞仪; 人类; 图 3a
BioLegend CD105抗体(BioLegend, 323204)被用于被用于流式细胞仪在人类样本上 (图 3a). J Clin Invest (2019) ncbi
小鼠 单克隆(43A3)
  • 抑制或激活实验; 人类; 图 4b
BioLegend CD105抗体(BioLegend, 43A3)被用于被用于抑制或激活实验在人类样本上 (图 4b). J Clin Invest (2017) ncbi
小鼠 单克隆(43A3)
  • 流式细胞仪; 人类; 图 2
BioLegend CD105抗体(BD Bioscience, 323205)被用于被用于流式细胞仪在人类样本上 (图 2). Ann Anat (2017) ncbi
小鼠 单克隆(43A3)
  • 流式细胞仪; 人类; 图 1b
BioLegend CD105抗体(BioLegend, 323205)被用于被用于流式细胞仪在人类样本上 (图 1b). Oncol Lett (2016) ncbi
小鼠 单克隆(43A3)
  • 流式细胞仪; 人类; 图 2a
BioLegend CD105抗体(Biolegend, 323207)被用于被用于流式细胞仪在人类样本上 (图 2a). Biomaterials (2016) ncbi
小鼠 单克隆(43A3)
  • 流式细胞仪; 人类; 图 s3
BioLegend CD105抗体(Biolegend, 323209)被用于被用于流式细胞仪在人类样本上 (图 s3). J Neuroinflammation (2015) ncbi
小鼠 单克隆(43A3)
BioLegend CD105抗体(BioLegend, 43A3)被用于. PLoS ONE (2014) ncbi
小鼠 单克隆(43A3)
BioLegend CD105抗体(Biolegend, 323203)被用于. Sci Rep (2014) ncbi
小鼠 单克隆(43A3)
  • 流式细胞仪; 人类
BioLegend CD105抗体(Biolegend, 323205)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2013) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 s4a
艾博抗(上海)贸易有限公司 CD105抗体(Abcam, SN6)被用于被用于流式细胞仪在人类样本上 (图 s4a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(SN6)
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1b
艾博抗(上海)贸易有限公司 CD105抗体(Abcam, ab11414)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1b). J Neuroinflammation (2020) ncbi
小鼠 单克隆(MEM-229)
  • 流式细胞仪; 人类; 图 2b
艾博抗(上海)贸易有限公司 CD105抗体(Abcam, ab53321)被用于被用于流式细胞仪在人类样本上 (图 2b). Stem Cell Res Ther (2020) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 大鼠; 图 2b
艾博抗(上海)贸易有限公司 CD105抗体(Abcam, ab11414)被用于被用于流式细胞仪在大鼠样本上 (图 2b). Connect Tissue Res (2019) ncbi
domestic rabbit 单克隆(EPR10145-12)
  • 免疫印迹基因敲除验证; 人类; 图 s5a
  • 免疫细胞化学; 人类; 图 1b2
  • 免疫印迹; 人类; 图 5a2
艾博抗(上海)贸易有限公司 CD105抗体(Abcam, ab169545)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s5a), 被用于免疫细胞化学在人类样本上 (图 1b2) 和 被用于免疫印迹在人类样本上 (图 5a2). Stem Cell Reports (2017) ncbi
小鼠 单克隆(MEM-229)
  • 流式细胞仪; domestic rabbit; 1:100; 图 2
艾博抗(上海)贸易有限公司 CD105抗体(Abcam, ab53321)被用于被用于流式细胞仪在domestic rabbit样本上浓度为1:100 (图 2). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(MEM-226)
  • 流式细胞仪; 人类; 图 3
艾博抗(上海)贸易有限公司 CD105抗体(Abcam, ab2529)被用于被用于流式细胞仪在人类样本上 (图 3). J Cell Mol Med (2017) ncbi
小鼠 单克隆(SN6)
  • 免疫细胞化学; 人类; 1:100; 图 5
艾博抗(上海)贸易有限公司 CD105抗体(Abcam, ab11414)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Mol Reprod Dev (2016) ncbi
小鼠 单克隆(3A9)
  • 免疫组化; 人类; 图 6
艾博抗(上海)贸易有限公司 CD105抗体(abcam, ab114052)被用于被用于免疫组化在人类样本上 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 大鼠; 1:50; 图 2
艾博抗(上海)贸易有限公司 CD105抗体(Abcam, ab11414)被用于被用于流式细胞仪在大鼠样本上浓度为1:50 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; domestic rabbit; 图 1
  • 流式细胞仪; 大鼠; 图 1
艾博抗(上海)贸易有限公司 CD105抗体(Abcam, ab11414)被用于被用于流式细胞仪在domestic rabbit样本上 (图 1) 和 被用于流式细胞仪在大鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(MEM-229)
  • 流式细胞仪; pigs
艾博抗(上海)贸易有限公司 CD105抗体(Abcam, ab53318)被用于被用于流式细胞仪在pigs 样本上. Regen Med (2015) ncbi
小鼠 单克隆(8A1)
  • 流式细胞仪; 犬; 图 1
  • 免疫细胞化学; 犬; 图 1
艾博抗(上海)贸易有限公司 CD105抗体(Abcam, ab156756)被用于被用于流式细胞仪在犬样本上 (图 1) 和 被用于免疫细胞化学在犬样本上 (图 1). J Cell Mol Med (2015) ncbi
小鼠 单克隆(MEM-226)
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司 CD105抗体(Abcam, ab2529)被用于被用于免疫印迹在人类样本上浓度为1:500. Cancer Lett (2015) ncbi
小鼠 单克隆(MEM-229)
  • 流式细胞仪; 人类; 1:20; 图 s1
艾博抗(上海)贸易有限公司 CD105抗体(Abcam, AB53321)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s1). J Clin Invest (2014) ncbi
单克隆
  • 免疫组化-冰冻切片; 人类; 1:250
艾博抗(上海)贸易有限公司 CD105抗体(Abcam, ab44967)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:250. PLoS ONE (2014) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 1
艾博抗(上海)贸易有限公司 CD105抗体(Abcam, ab11414)被用于被用于流式细胞仪在人类样本上 (图 1). J Biomed Mater Res A (2015) ncbi
小鼠 单克隆(MEM-229)
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司 CD105抗体(Abcam, Ab53318)被用于被用于流式细胞仪在人类样本上. Acta Histochem (2014) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(SN6)
  • 流式细胞仪; 国内马; 1:100; 图 1c
伯乐(Bio-Rad)公司 CD105抗体(Bio-rad, SN6)被用于被用于流式细胞仪在国内马样本上浓度为1:100 (图 1c). Animals (Basel) (2020) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 1:20; 表 1
伯乐(Bio-Rad)公司 CD105抗体(Serotec, MCA1557F)被用于被用于流式细胞仪在人类样本上浓度为1:20 (表 1). Sci Rep (2017) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 3b
伯乐(Bio-Rad)公司 CD105抗体(Serotec, MCA1557FT)被用于被用于流式细胞仪在人类样本上 (图 3b). Oncotarget (2016) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; domestic rabbit; 1:15; 图 1
伯乐(Bio-Rad)公司 CD105抗体(AbD Serotec, MCA1557)被用于被用于流式细胞仪在domestic rabbit样本上浓度为1:15 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 家羊; 1:10; 图 3
伯乐(Bio-Rad)公司 CD105抗体(StemCell Technologies Inc, MCA1557A488T)被用于被用于流式细胞仪在家羊样本上浓度为1:10 (图 3). Cytometry A (2016) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 猫; 1:25; 表 3
伯乐(Bio-Rad)公司 CD105抗体(MCA1557T, MCA1557T)被用于被用于流式细胞仪在猫样本上浓度为1:25 (表 3). Cell Reprogram (2015) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 国内马; 图 4
伯乐(Bio-Rad)公司 CD105抗体(Serotec, MCA1557A488T)被用于被用于流式细胞仪在国内马样本上 (图 4). J Orthop Res (2015) ncbi
小鼠 单克隆(SN6)
  • 免疫组化-石蜡切片; 大鼠; 图  6
伯乐(Bio-Rad)公司 CD105抗体(Bio-Rad AbD Serotec, MCA1557F)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图  6). J Control Release (2015) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类
伯乐(Bio-Rad)公司 CD105抗体(Serotec, MCA1557PE)被用于被用于流式细胞仪在人类样本上. F1000Res (2014) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 1:500
伯乐(Bio-Rad)公司 CD105抗体(AbD Serotec, MCA1557F)被用于被用于流式细胞仪在人类样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 1:40; 表 1
伯乐(Bio-Rad)公司 CD105抗体(Serotec, SN6)被用于被用于流式细胞仪在人类样本上浓度为1:40 (表 1). Vasc Cell (2013) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 1:50
伯乐(Bio-Rad)公司 CD105抗体(AbD Serotec, MCA1557PE)被用于被用于流式细胞仪在人类样本上浓度为1:50. Int J Mol Med (2012) ncbi
小鼠 单克隆(SN6)
  • 流式细胞仪; 人类; 图 1
伯乐(Bio-Rad)公司 CD105抗体(Serotec, MCA1557F)被用于被用于流式细胞仪在人类样本上 (图 1). PLoS ONE (2012) ncbi
圣克鲁斯生物技术
大鼠 单克隆(2Q1707)
  • 免疫细胞化学; 人类; 图 1a
圣克鲁斯生物技术 CD105抗体(Santa Cruz, sc-71042)被用于被用于免疫细胞化学在人类样本上 (图 1a). Adipocyte (2019) ncbi
小鼠 单克隆(A-8)
  • 免疫组化; 人类; 1:100; 图 1e
圣克鲁斯生物技术 CD105抗体(Santa Cruz, sc-376381)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1e). PLoS ONE (2016) ncbi
大鼠 单克隆(2Q1707)
  • 免疫细胞化学; 牛; 1:100; 图 1a
圣克鲁斯生物技术 CD105抗体(Santa Cruz, sc-71042)被用于被用于免疫细胞化学在牛样本上浓度为1:100 (图 1a). J Assist Reprod Genet (2016) ncbi
小鼠 单克隆(P4A4)
  • 其他; 人类; 图 4
圣克鲁斯生物技术 CD105抗体(Santa Cruz, sc-20072)被用于被用于其他在人类样本上 (图 4). Sci Rep (2015) ncbi
大鼠 单克隆(2Q1707)
  • 流式细胞仪; 牛; 1:50
  • 免疫细胞化学; 牛; 1:50
圣克鲁斯生物技术 CD105抗体(Santa Cruz, sc-71042)被用于被用于流式细胞仪在牛样本上浓度为1:50 和 被用于免疫细胞化学在牛样本上浓度为1:50. Theriogenology (2015) ncbi
小鼠 单克隆(P4A4)
  • 免疫组化-石蜡切片; 人类; 1:300
圣克鲁斯生物技术 CD105抗体(Santa Cruz, sc-20072)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Biomaterials (2014) ncbi
美天旎
小鼠 单克隆(43A4E1)
  • 流式细胞仪; 人类; 图 s1a
美天旎 CD105抗体(Miltenyi Biotec, 43A4E1)被用于被用于流式细胞仪在人类样本上 (图 s1a). Exp Hematol Oncol (2017) ncbi
小鼠 单克隆(43A4E1)
  • 流式细胞仪; 人类; 图 2
美天旎 CD105抗体(Miltenyi Biotec, 43A4E1)被用于被用于流式细胞仪在人类样本上 (图 2). Cytotherapy (2016) ncbi
小鼠 单克隆(43A4E1)
  • 流式细胞仪; 人类; 图 1c
美天旎 CD105抗体(Miltenyi, 43A4E1)被用于被用于流式细胞仪在人类样本上 (图 1c). Cytotherapy (2016) ncbi
小鼠 单克隆(43A4E1)
  • 流式细胞仪; 人类
美天旎 CD105抗体(Miltenyi, 130-094-926)被用于被用于流式细胞仪在人类样本上. Neuroscience (2014) ncbi
Novus Biologicals
大鼠 单克隆(MJ7/18)
  • 免疫印迹; 小鼠; 图 1d
Novus Biologicals CD105抗体(Novus Biologicals, NB100-77666)被用于被用于免疫印迹在小鼠样本上 (图 1d). Arterioscler Thromb Vasc Biol (2017) ncbi
丹科医疗器械技术服务(上海)有限公司
小鼠 单克隆(SN6h)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1d
丹科医疗器械技术服务(上海)有限公司 CD105抗体(Dako, M3527)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1d). J Clin Invest (2016) ncbi
小鼠 单克隆(SN6h)
  • 免疫组化; 人类; 1:10; 图 6
丹科医疗器械技术服务(上海)有限公司 CD105抗体(dako, SN6h)被用于被用于免疫组化在人类样本上浓度为1:10 (图 6). Br J Cancer (2015) ncbi
小鼠 单克隆(SN6h)
  • 流式细胞仪; 人类; 图 2
丹科医疗器械技术服务(上海)有限公司 CD105抗体(DAKO, M3527)被用于被用于流式细胞仪在人类样本上 (图 2). Int J Mol Med (2015) ncbi
小鼠 单克隆(SN6h)
  • 免疫细胞化学; 人类
丹科医疗器械技术服务(上海)有限公司 CD105抗体(Dako, M3527)被用于被用于免疫细胞化学在人类样本上. In Vivo (2005) ncbi
Fitzgerald Industries
  • 流式细胞仪; 人类
Fitzgerald Industries CD105抗体(Fitzgerald, 61R-CD105-DHUFT)被用于被用于流式细胞仪在人类样本上. Cytometry A (2013) ncbi
Exbio
小鼠 单克隆(MEM-226)
  • 流式细胞仪; 人类; 表 1
Exbio CD105抗体(EXBIO Praha, 1F-298-T100)被用于被用于流式细胞仪在人类样本上 (表 1). Sci Rep (2016) ncbi
碧迪BD
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 1:100; 图 1a
碧迪BD CD105抗体(BD Pharmingen, 266)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1a). Stem Cell Res Ther (2021) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 1:20; 图 s1-3a
碧迪BD CD105抗体(BD Pharmingen, 562380)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s1-3a). elife (2020) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD105抗体(BD Bioscience, 562408)被用于被用于流式细胞仪在人类样本上 (图 3a). World J Stem Cells (2020) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 图 s1a
碧迪BD CD105抗体(BD Biosciences, 561443)被用于被用于流式细胞仪在人类样本上 (图 s1a). Front Immunol (2020) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 图 s1
碧迪BD CD105抗体(BD, 555690)被用于被用于流式细胞仪在人类样本上 (图 s1). Stem Cell Res Ther (2020) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 大鼠; 图 3
碧迪BD CD105抗体(BD, 560839)被用于被用于流式细胞仪在大鼠样本上 (图 3). Biosci Rep (2019) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 图 3a
碧迪BD CD105抗体(BD Pharmingen, 266)被用于被用于流式细胞仪在人类样本上 (图 3a). Sci Rep (2018) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 1:20; 图 s8b
碧迪BD CD105抗体(Becton Dickinson, 266)被用于被用于流式细胞仪在人类样本上浓度为1:20 (图 s8b). Nat Commun (2017) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 图 2b
碧迪BD CD105抗体(BD PharmingenTM, 560839)被用于被用于流式细胞仪在人类样本上 (图 2b). Cell J (2017) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 大鼠; 1:150; 图 1b
碧迪BD CD105抗体(BD Biosciences, 562380)被用于被用于流式细胞仪在大鼠样本上浓度为1:150 (图 1b). Exp Ther Med (2017) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 图 2c
碧迪BD CD105抗体(BD Bioscience, 560839)被用于被用于流式细胞仪在人类样本上 (图 2c). Sci Rep (2017) ncbi
小鼠 单克隆(266)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 3d
碧迪BD CD105抗体(BD PHARMINGEN, 266)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 3d). Stem Cells Int (2016) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类
碧迪BD CD105抗体(Becton, Dickinson, and Company, 266)被用于被用于流式细胞仪在人类样本上. Cytotherapy (2017) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 图 s1
  • 免疫细胞化学; 人类; 图 s2
碧迪BD CD105抗体(BD Pharmingen, 560819)被用于被用于流式细胞仪在人类样本上 (图 s1) 和 被用于免疫细胞化学在人类样本上 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 1:10
碧迪BD CD105抗体(BD Bioscience, 561443)被用于被用于流式细胞仪在人类样本上浓度为1:10. Mol Med Rep (2016) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类
碧迪BD CD105抗体(BD, 266)被用于被用于流式细胞仪在人类样本上. BMC Musculoskelet Disord (2016) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 表 2
碧迪BD CD105抗体(BD Pharmingen, 560839)被用于被用于流式细胞仪在人类样本上 (表 2). Int J Mol Med (2016) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 图 3
碧迪BD CD105抗体(BD Pharmingen, 561443)被用于被用于流式细胞仪在人类样本上 (图 3). BMC Res Notes (2015) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 1:500; 图 1d
碧迪BD CD105抗体(BD Pharmingen, 561443)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 1d). Eur J Immunol (2016) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 1:100; 图 3
碧迪BD CD105抗体(BD Pharmingen, 555690)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3). BMC Musculoskelet Disord (2015) ncbi
小鼠 单克隆(35/CD105)
  • 免疫印迹; 人类; 1:600; 图 3
碧迪BD CD105抗体(bD Bioscience, 611314)被用于被用于免疫印迹在人类样本上浓度为1:600 (图 3). Br J Cancer (2015) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD105抗体(BD Biosciences, 560819)被用于被用于流式细胞仪在人类样本上 (图 2). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 家羊; 5 ug/ml; 图 3
碧迪BD CD105抗体(BD PharMigen, 561443)被用于被用于流式细胞仪在家羊样本上浓度为5 ug/ml (图 3). Cell Tissue Bank (2016) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 图 2
碧迪BD CD105抗体(BD Biosciences, 560839)被用于被用于流式细胞仪在人类样本上 (图 2). J Endod (2015) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 1:100; 图 2
碧迪BD CD105抗体(BD Bioscience, 562408)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2). Stem Cells Int (2015) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 图 4
碧迪BD CD105抗体(BD Biosciences, 561443)被用于被用于流式细胞仪在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类
碧迪BD CD105抗体(B.D. Biosciences, 561439)被用于被用于流式细胞仪在人类样本上. World J Stem Cells (2015) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类
碧迪BD CD105抗体(BD Biosciences, 562380)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类
碧迪BD CD105抗体(BD Biosciences, 561443)被用于被用于流式细胞仪在人类样本上. Tissue Eng Part A (2015) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类
碧迪BD CD105抗体(BD, 560839)被用于被用于流式细胞仪在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 1 ug/1x106 cells
碧迪BD CD105抗体(BD pharmingen, 555690)被用于被用于流式细胞仪在人类样本上浓度为1 ug/1x106 cells. J Cell Mol Med (2014) ncbi
小鼠 单克隆(266)
  • 流式细胞仪; 人类; 1:20
碧迪BD CD105抗体(BD Pharmingen, 266)被用于被用于流式细胞仪在人类样本上浓度为1:20. Microvasc Res (2012) ncbi
徕卡显微系统(上海)贸易有限公司
单克隆
  • 免疫组化; 大鼠; 图 4a
徕卡显微系统(上海)贸易有限公司 CD105抗体(Leica Microsystems, NCL-CD105)被用于被用于免疫组化在大鼠样本上 (图 4a). BMC Complement Altern Med (2019) ncbi
单克隆
  • 免疫细胞化学; 人类; 1:100; 图 5
徕卡显微系统(上海)贸易有限公司 CD105抗体(Novocastra, NCL-CD105)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). PLoS ONE (2015) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(P3D1)
  • 免疫印迹; 人类; 图 s1b
Developmental Studies Hybridoma Bank CD105抗体(Developmental Studies Hybridoma Bank, P3D1)被用于被用于免疫印迹在人类样本上 (图 s1b). Arterioscler Thromb Vasc Biol (2017) ncbi
文章列表
  1. Dong N, Zhou P, Li D, Zhu H, Liu L, Ma H, et al. Intratracheal administration of umbilical cord-derived mesenchymal stem cells attenuates hyperoxia-induced multi-organ injury via heme oxygenase-1 and JAK/STAT pathways. World J Stem Cells. 2022;14:556-576 pubmed 出版商
  2. Ye Y, Zhang X, Su D, Ren Y, Cheng F, Yao Y, et al. Therapeutic efficacy of human adipose mesenchymal stem cells in Crohn's colon fibrosis is improved by IFN-γ and kynurenic acid priming through indoleamine 2,3-dioxygenase-1 signaling. Stem Cell Res Ther. 2022;13:465 pubmed 出版商
  3. Fernandes H, Zonnari A, Abreu R, Aday S, Bar xe3 o M, Albino I, et al. Extracellular vesicles enriched with an endothelial cell pro-survival microRNA affects skin tissue regeneration. Mol Ther Nucleic Acids. 2022;28:307-327 pubmed 出版商
  4. Elhussieny A, Nogami K, Sakai Takemura F, Maruyama Y, Takemura N, Soliman W, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells improve the engraftment of myogenic cells by secreting urokinase-type plasminogen activator receptor (uPAR). Stem Cell Res Ther. 2021;12:532 pubmed 出版商
  5. Li Y, Shi G, Han Y, Shang H, Li H, Liang W, et al. Therapeutic potential of human umbilical cord mesenchymal stem cells on aortic atherosclerotic plaque in a high-fat diet rabbit model. Stem Cell Res Ther. 2021;12:407 pubmed 出版商
  6. Gómez Ferrer M, Villanueva Badenas E, Sánchez Sánchez R, Sánchez López C, Baquero M, Sepulveda P, et al. HIF-1α and Pro-Inflammatory Signaling Improves the Immunomodulatory Activity of MSC-Derived Extracellular Vesicles. Int J Mol Sci. 2021;22: pubmed 出版商
  7. Zhang Q, Xiang E, Rao W, Zhang Y, Xiao C, Li C, et al. Intra-articular injection of human umbilical cord mesenchymal stem cells ameliorates monosodium iodoacetate-induced osteoarthritis in rats by inhibiting cartilage degradation and inflammation. Bone Joint Res. 2021;10:226-236 pubmed 出版商
  8. Mo F, Duan S, Jiang X, Yang X, Hou X, Shi W, et al. Nanobody-based chimeric antigen receptor T cells designed by CRISPR/Cas9 technology for solid tumor immunotherapy. Signal Transduct Target Ther. 2021;6:80 pubmed 出版商
  9. Jakob M, Hambrecht M, Spiegel J, Kitz J, Canis M, Dressel R, et al. Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Show Comparable Functionality to Their Autologous Origin. Cells. 2020;10: pubmed 出版商
  10. Xu J, Wang Y, Hsu C, Negri S, Tower R, Gao Y, et al. Lysosomal protein surface expression discriminates fat- from bone-forming human mesenchymal precursor cells. elife. 2020;9: pubmed 出版商
  11. Kim K, Park T, Cho B, Kim T. Nanoparticles from Equine Fetal Bone Marrow-Derived Cells Enhance the Survival of Injured Chondrocytes. Animals (Basel). 2020;10: pubmed 出版商
  12. Wu J, Song D, Li Z, Guo B, Xiao Y, Liu W, et al. Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis. Cell Res. 2020;30:794-809 pubmed 出版商
  13. Hu H, Ji Q, Song M, Ren J, Liu Z, Wang Z, et al. ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res. 2020;48:6001-6018 pubmed 出版商
  14. Kim J, Yang Y, Park K, Ge X, Xu R, Li N, et al. A RUNX2 stabilization pathway mediates physiologic and pathologic bone formation. Nat Commun. 2020;11:2289 pubmed 出版商
  15. Gao K, He S, Kumar P, Farmer D, Zhou J, Wang A. Clonal isolation of endothelial colony-forming cells from early gestation chorionic villi of human placenta for fetal tissue regeneration. World J Stem Cells. 2020;12:123-138 pubmed 出版商
  16. Burand A, Di L, Boland L, Boyt D, Schrodt M, Santillan D, et al. Aggregation of Human Mesenchymal Stromal Cells Eliminates Their Ability to Suppress Human T Cells. Front Immunol. 2020;11:143 pubmed 出版商
  17. Beltran Camacho L, Jimenez Palomares M, Rojas Torres M, Sánchez Gomar I, Rosal Vela A, Eslava Alcon S, et al. Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia. Stem Cell Res Ther. 2020;11:106 pubmed 出版商
  18. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  19. Queckborner S, Syk Lundberg E, Gemzell Danielsson K, Davies L. Endometrial stromal cells exhibit a distinct phenotypic and immunomodulatory profile. Stem Cell Res Ther. 2020;11:15 pubmed 出版商
  20. Bandeira F, Goh T, Setiawan M, Yam G, Mehta J. Cellular therapy of corneal epithelial defect by adipose mesenchymal stem cell-derived epithelial progenitors. Stem Cell Res Ther. 2020;11:14 pubmed 出版商
  21. Wang Q, Yang Q, Zhang A, Kang Z, Wang Y, Zhang Z. Silencing of SPARC represses heterotopic ossification via inhibition of the MAPK signaling pathway. Biosci Rep. 2019;39: pubmed 出版商
  22. Shao Q, Esseltine J, Huang T, Novielli Kuntz N, Ching J, SAMPSON J, et al. Connexin43 is Dispensable for Early Stage Human Mesenchymal Stem Cell Adipogenic Differentiation But is Protective against Cell Senescence. Biomolecules. 2019;9: pubmed 出版商
  23. Nan L, Wang F, Ran D, Zhou S, Liu Y, Zhang Z, et al. Naringin alleviates H2O2-induced apoptosis via the PI3K/Akt pathway in rat nucleus pulposus-derived mesenchymal stem cells. Connect Tissue Res. 2019;:1-14 pubmed 出版商
  24. Ling C, Nishimoto K, Rolfs Z, Smith L, Frey B, Welham N. Differentiated fibrocytes assume a functional mesenchymal phenotype with regenerative potential. Sci Adv. 2019;5:eaav7384 pubmed 出版商
  25. Radhakrishnan S, Trentz O, Reddy M, Rela M, Kandasamy M, Sellathamby S. In vitro transdifferentiation of human adipose tissue-derived stem cells to neural lineage cells - a stage-specific incidence. Adipocyte. 2019;8:164-177 pubmed 出版商
  26. Crippa S, Rossella V, Aprile A, Silvestri L, Rivis S, Scaramuzza S, et al. Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Invest. 2019;129:1566-1580 pubmed 出版商
  27. Li J, Liu X, Chen H, Sun Z, Chen H, Wang L, et al. Multi-targeting chemoprevention of Chinese herb formula Yanghe Huayan decoction on experimentally induced mammary tumorigenesis. BMC Complement Altern Med. 2019;19:48 pubmed 出版商
  28. Sakai Takemura F, Narita A, Masuda S, Wakamatsu T, Watanabe N, Nishiyama T, et al. Premyogenic progenitors derived from human pluripotent stem cells expand in floating culture and differentiate into transplantable myogenic progenitors. Sci Rep. 2018;8:6555 pubmed 出版商
  29. Nishi H, Furuhashi K, Cullere X, Saggu G, Miller M, Chen Y, et al. Neutrophil Fc?RIIA promotes IgG-mediated glomerular neutrophil capture via Abl/Src kinases. J Clin Invest. 2017;127:3810-3826 pubmed 出版商
  30. Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, et al. Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells. Stem Cell Reports. 2017;9:464-477 pubmed 出版商
  31. Castella B, Kopecka J, Sciancalepore P, Mandili G, Foglietta M, Mitro N, et al. The ATP-binding cassette transporter A1 regulates phosphoantigen release and Vγ9Vδ2 T cell activation by dendritic cells. Nat Commun. 2017;8:15663 pubmed 出版商
  32. Hasby Saad M, Hasby E. Trichinella Spiralis Impact on Mesenchymal Stem Cells: Immunohistochemical Study by Image Analyzer in Murine Model. Exp Mol Pathol. 2017;102:396-407 pubmed 出版商
  33. Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, et al. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol. 2017;37:1115-1126 pubmed 出版商
  34. Emadedin M, Labibzadeh N, Fazeli R, Mohseni F, Hosseini S, Moghadasali R, et al. Percutaneous Autologous Bone Marrow-Derived Mesenchymal Stromal Cell Implantation Is Safe for Reconstruction of Human Lower Limb Long Bone Atrophic Nonunion. Cell J. 2017;19:159-165 pubmed
  35. Dourado K, Baik J, Oliveira V, Beltrame M, Yamamoto A, Theuer C, et al. Endoglin: a novel target for therapeutic intervention in acute leukemias revealed in xenograft mouse models. Blood. 2017;129:2526-2536 pubmed 出版商
  36. Clark K, Fierro F, Ko E, Walker N, Arzi B, Tepper C, et al. Human and feline adipose-derived mesenchymal stem cells have comparable phenotype, immunomodulatory functions, and transcriptome. Stem Cell Res Ther. 2017;8:69 pubmed 出版商
  37. Sun L, Liu T, Li L, Tang W, Zou J, Chen X, et al. Transplantation of betatrophin-expressing adipose-derived mesenchymal stem cells induces ?-cell proliferation in diabetic mice. Int J Mol Med. 2017;39:936-948 pubmed 出版商
  38. Di Maggio N, Martella E, Frismantiene A, Resink T, Schreiner S, Lucarelli E, et al. Extracellular matrix and α5β1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells. Sci Rep. 2017;7:44398 pubmed 出版商
  39. Vernot J, Bonilla X, Rodriguez Pardo V, Vanegas N. Phenotypic and Functional Alterations of Hematopoietic Stem and Progenitor Cells in an In Vitro Leukemia-Induced Microenvironment. Int J Mol Sci. 2017;18: pubmed 出版商
  40. Sanchez V, Villalba N, Fiore L, Luzzani C, Miriuka S, Boveris A, et al. Characterization of Tunneling Nanotubes in Wharton's jelly Mesenchymal Stem Cells. An Intercellular Exchange of Components between Neighboring Cells. Stem Cell Rev. 2017;13:491-498 pubmed 出版商
  41. Borghesi J, Mario L, Carreira A, Miglino M, Favaron P. Phenotype and multipotency of rabbit (Oryctolagus cuniculus) amniotic stem cells. Stem Cell Res Ther. 2017;8:27 pubmed 出版商
  42. Sheng L, Mao X, Yu Q, Yu D. Effect of the PI3K/AKT signaling pathway on hypoxia-induced proliferation and differentiation of bone marrow-derived mesenchymal stem cells. Exp Ther Med. 2017;13:55-62 pubmed 出版商
  43. Zorin V, Pulin A, Eremin I, Korsakov I, Zorina A, Khromova N, et al. Myogenic potential of human alveolar mucosa derived cells. Cell Cycle. 2017;16:545-555 pubmed 出版商
  44. Li S, Luo Y, Zhang L, Yang W, Zhang G. Targeted introduction and effective expression of hFIX at the AAVS1 locus in mesenchymal stem cells. Mol Med Rep. 2017;15:1313-1318 pubmed 出版商
  45. Vanegas N, Vernot J. Loss of quiescence and self-renewal capacity of hematopoietic stem cell in an in vitro leukemic niche. Exp Hematol Oncol. 2017;6:2 pubmed 出版商
  46. Lundell A, Nordström I, Andersson K, Lundqvist C, Telemo E, Nava S, et al. IFN type I and II induce BAFF secretion from human decidual stromal cells. Sci Rep. 2017;7:39904 pubmed 出版商
  47. Roato I, Alotto D, Belisario D, Casarin S, Fumagalli M, Cambieri I, et al. Adipose Derived-Mesenchymal Stem Cells Viability and Differentiating Features for Orthopaedic Reparative Applications: Banking of Adipose Tissue. Stem Cells Int. 2016;2016:4968724 pubmed 出版商
  48. Tancharoen W, Aungsuchawan S, Pothacharoen P, Markmee R, Narakornsak S, Kieodee J, et al. Differentiation of mesenchymal stem cells from human amniotic fluid to vascular endothelial cells. Acta Histochem. 2017;119:113-121 pubmed 出版商
  49. Mousa H, Shalaby S, Gouda Z, Ahmed F, El Khodary A. Efficacy of human umbilical cord derived-mesenchymal stem cells in treatment of rat bone marrow exposed to gamma irradiation. Ann Anat. 2017;210:64-75 pubmed 出版商
  50. Monsuur H, Weijers E, Niessen F, Gefen A, Koolwijk P, Gibbs S, et al. Extensive Characterization and Comparison of Endothelial Cells Derived from Dermis and Adipose Tissue: Potential Use in Tissue Engineering. PLoS ONE. 2016;11:e0167056 pubmed 出版商
  51. Shen Z, Zeng D, Wang X, Ma Y, Zhang X, Kong P. Targeting of the leukemia microenvironment by c(RGDfV) overcomes the resistance to chemotherapy in acute myeloid leukemia in biomimetic polystyrene scaffolds. Oncol Lett. 2016;12:3278-3284 pubmed
  52. Caminal M, Velez R, Rabanal R, Vivas D, Batlle Morera L, Aguirre M, et al. A reproducible method for the isolation and expansion of ovine mesenchymal stromal cells from bone marrow for use in regenerative medicine preclinical studies. J Tissue Eng Regen Med. 2017;11:3408-3416 pubmed 出版商
  53. Zhang G, Zhang J, Zhu C, Lin L, Wang J, Zhang H, et al. MicroRNA-98 regulates osteogenic differentiation of human bone mesenchymal stromal cells by targeting BMP2. J Cell Mol Med. 2017;21:254-264 pubmed 出版商
  54. Leibacher J, Dauber K, Ehser S, Brixner V, Kollar K, Vogel A, et al. Human mesenchymal stromal cells undergo apoptosis and fragmentation after intravenous application in immune-competent mice. Cytotherapy. 2017;19:61-74 pubmed 出版商
  55. Wang J, Dong X, Wu H, Wu N, Zhang X, Wang X, et al. Relationship of Liver X Receptors α and Endoglin Levels in Serum and Placenta with Preeclampsia. PLoS ONE. 2016;11:e0163742 pubmed 出版商
  56. Zhou Z, Xu Z, Wang F, Lu Y, Yin P, Jiang C, et al. New strategy to rescue the inhibition of osteogenesis of human bone marrow-derived mesenchymal stem cells under oxidative stress: combination of vitamin C and graphene foams. Oncotarget. 2016;7:71998-72010 pubmed 出版商
  57. Tyurin Kuzmin P, Fadeeva J, Kanareikina M, Kalinina N, Sysoeva V, Dyikanov D, et al. Activation of ?-adrenergic receptors is required for elevated ?1A-adrenoreceptors expression and signaling in mesenchymal stromal cells. Sci Rep. 2016;6:32835 pubmed 出版商
  58. Yao Y, Deng Q, Song W, Zhang H, Li Y, Yang Y, et al. MIF Plays a Key Role in Regulating Tissue-Specific Chondro-Osteogenic Differentiation Fate of Human Cartilage Endplate Stem Cells under Hypoxia. Stem Cell Reports. 2016;7:249-62 pubmed 出版商
  59. Miranda M, Nascimento H, Costa M, Costa N, Brito K, Lopes C, et al. Increasing of blastocyst rate and gene expression in co-culture of bovine embryos with adult adipose tissue-derived mesenchymal stem cells. J Assist Reprod Genet. 2016;33:1395-1403 pubmed
  60. Codinach M, Blanco M, Ortega I, Lloret M, Reales L, Coca M, et al. Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow-derived multipotent mesenchymal stromal cells. Cytotherapy. 2016;18:1197-208 pubmed 出版商
  61. Zhang J, Sun D, Fu Q, Cao Q, Zhang H, Zhang K. Bone mesenchymal stem cells differentiate into myofibroblasts in the tumor microenvironment. Oncol Lett. 2016;12:644-650 pubmed
  62. Lombardo G, Dentelli P, Togliatto G, Rosso A, Gili M, Gallo S, et al. Activated Stat5 trafficking Via Endothelial Cell-derived Extracellular Vesicles Controls IL-3 Pro-angiogenic Paracrine Action. Sci Rep. 2016;6:25689 pubmed 出版商
  63. Silva S, Levy D, Ruiz J, de Melo T, Isaac C, Fidelis M, et al. Oxysterols in adipose tissue-derived mesenchymal stem cell proliferation and death. J Steroid Biochem Mol Biol. 2017;169:164-175 pubmed 出版商
  64. Wang X, Zhu Y, Xu B, Wang J, Liu X. Identification of TLR2 and TLR4?induced microRNAs in human mesenchymal stem cells and their possible roles in regulating TLR signals. Mol Med Rep. 2016;13:4969-80 pubmed 出版商
  65. Narakornsak S, Poovachiranon N, Peerapapong L, Pothacharoen P, Aungsuchawan S. Mesenchymal stem cells differentiated into chondrocyte-Like cells. Acta Histochem. 2016;118:418-29 pubmed 出版商
  66. Khan M, Chandrashekran A, Smith R, Dudhia J. Immunophenotypic characterization of ovine mesenchymal stem cells. Cytometry A. 2016;89:443-50 pubmed 出版商
  67. Sadeghian Nodoushan F, Aflatoonian R, Borzouie Z, Akyash F, Fesahat F, Soleimani M, et al. Pluripotency and differentiation of cells from human testicular sperm extraction: An investigation of cell stemness. Mol Reprod Dev. 2016;83:312-23 pubmed 出版商
  68. Huang M, Liu T, Ma P, Mitteer R, Zhang Z, Kim H, et al. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest. 2016;126:1801-14 pubmed 出版商
  69. Ananthula S, Sinha A, El Gassim M, Batth S, Marshall G, Gardner L, et al. Geminin overexpression-dependent recruitment and crosstalk with mesenchymal stem cells enhance aggressiveness in triple negative breast cancers. Oncotarget. 2016;7:20869-89 pubmed 出版商
  70. Zou L, Chen Q, Quanbeck Z, Bechtold J, Kaufman D. Angiogenic activity mediates bone repair from human pluripotent stem cell-derived osteogenic cells. Sci Rep. 2016;6:22868 pubmed 出版商
  71. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  72. Nakamura T, Hosoyama T, Kawamura D, Takeuchi Y, Tanaka Y, Samura M, et al. Influence of aging on the quantity and quality of human cardiac stem cells. Sci Rep. 2016;6:22781 pubmed 出版商
  73. Pilge H, Fröbel J, Mrotzek S, Fischer J, Prodinger P, Zilkens C, et al. Effects of thromboprophylaxis on mesenchymal stromal cells during osteogenic differentiation: an in-vitro study comparing enoxaparin with rivaroxaban. BMC Musculoskelet Disord. 2016;17:108 pubmed 出版商
  74. Ji H, Atchison L, Chen Z, Chakraborty S, Jung Y, Truskey G, et al. Transdifferentiation of human endothelial progenitors into smooth muscle cells. Biomaterials. 2016;85:180-194 pubmed 出版商
  75. Huang H, Wang S, Gui J, Shen H. A study to identify and characterize the stem/progenitor cell in rabbit meniscus. Cytotechnology. 2016;68:2083-103 pubmed 出版商
  76. Chadchan S, Kumar V, Maurya V, Soni U, Jha R. Endoglin (CD105) coordinates the process of endometrial receptivity for embryo implantation. Mol Cell Endocrinol. 2016;425:69-83 pubmed 出版商
  77. Zhu N, Wang H, Wang B, Wei J, Shan W, Feng J, et al. A Member of the Nuclear Receptor Superfamily, Designated as NR2F2, Supports the Self-Renewal Capacity and Pluripotency of Human Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells Int. 2016;2016:5687589 pubmed 出版商
  78. Liu T, Mu H, Shen Z, Song Z, Chen X, Wang Y. Autologous adipose tissue‑derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy. Mol Med Rep. 2016;13:2053-9 pubmed 出版商
  79. Pan H, Guan D, Liu X, Li J, Wang L, Wu J, et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 2016;26:190-205 pubmed 出版商
  80. Zhang X, Ma Y, Fu X, Liu Q, Shao Z, Dai L, et al. Runx2-Modified Adipose-Derived Stem Cells Promote Tendon Graft Integration in Anterior Cruciate Ligament Reconstruction. Sci Rep. 2016;6:19073 pubmed 出版商
  81. Heo J, Choi Y, Kim H, Kim H. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. 2016;37:115-25 pubmed 出版商
  82. Schosserer M, Reynoso R, Wally V, Jug B, Kantner V, Weilner S, et al. Urine is a novel source of autologous mesenchymal stem cells for patients with epidermolysis bullosa. BMC Res Notes. 2015;8:767 pubmed 出版商
  83. Arzi B, Mills Ko E, Verstraete F, Kol A, Walker N, Badgley M, et al. Therapeutic Efficacy of Fresh, Autologous Mesenchymal Stem Cells for Severe Refractory Gingivostomatitis in Cats. Stem Cells Transl Med. 2016;5:75-86 pubmed 出版商
  84. Schminke B, Trautmann S, Mai B, Miosge N, Blaschke S. Interleukin 17 inhibits progenitor cells in rheumatoid arthritis cartilage. Eur J Immunol. 2016;46:440-5 pubmed 出版商
  85. Laner Plamberger S, Lener T, Schmid D, Streif D, Salzer T, Öller M, et al. Mechanical fibrinogen-depletion supports heparin-free mesenchymal stem cell propagation in human platelet lysate. J Transl Med. 2015;13:354 pubmed 出版商
  86. Latham S, Tiberti N, Gokoolparsadh N, Holdaway K, Couraud P, Grau G, et al. Immuno-analysis of microparticles: probing at the limits of detection. Sci Rep. 2015;5:16314 pubmed 出版商
  87. Oliver Vila I, Coca M, Grau Vorster M, Pujals Fonts N, Caminal M, Casamayor Genescà A, et al. Evaluation of a cell-banking strategy for the production of clinical grade mesenchymal stromal cells from Wharton's jelly. Cytotherapy. 2016;18:25-35 pubmed 出版商
  88. Boiko E, Maltsev D, Savicheva A, Shalepo K, Khusnutdinova T, Pozniak A, et al. Infection of Human Retinal Pigment Epithelium with Chlamydia trachomatis. PLoS ONE. 2015;10:e0141754 pubmed 出版商
  89. Parys M, Nelson N, Koehl K, Miller R, Kaneene J, Kruger J, et al. Safety of Intraperitoneal Injection of Adipose Tissue-Derived Autologous Mesenchymal Stem Cells in Cats. J Vet Intern Med. 2016;30:157-63 pubmed 出版商
  90. Beckmann R, Lippross S, Hartz C, Tohidnezhad M, Ferreira M, Neuss Stein S, et al. Abrasion arthroplasty increases mesenchymal stem cell content of postoperative joint effusions. BMC Musculoskelet Disord. 2015;16:250 pubmed 出版商
  91. Denkovskij J, Rudys R, Bernotiene E, Minderis M, Bagdonas S, Kirdaite G. Cell surface markers and exogenously induced PpIX in synovial mesenchymal stem cells. Cytometry A. 2015;87:1001-11 pubmed 出版商
  92. O Leary K, Shia A, Cavicchioli F, Haley V, Comino A, Merlano M, et al. Identification of Endoglin as an epigenetically regulated tumour-suppressor gene in lung cancer. Br J Cancer. 2015;113:970-8 pubmed 出版商
  93. Gómez M, Qin Q, Biancardi M, Galiguis J, Dumas C, MacLean R, et al. Characterization and Multilineage Differentiation of Domestic and Black-Footed Cat Mesenchymal Stromal/Stem Cells from Abdominal and Subcutaneous Adipose Tissue. Cell Reprogram. 2015;17:376-92 pubmed 出版商
  94. Kang R, Zhou Y, Tan S, Zhou G, Aagaard L, Xie L, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther. 2015;6:144 pubmed 出版商
  95. Landa Solís C, Granados Montiel J, Olivos Meza A, Ortega Sánchez C, Cruz Lemini M, Hernández Flores C, et al. Cryopreserved CD90+ cells obtained from mobilized peripheral blood in sheep: a new source of mesenchymal stem cells for preclinical applications. Cell Tissue Bank. 2016;17:137-45 pubmed 出版商
  96. Birket M, Ribeiro M, Verkerk A, Ward D, Leitoguinho A, Den Hartogh S, et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol. 2015;33:970-9 pubmed 出版商
  97. Ducret M, Fabre H, Farges J, Degoul O, Atzeni G, McGuckin C, et al. Production of Human Dental Pulp Cells with a Medicinal Manufacturing Approach. J Endod. 2015;41:1492-9 pubmed 出版商
  98. Moslem M, Eberle I, Weber I, Henschler R, Cantz T. Mesenchymal Stem/Stromal Cells Derived from Induced Pluripotent Stem Cells Support CD34(pos) Hematopoietic Stem Cell Propagation and Suppress Inflammatory Reaction. Stem Cells Int. 2015;2015:843058 pubmed 出版商
  99. Wu Y, Feng G, Song J, Zhang Y, Yu Y, Huang L, et al. TrAmplification of Human Dental Follicle Cells by piggyBac Transposon - Mediated Reversible Immortalization System. PLoS ONE. 2015;10:e0130937 pubmed 出版商
  100. O Carroll S, Kho D, Wiltshire R, Nelson V, Rotimi O, Johnson R, et al. Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. J Neuroinflammation. 2015;12:131 pubmed 出版商
  101. Bian Y, Qian W, Li H, Zhao R, Shan W, Weng X. Pathogenesis of glucocorticoid-induced avascular necrosis: A microarray analysis of gene expression in vitro. Int J Mol Med. 2015;36:678-84 pubmed 出版商
  102. Mançanares C, Oliveira V, Oliveira L, Carvalho A, Sampaio R, Mançanares A, et al. Isolation and characterization of mesenchymal stem cells from the yolk sacs of bovine embryos. Theriogenology. 2015;84:887-98 pubmed 出版商
  103. Tasev D, van Wijhe M, Weijers E, van Hinsbergh V, Koolwijk P. Long-Term Expansion in Platelet Lysate Increases Growth of Peripheral Blood-Derived Endothelial-Colony Forming Cells and Their Growth Factor-Induced Sprouting Capacity. PLoS ONE. 2015;10:e0129935 pubmed 出版商
  104. James S, Fox J, Afsari F, Lee J, Clough S, Knight C, et al. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes. Stem Cell Reports. 2015;4:1004-15 pubmed 出版商
  105. Park I, Chung P, Ahn J. Enhancement of Ischemic Wound Healing by Spheroid Grafting of Human Adipose-Derived Stem Cells Treated with Low-Level Light Irradiation. PLoS ONE. 2015;10:e0122776 pubmed 出版商
  106. Jamiolkowski R, Kang S, Rodriguez A, Haseltine J, Galinat L, Jantzen A, et al. Increased yield of endothelial cells from peripheral blood for cell therapies and tissue engineering. Regen Med. 2015;10:447-60 pubmed 出版商
  107. Maass P, Aydin A, Luft F, Schächterle C, Weise A, Stricker S, et al. PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat Genet. 2015;47:647-53 pubmed 出版商
  108. Zhou F, Gao S, Wang L, Sun C, Chen L, Yuan P, et al. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Res Ther. 2015;6:92 pubmed 出版商
  109. Williamson K, Lee K, Humphreys W, Comerford E, Clegg P, Canty Laird E. Restricted differentiation potential of progenitor cell populations obtained from the equine superficial digital flexor tendon (SDFT). J Orthop Res. 2015;33:849-58 pubmed 出版商
  110. Lee D, Su J, Kim H, Chang B, Papatsenko D, Zhao R, et al. Modeling familial cancer with induced pluripotent stem cells. Cell. 2015;161:240-54 pubmed 出版商
  111. Hensley M, de Andrade J, Keene B, MEURS K, Tang J, Wang Z, et al. Cardiac regenerative potential of cardiosphere-derived cells from adult dog hearts. J Cell Mol Med. 2015;19:1805-13 pubmed 出版商
  112. Ali H, Al Yatama M, Abu Farha M, Behbehani K, Al Madhoun A. Multi-lineage differentiation of human umbilical cord Wharton's Jelly Mesenchymal Stromal Cells mediates changes in the expression profile of stemness markers. PLoS ONE. 2015;10:e0122465 pubmed 出版商
  113. Agarwal S, Loder S, Brownley C, Eboda O, Peterson J, Hayano S, et al. BMP signaling mediated by constitutively active Activin type 1 receptor (ACVR1) results in ectopic bone formation localized to distal extremity joints. Dev Biol. 2015;400:202-9 pubmed 出版商
  114. Lankford L, Selby T, Becker J, Ryzhuk V, Long C, Farmer D, et al. Early gestation chorionic villi-derived stromal cells for fetal tissue engineering. World J Stem Cells. 2015;7:195-207 pubmed 出版商
  115. Lee Y, Lim K, Oh J, Yoon A, Joo W, Kim H, et al. Development of porous PLGA/PEI1.8k biodegradable microspheres for the delivery of mesenchymal stem cells (MSCs). J Control Release. 2015;205:128-33 pubmed 出版商
  116. Patel P, Brooks C, Seneviratne A, Hess D, Séguin C. Investigating microenvironmental regulation of human chordoma cell behaviour. PLoS ONE. 2014;9:e115909 pubmed 出版商
  117. Vadasz S, JENSEN T, Moncada C, Girard E, Zhang F, Blanchette A, et al. Second and third trimester amniotic fluid mesenchymal stem cells can repopulate a de-cellularized lung scaffold and express lung markers. J Pediatr Surg. 2014;49:1554-63 pubmed 出版商
  118. El Khattouti A, Sheehan N, Monico J, Drummond H, Haikel Y, Brodell R, et al. CD133⁺ melanoma subpopulation acquired resistance to caffeic acid phenethyl ester-induced apoptosis is attributed to the elevated expression of ABCB5: significance for melanoma treatment. Cancer Lett. 2015;357:83-104 pubmed 出版商
  119. Marques Howarth M, Simpson D, Ngok S, Nieves B, Chen R, Siprashvili Z, et al. Long noncoding RNA EWSAT1-mediated gene repression facilitates Ewing sarcoma oncogenesis. J Clin Invest. 2014;124:5275-90 pubmed 出版商
  120. Shi Q, Hodara V, Meng Q, Voruganti V, Rice K, Michalek J, et al. Early endothelial damage detected by circulating particles in baboons fed a diet high in simple carbohydrates in conjunction with saturated or unsaturated fat. Am J Cardiovasc Dis. 2014;4:123-32 pubmed
  121. Guerrero J, Oliveira H, Catros S, Siadous R, Derkaoui S, Bareille R, et al. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis. Tissue Eng Part A. 2015;21:861-74 pubmed 出版商
  122. Rogacev K, Zawada A, Hundsdorfer J, Achenbach M, Held G, Fliser D, et al. Immunosuppression and monocyte subsets. Nephrol Dial Transplant. 2015;30:143-53 pubmed 出版商
  123. Bray A, Cevallos R, Gazarian K, Lamas M. Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin. Neuroscience. 2014;280:142-55 pubmed 出版商
  124. Brandau S, Jakob M, Bruderek K, Bootz F, Giebel B, Radtke S, et al. Mesenchymal stem cells augment the anti-bacterial activity of neutrophil granulocytes. PLoS ONE. 2014;9:e106903 pubmed 出版商
  125. Kouroupis D, Churchman S, McGonagle D, Jones E. The assessment of CD146-based cell sorting and telomere length analysis for establishing the identity of mesenchymal stem cells in human umbilical cord. F1000Res. 2014;3:126 pubmed 出版商
  126. Tsai H, Deng W, Lai W, Chiu W, Yang C, Tsai Y, et al. Wnts enhance neurotrophin-induced neuronal differentiation in adult bone-marrow-derived mesenchymal stem cells via canonical and noncanonical signaling pathways. PLoS ONE. 2014;9:e104937 pubmed 出版商
  127. Liu G, Suzuki K, Li M, Qu J, Montserrat N, Tarantino C, et al. Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun. 2014;5:4330 pubmed 出版商
  128. Dziasko M, Armer H, Levis H, Shortt A, Tuft S, Daniels J. Localisation of epithelial cells capable of holoclone formation in vitro and direct interaction with stromal cells in the native human limbal crypt. PLoS ONE. 2014;9:e94283 pubmed 出版商
  129. Pei M, Li J, Zhang Y, Liu G, Wei L, Zhang Y. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res. 2014;356:391-403 pubmed 出版商
  130. Shao Z, Zhang X, Pi Y, Yin L, Li L, Chen H, et al. Surface modification on polycaprolactone electrospun mesh and human decalcified bone scaffold with synovium-derived mesenchymal stem cells-affinity peptide for tissue engineering. J Biomed Mater Res A. 2015;103:318-29 pubmed 出版商
  131. Ahmed N, Iu J, Brown C, Taylor D, Kandel R. Serum- and growth-factor-free three-dimensional culture system supports cartilage tissue formation by promoting collagen synthesis via Sox9-Col2a1 interaction. Tissue Eng Part A. 2014;20:2224-33 pubmed 出版商
  132. Hu W, Fang M, Zhao H, Yan S, Yuan J, Peng C, et al. Tumor invasion unit in gastric cancer revealed by QDs-based in situ molecular imaging and multispectral analysis. Biomaterials. 2014;35:4125-32 pubmed 出版商
  133. Ozbey O, Sahin Z, Acar N, Ozcelik F, Ozenci A, Koksoy S, et al. Characterization of colony-forming cells in adult human articular cartilage. Acta Histochem. 2014;116:763-70 pubmed 出版商
  134. Aomatsu E, Takahashi N, Sawada S, Okubo N, Hasegawa T, Taira M, et al. Novel SCRG1/BST1 axis regulates self-renewal, migration, and osteogenic differentiation potential in mesenchymal stem cells. Sci Rep. 2014;4:3652 pubmed 出版商
  135. Torii D, Konishi K, Watanabe N, Goto S, Tsutsui T. Cementogenic potential of multipotential mesenchymal stem cells purified from the human periodontal ligament. Odontology. 2015;103:27-35 pubmed 出版商
  136. Zhou J, Lu P, Ren H, Zheng Z, Ji J, Liu H, et al. 17?-estradiol protects human eyelid-derived adipose stem cells against cytotoxicity and increases transplanted cell survival in spinal cord injury. J Cell Mol Med. 2014;18:326-43 pubmed 出版商
  137. Fuentes T, Appleby N, Tsay E, Martinez J, Bailey L, Hasaniya N, et al. Human neonatal cardiovascular progenitors: unlocking the secret to regenerative ability. PLoS ONE. 2013;8:e77464 pubmed 出版商
  138. Avanzi S, Leoni V, Rotola A, Alviano F, Solimando L, Lanzoni G, et al. Susceptibility of human placenta derived mesenchymal stromal/stem cells to human herpesviruses infection. PLoS ONE. 2013;8:e71412 pubmed 出版商
  139. Navone S, Marfia G, Nava S, Invernici G, Cristini S, Balbi S, et al. Human and mouse brain-derived endothelial cells require high levels of growth factors medium for their isolation, in vitro maintenance and survival. Vasc Cell. 2013;5:10 pubmed 出版商
  140. Zimmerlin L, Donnenberg V, Rubin J, Donnenberg A. Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A. 2013;83:134-40 pubmed 出版商
  141. Lv X, Zhou G, Liu Y, Liu X, Chen J, Luo X, et al. In vitro proliferation and differentiation of adipose-derived stem cells isolated using anti-CD105 magnetic beads. Int J Mol Med. 2012;30:826-34 pubmed 出版商
  142. Antoniou K, Margaritopoulos G, Proklou A, Karagiannis K, Lasithiotaki I, Soufla G, et al. Investigation of Telomerase/Telomeres system in Bone Marrow Mesenchymal Stem Cells derived from IPF and RA-UIP. J Inflamm (Lond). 2012;9:27 pubmed 出版商
  143. Kim S, Moon G, Cho Y, Kang H, Hyung N, Kim D, et al. Circulating mesenchymal stem cells microparticles in patients with cerebrovascular disease. PLoS ONE. 2012;7:e37036 pubmed 出版商
  144. Sölder E, Böckle B, Nguyen V, Fürhapter C, Obexer P, Erdel M, et al. Isolation and characterization of CD133+CD34+VEGFR-2+CD45- fetal endothelial cells from human term placenta. Microvasc Res. 2012;84:65-73 pubmed 出版商
  145. Chui K, Trivedi A, Cheng C, Cherbavaz D, Dazin P, Huynh A, et al. Characterization and functionality of proliferative human Sertoli cells. Cell Transplant. 2011;20:619-35 pubmed 出版商
  146. Mokry J, Soukup T, Micuda S, Karbanova J, Visek B, Brcakova E, et al. Telomere attrition occurs during ex vivo expansion of human dental pulp stem cells. J Biomed Biotechnol. 2010;2010:673513 pubmed 出版商
  147. Kim Y, Kwon J, Hong M, Kim J, Song C, Jeong M, et al. Promigratory activity of oxytocin on umbilical cord blood-derived mesenchymal stem cells. Artif Organs. 2010;34:453-61 pubmed 出版商
  148. Mageed A, Pietryga D, DeHeer D, West R. Isolation of large numbers of mesenchymal stem cells from the washings of bone marrow collection bags: characterization of fresh mesenchymal stem cells. Transplantation. 2007;83:1019-26 pubmed
  149. Campioni D, Moretti S, Ferrari L, Punturieri M, Castoldi G, Lanza F. Immunophenotypic heterogeneity of bone marrow-derived mesenchymal stromal cells from patients with hematologic disorders: correlation with bone marrow microenvironment. Haematologica. 2006;91:364-8 pubmed
  150. Jager M, Thorey F, Westhoff B, Wild A, Krauspe R. In vitro osteogenic differentiation is affected in Wiedemann-Rautenstrauch-Syndrome (WRS). In Vivo. 2005;19:831-6 pubmed